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At age eleven, I [Bertrand Russell] began Euclid, with my brother 
as my tutor. This was one of the greatest events of my life, as 
dazzling as first love. I had not imagined that there was anything 
as delicious in the world.
(Bertrand Russell, quoted from K.Hoechsmann, Editorial, π 
in the Sky, Issue 9, Dec. 2005. A few paragraphs later K.H. 
adjoined: An innocent look at a page of contemporary 
theorems is no doubt less likely to evoke feelings of first 
love)
La Géométrie d’Euclide a certainement de très grands avantages, 
elle accoutume l’esprit à la rigueur, à l’élégance des 
démonstrations et à l’enchainement mtéhodique des idées... 
(J.-V. Poncelet 1822, p. xxv)
There never has been, and till we see it we never shall believe that 
there can be, a system of geometry worthy of the name, which has 
any material departures ... from the plan laid down by Euclid. 
(De Morgan 1848; copied from the Preface of Heath 1926.)
Die Lehrart, die man schon in dem ältesten auf unsere Zeit 
gekommenen Lehrbuche der Mathematik (den Elementen des 
Euklides) antrifft, hat einen so hohen Grad der Vollkommenheit, 
dass sie von jeher ein Gegenstand der Bewunderung .... 
(B.Bolzano, Grössenlehre, p. 18r, 1848)
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Euclid’s Elements are considered by far the most famous mathematical oeuvre. Com-
prising about 500 pages which are organized in 13 books, they were written about 300 
B.C. All mathematical knowledge of the epoch is collected there and presented in a rig-
our being unmatched in the following two thousand years. Over the years, the Ele-
ments have been copied, recopied, modified, commented and interpreted perpetually. 
Only the painstaking comparison of all available sources allowed Heiberg in 1888 to 
largely reconstruct the original version. The most important source (M.S. 190; this manu-
script dates from the 10th century) was discovered in the treasury 1 of the Vatican, 
when Napoleon’s troops invaded Rome in 1809. Heiberg’s text has been translated into 
all scientific languages. The English translation by Sir Thomas L.Heath from 1908 (sec-
ond enlarged edition 1926) is by far the most richly commented.
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SECTION 1
Definitions, Axioms and 
Postulates

"
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The Elements start with a long list of 23 definitions. Euclid’s defini-
tions avoid any figure; below we give an overview of the most in-
teresting definitions in the form of pictures in Fig.1. Definition 1.1.

Definition 1.1.

         1. A point is that which has no part.

" 2. A line is breadth-less length.

" 3. The extremities of a line are points.

" 4. A straight line is a line which lies evenly with the points on it-
self.

       8. A plane angle is the inclination to one another of two lines in a 
plane which meet one another and do not lie in a straight line.

     10. When a straight line set up on a straight line makes the adjacent 
angles equal to one another, each of the equal angles is right, and the 
straight line standing on the other is called a perpendicular to that on 
which it stands.

    15. A circle is a plane figure contained by one line such that all the 
straight lines falling upon it from one point among those lying within the 
figure are equal to one another.

    21. Rectilineal figures are those which are contained by straight lines, 
trilateral figures being those contained by three, ...

   23. Parallel straight lines are straight lines which being in the same 
plane and being produced indefinitely in both directions, do not meet one 
another in either direction.

The definitions describe some objects of geometry. When we dis-
cuss a modern axiom system for Euclidean geometry, we will see 
that certain fundamental concepts must remain undefined. The 
first of these is the point. We assume that the Euclidean plane is an 
abstract set E whose elements are called “points”, whatever they 
may be. We go along with Euclid to the extend of illustrating 
points as chalk marks on the blackboard. Notice that Euclid calls 
any bent or straight curve a “line” and that lines and straight lines 
all have end points. We will use the term line to denote a second 
kind of undefined objects which are certain subsets of E and corre-
spond to Euclid’s “straight lines produced indefinitely in either di-
rection”. So line and straight line is the same for us, and lines have 
no endpoints. What is a straight line for Euclid is a line segment 
AB for us. We must settle for the moment for our intuitive pictorial 
idea of a line segment. If we pretend that we know the concept of a 
half ray emanating from an initial point, then we can define “an-
gle” rigorously (see below).  If A,B are distinct points, then they de-

termine a unique half ray, denoted 
�!
AB, which has A as initial point 

and contains B. In Definition 10, Euclid talks without explanation 
about “equal” angles and similarly he takes for granted a concept 
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The Elements start with a long list of 23 definitions. Euclid’s definitions avoid any
figure; below we give an overview of the most interesting definitions.
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2. A line is breadth-less length.
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8. A plane angle is the inclination to one another of two lines in a plane which

meet one another and do not lie in a straight line.
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The definitions describe some objects of geometry. When we discuss a modern axiom
system for Euclidean geometry, we will see that certain fundamental concepts must
remain undefined. The first of these is point. We assume that the Euclidean plane
is an abstract set E whose elements are called “points”, whatever they may be. We
go along with Euclid to the extend of illustrating points as chalk marks on the black-
board. Notice that Euclid calls any bent or straight curve a “line” and that lines
and straight lines all have end points. We will use the term line to denote a second
kind of undefined objects which are certain subsets of E and correspond to Euclid’s
“straight lines produced indefinitely in either direction”. So line and straight line is



of “equal” line segments and triangles. As a matter of fact, we 
must accept an undefined relation between line segments AB and 
A′B′, called congruence and we write AB ≡ A′B′ if the relation 
holds. Similarly, we assume an undefined relation between angles 
∠A,∠A′ called angle congruence or simply congruence and write 
∠A ≡∠A′ if the angles are in fact congruent. We now list some mod-
ern definitions in order to clarify subsequent discussions.

Definition 1.2.
" 1. A set of points is collinear if the set is contained in some 
straight line.
" 2. A triangle ∆ABC is any set {A,B,C} of non–collinear points. The 
points A,B,C are the vertices of the triangle. The line segments AB, BC, 
CA are called the sides of the triangle.
       3. An angle is a set of two half–rays h,k with common initial point 
not both contained in the same line. We write ∠(h,k) = {h,k}.

1. DEFINITIONS, AXIOMS AND POSTULATES 3

the same for us, and lines have no endpoints. What is a straight line for Euclid is a
line segment AB for us. If A, B are distinct points, then they determine a unique

half ray, denoted
−→

AB, which has A as initial point and contains B. An angle is a
pair of halfrays with common initial point.
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α = ∠BAC

Figure 2

In Definition 10, Euclid talks without explanation about “equal” angles and similarly
he takes for granted a concept of “equal” line segments and triangles. As a matter
of fact, we must accept an undefined relation between line segments AB and A′B′,
called congruence and we write AB ≡ A′B′ if the relation holds. Similarly, we
assume an undefined relation between angles ∠A, ∠A′ called angle congruence or
simply congruence and write ∠A ≡ ∠A′ if the angles are in fact congruent.
We now list some modern definitions in order to clarify subsequent discussions.

Definition 1.2.
(1) A set of points is collinear if the set is contained in some straight line.
(2) A triangle ∆ ABC is any set {A, B, C} of non–collinear points. The points

A, B, C are the vertices of the triangle. The line segments AB, BC, CA
are called the sides of the triangle.

(3) Let ∆ ABC be a triangle. The angles ∠A = ∠(
−→

AB,
−→

AC), ∠B = ∠(
−→

BC,
−→

BA),

and ∠C = ∠(
−→

CA,
−→

CB) are the angles of the triangle.
(4) Two triangles are congruent if their vertices can be matched in such a way

that that all the corresponding sides are congruent and all the corresponding
angles are congruent. If the vertices of the one triangles are labeled A, B, C
and the corresponding vertices of the other are labeled A′, B′, C ′, then we write
∆ ABC ≡ ∆ A′B′C ′ and we have AB ≡ A′B′, BC ≡ B′C ′, CA ≡ C ′A′,
∠A ≡ ∠A′, ∠B ≡ ∠B′, and ∠C ≡ ∠C ′.

(5) Let C be a point, and AB a line segment. The circle with center C and
radius AB is the set of all points P such that PC ≡ AB.

(6) Two (different) lines are parallel if they do not intersect (in the sense of set
theory). We also agree, for technical reasons, that a line is parallel to itself.

       4. Let ∆ABC be a triangle. The angles ∠A = ∠(
�!
AB ,

�!
AC ),  ∠B = ∠(

�!
BC,  

�!
BA ), and ∠C = ∠(

�!
CA, 

�!
CB) are the angles of the triangle.

" 5. Two triangles are congruent if their vertices can be matched in 
such a way that that all the corresponding sides are congruent and all the 
corresponding angles are congruent. If the vertices of the one triangles are 
labeled A,B,C and the corresponding vertices of the other are labeled A′,B
′,C′, then we write ∆ABC ≡ ∆A′B′C′ and we have AB ≡ A′B′, BC ≡ B′C
′,CA ≡ C′A′, ∠A ≡∠A′, ∠B ≡∠B′, and ∠C ≡∠C′.
" 6. Let C be a point, and AB a line segment. The circle with center 
C and radius AB is the set of all points P such that PC ≡ AB.
" 7. Two (different) lines are parallel if they do not intersect (in the 
sense of set theory). We also agree, for technical reasons, that a line is par-
allel to itself.

1.3 Euclid’s Postulates
          1.To draw a straight line from any point to any point.
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1.3. Euclid’s Postulates or Axioms Let the following be postulated:

(1) To draw a straight line from any point to any point.

Figure 3

(2) To produce a finite straight line continuously in a straight line.
(3) To describe a circle with any center and distance.

Figure 4

(4) That all right angles are equal to one another.
(5) That, if a straight line falling on two straight lines make the interior angles

on the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which are the angles less than the two right
angles.

α

β

α + β < 2R

Figure 5

Remark 1.4. The first three postulates are apparently motivated by the usual con-
structions with ruler (Post. 1 and 2) and compass (Post. 3). The fourth postulate
defines the right angle as a universal measure for angles; the fifth postulate, finally,
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5. That, if a straight line falling on two straight lines make the inte-
rior angles on the same side less than two right angles, the two 
straight lines, if produced indefinitely, meet on that side on which 
are the angles less than the two right angles.
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1.3. Euclid’s Postulates or Axioms Let the following be postulated:

(1) To draw a straight line from any point to any point.
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(2) To produce a finite straight line continuously in a straight line.
(3) To describe a circle with any center and distance.
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(4) That all right angles are equal to one another.
(5) That, if a straight line falling on two straight lines make the interior angles

on the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which are the angles less than the two right
angles.
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α + β < 2R
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Remark 1.4. The first three postulates are apparently motivated by the usual con-
structions with ruler (Post. 1 and 2) and compass (Post. 3). The fourth postulate
defines the right angle as a universal measure for angles; the fifth postulate, finally,

Remark 1.4. The first three postulates are apparently motivated by the 
usual constructions with ruler (Post. 1 and 2) and compass (Post. 3). The 
fourth postulate defines the right angle as a universal measure for angles; 
the fifth postulate, finally, constitutes the celebrated parallel postulate. 
Over the centuries, it gave rise to endless discussions. The postulates are 
followed by common notions (also called axioms in some translations) 
which comprise the usual rules for equations and inequalities.

1.5. Euclid’s Common Notions or Axioms
" 1. Things which are equal to the same thing are also equal to one an-
other.
" 2. If equals be added to equals, the wholes are equal.
" 3. If equals be subtracted from equals, the remainders are equal.
" 4. Things which coincide with one another are equal to one another.
" 5. The whole is greater than the part.

"

"  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Thank you Euclid!!

