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Preface

Calculus Reform and Computers

This lab manual is our latest e�ort after more than a decade ofexperimenting
with the use of computers as an enhancement to learning calculus. In the
beginning we were working with Albert Rich and David Stoutemyer, founders
of Soft Warehouse Inc. here in Honolulu, and theirmuMATH computer
program. This program was the precursor toDerive . It was a PC-version
of the big mainframe computer programmacsyma. They could symbolically
integrate, di�erentiate and do other calculus type problems. There were
no menus or graphics at that time, so we developed a small enhancement
program which included these features and distributed it toseveral university
mathematics departments in the United States and elsewhere.

This e�ort took place in the mid to late 1980's. Since then, there has
been a national movement to include computers in the teaching of calculus
and in fact to reform the teaching of calculus by discussing new ideas using
not only the traditional algebraic approach but also by exploring the ideas
graphically and numerically. In response to this movement,new computer
programs were written such asDerive , Mathematica and Maple . Com-
puter calculus labs were created at most universities and colleges to take
advantage of this new technology and to start experimentingwith new ideas
for teaching calculus.

Calculus text books are now starting to include substantialsupplements
on computer experiments and some have been completely rewritten to involve
computers as an integral component of the course. It is hard to say right now
what calculus instruction will look like in ten years but there is no doubt that
computers are completely changing the teaching approach tocertain topics
with intensive graphics or computation components.

In this book we try to highlight those areas of calculus whichare best

ix



studied by using the computer to explore, to visualize and tosuggest further
directions to study. We also try to convey that studying calculus can be fun
to do and is very important to understanding other topics in mathematics
and other �elds.

This manual usesDerive because of its ease of use due to its menus and
on-line help. It turns out that there are also functions which are equivalent
to the various menu commands; for example, in place of Calculus/Integrate
to integrate f (x) = x2 one can alternately Author int(x^2,x) . However,
there is no need to know these functional equivalents if you useDerive as
a calculus calculator. On the other hand, knowing these functions enables
one to write programs which extend the power ofDerive . We will give
numerous examples demonstrating both the simple calculator mode and the
powerful programming language.



c 1990{1997 Ralph Freese and David Stegenga, all rights reserved.

Chapter 0

Introduction and Derive Basics

0.1 Overview

In this course you will learn to use the computer mathematicsprogram De-
rive . This program, along with others such as Maple and Mathematica,
are very powerful tools for doing calculus. They are capableof doing exact
computations with arbitrary precision. This means that youcan work with
numbers of any size or number of decimal places (most spreadsheets only
use 10-20 signi�cant digits). These programs can simplify mathematical ex-
pressions by canceling common factors and doing other algebraic operations.
They can do symbolic calculus such as di�erentiation and integration, solve
equations and factor polynomials. When possible these programs solve these
problems exactly and when exact solutions do not exist, suchas factoring
high degree polynomials or integration of some non-polynomial expressions,
then numerical methods are applied to obtain approximate results.

Probably the most important numerical technique is to graphand com-
pare functions. This will be a key feature of the labs. Typically we will
explore a topic by �rst graphing the functions involved and then trying to
do symbolic calculus on them using the insight gained from the picture. If
the problem is too di�cult algebraically we then try numerical techniques
to gain further insight into the problem. It is this combination of graphics,
algebra and numerical approximation that we want to emphasize in these
labs.

Calculus is a hard subject to learn because it involves many ideas such as
slopes of curves, areas under graphs, �nding maximums and minimums, ana-

1



2 CHAPTER 0. INTRODUCTION AND DERIVE BASICS

lyzing dynamic behavior and so on. On the other hand, many computations
involve algebraic manipulations, simplifying powers, dealing with basic trig
expressions, solving equations and other techniques. Our goal is to help you
understand calculus better by concentrating on the ideas and applications in
the labs and let the computer do the algebra, simplifying andgraphing.

Another important goal of the lab is to teach you a tool which can used
from now on to help you understand advanced work, both in mathematics
and in subjects which use mathematics. There are many features such as
matrices and vector calculus which we will not discuss but can be learned
later as you continue with your studies in mathematics, physics, engineering,
economics or whatever. Any time you have a problem to analyzeyou can
use the computer to more thoroughly explore the fundamentalconcepts of
the problem, by looking at graphs and freeing you from tedious calculations.

This chapter contains a brief introduction on how to useDerive . We
suggest you sit down at the computer and experiment as you look over the
material. Derive is very easy to learn thanks to its system of menus. The
few special things you need to remember are discussed below and can also
be found using the help feature inDerive .

0.2 Starting Derive

The computers in the Bilger labs are IBM-PCs running the Window 95 op-
erating system. In some of the other labs such as K214 and CLICthe older
Window system and the DOS operating system are still being used although
they are going to be upgraded by the Fall 1997. We will mostly describe
how to use the new DfW (Derive for Windows) software in the Window
95 environment. The DOS version which is also available in the Bilger lab
is currently the only version available in some of the other labs and so we
will say a few words about its use also. On a DOS based computerstart
Derive for DOS by just typing derive on the command line. If you are
in Windows, either look for theDerive icon or else open a DOS window and
type derive . Finally, in Win95 we start both versions by double clickingon
it's startup icon which is located on the desktop. To start DfW look for

and double click it. The Derive for DOS startup is nearby.



0.3. ENTERING AN EXPRESSION 3

In DfW we use the drop down menus on the top strip or else click an
appropriate button. If you move the cursor onto a button and leave it there
a brief explanation of what the button does will appear. All possible options
can be found on the drop down menus but the buttons provide a quick way
of doing most common operations. For example, to enter a mathematical

expression you click the button which represents a pencil. Alternately,
you click the Author menu and then click Expression. In this manual we will
indicate that two step combination by simply Author/E xpression.

Derive for DOS uses a menu at the bottom of the screen from which
we make selections by pressing the capitalized letter. For example, we type
a (or A but uppercase doesn't matter toDerive on input so don't bother)
to select A uthor. Each menu item has one capital letter (usually, but not
always, the �rst). You can choose that menu item by pressing that letter.
We denote this by showing the capital letter in bold; for example, Simplify or
soLve. You can also choose this by hitting theTab key until it is highlighted
and then pressing theEnter key. Note that the mouse is not used inDerive
for DOS so all selections are done by typing.

In this manual we use a typewriter like font, eg.,a(b + c) to indicate
something you might type in. We use a sans serif font for special keys on
the keyboard like Enter (the return key) and Tab. The special keys are
mostly usedDerive for DOS whereas in DfW the analogous procedures
are accomplished by clicking the OK or Simplify boxes on various data entry
forms. Most of Derive has easy to use menus described below.

0.3 Entering an Expression

After clicking the button (or selecting A uthor in Derive for DOS ),
you enter a mathematical expression, i.e., you type it in andthen press the
Enter key or else click OK. You enter an expression using the customary
syntax: addition +-key, subtraction - -key, division / -key, powers^-key and
multiplication * -key (however; multiplication doesnot require a* , i.e., 2x is
the same as2*x). Derive then displays it on the screen in two-dimensional
form with raised superscripts, displayed fractions, and soforth. You should
always check to make sure the two-dimensional form agrees with what you
thought you entered (seeEditing below to see how to correct typing errors).
Table 1 gives some examples.
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Table 1:

You enter: You get:

(1) 25 25

(2) x^2 x2

(3) a^2x a2x

(4) a^(2x) a2x

(5) sin x sin(x)

(6) sin a x sin(a)x

(7) sin(a x) sin(ax)

(8) (5x^2 - x)/(4x^3 - 7) 5x2 � x
4x3 � 7

(9) (a + b)^(1/2) (a + b)1=2

(10) p (a + b) p (a + b)

If you get a syntax error when you press enter (or click OK) theproblem
is usually mismatched parentheses. Carefully check that each left parenthe-
sis is matched with a corresponding right one. Also be careful to use the
round parentheses and not the square brackets since they areused for vector
notation; see Section 0.14 on page 22.

Note from (3) and (4) and from (6) and (7) of Table 1 that it is sometimes
necessary to use parentheses. Also note in (8), that to get the fraction you
want, it is necessary to put parentheses around the numerator and denomi-
nator. See what happens if you enter (8) without the parentheses. Also try
entering some expressions of your own. There are two ways to enter square
roots. One way is using the 0.5 or 1=2 power as in (9) and the other is to
enter the special square root character as in (10). In DfW youenter special
characters by clicking on them in the author form, see Figure0.1 on the next
page. In Derive for DOS you enter Alt-q which means hold down the
Alt-key and pressq.
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0.4 Special Constants and Functions

In DfW all the special characters are on the author form and you just click on
them to enter them in an expression. There are also key equivalent such as
Ctrl-p for � and Ctrl-e for Euler's constant1 e which is displayed byDerive
as ê.

Figure 0.1: Author entry form with special symbols

In Derive for DOS a slightly di�erent key combination is used for
special characters. To get1 , type inf . To get � , type pi or Alt-p. Euler's
constant e is obtained by typing either Alt-e or #e. The help feature in
Derive for DOS can be used at any time to remind you how to type these
constants. Just selectH elp or F1 when authoring and then select either
constants or functions. The list of functions is very large and you might
want to avoid that in the beginning.

It either version it is important to distinguish ê from just e. Derive takes
e to just be some constant likea. To get the functions tan� 1 x = arctan( x),
sin� 1 x = arcsin(x), etc., you type atan x and asin x .

0.5 Editing

Suppose that you author an expression, click OK and then observe that you

typed something wrong. In DfW you would click the button again and
then click the right mouse button. A menu opens up with several options,
one of which is Insert Expression. Clicking this option puts the highlighted
expression of the current algebra window into the author box. You edit

1Leonhard Euler (oi'lar ) was a 18th century Swiss mathematician.
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this expression as you would in any windows program. That is you position
the cursor either by clicking or using the arrow keys. By highlighting or
selecting a subexpression and typing you replace the selected text with the
new text. One can use the Edit/C opy Expressions menu orCntl-C to place
a highlighed expression from any algebra window onto the clipboard and
then in the authoring form right click the mouse and click Paste to copy the
clipboard contents. The simpler method of just right clicking the mouse and
then Insert is the best way as long as your expressions are in a single window.
There is also an option for inserting the expression enclosed in parenthesis.
A key equivalent to these techniques, which is the same forDerive for
DOS, is F3 and F4.

You select or highlight expressions in the algebra window byclicking on
them. For more complicated expressions you can click several times until the
desired subexpression is selected. This requires a little practice but you can,
for example, select thex + 2 part of the expression sin x2

x(x+2) by clicking on
it 4 times (each click takes you deeper into the expression).

When you are À uthoring' an expression inDerive for DOS , you can
use the left and right arrow keys, theEnd-key and the Home-key to move
forward and back. The Delete key will delete characters. TheInsert-key
toggles between insert and overstrike mode. If you press theF3-key, the
expression highlighted on the screen will be inserted;F4 will insert it with
parentheses around it. You can use the up and down arrows to change which
expression is highlighted on the screen. The help feature explains these
techniques, just selectH elp and then chooseE for edit.

The displayed expressions are numbered. You can refer to them as #n.
So, for example, with the expressions in Table 1, you could get sin(x)=x2 by
A uthoring #5/#2.

When you start Derive it is in a character mode. This means it treats
each single character as a variable, so if you typeax Derive takes this to
be a times x. This mode is what is best for calculus. The exception to this
are the functionsDerive knows about. If you typexsinx , Derive knows
you want x sin(x). Actually on the screen you will seex SIN(x): Derive
displays all variables in lower case and all functions in upper case.



0.5. EDITING 7

Table 2: Special Keys and Function Names

Expression/Action Type: Menu:

e Alt-e (DOS) or #e Author entry form

� Alt-p (DOS) or pi Author entry form

1 , �1 inf , -inf Author entry form

The square sign:p alt-q (DOS) Author entry form

ln x, logb x ln x , log(b, x)

Inverse trigonometric functions asin x, atan x, etc.
d

dx
f (x) dif(f(x), x) Calc/D i�erentiate

dn

dxn
f (x) dif(f(x), x, n) Calc/D i�erentiate

Z
f (x) dx int(f(x), x) Calc/I ntegrate

Z b

a
f (x) dx int(f(x), x, a, b) Calc/I ntegrate

Simplify an expression S-key(DOS) Simplify

Approximate X-key(DOS) Simplify/A pprox

Cancel a menu choice Esc-key

Move around in a menu Tab-key (DOS)

Change highlighted expression N, H-key Click expression

Insert highlighted expression F3 , F4 with ( )'s Right mouse button
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0.6 Simplifying and Approximating

After you enter an expression,Derive displays it in two-dimensional form,
but does not simplify it. Thus, integrals are displayed withthe integral sign
and derivatives are displayed using the usual notation. To simplify (that is

evaluate) the expression, click the button. The alternate method is the
Simplify/B asic drop down menu. InDerive for DOS you chooseSimplify
from the menu by pressing thes-key.

Derive uses exact calculations. If you Author the square root of eight,p
8 will be displayed in the algebra window. If you simplify this, you get

2
p

2. If you want to see a decimal approximation, you click the button.
In Derive for DOS choose the approX imate menu item by pressing the
x{key. See Figure 0.5 on page 19 for several examples. The number of
decimal places displayed can be changed to any number. In DfWyou choose
Declare/Algebra State/Output and then reset the number of decimals places.
In Derive for DOS it's done by choosingOptions/ Precision and changing
D igits by pressing theTab-key and entering a number. This results in a
change in the State variables forDerive and in DfW you will be prompted
on whether you want to save these changes when you exit the program. Since
you can't change �les on the system directory you should click No.

An alternate way to do this is choose Simplify/A pproximate from the drop
down menus and enter a new number of decimals. The only trouble with this
method is that if you save your �le the extra decimals will be ignored unless
you set the Output decimal places appropriately. When you open the �le
later you will also need to reset the Output decimal place accuracy.

0.7 Solving Equations

An important problem is to �nd all solutions to the equation f (x) = 0. If
f (x) is a quadratic polynomial such asx2 � x � 2, then this can be done
using the quadratic formula or by factoring. To factor in DfW you choose
Simplify/F actor from the menu bar and click Simplify on the entry form.
In Derive for DOS we chooseFactor, press theEnter-key and ignore the
other options for now. The result is that (x + 1)( x � 2). This means that the
roots of f (x) are x = � 1, 2, i.e., these are the only solutions tof (x) = 0.

We can also do this by using theSOLVEfunction. To do this in DfW
we highlight the equation, sayx2 � x � 2 (it's assume to be equal to zero),
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and click the . If you forget the function of a button just hold the
cursor on it and a brief explanation will appear. An alternate method is to
choose Solve/A lgebraically from the drop down menu. Similarly, inDerive
for DOS we choose soLve with the quadratic expression highlighted. The
quadratic formula is used to solve for the roots so it is possible the answer
will involve square roots (and even complex solution, e.g.,x2 + 1 has no real
roots but it does have two complex ones, namely,x = � i ).

If f (x) is not a quadratic polynomial then Derive may not be able to
factor it; nevertheless, it may be able to solve the equationf (x) = 0. As
an example, sinx = 0 has in�nitely many solution x = m� where m is
any integer. If we useDerive to solve this equation it gives the 3 solutions
corresponding tom = � 1; 0; 1 (these are the principle solutions and all others
are obtained by adding or subtracting multiples of 2� ).

Finally, the simple equation sinx � x2 = 0 cannot be solved exactly in
Derive although it is obvious that x = 0 is one solution and by viewing
the graph we see another one withx � 1. In order to approximate this
solution we need to choose Solve/Numerically. We will then be asked for a
range ofx's (initially it is the interval [ � 10; 10]). Since we have (at least) 2
solutions in [� 10; 10], we should restrict the interval to say [:5; 1] which seems
reasonable based on the graphical evidence. The result is that Derive gives
the solution x = :876626. We will discuss how this computation is done later
in Chapter 5.

Note that Solve/Numerically will only give one solution (or none if there
are none) even if the interval you choose cantains several solutions. To �nd
additional solutions you need to use Solve/Numerically again but with an
interval avoiding the �rst solution.