MOVIE 1.1 Euclid, the father of Geometry



SECTION 2
Book I. Propositions

7



After the definitions, postulates, and axioms, the propositions fol-
low with proofs.

In the following some propositions are stated in the translation 
given in the Book I of Euclid, The Thirteen Books of THE ELEMENTS, 
Translated with introduction and commentary by Sir Thomas L. 
Hearth, Dover Publications 1956. Most propositions are translated 
into modern mathematical language and labeled by a decimal num-
ber indicating section number and item number. These results may 
be used and should be referred to in exercises.

Propositions 1 to 3 state that certain constructions are possible.

2.1 Proposition 4  If two triangles have two sides equal to two sides re-
spectively, and have the enclosed angles contained by the equal straight 
lines equal, they will also have the base equal to the base, the triangle will 
be equal to the triangle, and the remaining angles will be equal to the re-
maining angles respectively, namely those which the equal sides subtend.

Proof. Superposition

2.2 Proposition 4 bis Let ∆ABC and ∆A′B′C′ be triangles such that 
AB ≡ A′B′, AC ≡ A′C′ and ∠A ≡∠A′. Then ∆ABC ≡ ∆A′B′C′. (sas)

2.3 Proposition 5 In ∆ABC, if AB ≡ AC then ∠B ≡∠C.

Proof. Let us see how Euclid has proved this proposition. One ex-
tends, see Fig.8, CA and CB (Post. 2) towards the points F et G with 
AF = BG. Thus the triangles FCB and GCA are equal, i.e., α + δ = β 
+ ε, η = ζ and FB = GA. Now, the triangles AFB and BGA are equal 
and thus δ = ε. Using the above identity, one has α = β. This ap-
pears to be a brilliant proof, but is actually superfluous. This propo-

sition is immediately followed by proposition 2.4, where the oppo-
site implication is proved.

2.4 Proposition 6 In ∆ABC, if ∠B ≡∠C then AB ≡ AC.

Proposition 7 is preparatory to Proposition 8.
6 2. GEOMETRY
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Figure 6

2.5. Proposition 8 Let ∆ ABC and ∆ A′B′C ′ be triangles such that AB ≡ A′B′,
BC ≡ B′C ′ and CA ≡ C ′A′. Then ∆ ABC ≡ ∆ A′B′C ′. (sss)

Proposition 9 describes a method for bisecting an angle. Similarly, Proposition 10
tell how to bisect a line segment. Proposition 11 contains a construction of the
perpendicular to a line at a point on the line.

Exercise 2.6.

(1) Describe a compass and straight-edge construction for the bisector of a given
angle. Prove that the construction works.

(2) Describe a compass and straight-edge construction for the perpendicular bi-
sector of a given line segment. Prove that the construction works.

(3) Describe a compass and straight-edge construction for the perpendicular to a
given line at a given point on the line. Prove that the construction works.

2.7. Proposition 12 To a given infinite straight line, from a given point which is
not on it, to draw a perpendicular straight line.

2.8. Proposition 12 There is a compass and straight-edge construction for the per-
pendicular to a given line passing through a point not on the line.

Construction. Choose a point D on the line l. Draw the circle with center C and
radius CD. It cuts l in points D, E. Let M be the midpoint of DE. Then MC is
the desired perpendicular. (See Figure 7.)

2.5 Proposition 8 Let ∆ABC and ∆A′B′C′ be triangles such that AB 
≡ A′B′, BC ≡ B′C′ and CA ≡ C′A′. Then ∆ABC ≡ ∆A′B′C′. (sss)

The proof of Philo of Byzantium, which can be seen in Fig.9 is 
more elegant than that by Euclid.

Proposition 9 describes a method for bisecting an angle. Similarly, 
Proposition 10 tell how to bisect a line segment. Proposition 11 con-
tains a construction of the perpendicular to a line at a point on the 
line.

Exercise 2.6.
" 1. Describe a compass and straight-edge construction for the bisec-
tor of a given angle. Prove that the construction works.
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" 2. Describe a compass and straight-edge construction for the perpen-
dicular bisector of a given line segment. Prove that the construction 
works.
" 3. Describe a compass and straight-edge construction for the perpen-
dicular to a given line at a given point on the line. Prove that the construc-
tion works.

2.7. Proposition 12 To a given infinite straight line, from a given point 
which is not on it, to draw a perpendicular straight line.
2.8. Proposition 12 There is a compass and straight-edge construction 
for the perpendicular of a given line passing through a point not on the 
line.

Construction. Choose a point D in the half plane of the given line l 
not containing the given point C. Draw the circle with center C and 
radius CD. It cuts l in points G,E. Let H be the midpoint of GE.    
Then HC is the desired perpendicular.

2.9. Proposition 13 Vertical angles are congruent
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2.9. Proposition 13 Vertical angles are congruent.

What follows now are “geometric inequalities”. They are proved without the use of
Postulate 5.

2.10. Proposition 18 In ∆ ABC, if BC > AC, then ∠A > ∠B.

2.11. Proposition 19 In ∆ ABC, if ∠A > ∠B then BC > AC.

2.12. Proposition 20 (Triangle Inequality) In any ∆ ABC, AC + BC > AB.

A consequence of Proposition 20 is that the straight line between two points is the
shortest path between the two points.

Exercise 2.13. A farmer’s house and his barn are on the same side of a straight
river. The farmer has to walk from his house to the river and to fetch water and then
to the barn to feed and water his horses. At which point on the river should he fetch
water so that his path from the house via the river to the barn is as short as possible?

2.14. Proposition 22 If a, b, and c are line segments such that a + b > c then there
is a triangle ∆ ABC such that AB ≡ c, BC ≡ a, and CA ≡ b.

2.15. Proposition 26 Let ∆ ABC and ∆ A′B′C ′ be triangles such that AB ≡ A′B′,
∠A ≡ ∠A′ and ∠B ≡ ∠B′ then ∆ ABC ≡ ∆ A′B′C ′. (asa)

What follows now are “geometric inequalities”. They are proved 
without the use of Postulate 5.

2.10. Proposition 16 In ∆ABC, the exterior angle at C is larger than ei-
ther ∠A or ∠B.

2.11. Proposition 17 In ∆ABC, ∠A + ∠B < 2R.

2.12. Proposition 18 In ∆ABC, if BC > AC, then ∠A > ∠B.

2.13. Proposition 19 In ∆ABC, if ∠A > ∠B then BC > AC.

It is interesting that the Proposition 18 implies its converse, Proposi-
tion 19.

2.14. Proposition 20 (Triangle Inequality) In any ∆ABC, AC + BC > 
AB.

Exercise 2.15.
" 1. A farmer’s house and his barn are on the same side of a straight 
river. The farmer has to walk from his house to the river and to fetch wa-
ter and then to the barn to feed and water his horses. At which point on 
the river should he fetch water so that his path from the house via the 
river to the barn is as short as possible?
          2. Prove Euclid’s proposition 21."

2.16. Proposition 21 Let ∆ABC be given, and let C′ be a point in the in-
terior of ∆ABC. Then AC + BC > AC′ + BC′ and ∠C′ > ∠C.

2.17. Proposition 22 If a, b, and c are line segments such that a + b > 
c then there is a triangle ∆ABC such that AB ≡ c, BC ≡ a, and CA ≡ b.
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2.18. Proposition 25 If two triangles have two sides equal to two 
sides respectively, but have the base greater than the base, they will 
also have the one of the angles contained by the equal straight 
lines greater than the other.

2.19. Proposition 25 Let ∆ABC and ∆A′B′C′ be triangles such that AB 
≡ A′B′ and AC ≡ A′C′ but BC > B′C′ then ∠A > ∠A′.

2.20. Proposition 26 Let ∆ABC and ∆A′B′C′ be triangles such that AB 
≡ A′B′, ∠A ≡∠A′ and ∠B ≡∠B′ then ∆ABC ≡ ∆A′B′C′. (asa)

The following congruence theorem does not appear in the Ele-
ments.

2.21. Proposition Let ∆ABC and ∆A′B′C′ be triangles such that ∠A ≡ 
∠A′=R, AB ≡ A′B′, BC ≡ B′C′ and BC > AB then ∆ABC ≡ ∆A′B′C′. 
(rss)

2.22. Proposition 27 If a line cuts a pair of lines such that the alternat-
ing angles are congruent then the lines of the pair are parallel.

2.23. Proposition 28 If a line cuts a pair of lines such that corresponding 
angles are congruent, then the lines of the pair are parallel.

Exercise 2.24. Note that Proposition  2.8 says in particular that 
given a line l and a point P not on l, there exists a perpendicular 
from P to l. By Proposition 2.23 the perpendicular is unique.

        1. Let P be a point not on the line l and let Q ∈ l be the foot of the per-
pendicular from P to l. Let X be any point of l, X≠Q. Prove that PX > 
PQ.  Hint: 2.10 and 2.13.

The line segment PQ in 1. is called the (segment) distance of P from l. 
The (segment) distance of the point A from the point B is the line seg-
ment AB.
"
        2. Let a,b be distinct lines intersecting in the point A. Prove: A point 
X has congruent segment distances from line a and line b if and only if X 
lies on the angle bisector of one of the four angles formed by the line a and 
b.
" 3. Let A,B be two distinct points. Prove that a point X has congru-
ent segment distances from point A and point B if and only if X lies on 
the perpendicular bisector of AB.

Exercise 2.25.  Prove the following facts.
" 1. The bisectors of the three angles of a triangle meet in a point.
" 2. The perpendicular bisectors of the three sides of a triangle meet in 
a single point."

Exercise 2.26.  Let C  be the circle with center A and radius AB. The inte-
rior of C is the set of all points X such that AX < AB; the exterior of C  is 
the set of all points X such that AX > AB. Take for granted the fact that a 
line which contains an interior point of C intersects C in more than one 
point."
         1. Let P ∈ C and let t be the unique line containing P such that t is 

perpendicular to 
 !
AP . Prove that every point of t except P belongs to the 

exterior of C.
" 2. Let t be a line which intersects C in exactly one point T. Prove 

that 
 !
AP  is perpendicular to t.

10



          3. Prove that a line intersects a circle in at most two points.

Now, for the first time, Postulate 5 will be used.

2.27. Proposition 29 If a,b are a pair of parallel lines then the correspond-
ing angles at a transversal are congruent.

2.28. Proposition 30 If a is parallel to b, and b is parallel to c, then a is 
parallel to c.

The famous next theorem contains the important fact that the angle 
sum of a triangle is 180�.

2.29. Proposition 32 In any triangle, if one of the sides be produced, the 
exterior angle is equal to the two interior and opposite angles, and the 
three interior angles of the triangle are equal to two right angles.

Exercise 2.30. Prove that the three heights (or altitudes) of a triangle 
meet in a single point using that the perpendicular bisectors of the three 
sides of a triangle meet in a single point (Exercise 2.25).

Propositions 33 to 36 deal with parallelograms.

Exercise 2.31. Recall that a parallelogram is a quadrilateral with oppo-
site sides parallel.

" 1. (Proposition 33) Let □ABCD be a quadrilateral with sides AB, 
BC, CD, DA such that AB is opposite CD, and BC is opposite DA. Sup-
pose that AD ≡ BC and 

 !
AD is parallel to 

 !
BC . Prove that AB ≡ CD and 

 !
AB is parallel to 

 !
DC .
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Figure 8

(2) (Proposition 34) Let !ABCD be the parallelogram with sides AB, BC,
CD, DA such that AB is opposite CD, and BC is opposite DA. Prove
that AB ≡ CD, BC ≡ AD and that the diagonals BD and AC bisect one
another.

The following proposition deals with area for the first time. When two plane figures
are called “equal” in Euclid, it means in modern terms that they have equal areas. The
concept of area is treated as a known, unquestioned concept, which is not satisfactory
nowadays. It is interesting, however, to observe which properties of area are used in
the proofs.

2.24. Proposition 35 Parallelograms which are on the same base and in the same
parallels are equal to one another.

Proof. Let ABCD, EBCF be parallelograms on the same base BC and in the same
parallels AF , BC;
I say that ABCD is equal to the parallelogram EBCF .
For, since ABCD is a parallelogram, AD is equal to BC. For the same reason EF is
equal to BC, so that AD is also equal to EF [C.N. 1]; and DE is common; therefore
the whole AE is equal to the whole DF [C.N. 2]. But AB is also equal to DC [I.
34]; therefore the two sides EA, AB are equal to the two sides FD, DC respectively,
and therefore the angle FDC is equal to the angle EAB, the exterior to the interior
[I. 29]; therefore the base EB is equal to the base FC, and the triangle EAB will be
equal to the triangle FDC [I, 4]. Let DGE be subtracted from each; therefore the
trapezium ABGD which remains is equal to the trapezium EGCF which remains
[C.N. 3]. Let the triangle GBC be added to each; therefore the whole parallelogram
ABCD is equal to the whole parallelogram EBCF [C.N. 2]. !

2.25. Proposition 38 Triangles which are on equal bases and in the same parallels
are equal to one another.

Remark 2.26. Propositions 37 and 38 serve as a replacement of our area formula
area of a parallelogram = base times height

area of a triangle = 1

2
times base times height

           2.(Proposition 34) Let □ABCD be the parallelogram with sides 
AB, BC, CD, DA such that AB is opposite CD, and BC is opposite DA. 
Prove that AB ≡ CD, BC ≡ AD and that the diagonals BD and AC bisect 
one another.
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Why they are usefull..
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The following proposition deals with area for the first time. When 
two plane figures are called “equal” in Euclid, it means in modern 
terms that they have equal areas. The concept of area is treated as a 
known, unquestioned concept, which is not satisfactory nowadays. 
It is interesting, however, to observe which properties of area are 
used in the proofs.

2.32. Proposition 35 Parallelograms which are on the same base and in 
the same parallels are equal to one another.

Proof. Let ABCD, EBCF be parallelograms on the same base BC 
and in the same parallels AF, BC;

I say that ABCD is equal to the parallelogram EBCF.

For, since ABCD is a parallelogram, AD is equal to BC. For the 
same reason EF is equal to BC, so that AD is also equal to EF [C.N. 
1]; and DE is common; therefore the whole AE is equal to the 
whole DF [C.N. 2]. But AB is also equal to DC [I. 34]; therefore the 
two sides EA, AB are equal to the two sides FD, DC respectively, 
and therefore the angle FDC is equal to the angle EAB, the exterior 
to the interior [I. 29]; therefore the base EB is equal to the base FC, 
and the triangle EAB will be equal to the triangle FDC [I, 4]. Let 
DGE be subtracted from each; therefore the trapezium ABGD 
which remains is equal to the trapezium EGCF which remains 
[C.N. 3]. Let the triangle GBC be added to each; therefore the 
whole parallelogram ABCD is equal to the whole parallelogram 
EBCF [C.N. 2]. □

2.33. Proposition 38 Triangles which are on equal bases and in the same 
parallels are equal to one another.

Remark 2.34. Propositions 37 and 38 serve as a replacement of our 
area formula

area of a parallelogram = base times height

area of a triangle =  1/2 times base times height

2.35. Proposition 47 (Theorem of Pythagoras) In right–angled trian-
gles the square on the side sub-tending the right angle is equal to the 
squares on the sides containing the right angle.

The following is the converse of the Pythagorean Theorem. This 
converse can be used to check whether an angle is truly a right an-
gle.

2.36. Proposition 48 If in a triangle the square on one of the sides be 
equal to the squares on the remaining two sides of the triangle , the angle 
contained by the remaining two sides of the triangle is right.

Example 2.37. A right triangle has sides of lengths 21 and 29. How long 
is the third side?  

Solution. Let x be the length of the third side. We are not told 
which of the sides is the hypotenuse, so we must consider two 
cases.  
Case 29 is the hypotenuse. Then  x2 + 212 = 292 i.e. x2 = 841−441 = 400, 
so x = 20.  
Case x is the hypotenuse. Then 212 + 292 = x2, i.e., x2 = 1282, so x =p
1282

Example 2.38. A right triangle has a side of length x, another side is 3 
units longer and the third side is 5 units longer than x. How long are the 
first side x?  

12



Solution. The sides are x, x + 3, and x + 5. Here x + 5 must be the 
hypotenuse and we must have x2 + (x+3)2  = (x+5)2, i.e., x2 + x2 + 
6x + 9 = x2 + 10x + 25, which simplifies to x2 − 4x− 16 = 0. By the 
quadratic formula

Remark 2.39. The results in Book I that you must know are the 
basic concepts, Propositions 5 and 6 on isosceles triangles, the 
congruence theorems, the Triangle Inequality, Propositions 27 
and 28 on corresponding and alternating angles, and the con-
verse Proposition 29, Proposition 32 on angle sums in triangles, 
then the Theorem of Pythagoras and in converse (Propositions 
47 and 48).

A link to learn about the connections between geometry and jewelry

x =
1

2
(4±

p
16 + 64) =

1

2
(4±

p
5 · 16 =

1

2
(4± 4

p
5) = 2± 2

p
5.

The positive solution is x = 2(1 +

p
5)

13

A world of applications!

MOVIE 1.3 About the link between Geometry and reality.

and how to use it in everyday life.

MOVIE 1.4 About the pythagorian theorem..
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SECTION 3
Book II-XIII

14



Book II

Book II contains a number of propositions on area which is the 
way to deal with products in Euclidean mathematics. Some propo-
sitions amount to algebraic identities which are very simple in to-
day’s algebraic language; some propositions use the Pythagorean 
Theorem to solve quadratic equations. An example is Proposition 
14.

3.1. Proposition 14 To construct a square equal to a given rectilineal fig-
ure.

Exercise 3.2. (Theorem of Thales) Let AB be a diameter of a circle and 
C any point on the circle. Prove that ∠ACB is a right angle.

Exercise 3.3. (Proposition 14) Let a rectangle with sides a and b be 
given. By compass and ruler alone, construct a square which has the same 
area as the given rectangle. In other words, given line segments a,b con-
struct a line segment x such that x2 = a ⋅ b.

3.4. Corollary For any positive real number a, construct 
p
a.
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4. Book III

This part of the Elements deals with circles and their properties.
Here is a sampling of definitions from Book III.

Definition 4.1.

2. A straight line is said to touch a circle which, meeting the circle and being
produced, does not cut the circle.

6. A segment of a circle is the figure contained by a straight line and a
circumference of a circle.

8. An angle in a segment is the angle which, when a point is taken on the
circumference of the segment and straight lines are joined from it to the ex-
tremities of the straight line which is the base of the segment, is contained
by the straight lines so joined.

Definition 4.2. Let C be a circle with center Z, and let A, B be points on the circle,
i.e., A, B ∈ C.

(1) The line segment AB is a chord of C.
(2) A straight line which intersects the circle in two points is called a secant of

the circle.
(3) A straight line which intersects the circle in exactly one point is said to touch

the circle, and to be tangent to the circle.
(4) An arc of a circle is the intersection of the circle with a half–plane of a

secant.
(5) The central angle over the chord AB is the angle ∠AZB.
(6) An inscribed angle is an angle ∠ACB where C is some point on the circle.
(7) Two circles which intersect in exactly one point are said to touch one an-

other.

Book III

This part of the Elements deals with circles and their properties. 
Here is a sampling of definitions from Book III.

Definition 3.5.

" 1. A straight line is said to touch a circle which, meeting the circle 
and being produced, does not cut the circle.

" 2. A segment of a circle is the figure contained by a straight line 
and a circumference of a circle.

" 3. An angle in a segment is the angle which, when a point is taken 
on the circumference of the segment and straight lines are joined from it 
to the extremities of the straight line which is the base of the segment, is 
contained by the straight lines so joined.

Recall that a straight line cuts a circle in at most two points.

Exercise 3.6. (Proposition 10) Show that two circles intersect in at most 
two points.

Definition 3.7. Let C be a circle with center Z, and let A, B be points on 
the circle, i.e., A,B ∈ C.

" 1. The line segment AB is a chord of C.

" 2. A straight line which intersects the circle in two points is called a 
secant of the circle.

" 3. A straight line which intersects the circle in exactly one point is 
said to touch the circle, and to be tangent to the circle.
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" 4. An arc of a circle is the intersection of the circle with a half–
plane of a secant.

" 5. The central angle over the chord AB is the angle ∠AZB.

" 6. An inscribed angle is an angle ∠ACB where C is some point on 
the circle.

" 7. Two circles which intersect in exactly one point are said to touch 
one another.

Exercise 3.8 (Proposition 1) Given three (distinct) points of a circle, 
construct the center by compass and ruler alone.

3.9. Proposition 10 A circle does not cut a circle at more than two 
points.

3.10. Proposition 16 The straight line drawn at right angles to the di-
ameter of a circle from its extremities will fall outside the circle, and into 
the space between the straight line and the circumference another straight 
line cannot be interposed; further the angle of the semi-circle is greater, 
and the remaining angle less, than any acute rectilineal angle.

3.11. Proposition 18 The tangent at a point A of a circle is perpendicular 
to the radius vector through A.

3.12. Proposition 20 Let AB be a chord of a circle  with center Z. Then 
the central angle over the chord AB is twice the size of any inscribed an-
gle ∠ACB when C and Z are on the same side of 

 !
AB.
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Exercise 4.3. (Proposition 1) Given three (distinct) points of a circle, construct the
center by compass and ruler alone.

4.4. Proposition 18 The tangent at a point A of a circle is perpendicular to the
radius vector through A.

4.5. Proposition 20 Let AB be a chord of a circle C with center Z. Then the central
angle over the chord AB is twice the size of any inscribed angle ∠ACB when C and

Z are on the same side of
←→

AB.

α

2α

Figure 10

Exercise 4.6. Find and prove the relationship between the central angle ∠AZB and

an inscribed angle ∠ACB when C and Z are on different sides of
←→

AB.

4.7. Proposition 21 In a circle the inscribed angles over the same chord AB and on

the same side of
←→

AB are congruent.

Exercise 4.8.

(1) Describe and verify a compass and ruler construction of the tangents to a
circle passing through a given exterior point of the circle.

(2) Describe and verify a compass and ruler construction of the common tangents
of two circles.

Exercise 3.13. Find and prove the relationship between the central angle 
∠AZB and an inscribed angle ∠ACB when C and Z are on different sides 

of 
 !
AB.

3.14. Proposition 21 In a circle the inscribed angles over the same chord 
AB and on the same side of  are congruent.

Exercise 3.15.

" 1. Describe and verify a compass and ruler construction of the tan-
gents to a circle passing through a given exterior point of the circle.

" 2. Describe and verify a compass and ruler construction of the com-
mon tangents of two circles.

16
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 Book IV

This book deals with connections between circles and triangles es-
sentially. Here are some sample theorems.

3.16. Proposition 4 In a given triangle to inscribe a circle.

This proposition essentially uses the following fact which was 
shown in Exercise 2.24.2.

Proposition 3.17. The angle bisector is the locus of all points equidistant 
from the legs of the angle.

3.18. Proposition 5 About a given triangle to circumscribe a circle.

This proposition can be done easily using that the perpendicular 
bisector of a line segment is the locus of all points equidistant from 
the endpoints of the line segment (Exercise 2.25).