In Derive for DOS we have to proceed a little di�erently andA uthor
the expression

solve(sin x - x^2, x, .5, 10)

directly and then simplify. Of course, we could do this in DfWtoo but the
menu method is easier. Yet another method is to change the state variables
so that all simpli�cation is done numerically instead of exactly but this is
less desirable because you have to remember to switch modes back to exact
mode for other calculations.
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0.8 Substituting

If you have an expression like
p

x2 + 1=x and you want to evaluate this
with say x = 3 or if you solved an equationf (x) = 0 and you want to
substitute that value of x back into f (x), you start by highlighting the desired

expression. Next you click the button and the substitution form opens
up. You need to �ll in the substitution value so you would just type 3 in the
�rst example. On the other hand, if the substitution value islarge, say lots
of digits or some other complicated expression in the algebra window, the
easiest way is to move the form out of the way (just hold down the left mouse
button in the top strip and drag to another location) and select the desired
expression by clicking on it. Then, paste it into the form by right clicking
and choosing Insert. If there happen to be other variables in the expression
you may have to change the variable in the variable list box.

Again the method inDerive for DOS is a little di�erent. You highlight
the expression and then chooseM anage/Substitute. This will ask you for
the expression. It will guess the highlighted expression, which is usually what
you want so you can just hit return in this case. It then gives the name of
a variable occurring in the expression. In the �rst examplex is the only
variable. You then type over x with the value you want to substitute, in
this case 3. You can thenSimplify or approX imate. You do not have to
substitute a number forx; you can substitute another expression.

0.9 Calculus

This menu item is very important for us. After choosing the Calculus
drop down menu, you get a submenu with Di�erentiate, I ntegrate, Limit,
Product, Sum, Taylor and Vector. After you have authored an expression,

you can di�erentiate it by either clicking the button or choosing
Calculus/Di�erentiate from the drop down menu. The form will have entries
for what variable to use and how many times to di�erentiate, but it usually
guesses right so you can just click OK. Then simplify.

To integrate an expression, �rst author it or highlight it if it is already

in the algebra window, then either click the button or else choose
Calculus/Integrate. The form will have entries for what expression to inte-
grate; it will guess you want to integrate the highlighted expression. It will
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have an entry for what variable you what to integrate with; again it will prob-
ably guess right. It will also have entries for the limits of integration. If you
want an inde�nite integral, just click the appropriate butt on and click OK.
For a de�nite integral click the appropriate button, type in the upper/lower
limit, then click OK. (Note: the procedure is similar in Derive for DOS
except that we need to use theTab-key to get to the other menus options
such as the upper/lower limits). See Figure 0.2 for several examples using
Di�erentiate and I ntegrate on the Calculus menu.

Figure 0.2: Using the Calculus menu

The options Calculus/L imits is similar to the above. To �nd

lim
x!� 1

x2 � 1
x + 1

you enter the expression, then either click or choose Limits from the
Calculus menu. You �ll in the variable (which is x) and the limit point which

is � 1 sincex ! � 1. Then click or choose Simplify to get the answer.
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In a similar mannerDerive does summation and product problems. Special
notations are used; namely,

nX

i =1

ai = a1 + � � � + an and
nY

i =1

ai = a1 � � � an :

Figure 0.3: Examples of Limits, Products and Sums

Let us discuss the summation notation which may be new to you.If
a1; : : : ; an are numbers then

nX

i =1

ai = a1 + � � � + an :

The symbol on the left,
P n

i =1 ai , is read as \the sum ofai as i runs from 1
to n." Often ai is a formula involving i . So

5X

i =0

i 2 = 0 2 + 1 2 + 2 2 + 3 2 + 4 2 + 5 2 = 55:
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You can do this computation inDerive by clicking the or using the

Sum option on the Calculus menu. Just authori^2 then click . Fill
in the required variable i along with the starting value 0 and end value 5.
Simplify to get 55. As an interesting aside, edit the above sumand have
Derive Simplify

P n
i =1 i to get the formula:

nX

i =1

i =
n(n + 1)

2
:

This formula is used in many calculus texts to evaluate certain Riemann
sums.

See Figure 0.3 on the facing page for some examples. Note thatin Fig-
ure 0.3

3Y

i =1

x i = x � x2 � x3 = x6:

The option Calculus/T aylor will be explained in Chapter 10.

0.10 Plotting

Supposed you wanted to graph the functionx sinx. In DfW you simply

author the expression, by clicking the pencil button , to be plotted

and then click the button. A plot window will then opens up and

the icon-bar will change to a new set of buttons. You then click the
button again (it's position is di�erent in the plot window) a nd the graph
will be drawn. There are several di�erent ways to view the algebra and plot
window together. The one we used to produce the pictures in the manual is
to �rst select the algebra window (if you are currently in theplot window you

can go to the algebra window by clicking the button) and then choose
Window/Tile V ertically from the menus. This will split the screen into two
windows: an algebra window on the left and a plotting window on the right.
These windows each have a number in their upper left hand corner. You can
have several plot windows associated with a single algebra window but you
cannot plot together expressions from di�erent algebra windows. You can
switch windows by either clicking the top strip of the windowor clicking the

or buttons. Actually you can click anywhere in the window to
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select it but the top strip avoids changing the highlighted expression in the
algebra window or moving the cross in the plot window.

You can plot several functions in the same plot window. Move to the
algebra window, highlight the expression you want to plot, switch to the plot

window and then click the in the plot window. Now both expressions
will be graphed. You can plot as many as you want this way. The plot
window also has a menu option, Edit/Delete P lot, for removing some or all
of the expressions to be plotted. Pressing theDelete-key also removes the
current plot.

When you plot, there is a small crosshair in the plot window, initially at
the (1; 1) position. You can move the cross around using the arrow keys or
by clicking at a new location. The coordinates of the cross are give at the
bottom of the screen. This is useful for such things as �ndingthe coordinates
of a maximum or a minimum, or where two graphs meet. In order tocenter

the graph so that the cross is in the center of the window, click the
button. This is useful for zooming in and out to get a better view of the
graph. There are several buttons for doing this in the plot window. Take a

look and you will see a button for zooming in, namely , and for zooming

out and various ways of changing just the x-scale or just the y-scale.
You should try clicking these buttons to see exactly what happens.

In general, these buttons change the scale of the plot windowby either

doubling or halving it. You can customize these by using the button
(that's a picture of a balance scale). Just click this buttonand �ll out the
form the appears with your own numbers. You can see the current scale at
the bottom of the screen.

We mentioned above how to plot any number of graphs simultaneously by
repeatedly switching between the algebra window and the graphics window.
Another technique for plotting three or more functions is toplot a vector
of functions. This just means authoring a collection of functions, separated
by commas and surrounded by square brackets. For example, plotting the
expression[x, x^2, x^3] will graph the three functions: x, x2, and x3.
In order to plot a collection of individual points one entersthe points as a
matrix, for example authoring the expression[[-2,-2], [0,-3], [1,-1]]
and then plotting it will graph the 3 points: (� 2; � 2), (0; � 3) and (1; � 1).

A quick way of authoring a vector is to use the button and a quick

way to enter a matrix is to use the button. One then just �lls out the
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form that open up. So for example with the 3 points above we would click

the matrix button and select 3 rows and 2 columns. The form will
open up and we then �ll in the 6 numbers above in the obvious order. You
move between �elds by either clicking or using theTab-key.

When plotting points you have a choice of connecting the points with a
line segment so that it appear like the graph of a function. You do this by
choosing Options from the menu bar. There are lots of interesting itemson
this menu that will allow you to customize plotting colors, the size points
are plotted, axes and so on. To connect points we choose Points and then
check the Yes button. We can also modify the size of the points by clicking
the appropriate button. See the Figure 0.4 where each of these techniques
is demonstrated. The color of a plot is controlled by choosing Option/P lot
Color and then making sections on the menu.

Figure 0.4: Using Plot for graphics

Graphing with Derive for DOS. In Derive for DOS the analogous
procedure are as follows: You would �rstA uthor the expression to be plotted
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and then choosePlot. You then get the submenu:Beside,U nder, Overlay.
You will usually want Beside. After choosing this (by pressing theb{key or
pressing theEnter key), you are asked for the column. You can pressEnter
to get column 40. This will split the screen into two windows:an algebra
window on the left and a plotting window on the right. These windows each
have a number in their upper left hand corner. You can tell which window
you are in by which number is highlighted. You can switch windows by
pressing theF1-key or choosingA lgebra when you are in the plot window or
choosingPlot from the algebra window.

After you have created the plot window, you are in that window. You
need to choosePlot from that window to actually do the plotting. This will
plot the expression highlighted in the algebra window. You can plot several
functions in the same plot window. Move to the algebra window, use the up
and down arrows to highlight the expression you want to plot,switch to the
plot window (by pressingF1 or choosingPlot), and then choosePlot from
the plot window. Now both expressions will be graphed. You can plot as
many as you want this way. The plot window also has aD elete option for
removing some or all of the expressions to be plotted.

When you plot, there is a small crosshair in the plot window, initially
at the (1; 1) position. You can move it around using the arrow keys. The
coordinates of the position of the cross are give at the bottom of the screen.
This is useful for such things as �nding the coordinates of a maximum or
a minimum, or where two graphs meet. TheCenter option will redraw the
graph so that the cross is in the center of the window. You can use theZoom
option to move in or out.

We mentioned above how to plot any number of graphs simultaneously by
repeatedly switching between the algebra window and the graphics window.
Another technique for plotting three or more functions is toplot a vector of
functions. This just meansA uthoring a collection of functions, separated by
commas and surrounded by brackets. For example,Plotting the expression
[x, x^2, x^3] will graph the three functions: x, x2, and x3. In order to
plot a collection of individual points one enters the pointsas a matrix, for
exampleA uthoring the expression[[-2,-2], [0,-3], [1,-1]] and then
Plotting it will graph the 3 points: ( � 2; � 2), (0; � 3) and (1; � 1). In the
graphics window chooseOption/ State then press theTab key followed by
Connected. Then choosingPlot again will graph the 3 points above but also
draw the line segment between them. See the Figure 0.4 on the preceding
page where each of these techniques is demonstrated. The color of a plot is
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controlled by choosingOption/ Color/ Plot and then making sections on the
menu.

Tips for graphing with Derive for DOS. The main tools for manipu-
lating the view of your graph are:

� Use Zoom to zoom in or out on either thex or y{axis or both. You
can also useF9 to zoom in andF10to zoom out. You can chooseScale
to control the scale exactly.

� UseCenter to reposition the view so that the crosshair is in the center.

� Range can be used to control the range. By changing the four numbers,
Left, R ight, Bottom, and T op, you can control where the view window
is. You can either type in the values you want or use the arrow keys to
visually change a range box on the screen.

� ChooseScale/A uto get auto-scaling mode. In this modeDerive
chooses a goody-scaling to �t your graph for you.

� You can get the crosshair to follow along the curve (it changes to a small
square when it does this) by choosingOption/ State and choosingY es
in the T race �eld. If you have more than one graph, the up and down
arrows will change which graph the cursor is on.

� For some graphs you might need more accuracy in the plotting to see
what is going on, for examplex sin(1=x). Options/ A ccuracy controls
this.

� One easy way go back to the default coordinates in a plot window is
to chooseW indow/ D esignate/2d-plot.

0.11 De�ning Functions and Constants

If you Author f(x) , Derive will put f x on the screen because it thinks
both x and f are variables. If you wish tode�ne say f (x) = x2 + 2x +
1 for example, you could Author f(x) := x^2 + 2x + 1 . Note that we
use := for assignments and = for equations. Alternately, youcould choose
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Table 3: Special Keys for the DOS Graphing Window

E�ect: Type: Menu:

Switch windows F1 A lgebra orPlot

Zoom in, zoom out F9, F10 Zoom

Move Crosshair 4 arrow keys

Move crosshair quickly Ctrl-J , Ctrl-I , PgUp, PgDn

Center on crosshair Center

change the scale Scale

Declare/Function, and then �ll in the form with f(x) for the function name
and x^2 + 2x + 1 for its value. Derive will then enter this as above with
the :=-sign. See Figure 0.5 on the next page. The procedure inDerive for
DOS is similar.

Constant are treated just like functions except there are noarguments.
In order to set a = 2� for example you typea := 2 pi . Then, whenever you
simplify an expression containinga, each occurrence is replaced with 2� .

In many problems you �nd it useful to have constant names withmore
than one letter or symbol, which is the default inDerive . For example
variables with names likex1, y2, etc. will be used frequently as are names
like \gravity". This can be done by declaring the variable, for example, to
use the variablex1 we author x1:= . Now any use of these letters will be
treated as the single variablex1.

Alternately, this can be done by changingDerive to word input modeby
choosing Declare/Algebra State/Input and then clicking the Word button.
In Derive for DOS you would chooseOptions/ I nput/ W ord. In this mode
variables can have several letters but when in word input mode you have to
be more careful with spaces: to getax2 you should entera x^2, not ax^2
(otherwise ax will be treated as a variable).Derive indicates multiplication
with a centered dot. So on the screen you should seea � x2, not ax2. Due to
these side e�ects it is usually best to use the previous method for multi-letter
variables and not make any changes to State Variables.

An interesting function de�ning technique is provided by the factorials.
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Figure 0.5: Examples of Declare, Simplify and approximating

For n = 1; 2; : : : we de�ne n-factorial, denoted byn!, as

n! = n � (n � 1) � � � 2 � 1 n = 1; 2; : : :

and for completeness we de�ne 0! = 1. These numbers are important in many
formulas, e.g., the binomial theorem. One observes the important recursive
relationship n! = n(n� 1)! which gives the value ofn! in terms of the previous
one (n � 1)!. Thus, since 5! = 120 we see immediately that 6! = 720 without
multiplying all 6 numbers together.

In Derive we can recursively de�ne a functionF(n) satisfying F (n) = n!
by simply typing

F(n) := IF(n=0, 1, n F(n-1))

where the properties of theDerive function IF(test, true, false) should
be clear from the context. The de�nition forces the functionto circle back
over and over again until we get to the beginning value atn = 0, i.e.,

F (n) = n �F (n � 1) = n � (n � 1)�F (n � 2) = � � � = n � (n � 1) � � � 2�1�F (0) = n!

We will give several other examples of this technique in the text.
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0.12 De�ning The Derivative Function

A common application of de�ning functions is to havef (x) de�ned but the
calculus problem requires a formula involving bothf (x) and f 0(x). For ex-
ample, the equation of the tangent line at the point (a; f (a)) is given by
y = f (a) + f 0(a)(x � a).

If you try to de�ne the derivative of f (x) by g(x) := dif(f(x), x) and
then evaluateg(2), you get DIF(F(2), 2) , which is not what you want. Of
course we could also just compute the derivative and de�neg(x) := to
be that expression. The advantage of de�ning it as a functionis that if we
change the de�nition of f (x), then g(x) will also change to the derivative of
the newf (x). Thus, we get to use the formula for more than one application.

Here's the correct way to de�ne the derivative as a function:Start by
Authoring f(x):= and we can enter the speci�c de�nition of f (x) now or

wait until later. Next, click the derivative button and enter f(u) in
the form (note the variable isu not x). Select the Variable u and press OK.

Now click the limit button (with the previous expression highlighted)
and enter the Variable u and the Point x. Finally, A uthor g(x):= and insert
the previous expression by right-clicking and selecting Insert.

The result is the expressionG(x):= LIM( DIF( F(u), u), u, x) . Ac-
tually, you could have just Authored this expression directly but the syntax
and the number of parentheses is a little confusing in the beginning so the
above method is easier and probably faster. See all this worked out on page 38
in Chapter 2 where a more technical discussion of this issue is given.

0.13 Functions Described By Tables

In calculus functions are typically described by giving a formula like f (x) =
2x3 + 5 but another technique is to describe the values restricted to certain
intervals or with di�erent formulas on di�erent ranges of x-values. As an
example, consider the function

f (x) =

8
><

>:

2x + 1 for x < 1

x2 for 1 � x � 2

4 for 4 < x
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which de�nes a unique valuef (x) for each value ofx. The problem is how
do we de�ne such a function usingDerive ?