3.19. Proposition 11 In a given circle, inscribe a regular pentagon.

Book V

This book contains the theory of proportions and the algebra of 
line segments. Already the definitions are hard to understand and 
the propositions are complicated, especially when compared with 
the elegant algebraic language which is available to us today. How-
ever, this Book throws considerable light on the Greek substitute 
for real number. Here are some sample definitions.

Definition 3.20.

" 1. A magnitude is a part of a magnitude, the less of the greater, 
when it measures the greater.

" 2. The greater is a multitude of the less when it is measured by the 
less.

" 3. A ratio is a sort of relation in respect of size between two magni-
tudes of the same kind.

" 4. Magnitudes are said to have a ratio to one another which are 
capable when multiplied, of exceeding one another.

" 5. Magnitudes are said to be in the same ratio, the first to the sec-
ond and the third to the fourth, when, if any equimultiples whatever be 
taken of the first and third, and any equimultiples whatever of the second 
and the fourth, the former equimultiples alike exceed, are alike equal to, or 
alike fall short of, the latter equimultiples respectively taken in correspond-
ing order.

" 6. Let magnitudes which have the same ratio be called propor-
tional.

17
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There are 11 more definitions at the start of the book. Note that 3.20 
.1. defines factor, and 3.20.2. multiple. Definition 3.20.3. says that a 
certain relationship between the sizes of magnitudes may or may 
not exist; if it exists it is called “ratio”. If a and b are magnitudes “of 
the same kind”, then a : b = a∕b is their ratio, so some real number 
by our comprehension. The next Definition 3.20.4. says when such 
a relationship exists: For any integral multiple ma there is an inte-
gral multiple nb such that nb > ma and conversely. This definition 
says that the ratio a : b can be approximated to any degree of preci-
sion by rational numbers. Definition 3.20.5., due to Eudoxos of Kni-
dos (408?–355?), then says when two ratios a : a′ and b : b′ are equal 
in terms of rationals: a∕a′ = b∕b′ if and only if for every rational 
m∕n, we have

This is a valid criterion for the equality of the real numbers a∕a′ 
and b∕b′.

Here are some sample theorems which are translated into modern 
algebraic formulas. They should be interpreted geometrically in or-
der to reflect the Greek original. Also note that ma where m is a 
positive integer and a a magnitude (line segment, area, volume), 
means “m copies of a added together”, and does not mean a prod-
uct. This is analogous to the definition of powers. In the following 
m,n,p,… stand for positive integers while a,b,c,… stand for magni-
tudes.

3.21. Proposition 1 ma + mb + mc +...  = m(a + b + c + …).

3.22. Proposition 2 ma + na + pa +...  = (m + n + p + …)a.

3.23. Proposition 3 n(ma) = (nm)a.

3.24. Proposition 4 If a : b = c : d then ma : nb = mc : nd.

3.25. Proposition 5 (ma) − (nb) = (m − n)b.

There are 25 propositions of this nature altogether.

Book VI

The results of this book which deals with similarity contains very 
useful and important results.

Definition 3.26. Similar rectilineal figures are such as have their angles 
severally equal and the sides about the equal angles proportional.

We specialize and rephrase this definition to triangles. Note the 
analogy to “congruent”.

Definition 3.27. Two triangles are similar if they can be labelled ∆ABC 
and ∆A′B′C′ in such a way that ∠A ≡∠A′, ∠B ≡∠B′, ∠C ≡∠C′, ρ = A
′B′ : AB = B′C′ : BC = C′A′ : CA. We will call the value ρ the similar-
ity factor.

Interesting is the following definition.

Definition 3.28.. A straight line is said to have been cut in the extreme 
and mean ratio when, as the whole line is to the greater segment, so is the 
greater to the less.
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5. Book IV

This book deals with connections between circles and triangles essentially. Here are
some sample theorems.

5.1. Proposition 4 In a given triangle to inscribe a circle.

5.2. Proposition 5 About a given triangle to circumscribe a circle.

This proposition can be done easily using that the perpendicular bisector of a line
segment is the locus of all points equidistant from the endpoints of the line segment
(Exercise 2.19).

5.3. Proposition 11 In a given circle, inscribe a regular pentagon.

6. Book V

This book contains the theory of proportions and the algebra of line segments. Al-
ready the definitions are hard to understand and the propositions are complicated,
especially when compared with the elegant algebraic language which is available to
us today. However, this Book throws considerable light on the Greek substitute for
real number.

7. Book VI

The results of this book which deals with similarity contains very useful and impor-
tant results.

Definition 7.1. Similar rectilineal figures are such as have their angles severally
equal and the sides about the equal angles proportional.

We specialize and rephrase this definition to triangles. Note the analogy to “congru-
ent”.

Definition 7.2. Two triangles are similar if they can be labeled ∆ ABC and ∆ A′B′C ′

in such a way that ∠A ≡ ∠A′, ∠B ≡ ∠B′, ∠C ≡ ∠C ′, ρ = A′B′ : AB = B′C ′ :
BC = C ′A′ : CA. We will call the value ρ the similarity factor.

Interesting is the following definition.

Definition 7.3. A straight line is said to have been cut in the extreme and mean
ratio when, as the whole line is to the greater segment, so is the greater to the less.

x a − x

It is required that a : x = x : (a − x), i.e., a(a − x) = x2 or x2 + ax − a2 = 0. The
solution is

x = 1

2
(−a ±

√
a2 + 4a2) = a

2
(−1 ±

√
5).

a/a0

8
<

:

>
=
<

9
=

;m/n , b/b0

8
<

:

>
=
<

9
=

;m/n.
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It is required that a : x = x : (a − x), i.e., a(a − x) = x2 or x2 + ax − a2 = 
0. The solution is

The ratio a : x is the so-called golden ratio and the division is called 
the Golden Section.

3.29. Proposition 2 Let ∠CAB be cut by a transversal parallel to BC in 

the points B′,C′ where the notation is chosen so that B′∈ 
�!
AB and C′∈ 

�!
AC. Then

Proof. (Euclid) For let B′C′ be drawn parallel to BC, one of the sides 
of the triangle ABC; I say that, as BB′ is to B′A, so is CC′ to C′A. For 
let BC′, CB′ be joined. Therefore the triangleBB′C′ is equal to the tri-
angle CB′C′, for they are on the same base B′C′ and in the same par-
allels B′C′, BC [I. 38]. And the triangle AB′C′ is another area. But 
equals have the same ratio to the same; therefore as the triangle BB
′C′ is to the triangle AB′C′, so is the triangle CB′C′ to the triangle 
AB′C′. etc. □

3.30. Remark In the situation of Proposition 2, AB : AB′ = AC : AC′ 
is equivalent to AB : BB′ = AC : CC′. The next four proposition are 
“similarity theorems” analogous to the “congruence theorems”. Re-
call our definition of similar triangles at this point. For us only one 
of the similarity theorems is of importance.

3.31. Proposition 4 (∼aa) Let ∆ABC and ∆A′B′C′ be triangles such 
that ∠A ≡∠A′ and ∠B ≡∠B′. Then ∆ABC ∼ ∆A′B′C′.

This is the “Theorem on similar Triangles” that is by far the most 
important similarity theorem.

We are now in a position to prove a number of propositions that 
are essential.

3.32. Proposition 8 Let ∆ABC be a right triangle with ∠C ≡ R. Let the 
foot of the perpendicular from C to AB be H. Then ∆ABC ~ ∆ACH ~ 
∆CBH.

Exercise 3.33. Let ∆ABC be a triangle as in Proposition 8. Set a = BC,b 
= CA,c = AB,p = AH,q = HB. Use Proposition 8 to give a new proof of 
the formulas h2 = pq, a2 = qc, b2 = pc and of the Pythagorean Theorem.

x = 1
2 (�a±

p
a

2 + 4a2) = a
2 (�1±

p
5).

AB : BB0 = AC : CC 0
if and only if BC k B0C 0.
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3.34. Proposition 9 By compass and ruler alone, a given line seg-
ment can be divided into a prescribed number of congruent line 
segments.

Example 3.35. In the figure below the lines 
 !
BC  and 

 !
B0C 0 are parallel. 

Using the entered data, compute x and y. The similarity factor taking 
∆ABC to ∆AB′C′ is ρ = (3 + 5)∕3 = 8∕3. Hence y = 2(8∕3) = 16∕3. 
Furhter x∕4 = 3∕2, so x = 6.
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Example 7.11. To measure the height of a tower (tree, pole, building) one might
employ the set-up pictured below where h is the height to be found, a is the known
height of the observer, b is the known height of a pole, c′ is the measured distance of
the observer from the pole, c is the measured distance of the observer from the tower,
and things are arranged in such a way that the eye of the observer, the top of the pole
and the top of the tower form a straight line. (Figure 13)
Say all being measured in feet, a = 6, b = 15, c′ = 8, and c = 56. We have similar
triangles and find that

h − 6

56
=

15 − 6

8
, h − 6 = 63, h = 69.
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Example 7.11. To measure the height of a tower (tree, pole, building) one might
employ the set-up pictured below where h is the height to be found, a is the known
height of the observer, b is the known height of a pole, c′ is the measured distance of
the observer from the pole, c is the measured distance of the observer from the tower,
and things are arranged in such a way that the eye of the observer, the top of the pole
and the top of the tower form a straight line. (Figure 13)
Say all being measured in feet, a = 6, b = 15, c′ = 8, and c = 56. We have similar
triangles and find that

h − 6

56
=

15 − 6

8
, h − 6 = 63, h = 69.

Example 3.36. To measure the height of a tower (tree, pole, building) one 
might employ the set-up pictured below where h is the height to be found,  
a is the known height of the observer, b is the known height of a pole, c′ is 
the measured distance of the observer from the pole, c is the measured dis-
tance of the observer from the tower, and things are arranged in such a 
way that the eye of the observer, the top of the pole and the top of the 
tower form a straight line. 

Say all being measured in feet, a = 6, b = 15, c′ = 8, and c = 56. We have 
similar triangles and find that
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h

b

a c′

c

Figure 13

Example 7.12. In Figure 14 below the ratios are all equal to the similarity factor ρ:
y1

x1

=
y2

x2

=
y3

x3

= · · · = ρ.

This means that the ratio depends only on the angle α and the common ratio is by
definition the tangent of α, tan(α). This is to demonstrate that similarity is the
source of trigonometry which is the essential tool of surveyors, and is pervasive in
mathematics, physics, astronomy, and engineering.

8. Book VII, VIII, IX

These books deal with natural numbers which are defined as a “multitude composed
of units”. Ratios of numbers are what are rational numbers for us. A good deal of
important and standard number theory is contained in these books.

9. Book X

“Book X does not make easy reading” (B. van der Waerden, Science Awakening, p.
172.) It deals via geometry and geometric algebra with what we call today rational
and irrational numbers. In fact, 13 different kinds of irrationalities are distinguished.

Definition 9.1.

(1) Those magnitudes are said to be commensurable which are measured by
the same measure, and those incommensurable which cannot have any
common measure.

(2) Straight lines are commensurable in square when the squares on them
are measured by the same area, otherwise they are incommensurable in
square.

h� 6

56
=

15� 6

8
, h� 6 = 63, h = 69.
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Example 3.37. In the diagram below the ratios are all equal to the similar-
ity factor ρ:

This means that the ratio depends only on the angle α and the common 
ratio is by definition the tangent of !, tan(α). This is to demonstrate that 
similarity is the source of trigonometry which is the essential tool of sur-
veyors, and is pervasive in mathematics, physics, astronomy, and engi-
neering.

 Books VII, VIII, IX

These books deal with natural numbers which are defined as a 
“multitude composed of units”. Ratios of numbers are what are ra-
tional numbers for us. A good deal of important and standard num-
ber theory is contained in these books.

 Book X

“Book X does not make easy reading” (B. van der Waerden, Science 
Awakening, p. 172.) It deals via geometry and geometric algebra 
with what we call today rational and irrational numbers. In fact, 13 
different kinds of irrationalities are distinguished.

Definition 9.1.

" 1. Those magnitudes are said to be commensurable which are meas-
ured by the same measure, and those incommensurable which cannot 
have any common measure.

        2. Straight lines are commensurable in square when the squares 
on them are measured by the same area, otherwise they are incommensu-
rable in square.

 3. Line segments are rational if they are commensurate with a fixed line 
segment (or unit), otherwise irrational.

The book contains 115 propositions none of which is recognizable 
at first sight. There is general agreement that the difficulty and the 
limitations of geometric algebra contributed to the decay of Greek 
mathematics (Van der Waerden, Science Awakening, p.265.) 
Author like Archimedes and Apollonius were too difficult to read. 
However, Van der Waerden disputes that it was a lack of under-
standing of irrationality which drove the Greek mathematicians 
into the dead-end street of geometric algebra. Rather it was the dis-
covery of irrationality, e.g. the diagonal of a square is incommensu-
rable with the side of the square, and a strict, logical concept of 
number which was the root cause.

Books XI, XII, and XIII

Book XI deals with solid geometry and theorems on volumes, in 
geometric language, of course. Book XII uses the method of ex-
haustion to discuss the area of curved figures, e.g. the circle. Fi-
nally, Book XIII contains a discussion of the five Platonic solids 
(regular polyhedra).

y1

x1
=

y2

x2
=

y3

x3
= · · · = ⇢.
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SECTION 4
Constructions, Axiomatic 
Math, and the Parallel      

The 
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The Famous Problems of Antiquity

We have seen that many propositions in Euclid are of the form “To 
construct this or that”. These constructions had to be achieved with 
no other tools than the straight edge (without measurements) and 
the compass. We have seen many examples of such constructions. 
Some such are bisecting an angle, bisecting a line segment, draw-
ing perpendiculars, constructing incenter and circumcenter of a 
given triangle, constructing the center of a given circle, construct-
ing a regular (= equilateral) triangle and a regular pentagon. There 
are some construction problems that nobody could do and nobody 
could ever do. These are:

         1. Trisecting a given angle.

" 2. Squaring the circle.

          3. Doubling the cube.

It was shown in the 20th century by tools of modern algebra, that 
these constructions are actually impossible to do.

A Fragment of Geometry. The objects of plane geometry are points 
and lines. Points and lines may be related by a relation called incidence. 
If a point and a line are related in this way, we say that the point is on 
the line or the line is on the point. In this language, we have the follow-
ing incidence axioms:

" 1. There exists at least one line.

" 2. On each line there exist at least three points.

" 3. Not all points lie on the same line.

" 4. There is a unique line passing through any two distinct points.

" 5. There is a unique point on any two lines.

These axioms suffice to prove the following theorems.

" 1. Each point lies on at least two distinct lines.

" 2. Not all lines pass through the same point.

" 3." Two distinct lines intersect in at most one point.

Historically, one of the most important questions in geometry was 
whether Euclid’s Parallel Postulate could be derived from his other axi-
oms.
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How to theoretically turn a sphere inside? 

MOVIE 1.7 A question of modern geometry.



Story of the parallel axiom

Inspite of all the rigor introduced into mathematics by Greek 
mathematicians and in particular by Euclid, they took for granted 
a number of things that cannot be taken for granted by today’s stan-
dards.

" • Certain properties were read off diagrams, such as the exis-
tence of points of intersection, and whether a point is between two 
points or not.

" • The area concept was accepted and used without question, 
although in the “common notions” some basic principles satisfied 
by area measures are incorporated.

However, it was a good thing in a sense because completely rigor-
ous axiomatic geometry is very tedious and much less enjoyable 
than what Euclid presented. The strong points of the Elements are

" • It contains all of elementary geometry that is good and use-
ful.

" •The notions and results are arranged in way that has never 
been surpassed and can be taught today essentially as it was 2300 
years ago.

" •The proofs are clever and sophisticated.

" •The late use of the Parallel Axiom seems like an uncanny an-
ticipation of things to come in the twentieth century.

We exclusively deal with plain geometry here and two lines are par-
allel if and only if they do not intersect.

" 1. Statements equivalent to Euclid’s Parallel Axiom

"   a. (John Playfair (1748-1819)) Given a line ℓ and a point P not 
on ℓ there is at most one line parallel to ℓ and passing through P.

"  b. There exists a triangle whose angle sum equals two right 
angles.

"  c. There exist two triangles that are similar but not congru-
ent.

"   d. There exists a line ℓ such that the locus of all points on 
one side of ℓ with equal distance from ℓ is a straight line.

"    e. Every triangle has a circumscribed circle.

" 2. Attempts to prove the Parallel Axiom

"   a. Ptolemy (85?-165?)

"   b. Nasir al-din (1201-1274)

"   c. Girolamo Saccheri (1667-1733) “Euclides ab omni naevo 
vindicatus”

"   d. Johann Heinrich Lambert (1728-1777)

"   e  Adrien-Marie Legendre (1752-1833)

" 3. Discoverers of Non-Euclidean Geometry

"   a. Carl Friedrich Gauss (1777-1855)

"   b. Janos Bolyai (1802-1860)

"   c. Nicolai Ivanovitch Lobachevsky (1793-1856), University of 
Kasan
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" 4. Consistency Proofs

"   a. Eugenio Beltrami (1835-1900)

"   b. Arthur Cayley (1821-1895)

"   c. Felix Klein (1849-1925)

"   d. Henri Poincaré (1854-1912)

" 5. Geometries galore

"   a. Bernhard Riemann (1826-1866)

Janos Bolyai (1802-1860)

János was born in Kolozsvár (now renamed Cluj in Romania) but 
soon went to Marosvásárhely where his father Farkas had a job at 
the Calvinist College teaching mathematics, physics and chemistry. 
Farkas Bolyai always wanted his son to be a mathematician, and 
he brought him up with this in mind. One might suppose that this 
would mean that János’s education was put first in the Bolyai 
household, but this was not so for Farkas believed that a sound 
mind could only achieve great things if it was in a sound healthy 
body, so in his early years most attention was paid to János’s physi-
cal development. It was clear from early on, however, that János 
was an extremely bright and observant child.

“... when he was four he could distinguish certain geometrical fig-
ures, knew about the sine function, and could identify the best 
known constellations. By the time he was five [he] had learnt, prac-
tically by himself, to read. He was well above the average at learn-
ing languages and music. At the age of seven he took up playing 

the violin and made such good progress that he was soon playing 
difficult concert pieces.”

It is important to understand that although Farkas had a lecturing 
post he was not well paid and even although he earned extra 
money from a variety of different sources, János was still brought 
up in poor financial circumstances. Also János’s mother was a 
rather difficult person and the household was not a particularly 
happy place for the boy to grow up.

Until János was nine years old the best students from the Maros-
vásárhely College taught him all the usual school subjects except 
mathematics, which he was taught by his father. Only from the age 
of nine did he attend school. By the time Bolyai was 13, he had mas-
tered the calculus and other forms of analytical mechanics, his fa-
ther continuing to give him instruction. By this time, however, he 
was attending the Calvinist College in Marosvásárhely although he 
had started in the fourth year and often attended lessons intended 
for the senior students.

Janos studied at the Royal Engineering College in Vienna from 
1818 to 1822 completing the seven year course in four years. He 
was an outstanding student and from his second year of study on 
he came top in most of the subjects he studied. When he graduated 
from the Academy on 6 September 1822 he had achieved such out-
standing success that he spent a further year in Vienna on aca-
demic studies before entering military service. Of course he had re-
ceived military training during his time in Vienna, for the summer 
months were devoted to this, but Bolyai’s nature did not allow him 
to accept easily the strict military discipline.
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In September 1823 he entered the army engineering corps as a 
sublieutenant and was sent to work on fortifications at Temesvár. 
He spent a total of 11 years in military service and was reputed to 
be the best swordsman and dancer in the Austro-Hungarian Impe-
rial Army. He neither smoked nor drank, not even coffee, and at 
the age of 23 he was reported to still retain the modesty of inno-
cence. He was also an accomplished linguist speaking nine foreign 
languages including Chinese and Tibetan.

Around 1820, when he was still studying in Vienna, Bolyai began 
to follow the same path that his father had taken in trying to re-
place Euclid’s parallel axiom with another axiom which could be 
deduced from the others. In fact he gave up this approach within a 
year for still in 1820, as his notebooks now show, he began to de-
velop the basic ideas of hyperbolic geometry. On 3 November 1823 
he wrote to his father that he had:-

... created a new, another world out of nothing...

By 1824 there is evidence to suggest that he had developed most of 
what would appear in his treatise as a complete system of non-
Euclidean geometry. In early 1825 Bolyai travelled to Marosvásár-
hely and explained his discoveries to his father. However Farkas 
Bolyai did not react enthusiastically which clearly disappointed 
János. By 1831 Farkas had come to understand the full significance 
of what his son had accomplished and strongly encouraged him to 
write up the work for publication as an Appendix to a book he was 
writing. .

What was contained in this mathematical masterpiece?

... denote by Sigma the system of geometry based on the hypothe-
sis that Euclid’s Fifth Postulate is true, and by S the system based 
on the opposite hypothesis. All theorems we state without explic-
itly specifying the system Sigma or S in which the theorem is valid 
are meant to be absolute, that is, valid independently of whether 
Sigma or S is true.

Today we call these three geometries Euclidean, hyperbolic, and 
absolute. Most of the Appendix deals with absolute geometry. By 
20 June 1831 the Appendix had been published for on that day Far-
kas Bolyai sent a reprint to Gauss who, on reading the Appendix, 
wrote to a friend saying:-

I regard this young geometer Bolyai as a genius of the first order .

To Farkas Bolyai, however, Gauss wrote:-

To praise it would amount to praising myself. For the entire con-
tent of the work ... coincides almost exactly with my own medita-
tions which have occupied my mind for the past thirty or thirty-
five years.
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Gauss was simply stating facts here. In a letter dated 8 November 
1824 he wrote:-

The assumption that the sum of the three angles of a triangle is less 
than 180 degrees leads to a curious geometry, quite different from 
ours [i.e. Euclidean geometry] but thoroughly consistent, which I 
have developed to my entire satisfaction ... the three angles of a tri-
angle become as small as one wishes, if only the sides are taken 
large enough, yet the area of the triangle can never exceed, or even 
attain a certain limit, regardless of how great the sides are.

The discovery that Gauss had anticipated much of his work, 
greatly upset Bolyai who took it as a severe blow. He became irrita-
ble and a difficult person to get on with. His health began to dete-
riorate and he was plagued with a fever which frequently disabled 
him so he found it increasingly difficult to carry out his military du-
ties. He retired on 16 June 1833, asking to be pensioned off, and for 
a short time went to live with his father.

Bolyai continued to develop mathematical theories while he lived, 
but being isolated from the rest of the world of mathematics much 
of what he attempted was of little value. His one major undertak-
ing, to attempt to develop all of mathematics based on axiom sys-
tems, was begun in 1834, for he wrote the preface in that year, but 
he never completed the work.

In 1848 Bolyai discovered that Lobachevsky had published a simi-
lar piece of work in 1829.