One basic technique is to use the logicalIF statement. The syntax is
IF(test, true, false) . For example, if we enter and simplifyIF(1 < 2,
0, 1) we get 0 whereasIF(1 = 2, 0, 1) simpli�es to 1. Now our function
above is entered as:

f(x):= IF(x < 1, 2x + 1, IF(x <= 2, x^2, 4))

Notice how we use nestedIF statements to deal with the three conditions
and that with four conditions even more nesting would be required. Now once
f (x) has been de�ned we can make computations such asSimplifying F(1)
(should get 1), computing limits such as the right-hand limit lim x! 1+ f (x)
(should get x2 evaluated at x = 1) or de�nite integrals using approX to
simplify. We can also plotf (x) in the usual manner described in the previous
section.

Figure 0.6: Functions de�ned by tables of expressions

Notice from Figure 0.6 that the function y = f (x) is continuous at all
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x 6= 1. At x = 1, both left and right limits exist but they are not equal so
the graph has a jump discontinuity.

As the number of table entries increases we are forced into using nestedIF
statements and the formulas become quite di�cult to read andunderstand.
An alternate approach is to use theDerive function CHI(a,x,b) which is
simply

CHI(a; x; b) =

8
><

>:

0 for x � a

1 for a < x < b

0 for b � x

Then except forx = 1 our function f (x) above satis�es:

F(x):=(2x+1) CHI(-inf,x,1) + x^2 CHI(1,x,2) + 4 CHI(2,x,in f)

This technique works for graphing and limit problems and moreover gives
the exact result at each point where the function is continuous.

0.14 Vectors

Vectors are quite useful inDerive , even for calculus. They are also useful
in plotting. To enter the 3 element vector with entriesa, b, and c, we can
Author [a, b, c] directly. It is important to note the square brackets which
are used inDerive for vectors; commas are used to separate the elements.

An easier approach is just click the button and �ll in the three values
on the vector input form.

Derive also provides a useful function for constructing vectors whose
elements follow a speci�c pattern. Thevector function is a good way to
make lists and tables inDerive . For example, if you Author vector(n^2,
n, 1, 3) , it will simplify to [1, 4, 9] . The form of the vector function is
vector(u,i,k,m) whereu is an expression containingi . This will produce
the vector [u(k); u(k + 1) ; : : : ; u(m)]. You can also use the Calculus/Vector
menu option to create a vector. So, for example, to obtain thesame vector
as before, you start by authoringn^2. Now choose Calculus/Vector and �ll
in the form setting the Variable to n (not x), the start value to 1, the end
value to 3 and the step size to 1 (that's the default value).

A table (or matrix) can be produced by making a vector with vector en-
tries. If we modify the previous example slightly by replacing the expression
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n^2 with [n, n^2] and then repeating the above we get[[1, 1], [2, 4],
[3, 9]] which displays as a table with the �rst column containing thevalue
of the index n and the second column containing the value of the expression
n2. This is a good technique for studying patterns in data. See Figure 0.7
for some examples.

Figure 0.7: Using the Calculus/Vector command

We have already seen two important applications of vectors in Section 0.10;
namely,

� Plotting a vector of 3 or more functions [f (x); g(x); h(x); : : : ] plots each
of these functions in order.

� Plotting a vector of 2-vectors [[x1; y1]; [x2; y2]; : : : ] will plot the individ-
ual points (x1; y1), (x2; y2); : : : .

We will have other application that will require us to refer to the individ-
ual expression inside of a vector. This is done with theDerive SUBfunction
(which is short for subscript). Thus, for example,[a,b,c] SUB 2 simpli�es
to the second elementb. Derive will display this as [a; b; c]2 which explains
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the name. For a matrix or vector of vectors then double subscripting is used
so that, for example, if

y :=
�
1 2
3 4

�

then A uthoring y SUB 2 SUB 1will be displayed asy2;1 and simplify to 3
(because it's on row 2 and column 1).

0.15 Printing and Saving to a Disk

You can save the expressions in an algebra window to either a oppy disk or
the network hard drive H: and come back later to continue working on them.
Unfortunately, the plot windows are not saved but the pictures can be put
on the clip board and saved as graphics �les using suitable graphics software.
To save to a oppy, put a the diskette in say the A: drive and activate the
algebra window that you want to save. Click File/Save As and �ll out the
menu of options with the drive A: and a �le name such as Lab5 or just save
to A:LAB5 and enter. DfW will add the extension .MTH to indicate that
this is a �le consisting of Derive expressions. If you are usingDerive for
DOS then instead chooseT ransferSave, then D erive and enter a �le name
such as A:LAB5 or A:LAB5.MTH or H:LAB5 for the hard drive. In DfW
after the �le name has been established you can update it by simply pressing

the button.
You will most likely save your �les to the network harddisk. The H: drive

(H is for `Home') is your private area which is accessible only using your
password. To save a �le, just refer to it as say H:LAB5 or switch to the H:
drive and view your �les.

Later, you can recall these expressions by using either the File/O pen or
File/L oad/Math options. The second method is used primarily to add ex-
pressions to an existing window. InDerive for DOS you do this by choos-
ing T ransfer/Load/D erive, and then entering the desired �le name A:LAB5
(or A:LAB5.MTH). If you forget the name of your �les just type either A:
or H: and press theF1{key to select from a listing of your �les.

When you do a �le operation you will notice that the default directory
L:nDfWnM206L has lots of �les of the form F-*.MTH. These �les are the alge-
bra window expressions from the various �gures in the manual. For example,
Figure 0.7 on the preceding page has two algebra windows F-VECT1.MTH
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and F-VECT2.MTH which are identi�ed in the top stripe of the correspond-
ing algebra windows. You can load these �les at any time to seehow expres-
sions are entered or to experiment with the material.

During the course of your session with the computer you will make lots
of typing and mathematical mistakes. Before saving your work to a �le or
before printing and turning your lab in for grading you should erase the
unneeded entries and clean up the �le. The three buttons can
be used for this purpose. For example, if you select several expressions by say
dragging the mouse pointer over them with the left button held down and
then press the button these expression will be removed. Clicking
will undo the last delete. You can move a block of highlights lines by holding
down the right mouse button and dragging the block to a new location. Of
course, when you delete or move some lines then the line numbers will no
longer be in a proper sequence of #1, #2, . . . . You can correct this by
pressing the renumbering button . In Derive for DOS you do these
operations with the Remove, theU nremove and the moV e commands. You
should practice these commands on some scratch work to make certain you
understand them.

One way to use the move command is to write comments in the �le and
placing them before computation. Many of the *.MTH �les that we wrote
for this lab manual use this technique. To do it, just author aline of text
enclosed in double quotes, for example,"Now substitute x=0." . Then,
move this comment to the appropriate location.

You can print all the expressions in the algebra window (eventhe ones

you can't see) by pressing the button. You do the same thing to print a

graph. Just activate the plot window and press . In Derive for DOS
to print just a window with a graph in it, make it the current wi ndow, and
then pressShift-F9. Typically, students turn in the labs by printing out the
algebra window and penciling in remarks and simple graphs. More extensive
graphs can be printed out. Some combination of hand writing and printouts
should be the most e�cient.

0.16 Help

You can obtain on-line help by choosing Help. This help feature provides
information on all Derive functions and symbols. Suppose that you want
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to know how to enter the second derivative of a functionsf (x) by typing.
For example, maybe this expression is to be used as part of another function.
There are three techniques for learning how to do this.

The �rst method starts by authoring F(x):= to declare f (x) to be a
function of x. Next we use the menus with Calculus/Di�erentiate to calculate
the second derivative by enteringF(x) for the function and 2 for the order.
Then, press Author followed by the pull-down key F3 or right click in the
author box and select Insert. This will enter Derive 's way of typing the
expression, in this case it'sDIF(f(x),x,2) . The second method is to use
the online help by choosing Help on the main menu (inDerive for DOS
you can press theF1-key while authoring an expression). One then searches
for a topic like di�erentiation or vector to get further info rmation. In Derive
for DOS one has to page through the help pages since there is no searching
feature. For example, one selectsF (for functions) and then by pressingEnter
several times one �nds the appropriate page of explanations.

We have included a few quick reference tables with common keys used
for entering things like � , 1 and Euler's constante. Table 2 on page 7 gives
a summary of commands that can be issued from the algebra window and
Table 3 on page 18 gives a summary of useful commands that can be used
in the plot window.

0.17 Common Mistakes

Here are a few common mistakes that everyone makes, including the authors,
every once in a while. It just takes practice and discipline to avoid these
problems, although, it is human nature to blame the computerfor your
own mistakes. Fortunately, the computer never takes insults personally and
it never takes revenge by creating sticky keys, erasing �les, locking up, or
anything else like that ... or does it?

Q1. I tried to plot the line ax + b and instead I got an error message about
\too many variables". What did I do wrong? You must de�ne a, b
to have numerical values, otherwiseDerive treats your function as
f (a; b; x) which it cannot plot.

Q2. I tried to plot the family of parabolas x2 + c in Derive for DOS and
instead I got a picture of some surface. What did I do wrong? Same
problem as above, except nowDerive is plotting a surfacez = f (x; c).
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In DfW you would get an error message. You probably want to enter
and Simplify a vector of functions such as

VECTOR(x^2 + c, c, 0, 4).

Now Plot this vector of 5 functions: x2, x2 +1, x2 +2, x2 +3, and x2 +4.

Q3. I entered the expression
p

5 � x correctly, but when I substituted x = 9
and simpli�ed I got 2î . What happened? You took the square root of
a negative number which is not allowed when you are working with the
real number system.Derive treats this as a computation with complex
numbers and uses the complex numberi (where i2 = � 1).

Q4. I solved for the 3 roots of the cubicx3 � 2x2 + x � 2 and I got x = 2 which
I guessed from the graph but the other two solutions werex = î and � î .
Where do these last two come from? If you factor the cubic instead of
using Solve you would get (x � 2)(x2 + 1). The complex solutions come
from that quadratic term. In calculus, we just ignore those complex
solutions. For example, numerically solving the above cubic will give
only real solutions.

Q5. I di�erentiated ex and I got ex ln e, what's wrong? Nothing,Derive is
treating the letter e as an ordinary symbol likea or b. You probably
wanted Euler's constante which can be entered with#e .

Q6. I tried to author the inverse tangent functionarctan x and I got a � r �
c� tan x instead. What's wrong?Derive recognized thetan x part but
treated the other symbols as individual constants. Useatan x .

Q7. I entered the vector [v1; v2; v3] by typing [v1,v2,v3] and I got [v � 1; v �
2; v � 3] instead. What happened? You must declare these multi-letter
variables �rst before they can be treated as a single variable. To do this
just author v1:= , v2:= and v3:= . A quick way to do this is to simply
author the vector [v1:=, v2:=, v3:=] .

Q8. I tried to author x^n and I got a syntax error! How was this possible?
The problem here is that eitherx or n is previously de�ned as a function.
For example, maybe you had authoredx(t) := sin t. You can check on
this by scrolling up to �nd the de�nition. If instead, you kno w the prob-
lem is that x(t) is de�ned and you want to remove that de�nition, then
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just author x:= . In extreme cases you might just open a new window
and copy over some of your expressions using the Copy and Paste tech-
nique. In Derive for DOS if you are sure that neither de�nition is
needed you can selectT ransfer/Clear and then chooseFunctions. This
will clear all function de�nitions.

Q9. I entered and simpli�ed sin(2� ) and I got SIN([2 � ]) instead, what hap-
pened? You authoredsin[2pi] instead of sin(2pi) . Derive treats
square brackets not as parenthesis but as a device for de�ning vectors,
see Section 0.14.

Q10. I tried to show that limn!1 (1 + 1
n )n = e, instead Derive returns a

question mark indicating that it can't do this problem. What's wrong?
Same as above, check your parenthesis. This last example is alittle
tricky becauseDerive for DOS uses square brackets to display some
expressions, when in fact, those expressions must be entered with paren-
thesis. This situation has been corrected in DfW.
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Chapter 1

Basic Algebra and Graphics

1.1 Introduction

Calculus is a beautiful and important subject. It derives its importance
from its ability to describe and model basic phenomena in so many �elds.
Besides physics, chemistry and engineering, it is used in biology, economics,
and probability. In order for calculus to be useful to you, you will need
to understand calculus graphically and numerically as wellas algebraically.
Algebraically you learn how to di�erentiate functions given as complicated
expressions. But you also need to understand the derivativevisually as a
rate of change.

With Derive it is easy to learn all three of these aspects and to see the
relations between them.

1.2 Finding Extreme Points

As an example, consider the functionf (x) = 2 x4 � 3x3. In order to under-
stand the behavior of this function we can plot it usingDerive 's plot window
(see Section 0.10 for instructions on plotting.). The resulting graph can be
seen in Figure 1.1 on the next page. The graph suggestsf (x) has one local
minimum which is the absolute minimum. Using the crosshair in the plot
window (see Section 0.10) we can determine that the locationof the minimum
point has coordinates approximately given byx = 1:125 andy = � 1:0625.
We can get exact results by switching to the algebra window and doing some
calculus. In Derive 's algebra window we choose Calculus/Di�erentiate or

29
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click the button to �nd the derivative. You get the answer by clicking

the simplify button . We can then choose Solve/A lgebraically to �nd
where the derivative is 0, i.e., these are thecritical points . Alternately, just

click the solve button . The critical points occurs whenx = 0 and when

x = 9=8. Pressing the approximate button to get decimal answers we
see that approximately 9=8 = 1:125, which is exact equality in this case.
Now if we substitute this value forx into f (x) by highlighting the expression

2x4 � 3x3 and then using the substitution button to replace x with 9=8
we get, after approximating, that y = � 1:06787 which is close to our �rst
estimate.

Figure 1.1: Finding critical points

Looking further at the graph we can see thatf (x) does not have a local
minimum or maximum at x = 0; in fact f 0(x) < 0 on both sides of 0. The
graph also shows thatx = 9=8 is where the minimum occurs and thatf (x) is
decreasing on (�1 ; 9=8] and increasing on [9=8; 1 ). If we highlight the �rst

derivative and click (or choose Calculus/Di�erentiate), then we get
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the second derivative. We can then solve to �nd the points of inection, i.e.,
the places where the bending in the graph changes. The secondderivative
must be zero at these points but this criteria alone is not su�cient. Solving
f 00(x) = 0 yields x = 0 and x = 3=4. Again looking at the graph we see that
both of these are indeed points of inection since the graph is concave up on
(�1 ; 0], concave down on [0; 3=4], and concave up on [3=4; 1 ).

Insertion Tip In a typical problem the critical point will be complicated
and retyping the expression in the substitution form is di�cult and slow.
A quicker method is to highlight the f (x) expression, 2x4 � 3x3 in our ex-

ample, and then click the button. Now click on parts of the answer
vector several times until the desired quantity, say 9=8 is highlighted. In the
Substitution box click the right mouse button and select Insert. The high-
lighted quantity will be inserted in the form. You will �nd th is a particularly
useful technique when doing critical point problems algebraically instead of
numerically. For example,f (x) = ax2 + bx+ c. In this case the critical point
is a large expression involving the parametersa, b, and c.

1.3 Zooming and Asymptotes

As another example of using both plotting and calculus operations, consider
the problem does the functiong(x) = 3x3+5 x2 � x+1

x3 � 1 have a horizontal asymp-
tote? In other words, we are interested in the behavior of the graphy = g(x)
for very large values ofx and we want to know whether they-values tend to
a limit. To solve this you begin by entering the function by choosing Author
and typing

(3x^3 + 5x^2 - x + 1)/(x^3 - 1) .