“János studied Lobachevsky’s work carefully and analysed it line 
by line, not to say word by word, with just as much care as he ad-
ministered in working out the Appendix. The work stirred a real 

storm in his soul and he gave outlet to his tribulations in the com-
ments added to the ’Geometrical Examinations’.

The ’Comments’ to the ’Geometrical Examinations’ are more than a 
critical analysis of the work. They express the thoughts and anxie-
ties of János provoked by the perusal of the book. They include his 
complaint that he was wronged, his suspicion that Lobachevsky 
did not exist at all, and that everything was the spiteful machina-
tions of Gauss: it is the tragic lament of an ingenious geometrician 
who was aware of the significance of his discovery but failed to get 
support from the only person who could have appreciated his mer-
its.

Although he never published more than the few pages of the Ap-
pendix he left more than 20000 pages of manuscript of mathemati-
cal work when he died of pneumonia at the age of 57. These are 
now in the Bolyai-Teleki library in Tirgu-Mures. In 1945 a univer-
sity in Cluj was named after him but it was closed down by Ceau-
cescu’s government in 1959.

Let’s read a little more about non-Euclidian geometry...

and a little bit more again!
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SECTION 5
Exercises Note: The diagrams only describe the general situation by do not 

accurately show lengths and angles measures. You cannot read off 
results from the pictures. E.g. the diagram in Exercise 5.8 is way 
off.

Exercise 5.1. It is given that AB ≡ AC and ∠BAD ≡ ∠CAD in the dia-
gram below. Prove that CD ≡ BD and ∠CDA ≡ BDA.
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Bolyai continued to develop mathematical theories while he lived, but being isolated
from the rest of the world of mathematics much of what he attempted was of little
value. His one major undertaking, to attempt to develop all of mathematics based on
axiom systems, was begun in 1834, for he wrote the preface in that year, but he never
completed the work.
In 1848 Bolyai discovered that Lobachevsky had published a similar piece of work in
1829.
“János studied Lobachevsky’s work carefully and analyzed it line by line, not to say
word by word, with just as much care as he administered in working out the Appendix.
The work stirred a real storm in his soul and he gave outlet to his tribulations in the
comments added to the ’Geometrical Examinations’.
The ’Comments’ to the ’Geometrical Examinations’ are more than a critical analysis
of the work. They express the thoughts and anxieties of János provoked by the perusal
of the book. They include his complaint that he was wronged, his suspicion that
Lobachevsky did not exist at all, and that everything was the spiteful machinations
of Gauss: it is the tragic lament of an ingenious geometrician who was aware of the
significance of his discovery but failed to get support from the only person who could
have appreciated his merits.

14. Exercises

Note: The diagrams only describe the general situation by do not accurately show
lengths and angles measures. You cannot read off results from the pictures. E.g. the
diagram in Exercise 14.8 is way off.

Exercise 14.1. It is given that AB ≡ AC and ∠BAD ≡ ∠CAD in the diagram
below. Prove that CD ≡ BD and ∠CDA ≡ BDA.

A

B

C D

α

α′

Exercise 14.2. In the diagram below
←→

AB is perpendicular to
←→

CD and AC ≡ BC.
Prove that AD ≡ BD. Give reasons.

Exercise 5.2. In the diagram below 
 !
AB  is  perpendicular to 

 !
CD  and AC 

≡ BC. Prove that AD ≡ BD. Give reasons.
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A B

C

D

Exercise 14.3. The vertices A and B of the triangle ∆ABC lie on a circle whose
center is C. If ∠CAB = 30◦, what is the degree measure of ∠CBA? Give reasons
for your conclusion.

Exercise 14.4. The vertex A of the triangle ∆ABC lies on a circle C whose center
is C. If ∠CAB ≡ ∠CBA does C pass through B? Give reasons for your conclusion.

Exercise 14.5. In the diagram below
←→

AB is perpendicular to
←→

CD and AD ≡ BD.
Prove that AC ≡ BC. Give reasons.

A B

C

D

Exercise 14.6. In the diagram below BC ≡ DC and the line
←→

BD is perpendicular

to the line
←→

AC. Prove that AD ≡ AB. Give reasons.

Exercise 5.3. The vertices A and B of the triangle ∆ABC lie on a circle 
whose center is C. If ∠CAB = 30∘, what is the degree measure of ∠CBA? 
Give reasons for your conclusion.
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Exercise 5.4. The vertex A of the triangle ∆ABC lies on a circle  whose 
center is C. If ∠CAB ≡∠CBA does  pass through B? Give reasons for 
your conclusion.

Exercise 5.5. In the diagram below 
 !
AB  is perpendicular 

 !
CD  to  and AD 

≡ BD. Prove that AC ≡ BC. Give reasons.
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A B

C

D

Exercise 14.3. The vertices A and B of the triangle ∆ABC lie on a circle whose
center is C. If ∠CAB = 30◦, what is the degree measure of ∠CBA? Give reasons
for your conclusion.

Exercise 14.4. The vertex A of the triangle ∆ABC lies on a circle C whose center
is C. If ∠CAB ≡ ∠CBA does C pass through B? Give reasons for your conclusion.

Exercise 14.5. In the diagram below
←→

AB is perpendicular to
←→

CD and AD ≡ BD.
Prove that AC ≡ BC. Give reasons.

A B

C

D

Exercise 14.6. In the diagram below BC ≡ DC and the line
←→

BD is perpendicular

to the line
←→

AC. Prove that AD ≡ AB. Give reasons.
Exercise 5.6. In the diagram below BC ≡ DC and the line 

 !
BD is perpen-

dicular to the line 
 !
AC . Prove that AD ≡ AB. Give reasons.
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A

B

C

D

Exercise 14.7. Reference is made to the diagram below. Compute the angle x.

60◦ 30◦

x

Exercise 14.8. Reference is made to the diagram below. Compute the angle x.

160◦ 55◦

x

Exercise 14.9. In a triangle the height is by 2 units larger than the base and its area
is 6 square units. How long is the base?

Exercise 14.10. Reference is made to the diagram. Compute the angles x and y.

Exercise 5.7. Reference is made to the diagram below. Compute the angle 
x.
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A

B

C

D

Exercise 14.7. Reference is made to the diagram below. Compute the angle x.

60◦ 30◦

x

Exercise 14.8. Reference is made to the diagram below. Compute the angle x.

160◦ 55◦

x

Exercise 14.9. In a triangle the height is by 2 units larger than the base and its area
is 6 square units. How long is the base?

Exercise 14.10. Reference is made to the diagram. Compute the angles x and y.

Exercise 5.8. Reference is made to the diagram below. Compute the angle 
x.
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A

B

C

D

Exercise 14.7. Reference is made to the diagram below. Compute the angle x.

60◦ 30◦

x

Exercise 14.8. Reference is made to the diagram below. Compute the angle x.

160◦ 55◦

x

Exercise 14.9. In a triangle the height is by 2 units larger than the base and its area
is 6 square units. How long is the base?

Exercise 14.10. Reference is made to the diagram. Compute the angles x and y.

Exercise 5.9. In a triangle the height is by 2 units larger than the base 
and its area is 6 square units. How long is the base?

Exercise 5.10. Reference is made to the diagram. Compute the angles x 
and y.
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x

y

80◦

60◦

20◦

Exercise 14.11. Reference is made to the diagram. Compute the angles x and y.

x

y

85◦

50◦

15◦

Exercise 14.12. Reference is made to the diagram. The angles α, β, and γ are
given, compute the angles x and y.

x

y

γ

α

β
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Exercise 5.11. Reference is made to the diagram. Compute the angles x 
and y.
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x

y

80◦

60◦

20◦

Exercise 14.11. Reference is made to the diagram. Compute the angles x and y.

x

y

85◦

50◦

15◦

Exercise 14.12. Reference is made to the diagram. The angles α, β, and γ are
given, compute the angles x and y.

x

y

γ

α

β

Exercise 5.12. Reference is made to the diagram. The angles α, β, and γ 
are given, compute the angles x and y.
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x

y

80◦

60◦

20◦

Exercise 14.11. Reference is made to the diagram. Compute the angles x and y.

x

y

85◦

50◦

15◦

Exercise 14.12. Reference is made to the diagram. The angles α, β, and γ are
given, compute the angles x and y.

x

y

γ

α

β

Exercise 5.13. In the triangle ∆ABC depicted below the sides AC and BC 
are congruent. Compute x and y.
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Exercise 14.13. In the triangle ∆ABC depicted below the sides AC and BC are
congruent. Compute x and y.

A B

C

x

30◦

55◦

y

Exercise 14.14. In the triangle ∆ABC depicted below the sides AC and BC are
congruent, and the angles α and β are given. Compute x and y.

A B

C

x

35◦

65◦

y

Exercise 14.15. In the triangle ∆ABC depicted below the sides AC and BC are
congruent, and the angles α and β are given. Compute x and y.

Exercise 5.14. In the triangle ∆ABC depicted below the sides AC and BC 
are congruent, and the angles α and β are given. Compute x and y.

                        

26 2. GEOMETRY

Exercise 14.13. In the triangle ∆ABC depicted below the sides AC and BC are
congruent. Compute x and y.

A B

C

x

30◦

55◦

y

Exercise 14.14. In the triangle ∆ABC depicted below the sides AC and BC are
congruent, and the angles α and β are given. Compute x and y.

A B

C

x

35◦

65◦

y

Exercise 14.15. In the triangle ∆ABC depicted below the sides AC and BC are
congruent, and the angles α and β are given. Compute x and y.

Exercise 5.15. In the triangle ∆ABC depicted below the sides AC and BC 
are congruent, and the angles α and β are given. Compute x and y.
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A B

C

x

β
α

y

Exercise 14.16. In the triangle ∆ABC depicted below the sides AC and BC are
congruent, and AD and CD are congruent as well. Compute x and y.

A B

C

D

50◦

x y

Exercise 14.17. In the triangle ∆ABC depicted below the sides AC and BC are
congruent, and AD and CD are congruent as well. The angle α is given. Compute
x and y.

 

Exercise 5.16. In the triangle ∆ABC depicted below the sides AC and BC 
are congruent, and AD and CD are congruent as well. Compute x and y.
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A B

C

x

β
α

y

Exercise 14.16. In the triangle ∆ABC depicted below the sides AC and BC are
congruent, and AD and CD are congruent as well. Compute x and y.

A B

C

D

50◦

x y

Exercise 14.17. In the triangle ∆ABC depicted below the sides AC and BC are
congruent, and AD and CD are congruent as well. The angle α is given. Compute
x and y.

Exercise 5.17. In the triangle ∆ABC depicted below the sides AC and BC 
are congruent, and AD and CD are congruent as well. The angle α is 
given. Compute x and y.
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A B

C

D

α

x y

Exercise 14.18. In the triangle ∆ABC depicted below the sides AC and BC are
congruent, and AD and CD are congruent as well. The angles α and x are congruent.
What is the angle measure of α?

A B

C

D

α

x

Exercise 14.19. A rectangle has area 32 square units, and the base of the rectangle
is by twice as long its height. How long is the base?

Exercise 14.20. A rectangle has area 27/2 square units, and the base of the rectangle
is by one half longer than its height. How long is the base?

Exercise 14.21. In a right triangle the hypotenuse has length 15 units and the other
two sides differ by 3 units of length. What are the dimensions of the triangle?

Exercise 5.18. In the triangle ∆ABC depicted below the sides AC and BC 
are congruent, and AD and CD are congruent as well. The angles α and 
x are congruent. What is the angle measure of α?
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A B

C

D

α

x y

Exercise 14.18. In the triangle ∆ABC depicted below the sides AC and BC are
congruent, and AD and CD are congruent as well. The angles α and x are congruent.
What is the angle measure of α?