Now plot this. Zoom out by clicking and see if it appears thatg(x) has
a horizontal asymptote. A nice technique to do this is to leave the vertical
scale alone and zoom out in the horizontal direction. There are several ways
to do this; one way is use the zoom buttons on the menu bar. Can you guess
which button does this? Another way is change the scale, sayx = 100 (click
the button with the balance scale on it). Use the cross-hair to estimate the
value of y that g(x) is tending to for large x. You should get y = 3 (see
Figure 1.2).
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Figure 1.2: Zooming to �nd the horizontal asymptote

Now return to the algebra window by clicking . We want to verify

that lim x!1 g(x) = 3. Now choose Calculus/L imit or click . When
asked for the \point," type in inf or click 1 symbol on the form. Simplify the
answer; you should get 3. This means that asx gets large,g(x) approaches 3,
i.e., the line y = 3 is a horizontal asymptote. We can check this calculation
by the method of polynomial division which is accomplished in Derive using
the Expand option. As we see at the bottom of Figure 1.2,

3x3 + 5x2 � x + 1
x3 � 1

= 3 +
8

3(x � 1)
+ � � �

where all the terms other than the 3 are small nearx = 1 . This is because
the denominator of each term has a larger power ofx than the numerator.
(The answer above is too wide for the window to display so you have to see
the 3. Use the horizontal scroll bar at the bottom of the window.)
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1.4 Laboratory Exercises

1. Enter the expressionx3 � x + 1 and plot it. Using the crosshair as
described in Section 0.10, �nd an approximation for the boththe x
and y{coordinates of the local minimum ofx3 � x + 1.

2. Using the same method �nd an approximation for the uniquex satis-
fying x3 � x + 1 = 0, i.e., the place where the graph crosses thex{axis.

3. In the algebra window click or use Solve to �nd the root exactly.
Approximate this and see how good your answer for the last problem
is.

4. In the algebra window �nd the derivative of x3 � x +1 and solve to �nd
the exact coordinates of the local minimum you approximatedin Ex-
ercise 1. (This will give you thex{coordinate; to get the y{coordinate

substitute the value of thex{coordinate into the cubic by clicking
or by using Simplify/S ubstitute/V ariable; see Section 0.8.)

5. Use the author button and the approximate button (or
Simplify/A pproximate) to get decimal approximations for each of the
following.

a. 81=2

b. sin( �
4 )

c. sin( �
4 )=51=2

6. Integrate each expression using the button (or Calculus/Integrate).
(See Section 0.9 for instructions.)

a.
Z

x2

(x3 � 1)2
dx b.

Z �= 2

0
(1 + cosx)2 dx

c.
Z �= 4

0
x sin(x2) dx d.

Z
x
p

1 + x dx



34 CHAPTER 1. BASIC ALGEBRA AND GRAPHICS

7. Graph the function f (x) = ( x
1+ x2 )7. At �rst there appears to be no

part of the graph showing in the graphics window but this can not be
sincef (0) = 0. Try replotting the graph in another color by either just

clicking several times or using the Options/P lot Color menu.
Now the graph appears to the horizontal liney = 0 but this can not be
since clearlyf (x) = 0 only for x = 0.

a. In the Algebra window, �nd the critical points of f (x) by using

the and buttons.

b. Determine the x and y coordinates of the local maximums and

local minimums by using the button to substitute the values
in part (a) into the function.

c. In the Graphics window, use the Zoom buttons or else the Set/R ange
menu in such a way that both the local maximum and local min-
imum points are visible. Furthermore, make they-scale compara-
ble to the y-coordinate of the local maximum.

d. After you get a good looking graph, print out the result.
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Chapter 2

The Derivative

2.1 The Derivative as a Limit of Secant Lines

Geometrically the derivative of a functionf (x) at a point a is the slope of the
tangent line of f (x) going through the point (a; f (a)). We can approximate
the tangent line by the `secant' line which goes through the points (a; f (a))
and (a + h; f (a + h)). The slope of this line, the rise over the run, is (f (a +
h) � f (a))=h, and so, by the usual point-slope formula for a line, the equation
of this secant line is

y � f (a) =
�

f (a + h) � f (a)
h

�
(x � a):

As a+ h gets closer toa, i.e., ash gets smaller, this secant line approximates
the tangent line at a better and better, and so its slope approaches the
derivative f 0(a). We can visualize this withDerive by entering the following
expressions:

F(x) := x^3/3

SL(a, h) := f(a) + (f(a+h) - f(a))/h (x - a)

The �rst step declares f (x) to be the function x3=3. The second de�nes a
function SL(a; h) which gives the secant line through the points (a; f (a)) and
(a + h; f (a + h)). For example, if we Simplify SL(1,1) we get 7x� 6

3 so that
the equation of the secant line determined byx = 1 and x = 2 is y = 7x� 6

3 .
Now we want to �x a = 1 and plot several secant lines corresponding

to di�erent h's. We can, for example, just Author and Simplify SL(1; 1),

35
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SL(1; 1=2), SL(1; 1=4), SL(1; 1=8), and SL(1; 1=16), and plot these lines and
f (x) on the same graph. This simply means you highlight each of the sim-

pli�ed expression and then click the plot button in the plot window,
see Section 0.10 on page 13 in Chapter 0 for the details on how to do this.
This is illustrated in Figure 2.1 on the next page.

A nice way to calculate and plot these secant lines is to use vector tech-

niques. Here's how you would do it: Click the vector button and set
the number of elements to 5. Now enter the 5 expressions abovestarting with
SL(1,1) and using theTab to move from entry to entry. Finally, simplify

and click on the resulting vector [SL(1,1),...,SL(1/16)] . All �ve
lines will be plotted one at a time. It all happens very quickly but if you
stare at the screen carefully just as you click the plot button you possibly
can see an animation-like e�ect.

If the drawing is too quick to see the animation, try the following method
instead. Erase the 5 secant lines in the plot window by pressing the Del key
5 times. In the algebra window select an individual line in the vector by

repeatedly clicking on it. Then, activate the plot window and press .
Finally, repeat this process several times to see the pattern evolving in the
plot window.

Since there is a pattern to the values 1; 1
2; 1

4; : : : ; namely 1
2n , we can use an-

other approach involving theVECTORfunction on the Calculus/Vector menu.
Select this menu option and enterSL(1,1/2^n) in the form. Note that using
uppercase letters is not necessary and that the highlightedexpression will
be replaced with whatever you type. For the Variable, scroll down and se-
lect n. Next we take the Starting value to be 0 since 20 = 1 and the Ending
value to be 4 since 24 = 16. Click OK and simplify the resulting expression
VECTOR(SL(1, 2^-n), n, 0, 4) 1. The result is a vector of �ve secant lines
as above. You will �nd that this is a convenient method of producing a large
number of expressions without typing them individually.

We can later change the de�nition off (x) to a di�erent function and
use the SL(a; h) function to get secant lines to the new function. The �le
F-SECANT.MTH contains the de�nitions of SL(a; h) and the tangent line
function, TL( a), discussed below.

In Figure 2.1 on the next page the secant lines tend to the tangent line
by rotating in a clockwise manner, i.e., with decreasing slope. We can use

1See Section 0.14 on page 22 for more information about thevector function
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Derive to illustrate this e�ect using calculus. That is, ash tends to 0, the
secant line tends to the tangent line by taking the limit: Author SL(1,h)
and choose Calculus/Limit, taking the variable to be h (not x). We get
limh! 0 SL(1; h), which Simpli�es to

3x � 2
3

= x �
2
3

:

which, in fact, yields the tangent line tox3=3 at x = 1. Check this out for
yourself by plotting this function on your previous graph. Since the slope
of the secant line is (f (a + h) � f (a))=h, this explains why we de�ne the
derivative as

(1) f 0(x) = lim
h! 0

f (x + h) � f (x)
h

and why the derivative is the slope of the tangent line.

Figure 2.1: Secant lines approximating the tangent line

In order to get a function TL(a) for the tangent line at a analogous to
the secant line functionSL(a,h) , we need to be a little careful since the most
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obvious de�nition; namely,

TL(a) := F(a) + DIF(F(a),a) (x - a)

doesn't work. This is because the order of evaluation is wrong. Consider
what would happen if we evaluatedTL(5) . First 5 would be substituted for
a and then the resulting expression,

F(5) + DIF(F(5),5) (x - 5) ;

would be evaluated. ButDIF(F(5),5) doesn't make sense.
To solve this problem we use theSUBSTfunction in the utility �le ADD-

UTIL.MTH. This �le contains several new functions that we will be using
for now on and so we suggest adding a few lines to start of everyDfW
session. This can be done by Opening or using Load/Math on the �le ADD-
HEAD.MTH. Once this has been done, these new functions can beused. See
Appendix A for a more detailed explanation.

For example, the function SUBST(u, x, a) simpli�es the expressionu
and then substitutes the valuea for x in u. The three variables in theSUBST
function are the expression, the variableand the evaluationpoint. It has the

same e�ect as �rst Simplifying u and then using the button to replace
x with a.

To de�ne the TL function we �rst make a function DF(x) of the derivative
using the SUBSTfunction. Click and enter F(u) with the variable

set to u. With this expression highlighted click and type in SUBST(.
Then, insert the derivative by right-clicking and selecting Insert from the
menu. Finally, type in next two argumentsu and x separated by commas
to complete the three arguments for this function. PressingOK, you should
get the �rst expression below:

DF(x):= SUBST(DIF(F(u), u), u, x)(2)

TL(a) := F(a) + DF(a)(x - a)(3)

The TL function can then be de�ned as above.
The utility �le contains two more functions which you can usefor the

exercises and that eliminate the need to reproduce the de�nitions we've been
discussing. To �nd the tangent line of sayx3=3 at x = 5 you enter and sim-
plify the expressionTANGENT(x^3/3, x, 5). Here again, the three variables
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in the TANGENTfunction are the expression, the variable and the evaluation
point. Similarly, the secant line computed earlier can be obtained by entering
SECANT(x^3/3, x, 1, 1/16) . Here the last variable is theh-increment.

The answer to these function is of the formy = mx + b rather than just
mx + b. You can still plot the entire equation and get the right result since
DfW knows how to plot equations in addition to functions. Youcan test this
by plotting the familiar equation y2 = � x2 + 1 to get the unit circle.

Notice that using these functions it is not necessary to de�ne any functions
such asF(x):= or DF(x):= in order to get an answer. This is usually a better
approach because the use of variables or de�nitions causes problem when you
forget that something is de�ned. As a result you get some strange answers
to your problems and you don't know why. This di�culty is part icularly
common as you go from problem to problem in the exercises. Just remember
to start o� your labs by doing L oad/Math to the ADD-HEAD �le.

2.2 Local Linearity and Approximation

One of the properties of a function with a derivative atx is that the function
can be well approximated by the tangent line. This means as you move
in close the function appears to be quite at, not di�ering much from the
tangent line. This `local linearity' is very useful in many applications. To
see this local atness, move the crosshair in the plot we obtained above to
the point (1; 1=3) where all the lines intersect, then center on the cross by

clicking the button. Now we want to zoom in several times by clicking

the zoomin button. Notice how at the curve appears. Try clicking

The zoom out button several times and then repeating to completely
visualize this process.

We can use the above approach to approximate the derivative of a function
and plot the result. For example, we know that the derivativeof f (x) = x3

is 3x2 by using the standard formulas. On the other hand, the function of
x, g(x; h) = f (x+ h)� f (x)

h with h �xed at some value like h = :01 is a good
approximation to 3x2 as one can see from Figure 2.2 on the following page.
The �gure actually shows both plots although they appear to be only one
curve. In Derive you should enter and Simplify the above expression (it
sometimes helps to Expand the result to further simplify it). Then compare
the graph with 3x2 by plotting both expressions together.
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Figure 2.2: Approximating derivatives using the di�erencequotient

2.3 Laboratory Exercises

Start o� your lab by L oading the ADD-HEAD.MTH �le (use F ile/L oad/Math).
Note that the syntax of the SECANTand TANGENTfunctions are displayed on
the second line of the ADD-HEAD �le.

1. a. Using the TANGENT(u,x,a)function �nd the equation of the tan-
gent line for f (x) = 3

p
x (enter cube roots asx^(1/3) ) at the point

a = 8 and plot it along with the graph of f (x).

b. In part a you found the tangent line to 3
p

x at a = 8. Estimate
3
p

9 by �nding the y{value of this line whenx = 9. Compare your
answers with DfW's own approximation to this quantity obtained

by clicking the button.

c. Using the plot window again give a reasonably accurate interval
[c,d] containing the pointx = 8 for which the tangent line approx-
imates the function to 2 decimal place accuracy. (Hint: Plot the
di�erence between the function and the tangent line and rescale
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to get a good picture. It is also helpful to use the Trace Mode
which can be set from the Options menu of the graphics window.)

2. Consider the class of all function of the formf (x) = x3 + bx2 + cx.

a. Author the expression formx3 + bx2 + cx. Click the substitution

button and enter some speci�c values forb, c, then plot the
result2. Do this for several di�erent choices forband c and observe
the critical points and inection points of the di�erent gra phs.

b. Using Derive 's calculus facilities in the algebra window, show
that the function f (x) = x3 + bx2 + cx always has exactly one
inection point, regardless of the values ofb, c.

c. Again usingDerive 's calculus facilities, show thatf (x) can have
either 0, 1 or 2 critical points. Determine for what values ofb and
c doesf (x) have no critical point?

d. Choose valuesb, c which demonstrate that f (x) may have either
0, 1 or 2 critical points and plot their graphs.

*3. Let f (x) = x2 sin(1=x) for x 6= 0 and f (0) = 0. In this problem you will
show that f (x) is continuous and di�erentiable for all x but f 0(x) is not
continuous at 0. This means to �ndf 0(0) you must use the de�nition of
the derivative; you cannot just �nd f 0(x) and take the limit as x ! 0.

a. De�ne f (x) as above by Authoring F(x) := x^2 sin(1/x) (don't
worry about x = 0 for now). Show limx! 0 f (x) = 0. (Hint: Click

and �ll in the form.)

b. Graph f (x), x2, and � x2, setting the plot scale to 0:1 horizon-
tal and 0:01 vertical. Zoom in several times towards the origin

by clicking the button and convince yourself thatf (x) is
continuous at x = 0. But notice that the curve oscillates up and
down slightly.

c. Find f 0(0) by �nding lim h! 0
f (0+ h)� f (0)

h .

d. Find the derivative of f (x) using the button.

2Derive can't plot the function unless the values are provided.
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e. Make a new graph off 0(x) and by zooming in several times con-
vince yourself that f 0(x) oscillates wildly between approximately
� 1 asx approachs zero.

4. The volume of a tin can isV = �r 2h where r is the radius of the
top (and the bottom) and h is the height. The surface area isA =
2�rh + 2�r 2. (The �rst term is the area of the side and the second is
the area of the top and bottom.)

a. A manufacturing company wants to make cans with volume 42 in3.
To minimize their costs they want to minimize the area of the can.
What values ofr and h do this? (Hint: Author the formula for the
area, 2�rh + 2�r 2; use the equation for the volume, 42 =�r 2h, to
solve forh in terms of r and substitute this into you expression for
the area. Now �nd the value of r that minimizes the area using
calculus techniques and use this value ofr to �nd what h is.)

b. You may have noticed thath = 2r for the can of minimum area
you found in part a. Show that this relation always holds for
the can of least surface area (not just for cans with volume 42).
(Hint: Do this just as in part a except don't replaceV by 42 in
the equation for the volume.)

*5. Suppose we have the situation of the previous problem exceptthat now
the metal for the top and the bottom of the can costs 1.5 times as much
as the metal for the side. What ish=r for the can of minimun cost?

6. The acceleration due to gravity,a, varies with the height above the
surface of the earth. If you go down below the surface of the earth, a
varies in a di�erent way. It can be shown that, as a function ofr , the
distance from the center of the earth,a is given by

a(r ) =

8
<

:

GMr
R3 for r < R

GM
r 2 for r � R

whereR is the radius of the earth,M is the mass of the earth, andG is
the gravitational constant. All three of these are constants. In order to
de�ne the function a(r ) and examine its graph, we'll use the numerical
values: GM = 4:002� 1014 and R = 6:4 � 106 meters.
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a. De�ne a(r ) using the technique in Section 0.13 and plot its graph.
Rescale as necessary to give a good picture.

b. Is a a continuous function ofr ?

c. Is a a di�erentiable function of r ? Explain your answer.

*7. �( x) is a di�erentiable function for x > 0 which is very important in
applications. Derive knows this function but not how to di�erentiate
it. You can get � in either version of Derive by typing gammabut in
DfW you can also just click on the � in the Author Dialog Box.

a. Graph �( x) and the four secant lines to �(x) through the points
(3; �(3)) and (3 + h; �(3 + h)), for h = 1=2, 1=4, 1=8, and 1=16.
[It is known that �(3) = 2, but you don't really need this here. ]

b. Use the secant line you obtained in parta with h = 1=16 to
approximate �(3 :1).

c. Have Derive approximate �(3 :1).

d. Use the graph to verify that �( n + 1) = n! = 1 � 2� � � n whenever
n = 0; 1; : : : , 5. (Since factorials play an important role in many
applications this explain why the � function is important.)
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Chapter 3

Curve Sketching

3.1 Introduction

Before the widespread use of computers and graphing calculators, graphing
a function f (x) was done by a combination of techniques including:

� Plotting some judiciously chosen points.

� Finding solutions to f (x) = 0.

� Finding the local minima and maxima and wheref (x) is increasing
and decreasing.

� Finding the inection points and concavity.

� Finding the horizontal and vertical asymptotes.

As we have seen graphing is easier with a computer algebra system. More-
over, we can also �nd the local minima and maxima and the otheritems above
if we need them. It is also possible to make a small change inf (x) and graph
that and see how the graph is a�ected. But we have also seen that in order
to see the important aspects off (x) it may be necessary to zoom in or out
and to move around in the graph. In this lab you will develop your skills at
graphing with the computer.

45
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3.2 Working with Graphs

In many problems involving periodic behavior, such as oscillating springs,
pendulums, planetary motion and others, the solutions generally have the
form

asin(b(x � x0))

where a, b and x0 are given numbers. This raises the question of how the
graph of a function, such as sinx, changes when subject to the above mod-
i�cations. You should observe the changes by comparing withthe original
function but you should also think about why the changes makesense, for
example, what does changinga do, what is the geometrical signi�cance of
the point x = x0 on the x-axis.

Figure 3.1: Usingvector to plot several graphs

Now to see how the transformationsy = f (x)+ c a�ect the graph y = f (x)
for various choices ofc we start by Authoring our function, say f(x) := sin
x. It's always a good idea to de�ne our function usingf(x):= because then
later we can change the de�nition and see the e�ects on a di�erent function.
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Next we select the Calculus/Vector menu and enterf(x) + c in the form.
Click the Variable list box and select the variablec. For this example, set
the Starting value to -2 and the Ending value to 2. The Step Size can be
left at 1 although in other examples you might want to change this. Press
OK. Finally, simplify the resulting expressionVECTOR( F(x) + c, c, -2,

2) by clicking the button and then plotting by clicking the plot
button twice (once to open the plot window and the second timeto plot the
highlighted expression).

If you look carefully at the plot window as you click you might
see the successive graphs are just that of the usual sine function but moved
in the vertical direction. They start below the x-axis and then rise to a few
units above the x-axis. If the drawing is too quick to see the animation,
try clicking the individual functions in the vector expression in the algebra
window and plotting them. By deleting the graphs and redrawing you should
be able to see the pattern.

Many other options are also possible; for example, editing thevector for-
mula above by replacingf(x) + c with f(x + c) gives an interesting result
upon graphing. See if you can see atraveling wavein the plot window. Is it
traveling from left to right or right to left?

Also, you can change the function by simply Authoring f(x) := with a
new expression. Remember that the:= symbol is forassignmentwhereas the
= sign is used for equations and comparisons. It is important to note that
once you de�ne a function by this method it will not go away if you simply
erase that line from your algebra window because it is in the computers
memory. The way to completely remove a de�nition using the letter f is to
author the expressionF:=. This givesF an empty de�nition.

3.3 Exponential vs Polynomial Growth

Suppose we want to compare the behavior of the functionsx4 and ex . 1 If we
graph x4 we see it has the same basic shape as the parabolax2 (you probably
guessed this). It is a little atter than the parabola between � 1 and 1 and
seems to grow more quickly forjxj > 1.

If we now graphex on the same graph and zoom out once, we see that

1This problem is essentially taken fromCalculus by Deborah Hughes-Hallett, Andrew
M. Gleason, et al. It is one of the most popular `calculus reform' texts.
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the graph seems to get close to thex{axis as x gets larger in the negative
direction (asx approaches�1 ); that it crossesx4 at least twice; and it grows
quickly when x is positive, but not as quickly asx4; see Figure 3.2. One way
to verify that the x{axis is a horizontal asymptote ofex is to highlight ex

in the algebra window and choose Calculus/Limit and enter -inf for the
`Point,' as we did in Figure 3.2.

Figure 3.2: The functionsx4 and ex

To see where the curves cross we need to solve the equationx4 = ex . We
cannot solve it exactly but we can get approximate solutions. To do this with
Derive we use the Solve/Numerically menu. Enter the equationx^4 = e^x
and choose an appropriate interval. When you solve numerically, things work
slightly di�erently. You need to specify an interval in which to search for a
solution. If there are no solutions in the interval,Derive returns [] which
means no solutions. If it �nds a solution it gives that as the answer. But
it only gives one solution, even if the interval contains sev eral!
To �nd other solutions you need to specify new intervals thatdo not contain
the solution already found. So if you originally choose the interval from 0 to
2 and Derive found a solution 1:3 and you suspect there is also a smaller
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solution, you could solve again but this time use the interval 0 to 1:29.
The graph in Figure 3.2 on the facing page suggests that thereis a solution

between� 2 and 0. If you use this intervalDerive gives x = � 0:815553,
which seems to agree with the graph. (Another way to �nd an approximate
solution is to move the crosshair to where the curves intersect.) The graph
also shows there is a solution between 0 and 2. If we solve using that interval
we getx = 1:42961.

Are there any other solutions? It is pretty clear that there are no other
solutions forx < 0 but what about largex? From the graph it appears that
x4 grows much faster thanex . But of courseex has \exponential growth" so
perhapsex > x 4 for large enoughx. To test this we can try to solvex4 = ex

for larger x. If we choose the interval to be 2 to 20, we get the solution
x = 8:61316. So the graphs cross at this point. To �nd they value of this
point, we use the Substitute button to substitute 8:61316 intox4. The result
approximates to 5503:64.

To see this on the graph we need to zoom out once so that thex{scale
includes x = 8:61316. Then we need to zoom out on they{axis without
zooming out on thex{axis. We do this by choosingY on the zoom menu.
After zooming out several times we obtain the graph of Figure3.3 on the
next page.

There are a couple things this demonstration shows. First that in order
to see the important features of a graph it may take some skillat moving
around and manipulating the scale of the graph. Moreover, even though we
can clearly see the two graphs intersecting atx = 8:61316 in Figure 3.3, we
can no longer see the other two solutions. So it may not be possible to see
all the important features in one plot. In this lesson you will learn how to
move and scale in the plot window and to use the algebra windowin order
to �nd all the important features of one or more graphs.

3.4 Laboratory Exercises

1. Let f (x) = 1 =(1 + 2x2).

a. Graph each of the followingf (x) � 1, f (x), f (x) + 1, and f (x) + 2
in a plot window. Then, use the Window/New 2D-Plot Window
command to open another plot window and plotf (x � 1), f (x),
f (x + 1) and f (x + 2) in that window. (Hint: The V ector menu
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Figure 3.3: The functionsx4 and ex , rescaled

can be used to simplify the typing.)

b. What does the transformationf (x) ! f (x) + a do to the shape
of the graph? to the position of the graph?

c. What does the transformationf (x) ! f (x + a) do to the shape
and position of the graph?

2. Graph cosx, 2 cosx, and cos(2x) and explain what the transformations
f (x) ! f (ax) and f (x) ! af (x) do to the graph of f (x).

3. What do the transformations f (x) ! f (� x) and f (x) ! � f (x) do?
Graph f (x) = x5 � x2 + 1 and f (� x) and � f (x).

4. Let g(t) = sin t + cost.

a. Graph g(t).
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b. What sort of transformations should be applied to sint to make
its graph look like the graph ofg(t)?

c. UseDerive 's crosshair to �nd the maximum value ofg(t) and to
�nd the �rst root of g(t) to the left of zero.

d. Use these numbers to �nda and b so that g(t) = asin(t + b), at
least approximately.

*e. Find exact values ofa and b so that

sint + cost = asin(t + b):

Hint: Set the simpli�cation of trigonometry functions to \Ex-
pand" using the Declare/Algebra State/Simpli�cation menu. Then
evaluateasin(t + b).

5. Let f (x) = e� ax2
wherea is a constant.

a. Plot f (x) for a = � 2, � 1, 0, 1, and 2. You can use thevector
function if you like.

b. Using calculus facilities in the algebra window, �nd the points of
inection for e� ax2

.

6. Find the points where the curves lnx and x1=4 intersect. Make two (or
more) graphs with di�erent scales showing the places where the curves
intersect.

7. Make separate graphs of each of the following functions. Using some
of the graphing techniques such as zooming, centering, etc.Make sure
your graphs show the main features such as thex and y{intercepts, the
critical points, and the inection points.

a. sin(x) cos(20x) b.
3x

p
4x2 + 1

c.
1

1 + 5000(x � 1)2
d. x sin(1=x)

*8. Enter the rational function

(1)
x6 + 3x5 + x4 + 1

2x4 � 1
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a. Choose Simplify/E xpand and select Rational. This gives a partial
fractions decomposition of the function. (Partial fraction decom-
positions are used in integrating rational functions) Notice that
the partial fraction decomposition consists of (a sum of) one or
more proper rational functions (where the denominator has higher
degree than the numerator) and a polynomial. What is the poly-
nomial?

b. Graph the rational function given by (1) and the polynomial you
found in the �rst part. Zoom out a few times. How are the two
graphs related whenjxj is large? Explain why this is.

*9. Let

g(x) =
� 2x3 + 6x2 � 3x + 5

4x2 � 6x � 7

a. Graph g(x) so that your graph shows the main features of this
function.

b. This graph has a slant asymptote, i.e., an asymptote which isa
line with nonzero slope. Zoom out a few times until you can see
this slant asymptote.

c. Find the formula for the slant asymptote by using Simplify/E xpand.

*10. In reading this chapter you might have wondered ifex and x4 intersect
some place beyondc = 8:61316� � � . You could useDerive to verify
that there is no solution say between 8:7 and 100 and this would be
strong evidence that they don't intersect beyondc, but not a proof. So
in this problem you are to �nd a proof that ex and x4 don't intersect
beyondc (without using Derive ). Hint: By taking 4th roots we must
showex=4 > x for all large x. Now show the slope ofex=4 � x is positive
for all x � 8 and use this to showex > x 4 for all x > c .
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Chapter 4

Graphing Data and Curve
Fitting

4.1 Introduction

Consider the population of a certain country,P(t), as a function of time. We
may not know exactly what P(t) is but instead just have a table of data,
for example, the population at the beginning of each year forthe last few
years. We are interested in �nding an appropriate curve for the data. We
might try comparing the data against a linear functionax + b, a quadratic
function ax2 + bx + c or say an exponential curve of the formP(t) = aert .
Under a certain model of population growthP(t) will have this last form.
Our problem is to determine the parametersa; b; : : :, from the data. Once
we do this then we can useP(t) to estimate the population at times between
the data and predict the population in the future.

This kind of problem of �tting a function from a family of functions to
numerical data arises frequently in many applied areas including statistics.
In this lab we use the computer to help visualize data and �t the data to a
function from a class of functions. We begin with the class ofall polynomial
functions.

4.2 Fitting Polynomials to Data Points

Given a �nite set of data points:

(x1; y1); : : : ; (xn ; yn)

53
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let's consider the problem of �nding a polynomial functionf (x) which goes
through these points. That is, we wantf (x) to satisfy f (x i ) = yi for i =
1; : : : ; n. If x i 6= x j , for i 6= j , then it turns out that we can always �nd a
unique polynomial of degree at mostn � 1 going through these points. This
is quite obvious whenn = 2 since there is a unique line passing through any
2 distinct points.

If we are given 3 points, (x1; y1), (x2; y2), and (x3; y3), and want to �nd a
quadratic polynomial passing through these points, we letf (x) = ax2+ bx+ c
be an arbitrary quadratic. Sincef (x i ) = yi for i = 1, 2, and 3, we obtain
three (linear) equations

(1)

ax2
1 + bx1 + c = y1

ax2
2 + bx2 + c = y2

ax2
3 + bx3 + c = y3

in the unknownsa, b, and c. (Remember, we are given the points (x i ; yi ) so
they are known and we want to �nd the unknownsa, b, and c.) We then
solve this system of 3 equations for the 3 unknownsa, b, and c.

For example, suppose we want to �nd a quadratic polynomialf (x) =
ax2 + bx+ c passing through (0; 0), (1; 2), and (2; 8). The way to do this with
DfW is to �rst author f(x) := ax^2 + bx + c then choose Solve/System
from the menu bar, set the number of equation to be 3, and then enter the
three equations (you can either use theTab-key after entering an equation
or click the next equation box)

f(0) = 0 f(1) = 2 f(2) = 8

Click on the Equation Variables box and select the variablesto solve for asa,
b, and c. Click OK and then simplify the resulting expressionSOLVE( [F(0)
= 0, F(1) = 2, F(2) = 8], [a, b, c]) (see Section 0.7 on page 8).De-
rive returns

[a = 2 b = 0 c = 0]

So in this casef (x) = 2 x2.
We can double check this result by plotting the function 2x2 determined

above along with the 3� 2 data matrix
2

4
0 0
1 2
2 8

3

5
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Figure 4.1: Fitting a polynomial to data points

entered by using the button. See Figure 4.1.
For more complicated problems we would have to substitute inthe values

of a; b; c into the expressionax2 + bx + c using the button. The
utility �le ADD-UTIL has a function CURVEFIT(x, data) which does this
automatically. Here thex is the variable and data is the matrix of point we
want to �t the curve to. The more points we use the higher the degree of
the polynomial needs to be.

As we mentioned above, for 3 points with distinctx{coordinates there is
a unique quadratic polynomial function passing through them. We can use
Derive to demonstrate this by showing that the system of equations (1) can
always be solved fora, b, and c, regardless of the values of (x i ; yi ). To do
this we will just have Derive solve the system (1).

However, there is a slight problem. In its normal input mode,called
character input, Derive treats each letter as a separate variable. So if you
author ab Derive will read this as a times b and the algebra window will
show it asa � b. This is very convenient for calculus where we almost always
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use single characters for our variables. But to solve (1) we need the variables
x1, x2, etc. When we enterx1, Derive will think of this as x times 1, which
is not what we want. So we need to declare thatx1, x2, etc., are variables.
To declarex1 as a variable you can authorx1 := . You need to do this for

all three x's and y's. You can do this quickly by clicking the button
and selecting 3 rows and 2 columns. Then, enterx1:= pressTab and enter
y1:= . Continuing, enter all the remainingx i 's and yi 's but be sure to use the
assignment character:= and not the = sign alone. Click the Simplify button
in the matrix form instead of the OK button and the result should be

2

4
x1 y1
x2 y2
x3 y3

3

5

Now we Author CURVEFIT(x,data) where data is the above matrix of
points. Simplifying yields a complicated looking answer which is a little
di�cult to digest. However, if you factor the answer; using Simplify/F actor
where in the Factor dialog box we highlight each of thex i variables to factor
over, the result shows that the denominator cannot be 0 sincewe are assuming
that x1, x2, and x3 are distinct. See Figure 4.2 on the facing page.

As an interesting variant on the above, suppose we want to �nda, b, and
c for a function f (x) = ax2 + bx + c when we know

f (x1) = y1

f (x2) = y2(2)

f 0(x3) = y3 (That's the derivative!)