A B

C

D

α

x

Exercise 14.19. A rectangle has area 32 square units, and the base of the rectangle
is by twice as long its height. How long is the base?

Exercise 14.20. A rectangle has area 27/2 square units, and the base of the rectangle
is by one half longer than its height. How long is the base?

Exercise 14.21. In a right triangle the hypotenuse has length 15 units and the other
two sides differ by 3 units of length. What are the dimensions of the triangle?

Exercise 5.19. A rectangle has area 32 square units, and the base of the 
rectangle is by twice as long its height. How long is the base?

Exercise 5.20. A rectangle has area 27∕2 square units, and the base of the 
rectangle is by one half longer than its height. How long is the base?

Exercise 5.21. In a right triangle the hypotenuse has length 15 units and 
the other two sides differ by 3 units of length. What are the dimensions of 
the triangle?

Exercise 5.22. Reference is made to the diagram below. What you see is a 
semicircle. The points A, B, C are on the semicircle. Its center is the mid-
point M of the line segment AB. The angles α and β are not known. Show 
that the angle ∠ACB = γ must measure 90�. [Hint: Mark the center M 
of the semicircle and join it to C. Now use theorems on isosceles tri-
angles and the angle sum in the triangle ∆ABC.]
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Exercise 14.22. Reference is made to the diagram below. What you see is a semicir-
cle. The points A, B, C are on the semicircle. Its center is the midpoint M of the line
segment AB. The angles α and β are not known. Show that the angle ∠ACB = γ
must measure 90◦. [Hint: Mark the center M of the semicircle and join it to C. Now
use theorems on isosceles triangles and the angle sum in the triangle ∆ABC.]

A B

C

α β

γ

Exercise 14.23. Reference is made to the diagram below. What you see is a circle.
The points A, B, C are on the circle. Its center is the point M . The angle γ is not
known. Show that the angle x = ∠AMB = 2 · γ. [Hint: Join M to A, B, and C.
Now use theorems on isosceles triangles and the angle sum in the triangles ∆AMC
and ∆BMC. Finally use that the sum of the angles at M is 360◦.]

A

B

C

M

γ

x

Exercise 14.24. Reference is made to the diagram below. The points C and D lie
on a semicircle with center A. It is given that AC ≡ BC. Compute x in terms of α.
[Hint: Consider in turn the isosceles triangle ∆ABC, one of its exterior angles, the
isosceles triangle ∆ACD, and finally the triangle ∆ABD of which x is an exterior
angle.]

Exercise 5.23. Reference is made to the diagram below. What you see is a 
circle. The points A, B, C are on the circle. Its center is the point M. The 
angle γ is not known. Show that the angle x = ∠AMB = 2 ⋅ γ. [Hint: 
Join M to A, B, and C. Now use theorems on isosceles triangles and 
the angle sum in the triangles ∆AMC and ∆BMC. Finally use that 
the sum of the angles at M is 360�.]  
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Exercise 14.22. Reference is made to the diagram below. What you see is a semicir-
cle. The points A, B, C are on the semicircle. Its center is the midpoint M of the line
segment AB. The angles α and β are not known. Show that the angle ∠ACB = γ
must measure 90◦. [Hint: Mark the center M of the semicircle and join it to C. Now
use theorems on isosceles triangles and the angle sum in the triangle ∆ABC.]

A B

C

α β

γ

Exercise 14.23. Reference is made to the diagram below. What you see is a circle.
The points A, B, C are on the circle. Its center is the point M . The angle γ is not
known. Show that the angle x = ∠AMB = 2 · γ. [Hint: Join M to A, B, and C.
Now use theorems on isosceles triangles and the angle sum in the triangles ∆AMC
and ∆BMC. Finally use that the sum of the angles at M is 360◦.]

A

B

C

M

γ

x

Exercise 14.24. Reference is made to the diagram below. The points C and D lie
on a semicircle with center A. It is given that AC ≡ BC. Compute x in terms of α.
[Hint: Consider in turn the isosceles triangle ∆ABC, one of its exterior angles, the
isosceles triangle ∆ACD, and finally the triangle ∆ABD of which x is an exterior
angle.]

Exercise 5.24. Reference is made to the diagram below. The points C and 
D lie on a semicircle with center A. It is given that AC ≡ BC. Compute x 
in terms of α. [Hint: Consider in turn the isosceles triangle ∆ABC, 
one of its exterior angles, the isosceles triangle ∆ACD, and finally 
the triangle ∆ABD of which x is an exterior angle.]
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x α

A B

C

D

Exercise 14.25. Two sides of a right triangle are given in the table below. Compute
the remaining side marked ?.

c

b a

a b c
4 3 ?
? 5 13
24 ? 25
? 15 17
4 4 ?
3 5 ?
1 1 ?

Exercise 14.26. Two sides of a right triangle have lengths 5 and 6 units. What is
the length of the third side? [Note that this problem is ambiguous, there are two ways
that this can happen.]

Exercise 14.27. A right triangle is such that the second side is by two units larger
than the first, and the third side is by 3 units larger than the first. How long are the
sides?

Exercise 14.28. A right triangle is such that the second side is by two units shorter
than the first, and the third side is by 1 units larger than the first. How long are the
sides?

Exercise 14.29. A right triangle is such that the second side is twice as long as the
first, and the third side is by 4 units longer than the first. How long are the sides?
[Again there are two possibilities to consider.]

Exercise 5.25. Two sides of a right triangle are given in the table below. 
Compute the remaining side marked. 
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x α

A B

C

D

Exercise 14.25. Two sides of a right triangle are given in the table below. Compute
the remaining side marked ?.

c

b a

a b c
4 3 ?
? 5 13
24 ? 25
? 15 17
4 4 ?
3 5 ?
1 1 ?

Exercise 14.26. Two sides of a right triangle have lengths 5 and 6 units. What is
the length of the third side? [Note that this problem is ambiguous, there are two ways
that this can happen.]

Exercise 14.27. A right triangle is such that the second side is by two units larger
than the first, and the third side is by 3 units larger than the first. How long are the
sides?

Exercise 14.28. A right triangle is such that the second side is by two units shorter
than the first, and the third side is by 1 units larger than the first. How long are the
sides?

Exercise 14.29. A right triangle is such that the second side is twice as long as the
first, and the third side is by 4 units longer than the first. How long are the sides?
[Again there are two possibilities to consider.]

  

Exercise 5.26. Two sides of a right triangle have lengths 5 and 6 units. 
What is the length of the third side? [Note that this problem is ambigu-
ous, there are two ways that this can happen.]

Exercise 5.27. A right triangle is such that the second side is by two 
units larger than the first, and the third side is by 3 units larger than the 
first. How long are the sides?
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Exercise 5.28. A right triangle is such that the second side is by two 
units shorter than the first, and the third side is by 1 units larger than the 
first. How long are the sides?

Exercise 5.29. A right triangle is such that the second side is twice as 
long as the first, and the third side is by 4 units longer than the first. How 
long are the sides? [Again there are two possibilities to consider.]

Exercise 5.30. A right triangle is such that the second side is by 3 units 
longer than the first, and the third side is by 5 units longer than the first. 
How long are the sides?

Exercise 5.31. Reference is made to the diagram below in which  
 !
BC and 

 !
B0C 0 are parallel. Furthermore a = BC, b = AC, c = AB, a′ = B′C′, b′ = 
AC′, and c′ = AB′. In the table below some of the values a, a′, b, b′, c, c′ 
are given, and you are asked to compute the remaining values indicated 
by ?
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Exercise 14.30. A right triangle is such that the second side is by 3 units longer
than the first, and the third side is by 5 units longer than the first. How long are the
sides?

Exercise 14.31. Reference is made to the diagram below in which
←→

BC and
←→

B′C ′ are
parallel. Furthermore a = BC, b = AC, c = AB, a′ = B′C ′, b′ = AC ′, and c′ = AB′.
In the table below some of the values a, a′, b, b′, c, c′ are given, and you are asked to
compute the remaining values indicated by ?.

a b c a′ b′ c′

4 ? ? 16 20 24
2 1 ? 6 ? 6
4 ? 6 8 6 ?
5 6 ? ? 2 3
? 6 8 3 ? 6
3 ? 7 ? 15/2 21/2

2/3 3/4 5/3 2/5 ? ?

A

B

C

C ′

B′

b

c

a a′

b′

c′

Exercise 14.32. Reference is made to the diagram below in which
←→

BC and
←→

B′C ′ are
parallel. Furthermore a = BC, b = AC, c = AB, a′ = B′C ′, b′ = AC ′, and c′ = AB′.
In the table below some of the values a, a′, b, b′, c, c′ are given, and you are asked to
compute the remaining values indicated by ?.
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Exercise 5.32. Reference is made to the diagram below in which
 !
BC   and 

 !
B0C 0 are parallel. Furthermore a = BC, b = AC, c = AB, a′ = B′C′, b′ = 
AC′, and c′ = AB′. In the table below some of the values a, a′, b, b′, c, c′ 
are given, and you are asked to compute the remaining values indicated 
by ?

  32 2. GEOMETRY

a b c a′ b′ c′

4 ? 6 ? 20 24
8 5 ? 36 ? 18
? 5 4 3/2 ? 3
? 10 ? 24 30 36
4 ? 6 10 15/2 ?
5 6 ? 15/2 ? 12

A

B

C

B′

C ′

a

b

c

c′

b′

a′

Exercise 14.33. Reference is made to the diagram below in which
←→

BC and
←→

B′C ′

are parallel. Furthermore a = BC, b = AC, C = AB, a′ = B′C ′, b′ = CC ′, and
c′ = BB′. In the table below some of the values a, a′, b, b′, c, c′ are given, and you
are asked to compute the remaining values.

a b c a′ b′ c′

4 5 6 16 ? ?
4 4 6 ? 2 3
7 ? ? 35 24 20

1/2 1/3 ? ? 29/3 29/5
3 ? 5 ? 4/3 5/3
5 ? 4 10 7 ?

Exercise 5.33. Reference is made to the diagram below in which  
 !
BCand 

 !
B0C 0 are parallel. Furthermore a = BC, b = AC, C = AB, a′ = B′C′, b′ = 
CC′, and c′ = BB′. In the table below some of the values a, a′, b, b′, c, c′ 
are given, and you are asked to compute the remaining values. 
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a b c a′ b′ c′

4 ? 6 ? 20 24
8 5 ? 36 ? 18
? 5 4 3/2 ? 3
? 10 ? 24 30 36
4 ? 6 10 15/2 ?
5 6 ? 15/2 ? 12

A

B

C

B′

C ′

a

b

c

c′

b′

a′

Exercise 14.33. Reference is made to the diagram below in which
←→

BC and
←→

B′C ′

are parallel. Furthermore a = BC, b = AC, C = AB, a′ = B′C ′, b′ = CC ′, and
c′ = BB′. In the table below some of the values a, a′, b, b′, c, c′ are given, and you
are asked to compute the remaining values.

a b c a′ b′ c′

4 5 6 16 ? ?
4 4 6 ? 2 3
7 ? ? 35 24 20

1/2 1/3 ? ? 29/3 29/5
3 ? 5 ? 4/3 5/3
5 ? 4 10 7 ?