In other words we specify thatf (x) must pass through (x1; y1) and (x2; y2)
and that its slope at x = x3 is y3. We de�ne f(x) as before and de�neg(x)
as the derivative1

(3) g(x) := 2ax+b

Now if we solve the system of equations

f(x1) = y1 f(x2) = y2 g(x3) = y3

1Note that you can't simply de�ne g(x):=DIF(f(x),x) . We ran into this problem
earlier on page 38 (see Section 0.12 on page 20 for a complete explanation). One solution
to this problem is to use the utility �le and de�ne g(x):= SUBST( DIF(f(u),u), u, x) .
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Figure 4.2: The algebra behind �tting polynomials to data points

as before and then factor the answer, we see that the denominator of each of
the 3 fractions is

(x1 � x2)(x1 + x2 � 2x3)

(You can do this just as in Figure 4.2 except you need to de�neg(x) and
use g(x3) = y3 in place of f(x3) = y3 .) Of course we are assuming that
x1 6= x2 so the factorx1 � x2 will not be 0. The other factor is 0 when

x3 =
x1 + x2

2

This means we can always �ndf (x) except possibly if x3 = ( x1 + x2)=2.
This is somewhat surprising since one expects to be able to solve for 3 un-
knowns satisfying 3 equations just as one can solve for 2 unknowns satisfying
2 equations. However, in both cases there are exceptional cases that need
to be considered. In this case, the di�culty is related to themean value
theorem and is explored in Exercise 3. Related results for cubic functions
are examined in Exercises 4 and 7.
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The solution to curve �tting problems involving the derivative can also
be found using theCURVEFIT(x,data,ddata) function. As beforex is the
variable anddata is a matrix of points satis�ed by the function. The matrix
ddata represents the points satis�ed by thederivative. In the above example,
we would author

CURVEFIT(x,[[x1,y1],[x2,y2]],[[x3,y3]])

and simplify to get the answer.

4.3 Exponential Functions and
Population Growth

A good �rst model for population growth is

(4) P(t) = aer (t � t0 )

Population models are studied more thoroughly in Chapter 7 using the theory
of di�erential equations but for now we will just consider the exponential
model. HereP(t) is the population at time t and a is the population at the
starting time, t0. Problem 7 uses this model.

There are two parameters in (4),a and r . These parameters can be
determined if we know the population at two di�erent times, t1 and t2, i.e.,
if we know P(t1) = y1 and P(t2) = y2. This gives the equations

aer (t1 � t0 ) = y1

aer (t2 � t0 ) = y2

but solving for a and r is a little more di�cult since this is not a linear system
of equations. The way to do this is to use the �rst equation to solve for a
and then substitute that value into the second equation and then solve the
resulting equation forr .

Another approach is to observe that the equationsare linear in the quan-
tities ln a and r because, if we letc = ln a, they are equivalent to:

c + r (t1 � t0) = ln y1

c + r (t2 � t0) = ln y2

Of course, once we �ndc then a = ec, so you're done. Problem 6 will require
solving these equations.
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4.4 Approximation Using Spline Functions �

Suppose that, as before, we are given data points in the form of an n � 2
matrix declared asdata. To take a simple example let's assume that

data :=

2

6
6
4

0 0
1 1
2 0
3 1

3

7
7
5 :

We want to �nd a smooth function f (x) whose graph passes through the
data points. One solution to this problem is to useCURVEFIT(x, data)
which gives us a degreen � 1 polynomial passing though the given data
points. Unfortunately, for problems with a large number of data points this
can take a long time to solve because it requires solving a large system of
equations (n � 1 equations andn � 1 unknowns).

One simple technique that doesn't involve solving large systems of equa-
tions is to use a piecewise quadratic polygonal approximation to the graph.
The idea is �nd a quadratic polynomial connecting each pair of consecutive
data points but the catch is that in order for the graph to be smooth you
need to make the derivatives match at each data point.

Here's how we do it: We start with an arbitrary slope, saym = 2, at the
�rst data point, which is (0 ; 0) in our example, and use the second form of
CURVEFITto �nd a quadratic polynomial f 1(x) which satis�es the equations

f 1(0) = 0 ; f 1(1) = 1 and f 0
1(0) = 2 :

This solution is

CURVEFIT(x,[data SUB 1, data SUB 2],[[0,2]])

where we note that each data point can be referred to asdata SUB i or
alternately, using the symbol bar asdata#i .

Now to �nd our second quadraticf 2(x) connecting the second pair of data
points and making sure that the graph of the two functions is smooth at x = 1
we simply solve forf 2(x) using the equation: f 0

1(1) = f 0
2(1). Continuing in

this way we get quadraticsf 1(x), f 2(x), . . . , f n� 1(x) corresponding to each of
the n� 1 intervals: [data1;1; data2;1], [data2;1; data3;1], . . . , [datan� 1;1; datan;1].
Note that we have used the double subscript notation to get the x-values in
the �rst column of the data matrix.
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We combine these functions into a single function using theCHIfunction.
Here CHI(a,x,b) is 0 unlessa � x � b in which case it is 1. Thus, the
combined function is

(5) f (x) =
3X

k=1

f k(x) � CHI(datak;1; x; datak+1 ;1)

In our example we can solve for the three quadratics and get

f 1(x) = 2 x � x2; f 2(x) = 2 x � x2 and f 3(x) = 3 x2 � 14x + 16

Application The resulting function f (x) above is called aquadratic spline
function and is important in approximation theory and computer graphics.
One important example is in generating fonts for computer screens. Com-
puters used to view a highly stylized letter like the capitalS in some fancy
font as a bitmap picture which required lots of memory to store and lots of
time to draw on the screen. The modern approach is to view the letter as
say 10-20 carefully chosen data points and then �ll in the rest of the letter
using spline function techniques.

You can experiment with these techniques by using the utility function
SPLINE(x,data,m1) which gives the quadratic spline passing the data points
data and having derivative m1 atx = data 1;1. Using our example, we enter
the above with m1 = 2 and Simplify. It's instructive to plot the points data
as a (non-connected) set of points and then plot the spline function to make
sure that it passes through the points and that it indeed has asmooth graph.

The de�nition behind the SPLINEfunction (see the �le ADD-UTIL.MTH)
is fairly straightforward. The function f k(x) depends on the previous function
f k� 1(x) and more speci�cally on the quantity f 0

k� 1(xk), where thekth interval
is [xk ; xk+1 ]. It turns out that it is more e�cient to make a vector out of th e
n � 1 slopesm = [ m1; m2; : : : ] using the formula

(6) mk = 2
yk+1 � yk

xk+1 � xk
� mk� 1 k = 2; : : : ; n � 1:

which can be derived using DfW(see the �le F-SPLINE.MTH). Using this
formula one produces the vector of slopes using theITERATESfunction. The
formula looks a little complicated at �rst but should look straigtforward after
some careful examination (see either the �le ADD-UTIL.MTH or the SLOPE
function in the �le F-SPLINE.MTH).
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Using these quantities one then computesf k(x) using

CURVEFIT(x, [data#k, data #(k+1)], [[data #k#1, m#k]])

.

Figure 4.3: Approximation using spline functions

See Figure 4.3 where we use this method of approximation to approximate
the function y = sin x using n = 7, which is the smallest integer greater than
2� . Thus, based on the numbers sin 1; : : : ; sin 7 plus the derivative atx = 0,
i.e., m0 = 1, we get a good approximation to the sine function.

4.5 Laboratory Exercises

Start o� your lab by L oading the ADD-HEAD.MTH �le (use F ile/L oad/Math).
Note that the syntax of the CURVEFITfunction is displayed on the second
line of the ADD-HEAD �le. There are two possibilities: CURVEFIT(x, data)
where data is a matrix of data points satis�ed by the functionor CURVEFIT,
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data, ddata) where now the derivative satis�es the matrix of data points
ddata.

1. a. Use theCURVEFITfunction to �nd the cubic polynomial passing
through the points: (0; 0), (1; 1), (2; 0) and (3; 1).

b. What degree polynomial is required to pass through 7 points?
(Hint: Make up a 7 point data set and examine the solution.)

2. Use the CURVEFITfunction to �nd a, b, and c if ax2 + bx + c passes
through

a. (1; 1), (3; 4), and (4; 4).

b. (1; 1), (3; 4), and (4; 1).

c. Show that the functions determined in parta and b both have
the same slope atx = 2.

d. Do you think it is possible that

f (1) = 1

f (3) = 4

f 0(2) = 2

(see equation 2). Use the second form of theCURVEFITfunction to
�nd the solution. Note that the ddata is a 1� 2 matrix in this case.
What does Derive tell you? What if you change the derivative
to f 0(2) = 3 =2? Can you explain what the answer means?

For the following problems you will need to enter the variablesx1, x2, x3, x4,
y0, y1, y2, y3, and y4. You can declare these as variables easily by authoring

[x1 :=, x2 :=, x3 :=, x4 :=, y0 :=, y1 :=, y2 :=, y3 :=, y4 :=]

See the discussion on page 55.

3. Let (x1; y1) and (x2; y2) be two points in the plane with x1 6= x2. Let
m = y2 � y1

x2 � x1
be the slope of the line through these points. The Mean

Value Theorem says that iff (x) is a di�erentiable function which passes
through these points thenf 0(x3) = m for somex3 betweenx1 and x2.
Show that if f (x) has the formax2 + bx+ c then we can takex3 = ( x1 +
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x2)=2, i.e., show thatf 0((x1 + x2)=2) = m if f (x) has this form. Hint:
Solve the systemf (x1) = y1, f (x2) = y2 for b and c and substitute
those values back intoax2 + bx + c. Then show that the derivative of
the resulting expression ism when x = ( x1 + x2)=2. Of course this
means that all quadratic functions through (x1; y1) and (x2; y2) have
the same slope at (x1 + x2)=2.

4. Use theCURVEFITfunction to �nd the quadratic function f (x) = ax2 +
bx + c that satis�es

f (x0) = y0

f (x1) = y1

f (x2) = y2

Integrate the resulting function over the interval [x0; x2]. Observe that
your answer is a pretty big expression that requires scrolling to view.

Now substitute in this expressionx1 = ( x0+ x2)=2 using the but-
ton and simplify. Note that x1 is the midpoint of the interval [x0; x2].
The answer should be a very simple formula in terms ofx0, x2, y0, y1

and y2. In the next chapter this calculation will be the basis for the
Simpson Methodof numerical integration.

*5. Suppose we want to �nd a cubic functionf (x) = ax3 + bx2 + cx + d
such that

f (x1) = y1

f (x2) = y2

f (x3) = y3

f 00(x4) = y4

Show that this is always possible ifx1, x2, and x3 are all distinct and
x4 6= ( x1 + x2 + x3)=3. The algebra in this problem gets fairly messy.

6. Let (x1; y1) and (x2; y2) be two points in the plane with y1 > 0, y2 > 0,
and x1 6= x2. Let f (x) = aerx be an exponential function. Show that
it always possible to �nd a and r so that f (x) passes through these
points. Hint: you need to solve the equations

aerx 1 = y1

aerx 2 = y2
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To do this �rst solve for a in one of these and substitute the answer
into the other and then solve forr .

7. Table 4.1 on the next page shows the population of the US for every
decade from 1800{1900. Consider two models for the data: an expo-
nential model P(t) = aer (t � t0 ) (take t0 = 1800) and a linear model
L(t) = bt + c.

a. Use the data for 1800 and 1810 to determinea, r , b and c.

b. What does each model predict for 1830?

c. How do the models compare during the �rst 50 years? 100 years?
Do this by graphing both functions and the population data. Ad-
just the scale to get a good picture.

d. Make up your own value of r in the exponential model and see
if you can get a better representation of the data. Do this by
plotting the model and comparing with the data.

e. The population for 1990 is 248.7 million. What value ofr would
yield a population model which would result in this population
size after 190 years?

*8. Suppose thatdata is an n � 2 matrix of data points

data :=

2

6
6
6
4

x1 y1

x2 y2
...

xn yn

3

7
7
7
5

:

where x1, y1, . . . have numerical values andx1 < x 2 < : : : . We know
that plotting this vector in connected mode gives a piece-wise linear
graph. You can test this using a sample value fordata. Write a function
f(x) in DfW which will have the same graph, i.e., between any two
consecutivex-values, xk � x � xk+1 , f (x) linearly interpolates the
data points. (Hint: Look at equation 5 on page 60 for doing spline
function interpolation and use theCHI function as is done there. You
will need to use subscript notation to refer to thex, y values. For
example,data#1#1 is x1 and data#3#2 is y3.)



4.5. LABORATORY EXERCISES 65

Table 4.1: Population of the US, 1800{1990

Year Population (millions)

1800 5:3

1810 7:2

1820 9:6

1830 12:8

1840 17:0

1850 23:0

1860 31:4

1870 38:5

1880 50:0

1890 62:9

1900 76:2

1910 92:2

1920 106:0

1930 123:2

1940 132:2

1950 161:3

1960 179:3

1970 203:3

1980 226:5

1990 248:7
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*9. Let (x1; y1), (x2; y2), and (x3; y3) be three points in the plane with
x1 6= x2, x1 6= x3, and x2 6= x3. Show that all cubic functions,f (x) =
ax3 + bx2 + cx + d which go through all three of these points have the
same second derivative atx1+ x2+ x3

3 . (Hint: Just solve the 3 equations in
the 3 unknownsb, c, and d in terms of the 4th unknown a. Di�erentiate
twice and substitute in the above value ofx. Check that the answer
does not depend ona.)
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Chapter 5

Finding Roots Using
Computers

5.1 Introduction

This lab explains two techniques for numerically solving equations, Newton's
famous method and the bisection method. If we have any equation we want
to solve forx, we can subtract one side from the other to get an equation of
the form f (x) = 0. Of course, in casef (x) is a polynomial then solving this
equation means �nding the roots off (x).Thus, for quadratic polynomials we
would ordinarily use the quadratic formula. However, we will be considering
very general functions which typically involve trigonometric functions, loga-
rithms and exponentials and hence algebraic methods are usually hopeless.

Newton's method is called adynamic processand is related to interesting
topics such as chaos and fractals. We will explore these concepts later in this
chapter.

5.2 Newton's Method

Newton's method for �nding a solution r to the equation f (x) = 0 is to
start with a guessx0 (presumably not too far fromr ) and form the tangent
line to f (x) through (x0; f (x0)). Then �nd the place, call it x1, that this
tangent line crosses thex{axis. Now we repeat this process withx1 in place
of x0. (See Figure 5.1 on the next page.) In this way we obtain a sequence
of numbersx0; x1; x2; : : : which, under reasonable conditions, will converge

67
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to r .
Sincey � y0 = m(x � x0) is the equation of the line through (x0; y0) with

slopem, the equation for the tangent line off (x) through (x0; f (x0)) is

y � f (x0) = f 0(x0)(x � x0):

Solving for x when y = 0 gives x = x0 � f (x0)=f 0(x0). Thus we get the
(n + 1) st approximation from the nth by the formula:

(1) xn+1 = xn �
f (xn )
f 0(xn )

Figure 5.1: Newton's method for �nding roots

In the graphics window of Figure 5.1 the �rst several approximations in
Newton's method are shown for the equationx2 + x � 1 = 0 which has
the unique positive solutionx =

p
5=2 � 1=2 � 0:618. The initial guess is

x0 = 5. From the point (5 ; 0) we go up to the curve at the point (5; f (5))
and then follow the tangent line until it intersects the x{axis at the point
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(x1; 0) � (2:36363; 0). The process is now repeated, starting with the guess
x1.

It is convenient to view the computations as an iteration process:

(2) NG(x) = x �
f (x)
f 0(x)

which changes a guessx into a (hopefully) better guess NG(x). (Note that
xn+1 = NG( xn ).) You can think of NG as standing for `Newton guess' or
for `next guess'. To make aDerive function to do this for our function
f (x) = x2 + x � 1 we de�ne

(3) NG(x) := x-(x^2+x-1)/(2x+1)

Now starting with x0 and successively applying this function to the previous
result produces a sequence of approximations:

x0

x1 = NG( x0)

x2 = NG( x1) = NG(NG( x0))

x3 = NG( x2) = NG(NG( x1)) = NG(NG(NG( x0)))
...

which we hope get closer and closer to the exact answer. In thelimit we
want this sequence of approximations to converge to the root.