    

15. SOLUTIONS OF GEOMETRY EXERCISES 33

A
B B′

C

C ′

b

b′

c c′

a

a′

Exercise 14.34. Which of the following triples can be the sides of a right triangle?
7 25 5
6 4 2

√
5

3

20

1

5

1

4

24 8 25
4 5 6
3 5

√
34

1

2
(1 +

√
3) 1

2
(3 +

√
3) 1 +

√
3

15. Solutions of geometry exercises

14.1 ∆ABD ≡ ∆ACD by sas.
14.2 ∠CAD ≡ ∠BDC because ∆ABC is isosceles. By asa ∆ADC ≡ ∆BDC, hence

AD ≡ BD as corresponding pieces in congruent triangles.
14.3 ∆ABC is isosceles so the base angles are congruent, so ∠CBA = 30◦.

14.4 The triangle is isosceles because the base angles are congruent. The circle
passes through B.

14.5 ∆ADC ∼= ∆BDC by sas.
14.6 ∆ACD ≡ ∆ACB by sas.

14.7 x = 90◦.
14.8 x = 105◦.

14.9 x = −1 +
√

13.
14.10 x = 80◦, y = 20◦.
14.11 x = 65◦, y = 30◦.

14.12 x = α + β, y = 180 − γ − α − β.
14.13 x = 70◦, y = 80◦.
14.14 x = 50◦, y = 95◦.

14.15 x = 180 − 2α, y = 2α − β.
14.16 x = 15◦, y = 65◦.

14.17 x = 1

2
(180 − 3α), y = 1

2
(180 − α).

14.18 α = 36◦.
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Exercise 5.34. Which of the following triples can be the sides of a right 
triangle?
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A
B B′

C

C ′

b

b′

c c′

a

a′

Exercise 14.34. Which of the following triples can be the sides of a right triangle?
7 25 5
6 4 2

√
5

3

20

1

5

1

4

24 8 25
4 5 6
3 5

√
34

1

2
(1 +

√
3) 1

2
(3 +

√
3) 1 +

√
3

15. Solutions of geometry exercises

14.1 ∆ABD ≡ ∆ACD by sas.
14.2 ∠CAD ≡ ∠BDC because ∆ABC is isosceles. By asa ∆ADC ≡ ∆BDC, hence

AD ≡ BD as corresponding pieces in congruent triangles.
14.3 ∆ABC is isosceles so the base angles are congruent, so ∠CBA = 30◦.

14.4 The triangle is isosceles because the base angles are congruent. The circle
passes through B.

14.5 ∆ADC ∼= ∆BDC by sas.
14.6 ∆ACD ≡ ∆ACB by sas.

14.7 x = 90◦.
14.8 x = 105◦.

14.9 x = −1 +
√

13.
14.10 x = 80◦, y = 20◦.
14.11 x = 65◦, y = 30◦.

14.12 x = α + β, y = 180 − γ − α − β.
14.13 x = 70◦, y = 80◦.
14.14 x = 50◦, y = 95◦.

14.15 x = 180 − 2α, y = 2α − β.
14.16 x = 15◦, y = 65◦.

14.17 x = 1

2
(180 − 3α), y = 1

2
(180 − α).

14.18 α = 36◦.
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SECTION 6
Solutions of Geometry          
Exercises

13.1 ∆ABD ≡ ∆ACD by sas.

13.2 ∠CAD ≡∠BDC because ∆ABC is isosceles. By asa ∆ADC ≡ 
∆BDC, hence AD ≡ BD as corresponding pieces in congruent trian-
gles.

13.3 ∆ABC is isosceles so the base angles are congruent, so ∠CBA 
= 30∘.

13.4 The triangle is isosceles because the base angles are congru-
ent. The circle passes through B.

5.1 ∆ABD ≡ ∆ACD by sas.

13.2 ∠CAD ≡∠BDC because ∆ABC is isosceles. By asa ∆ADC ≡ 
∆BDC, hence AD ≡ BD as corresponding pieces in congruent trian-
gles.

13.3 ∆ABC is isosceles so the base angles are congruent, so ∠CBA 
= 30�.

13.4 The triangle is isosceles because the base angles are congru-
ent. The circle passes through B.

13.5 ∆ADC≅∆BDC by sas.

13.6 ∆ACD ≡ ∆ACB by sas.

13.7 x = 90�.

13.8 x = 105�.

13.9 x = −1 + 
p
13.

13.10 x = 80�, y = 20�.

13.11 x = 65�, y=30�.
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13.12 x = α + β, y = 180 − γ − α − β.

13.13 x = 70�, y = 80�∘.

13.14 x = 50�, y = 95�.

13.15 x = 180 − 2α, y = 2α − β.

13.16 x = 15�, y = 65�.

13.17 x = (1/2)(180 − 3α), y = (180 − α).

13.18 α =36�.

13.19 base = 8 units of length, height = 4 units of length

13.20 base = 9/2 units of length, height = 3 units of length

13.21 The sides measure 9, 12, 15.

13.22 Using that in isosceles triangles the angles opposite the con-
gruent sides are congruent, you find that γ = α + β. Summing the 
angles in ∆ABC you find that 180�= α + β + γ = 2γ.

13.23 Call ∠MCA = γ1 and ∠MCB = γ2. Then ∠CAM = γ1 and 
∠CBM = γ2. Now your have three angles at M, x, 180 − 2 γ1, and 
180 − 2γ2 that have to add up to 360�. Write down and solve for x.

13.24 x = 3α.

13.25

                                         

34 2. GEOMETRY

14.19 base = 8 units of length, height = 4 units of length
14.20 base = 9/2 units of length, height = 3 units of length

14.21 The sides measure 9, 12, 15.
14.22 Using that in isosceles triangles the angles opposite the congruent sides are
congruent, you find that γ = α + β. Summing the angles in ∆ABC you find that

180◦ = α + β + γ = 2γ.
14.23 Call ∠MCA = γ1 and ∠MCB = γ2. Then ∠CAM = γ1 and ∠CBM = γ2.

Now your have three angles at M , x, 180 − 2γ1, and 180 − 2γ2 that have to add up
to 360◦. Write down and solve for x.

14.24 x = 3α.
14.25

a b c
4 3 5
12 5 13
24 7 25
8 15 17
4 4 4

√
2

3 5
√

34
1 1

√
2

14.26 Suppose the third side is the hypotenuse x. Then x2 = 52 + 62, and x =
√

61.
Suppose that the third side is not the hypotenuse. Then x2 + 52 = 62, and x =

√
11.

14.27 Let x be the length of the first side. Then the others are x + 2 and x + 3.
Solve x2 + (x + 2)2 = (x + 3)2 to get that the sides are 1 +

√
6, 3 +

√
6, 4 +

√
6.

14.28 The sides x, x − 2, x + 1 must satisfy x2 + (x − 2)2 = (x + 1)2. The sides are
3 +

√
6, 1 +

√
6, 4 +

√
6.

14.29 The sides x, 2x, x + 4 and either x2 + (2x)2 = (x + 4)2 or x2 + (x + 4)2 = (2x)2

depending on whether x + 4 is larger than 2x or 2x is larger than x + 4. In the first
case the sides are 1 +

√
5, 2 + 2

√
5, 5 +

√
5, in the second case the sides are 2 + 2

√
3,

6 + 2
√

3, 4 + 4
√

3.
14.30 The sides are x, x + 3, x + 5 satisfying x2 + (x + 3)2 = (x + 5)2. The sides are

2 + 2
√

5, 5 + 2
√

5, 7 + 2
√

5.
14.31

a b c a′ b′ c′

4 5 6 16 20 24
2 1 2 6 3 6
4 3 6 8 6 12
5 6 9 5/3 2 3
4 6 8 3 9/2 6
3 5 7 9/2 15/2 21/2

2/3 3/4 5/3 2/5 9/20 1

13.26 Suppose the third side is the hypotenuse x. Then x2 = 52  + 62, 
and x = 

p
61. Suppose that the third side is not the hypotenuse. 

Then x2+ 52 = 62, and x = 
p
11.

13.27 Let x be the length of the first side. Then the others are x + 2 
and x + 3. Solve x2 + (x+2)2 = (x+3)2 to get that the sides are 1 + 

p
6, 

3 +
p
6, 4 + 

p
6

13.28 The sides x, x− 2, x + 1 must satisfy x2 + (x-2)2 = (x+1)2. The 
sides are 3 +

p
6, 1 +

p
6, 4 +

p
6.

13.29 The sides x, 2x, x + 4 and either x2 + (2x)2 = (x+4)2 or x2 + 
(x+4)2 = (2x02 depending on whether x + 4 is larger than 2x or 2x is 
larger than x + 4. In the first case the sides are 1 + 

p
5, 2 + 2

p
5 , 5+ p

5 , in the second case the sides are 2 + 2
p
3, 6 + 2

p
3 4 + 4

p
3

13.30 The sides are x, x + 3, x + 5 satisfying x2 + (x+3)2 =  (x+5)2 2. 
The sides are 2 + 2

p
5 5 + 

p
5, 7 + 2

p
5

13.31 
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14.19 base = 8 units of length, height = 4 units of length
14.20 base = 9/2 units of length, height = 3 units of length

14.21 The sides measure 9, 12, 15.
14.22 Using that in isosceles triangles the angles opposite the congruent sides are
congruent, you find that γ = α + β. Summing the angles in ∆ABC you find that

180◦ = α + β + γ = 2γ.
14.23 Call ∠MCA = γ1 and ∠MCB = γ2. Then ∠CAM = γ1 and ∠CBM = γ2.

Now your have three angles at M , x, 180 − 2γ1, and 180 − 2γ2 that have to add up
to 360◦. Write down and solve for x.

14.24 x = 3α.
14.25

a b c
4 3 5
12 5 13
24 7 25
8 15 17
4 4 4

√
2

3 5
√

34
1 1

√
2

14.26 Suppose the third side is the hypotenuse x. Then x2 = 52 + 62, and x =
√

61.
Suppose that the third side is not the hypotenuse. Then x2 + 52 = 62, and x =

√
11.

14.27 Let x be the length of the first side. Then the others are x + 2 and x + 3.
Solve x2 + (x + 2)2 = (x + 3)2 to get that the sides are 1 +

√
6, 3 +

√
6, 4 +

√
6.

14.28 The sides x, x − 2, x + 1 must satisfy x2 + (x − 2)2 = (x + 1)2. The sides are
3 +

√
6, 1 +

√
6, 4 +

√
6.

14.29 The sides x, 2x, x + 4 and either x2 + (2x)2 = (x + 4)2 or x2 + (x + 4)2 = (2x)2

depending on whether x + 4 is larger than 2x or 2x is larger than x + 4. In the first
case the sides are 1 +

√
5, 2 + 2

√
5, 5 +

√
5, in the second case the sides are 2 + 2

√
3,

6 + 2
√

3, 4 + 4
√

3.
14.30 The sides are x, x + 3, x + 5 satisfying x2 + (x + 3)2 = (x + 5)2. The sides are

2 + 2
√

5, 5 + 2
√

5, 7 + 2
√

5.
14.31

a b c a′ b′ c′

4 5 6 16 20 24
2 1 2 6 3 6
4 3 6 8 6 12
5 6 9 5/3 2 3
4 6 8 3 9/2 6
3 5 7 9/2 15/2 21/2

2/3 3/4 5/3 2/5 9/20 1

13.32  
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14.32
a b c a′ b′ c′

4 5 6 16 20 24
8 5 9 36 45/2 18
2 5 4 3/2 15/4 3
8 10 12 24 30 36
4 3 6 10 15/2 15
5 6 8 15/2 9 12
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a b c a′ b′ c′

4 5 6 16 15 18
4 4 6 6 2 3
7 6 5 35 24 20

1/2 1/3 1/5 15 29/3 29/5
3 4 5 4 4/3 5/3
5 7 4 10 7 4

14.34 Which of the following triples can be the sides of a right triangle?
Answers: can, can, can, cannot, cannot, can, can
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