We can compute several approximates by �rst Authoring NG(5), and then
approximating. Now we can authorNG, press the right mouse button and then
click (Insert expression) or pressF4. This will bring down the highlighted
expression in parentheses givingNG(2.36363) which we approximate (just
press Simplify instead of OK) again and then repeat this process.

A somewhat fancier method is to use theDerive 's ITERATESfunc-
tion. ITERATES(u,x,a,n) simpli�es to an (n + 1)-vector whose �rst en-
try is a and each subsequent entry is obtained by substituting the pre-
vious entry for x in u. Thus, ITERATES(x^2,x,2, 4) returns the vector
[2; 4; 16; 256; 65536]. (The function ITERATEis similar, but just gives the
last value, so ITERATE(x^2,x,2,4) gives 65536.) We can get the �rst 4
approximates by authoringITERATES(NG(x), x, 5, 4) and approximating
the result.
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The utility �le ADD-UTIL.MTH contains two functions that ma ke com-
puting the Newton iterations easier. The functionNEWT(u,x,a) computes
the Newton guess of the expressionu, in the variable x, starting with an
initial guess at x0 = a. In our previous example off (x) = x2 + x � 1 with
starting point x0 = 5 we would enter NEWT(x^2+x-1,x,5). To get a vector
containing the starting point and the �rst 4 Newton iterates you author and
simplify NEWT(x^2+x-1,x,5,4) . The general syntax isNEWT(u,x,a,k) .

Looking at the algebra window in Figure 5.1 we see the above function
along with the �rst 4 iterates starting at x0 = 5. The graphic demonstration
shows the Newton method in action by plotting a part of the tangent line
until it crosses the x-axis. The picture clearly shows how well the Newton
method works since one has to zoom-in several times near the actual root in
order to see the last two iterations. The utility functionDRAWNEWT(u,x,a,k)
simpli�es to a matrix which plots the �gure shown in Figure 5.1.

Alternately, that �le contains the necessary de�nition for doing the graph-
ics directly. The basic idea is to make a vector out of severaltriples of points
which have the form (x; 0), the initial guess on thex{axis, (x; f (x)), the cor-
responding point on the curve, and (NG(x); 0), the place where the tangent
to the curve at (x; f (x)) intersects the x{axis. When we graph these points
we want the lines connecting them to be drawn. If this is not the case then
adjust the Options/P oints menu.

You might note that a little trick is used in the above of DRAWN in the
�le F-NEWT.MTH. The special form of the VECTOR(u,x,v) function setsx
equal to each value in the vectorv = [ v1; : : : ; vn ] and makes the new vector
[u(v1); : : : ; u(vn)].

Example. Suppose we want a numerical approximation of
p

2. We think
of it as a solution to the equationx2 � 2 = 0. Then formula (2) gives the
very simple expression:

NG(x) = x �
f (x)
f 0(x)

= x �
x2 � 2

2x
=

x2 + 2
2x

=
x
2

+
1
x

We get several approximates by clicking after authoring either

(4) NEWT(x^2-2,x,2,5)

or equivalently as in the �le F-NEWT.MTH

(5) ITERATES(x/2+1/x,x,2,5)
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with precision digits set to 10 decimal places. We get

(6) [2; 1:5; 1:41666666; 1:414215686; 1:414213562; 1:414213562]

which is accurate to 10 decimal places. In fact, Figure 5.2 shows a remark-
able property about Newton approximation: the number of decimal place
accuracy approximatelydoubleswith each iteration!

Figure 5.2: Each iteration gives twice as many digits

5.3 When Do These Methods Work

For Newton's method to work we need at least thatf (x) is di�erentiable,
since the derivative appears in the formula (2). If we assumethat f 00(x)
exists we get the following theorem:

Theorem 1. Supposef (r ) = 0 and that f 00(x) exists in some open interval
containing r . If f 0(r ) 6= 0 then the iterates of

NG(x) = x �
f (x)
f 0(x)
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converge tor provided the starting pointx0 is su�ciently close to r . More
precisely, given0 < " < 1, there exists a� > 0 such that:

(7) j NG(x) � r j < " jx � r j

wheneverjx � r j < � .

Proof. Since f 0 is continuous (becausef 00exists) and is not zero atx = r ,
we know that f 0(x) 6= 0 near x = r and hence NG(x) is de�ned for thesex.
Clearly, NG(r ) = r sincef (r ) = 0 and also

NG0(r ) = 1 �
�

f 0(r )2 � f (r )f 00(r )
f 0(r )2

�
=

f (r )f 00(r )
f 0(r )2

= 0:

Hence by the de�nition of the derivative, given" > 0, there is a� > 0 so that
�
�
�
�
NG(x) � r

x � r

�
�
�
� =

�
�
�
�
NG(x) � NG(r )

x � r

�
�
�
� < "

wheneverjx � r j < � . This shows that (7) holds which is what we needed to
prove.

Notice how this proof works. First we showed that (under the hypotheses
of the theorem) NG0(r ) = 0. This is the crux of the proof. It means for any
" > 0 there is an interval aroundr where NG0(x) < " for all x in this interval.
By the Mean Value Theorem we get an ~x betweenr and x such that

�
�
�
�
NG(x) � NG(r )

x � r

�
�
�
� = jNG0(~x)j < " :

This implies that (7) holds for all x in this interval and this says that the
error of the next guess, NG(x), is " times smaller than the last one. If we take
" = 1=10 say, then each guess will be 10 times as accurate as the previous one.
This implies each new guess has at least one more decimal place accuracy.

But if we look at the example above, or the examples below, we see that
the convergence is much faster. This is because if we are in aninterval
where NG0(x) < 1=10, then NG(x) is at least 10 times closer tor and,
since NG0(r ) = 0, we are now likely to be in an interval where NG0(x) is
much smaller. So not only are we getting closer but the amountby which
we are getting closer is also increasing. This is why the convergence when
NG0(r ) = 0 is so fast. It means the next guess after NG(x), i.e., NG(NG(x)),
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will tend to be much more than 10 times as accurate as NG(x). In dynamic
systems like this, a point r with NG 0(r ) = 0 is called a super attractor.
Once x gets close to a super attractorr , repeated applications ofN will
move it towards r very quickly.

The next theorem investigates a situation where 0< NG0(r ) < 1. In this
caseN k(x) still tends to r but not nearly as fast. In this caser is no longer
a super attractor but is simply anattractor .

Theorem 2. Suppose thatf (r ) = 0 and that f (x) = ( x � r )mg(x) where
g(x) is di�erentiable, m is a positive integer andg(r ) 6= 0. Then, NG(x) is
de�ned for all x 6= r which are su�ciently close to r and the iterates converge
to r .

Proof. Sincef 0(r ) = 0 for m > 1 (check!) it is not clear that we can even
de�ne NG(x) for x near r . But

f 0(x) = m(x � r )m� 1g(x) + ( x � r )mg0(x)

= ( x � r )m� 1[mg(x) + ( x � r )g0(x)] � (x � r )m� 1mg(r )(8)

and sinceg(r ) 6= 0 it is easy to see that the bracketed expression above can
not be zero for allx near to r and hence the same is true off 0(x) provided
x 6= r .

Now using (8) to simplify NG(x) (do this using Derive ) we get

NG(x) � r
x � r

=
(m � 1)g(x) + ( x � r )g0(x)

mg(x) + ( x � r )g0(x)
�

m � 1
m

< 1

and hence the iterates converge as before.

5.4 Fractals and Chaos �

Which root does Newton �nd? Of coursef (x) = x2 � 2 has two roots,p
2 and �

p
2. If our initial guess is any positive number, Newton's method

will converge to
p

2 and, if it is any negative number, to�
p

2. If the initial
guess is 0 the method fails since NG(0) is not de�ned.

The situation for this f (x) is pretty simple but that is not always the
case. To get a clearer picture of what can happen we need to discuss the
complex numbers. Recall that a complex number has the forma+ b i, wherea
and b are real numbers andi is a square root of� 1, i.e., i2 = � 1. Complex
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numbers can be represented as points in the plane: (a; b) for a + b i. We call
this the complex plane. In Derive we input i by using the symbol bar or
typing #i . This is displayed with î .

You probably have already encountered complex numbers inDerive
when, for example, you try to Solve an equation such asx2 + 1 = 0 or
something more complicated, while trying to �nd extreme points. The result
is that Derive computes the two solutionsx = � i . Of course, in calculus we
usually ignore complex solutions since they are not relevant to max-min the-
ory or graphics. Nevertheless, they do play an important role in algebra since
they provide a complete theory for the solution to polynomial equations.

Using the same functionf (x) = x2 � 2, let's see what happens if we start
with a complex number forx0 like 3 + 2 i . This time we Author

data := NEWT(x^2-2,x,3+2 #i,5)

If we approximate this with precision set to 6 decimal places, we obtain

[3 + 2 i; 1:73076 + 0:846153i; 1:33170 + 0:195097i;

1:40099� 0:0101504i; 1:41423 + 9:59747� 10� 5 i; 1:41421]

so that it still converges to
p

2. We can get a picture of this convergence by
plotting the complex number a + ib as the point (a; b). To do this we need
one of the utility functions. Thus, authoring

DRAWCOMPLEX(data)

and then simplifying the result will give the matrix of 6 points. We plot
this matrix to observe how the iterates converge to the point(

p
2; 0) on the

x-axis, see Figure 5.3 on the next page.
It's a fact that the Newton method will converge to

p
2 whenever we

start with x0 = a + b i where a > 0. We call
p

2 an attractive �xed point
and the right half plane is called thebasin of attraction for

p
2. If we start

with x0 = a + b i where a < 0 it will converge to �
p

2, so �
p

2 is also an
attractor with the left half plane as its basin of attraction.

What happens if we start with a point on the imaginary axis (the y{axis
x0 = b i? Simplify and plot the expression

DRAWCOMPLEX(NEWT(x^2-2,x,#i,25))
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Figure 5.3: Newton's method with complex starting point

Notice that all the values are purely imaginary (they only have an i com-
ponent) and that they seem to bounce around randomly. Moreover, if you
author

DRAWCOMPLEX(NEWT(x^2-2,x,1.01#i,25))

you'll notice that the corresponding entries of the answersare approximately
the same for the �rst few terms but very quickly seem to have norelation to
each other. Here's a nice way to do this: De�ne the �rst set of points to be
data1 and the second set to bedata2. Author the vector [data1,data2]
and simplify. Then scroll though the matrix to compare entries.

In other words, even though the two starting points above; namely i
and 1:01i are quite close together their long-term behavior seem completely
di�erent. The above phenomenon is what is known aschaos.

We can illustrate this last property graphically by lookingat the equation
x2 + 2 = 0 rather than x2 � 2 = 0. The former equation has roots

p
2i and

�
p

2i . Just as before if we start with any pointa+ ib in the upper half of the
complex plane (b > 0), the Newton iterates of the functionx2 + 2 converge
to

p
2i and any point in the lower half plane (b < 0) converges to�

p
2i .
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Test this by plotting

DRAWCOMPLEX(NEWT(x^2+2,x,1+#i,5))

But we get chaos on the real axis. To see this chaos plot the function x2 + 2
and the output to DRAWNEWT(x^2+2,x,2,4) in connected mode, see Fig-
ure 5.4.

Figure 5.4: Chaos

Now considerf (x) = x3 � 1. This has three roots:x = 1, x = � 1=2 +
i
p

3=2, and x = � 1=2 � i
p

3=2. This is easy to do inDerive just Solve the
equationx3 � 1 = 0. Each of these is an attractor with a basin of attraction.
However the shapes of these basins of attraction are really quite interesting
and bizarre. Figure 5.5 on the next page shows the basin of attraction for
the root x = 1 in white. The basins of attraction of both of the other roots
are black. In Figure 5.5 the center is the origin in the complex plane and the
right hand edge hasx = 2. So the point (1; 0) (i.e., 1 + 0 i ) is between the
center and the right hand edge.
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A color version of this �gure which indicates the number of iterates needed
to converge can be viewed on our World Wide Web home page at

http://www.math.hawaii.edu/206L/

An interactive Java applet which can be used to show the iterations of New-
ton's method is also available at this site.

Figure 5.5: Basins of attraction ofx3 � 1 in the complex plane

Constructing the Julia set The set of points where Newton's method
fails, that is, the set of pointsx0 where the sequence

(9) x0; NG(x0); NG(NG(x0)) ; : : :

fails to converge, is called theJulia set for NG(x). In the example f (x) =
x3 � 1 these are the points on the edge or boundary of the basin of attraction.
As the picture in Figure 5.5 shows this set can be very complicated, it looks
a little like a necklace with in�nitely many smaller and smaller loops coming
out in many di�erent directions.
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There are two basic methods for constructing this set. SinceNG(x0) is
not even de�ned whenf 0(x0) = 0 this is a good place to start. If x is a
solution of

NG(x) = x0

then the third term of the sequence (9) is not de�ned and sox will be in
the Julia set. In the case whenf (x) = x3 � 1 the equation above has
three solutions. For each of these there are three more obtained by solving a
similar equation or in other words �nding the points where NG(NG(x)) = x0.
Continuing in this way we get a close approximation to the Julia set. The
actual set is obtained by taking limits of these points. Thismethod is called
the backward methodand is done in the �le F-JULIA-BACKWARD.MTH
for the polynomial x3 � 3x which has critical points at � 1. This function
has three real roots atx = 0 and x = �

p
3 and the Julia set somehow has

to separate the three basins of attraction corresponding tothese roots. See
Figure 5.6 for a picture of it's Julia \necklace".

Figure 5.6: Bad Newton starting points forx3 � 3x = 0 in the complex plane

The trouble with the backward method is that it uses the cubicformula
for solving 3rd order equations and this formula is pretty complicated. Even
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worst is the fact that there is no analogous formula for degrees 5 or greater.
To get around this problem there is the \forward method" which involves
simply looking at the sequence:

NG(x0); NG(NG(x0)) ; NG(NG(NG( x0))) ; : : :

and checking whether it gets closer and closer to root or elsejust wanders
around forever. Since you have to do this for each point or pixel in the graph
this can be a very lengthy computation. A number of shortcutsand tricks are
typically employed and you can study the �le F-JULIA-FORWARD.MTH to
see how we did it. Or you can just check out the pictures; see Figure 5.7.

Figure 5.7: Basins of attraction forx3 � 3x = 0

5.5 Bisection Method �

We now consider a very simple technique which is applicable to any continu-
ous function f (x). If f (x) is continuous andf (a) < 0 and f (b) > 0, i.e., it is
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below thex{axis at a and above thex{axis at b, then the Intermediate Value
Theorem tells us thatf (x) must have a zero betweena and b. Assumea < b.
The bisection method evaluatesf (x) at x = a+ b

2 , the midpoint of a and b
(which is why it is called the bisection method). Iff ( a+ b

2 ) > 0 then there
must be a root in the interval [a; (a+ b)=2]; otherwise there must be a root in
the interval [(a+ b)=2; b]. In the former case we take the interval [a; (a+ b)=2]
and apply the bisection method to it; otherwise we use [(a+ b)=2; b]. At each
stage the root lies in an interval which is only half the size of the previous
stage. So we can eventually �nd the root to any number of decimal places.

We can automate this process by authoring two functions:

F(x) :=

BIS2(a,b) := IF(f(a)f((a+b)/2)<0, [a, (a+b)/2], [(a+b)/2 , b])

BIS(v) := BIS2(v SUB 1, v SUB 2):

The main function is BIS(v) and BIS2(a,b) is a helper function. The ar-
gument v to BIS is a vector with two entries, e.g.,[a, b] . The Derive
function SUB, which we discussed in the previous section, returns the parts
of a vector so that [a,b] SUB 1 = a and [a,b] SUB 2 = b. So BIS starts
with a vector like [a,b] and callsBIS2(a,b) . This then uses the valuesf (a)
and f ((a+ b)=2) to decide if there is a root in [a; (a+ b)=2] or in [(a+ b)=2; b].
In the discussion above we assumed thatf (x) < 0 and that f (b) > 0. The
way we have de�nedBIS it will work also in the casef (x) > 0 and f (b) < 0.
To do this we test if the product f (a)f ((a + b)=2) is negative. If it is, then
one of f (a) and f ((a + b)=2) is negative and the other is positive. In this
case the points (a; f (a)) and ( a+ b

2 ; f ( a+ b
2 )) lie on opposite sides of thex{axis

and so there must be a root in the interval [a; (a + b)=2]. In the other case,
f (a)f ((a + b)=2) is positive and so they have the same sign. In this case
f ((a + b)=2) and f (b) must have the opposite signs (why?) and so there is a
root in [(a + b)=2; b].

Let us try the equation lnx = 1 which has the (unique) solutionx = e =
2:718: : : . Of course we are �nding the root of lnx � 1 so we authorf(x)
:= ln(x) - 1 and apply BIS. Graphing f (x) shows that there is a root
between 2 and 3 so we authorBIS([2,3]) . This returns [2:5; 3], indicating
that 2:5 < e < 3.

Now we want to applyBIS to the answer [2:5; 3]. You can do this several
times by choosing author, typingBIS, and then inserting the highlighted
vector. Once again we have an iteration process and we can usethe ITERATES
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Figure 5.8: Bisection method for �nding roots

function that does this for you.
Using this technique, we author

ITERATES(BIS(v),v,[2,3],10)

and then approximate it to see how well this approximatese, see Figure 5.8.
An easier way to see the bisection method in action is to use the func-

tion BISECT(u,x,v,k) in the utility �le ADD-UTIL.MTH. To get the above
results we would simply enterBISECT(ln x-1,x,[2,3],10) and the press

the approximation button. It is interesting to compare the results
of the bisection method with the Newton method of the previous section.
The bisection method is fairly fast at getting a good approximation but not
nearly as fast as the Newton method.

The bisection method will work for anyf that is continuous on the interval
[a; b] and f (a) and f (b) have opposite signs. It is easy to see that aftern
iterates the error is at most (b � a)=2n . (In fact this is the width of the
resulting interval. If we choose the midpoint as our estimate, the error will
be at most (b� a)=2n+1 .)
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5.6 Laboratory Exercises

Start o� your lab by L oading the ADD-HEAD.MTH �le (use F ile/L oad/Math).
Note that the syntax of the NEWTfunction is displayed on the second line of
the ADD-HEAD �le. There are two possibilities: NEWT(u,x,a) where a is
the starting point in Newton's method applied to the expression u in the
variable x. Alternately, the function NEWT(u,x,a,k) gives a vector contain-
ing the intial guessa followed by the �rst k approximates. The function
DRAWNEWT(u,x,a,k) produces the graphical demonstration of the Newton
method.

1. The equation x2 = 2 has solutionsx = �
p

2. Use the functionx2 � 2
and NEWTto estimate

p
2.

a. Give the 5th iterate starting at x = 10

b. Plot the graph ofx2� 2 and the output to DRAWNEWT(x^2-2,x,10,5) .

c. What happens when your start atx = � 10?

d. What's wrong with the starting point x = 0? Explain this both
numerically and graphically.

2. In a manner similar to Problem 1, useNEWTto estimate 3
p

7.

a. Give the 5th iterate starting at x = 2.

b. By comparing with the approximate given byDerive how many
decimal places (roughly) does the Newton approximations share
with the actual answer. Note that you may need to increase the
number of digits you are working with (see Section 0.6).

3. Plot the graphs ofx2 and sinx.

a. Determine graphically where the two graphs intersect. Givea
rough estimate of the accuracy of this method? (Hint: If you use
the right arrow key to change the position of the crosshair, how
much does itsx{coordinate change?)

b. Next use Newton's method to �nd all solutions tox2 � sinx = 0.
Give the 5th iterate starting at x = 2.
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c. Solve this equation numerically by using Solve/Numerically menu.
Compare the solution you get using DfW'sSOLVEfunction with
your approximation above using Newton's method.

4. Let f (x) = x3 � 5x. Graph f (x).

a. Use Solve to �nd the all roots of x3 � 5x = 0.

b. Plot the output to DRAWNEWT(x^3-5x,x,1,5) and analyze the
�rst 5 iterates in the Newton approximation method starting at
x = 1. Explain in words what goes wrong when you start atx = 1.

c. Do the same but with x0 = 1:01 and with x0 = 0:99.

5. Again let f (x) = x3 � 5x.

a. Find the formula for NG(x) for this f .

b. Find a point x0 where is NG(x) unde�ned. (There are two such
points; �nd either one.) Give the exact answer and then approxi-
mate it.

c. Use Derive 's Solve/Numerical to solve NG(x) = x0. Call the
answerx1.

*d. Do this once more, that is, Solve/Numerical NG(x) = x1. Call
the answerx2. If you continued this forever what do you think
the sequence

x0; x1; x2; x3 : : :

would look like? What are their signs? What do you think
limn!1 jxn j is?

e. Choose any numbersa and b which satisfy

jx2j < a < jx1j < b < jx0j

To which root does Newton's method converge if we start witha?
with b?

6. Let f (x) = x2 + 1. Graph f (x). Find 10 iterates of Newton's method
starting with x0 = 0:5 and x0 = 0:501. Explain why you think the
successive approximations don't seem to be converging to anything.
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The rate of the convergence of Newton's method to a solutionr of f (x) =
0 is determined byj NG0(r )j. Since NG(r ) = r we say that r is a �xed point
for NG(x). If 0 < j NG0(r )j < 1 then r is said to be an attractive �xed point
because nearby points are drawn tor by iterating. If NG 0(r ) = 0, then r
is called a super attractive �xed point. The hypotheses of Theorem 1 on
page 71 imply that NG(r ) = r and NG0(r ) = 0 which guarantees that the
convergence was very fast. In the following problems you explore situations
where NG0(r ) 6= 0. As long as j NG0(r )j < 1 Newton's method will still
converge tor if x0 is close enough tor , but not as fast as the super attractive
case.

*7. Theorem 1 had the hypothesis thatf (r ) = 0 and f 0(r ) 6= 0. In this
problem we explore what happens to a function whenf 0(r ) = 0. Let
f (x) = x(x2 � 2)2.

a. Graph f (x) and plot DRAWNEWT(x(x^2-2)^2,x,3,5) (rescale to
get a good picture).

b. Find the �rst 10 Newton iterates starting with x = 2. How fast
are they approaching

p
2 compared with the example shown in

formulas (4) and (6)? (Use 10 digits precision.)

c. Compute (exactly) NG(
p

2) and NG0(
p

2), where NG is de�ned
by formula (2). Is

p
2 a super attractor?

d. Find a and b so that a 6= b and NG(a) = b and NG(b) = a.
(Hint: Start by visualizing this situation graphically. Th en try
guessing an approximate solution by looking at the graph and
experimenting with the DRAWNEWTfunction. Finally, use algebra
to solve the equation: NG(NG(a)) = a for a and then put b =
NG(a).)

e. Suppose now thatf (x) = x(x2 � 2)3. Find NG0(
p

2). What do
you think NG0(

p
2) would be for f (x) = x(x2 � 2)k? (Look up

Theorem 2 on page 73 to see if this situation is a consequence of
that result.)

8. The function f (x) = x1=3 has a root atx = 0. Find NG( x), NG0(x), and
NG0(0). Find 10 iterates of Newton's method starting withx0 = 0:1.
(Note: Make sure that the Precision Mode is set to Exact or else there
may be problems with this exercise.)
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9. Use the bisection method to estimate
p

2.

*10. The light area in Figure 5.5 on page 77 shows the basin of attraction
of the root 1 when using Newton's method onx3 � 1. The origin of the
complex plane is in the middle of this �gure. Note that most ofthe
negative real axis (the negativex{axis) is in the white area. This means
that starting with most negative real numbers, Newton's method will
converge to 1. Try this for x0 = � 1 and � 2. If you look closely at
the �gure you see that black pinches down on the negative realaxis at
various points. Find the value of the �rst such point to the left of the
origin.
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Chapter 6

Numerical Integration
Techniques

6.1 Introduction

This lab discusses numerical integration. Numerical integration is described
in most calculus books and is sometimes covered in second semester calculus.
You may want to look over this part of your calculus text.

A function is calledelementaryif it is made up of sums, products, powers,
and compositions of the trig functions and lnx and ex . Although the deriva-
tive of any elementary function is elementary, not all such functions have
elementary antiderivatives. For example, there is no elementary function
whose derivative is sin(x2), i.e.,

R
sin(x2) dx is not an elementary function.

Consider the problem
Z 1

� 1
sin(x2) dx

Even though sin(x2) has no elementary antiderivative, the area de�ned by the
integral certainly exists. So how do we �nd it? We use numerical integration.

Consider the integral
Rb

a f (x) dx, and for simplicity assumef (x) � 0 and
that a < b. The idea of numerical integration is to choose intermediate points
a = x0 < x 1 < x 2 < � � � < x n = b and estimate the area in the strip below
f (x) for x i � x � x i +1 and then add up these estimates; see Figure 6.2 on
page 92. Of course the width of this strip isx i +1 � x i . The height varies
with x. Some of the most common ways of estimating the area of the strip

87
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are:

� Left endpoint: f (x i ) (x i +1 � x i )

� Right endpoint: f (x i +1 ) (x i +1 � x i )

� Midpoint: f (
x i +1 + x i

2
) (x i +1 � x i )

� Trapezoid:
1
2

[f (x i +1 ) + f (x i )] (x i +1 � x i )

� Simpson's Rule:
1
6

�
f (x i +1 ) + 4 f (

x i +1 + x i

2
) + f (x i )

�
(x i +1 � x i )

The last one, Simpson's Rule, is based on the best quadratic approximation
to f (x). This basic idea was derived in Exercise 4 on page 63 in Chapter 4.
Section 6.5 on page 96 has a detailed explanation.

Usually we choose thex i 's equally spaced, so that

(1) x i = a +
b� a

n
i

Of course, in this case,x i +1 � x i =
b� a

n
. Thus, if we use the left endpoint

approximation, we get

(2)
Z b

a
f (x) dx �

b� a
n

n� 1X

i =0

f (x i )

Notice that we factor out the term
b� a

n
and multiply by the sum rather

than multiplying every term.

6.2 An Example

Formula (2) suggests how we might do numerical integration with Derive .
Let u be the expression forf (x). We can de�ne a Derive function for the
left endpoint method by

LEFT(u,x,n,a,b) :=

(b-a)/n * SUM(SUBST(u, x, a + k*(b-a)/n), k, 0, n-1)
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(Recall that SUBST(u, x, a) substitutesa for x in u soSUBST(u, x, a+k(b-a)/n)
really evaluatesu at x = a + k(b � a)=n.) LEFTis already de�ned for you
in the �le ADD-UTIL.MTH. All of the other methods mentioned a bove are
also de�ned in that �le with the names: RIGHT, MID, TRAP, and SIMP.

Now let's try an example. Although we would normally use these approx-
imations for integrating expressions without an elementary antiderivative, we
can test how good they are by applying them to something we do know how
to integrate: Z 2

1

1
x

dx = ln 2 � 0:693147180559

To use the left endpoint method withn = 10 intervals, we would just author
and then approximate

LEFT(1/x, x, 10, 1, 2)

Doing this gives the answer 0:718771. Similarly if we wanted to use the
trapezoid method we would author and approximateTRAP(1/x, x, 10, 1,
2) which gives 0:693771.

We want to compare the accuracy of these methods of approximation
and also see how much the accuracy is improved by increasingn. We will
try them for n = 10, 100, 1,000 and 10,000. A fancy way to see and compare
approximation values, using the left endpoint rule for a range ofn is to start
by authoring the vector

[10^n,LN(2),LEFT(1/x,x,10^n,1,2),LEFT(1/x,x,10^n,1, 2)-LN(2)] .

Then, use the Calculus/Vector menu to produce

vector([10^n, LN(2), LEFT(1/x,x,10^n,1,2),

LEFT(1/x,x,10^n,1,2) - LN(2)], n, 1, 4)

where the Variable n varies from a Starting value of 1 to an End value of 4.
Approximating this expression yields a 4� 4 matrix with the �rst column
being the number of partitions, the second column being the exact value, the
third column being the approximate value obtained from the left endpoint
method and the fourth column being the error. See Section 0.14 on page 22
for more discussion on thevector function.

Notice from Figure 6.1 that the accuracy in this method seemsto be
roughly 1, 2, 3 and 4 digits respectively. This is in fact the case and it can
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Figure 6.1: Approximating ln 2 with left endpoint method

be proved that using 10n subdivisions yields an accuracy ofn decimal places.
This is not very e�cient since it requires a billion computations (109) to
achieve calculator accuracy of 9 digits. Try comparing computation times
for various powers of 10 to see how this rapidly becomes impractical. If we
try to obtain simple calculator accuracy of 8-12 decimal places, then this
can take hours on a PC which is impractical. It is for this reason that we
investigate the other methods for computational purposes.

By replacing the left endpoint method with the trapezoid method in the
computation in Figure 6.1 we see a remarkable di�erence. Theaccuracy now
appears to be approximately 2, 4, 6 and 8 digits respectively. Thus, the 4
decimal place accuracy achieved by the left endpoint methodusing 10,000
rectangles is equivalent to the trapezoid method using only100 trapezoids.

We can summarize the theoretical error for these methods as follows. It
can be shown that error in using the left endpoint method is nogreater than

(3)
�

(b� a)2

2
max
x2 [a;b]

jf 0(x)j
�

1
n

:
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On the other hand, the error in using the trapezoid method is no greater
than

(4)
�

(b� a)3

12
max
x2 [a;b]

jf 00(x)j
�

1
n2

:

In our example (with f (x) = 1 =x, a = 1 and b = 2) we have the bracketed
quantity in (4) is equal to 1=6 so that the error is no greater thann� 2=6.
Thus, n = 100 indeed yields an error of less than:00002 or approximately
4 decimal digits. You might want to modify the previous tablewe did in
Derive to add another column displaying this theoretical error estimate
(3) (and (4) for the trapezoid method) and compare it to the actual error.
Although the trapezoid method is quite accurate and fairly e�cient, the
Simpson's Rule is vastly more e�cient. The error in using theSimpson
method is no greater than

(5)
�

(b� a)5

180
max
x2 [a;b]

jf (4) (x)j
�

1
n4

:

Notice the main di�erence between (4) and (5) is that we now have an
error which is roughly 1=n4 (the bracketed quantity in our example is 24=180).
Thus, with n = 10 we obtain the same accuracy asn = 100 in the trapezoid
method orn = 10; 000 in the left endpoint method. A table illustrating these
di�erences can be obtain by approximating

vector([LEFT(1/x,x,10^n,1,2) - LN(2), TRAP(1/x,x,10^n, 1,2)

- LN(2),SIMP(1/x,x,10^n,1,2) - LN(2)], n,1,4) .

These functions are available by doing Load/Utility with the �le ADD-
UTIL.MTH. Seeing the accuracy of SIMP(1=x; x; 104; 1; 2) requires 16 digits
of accuracy. Recall from Section 0.6 how to increase the accuracy of a calcu-
lation.

To get a geometric feeling for why the trapezoid method is so much better
than the left endpoint method one need only draw a sketch comparing the two
methods. It's possible to graphically represent these approximations using
Derive . Recall from Chapter 4 that one can plot a collection of points,
(x1; y1), (x2; y2), : : : , (xn ; yn), by plotting an n � 2 matrix. Thus, a rectangle
can be drawn by plotting a 5� 2 matrix. (Note: The 5th point is the same
as the �rst point so that the �gure is closed.) In order to draw n rectangles,
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one plots ann-vector with entries corresponding to each of the rectangles.
This vector resembles a 5� 2n matrix but in facts its a vector with matrix
entries. To generate this vector use the functionDRAWLEFT(u,x,n,a,b)
for the left endpoint method andDRAWTRAP(u,x,n,a,b) for the trapezoid
method. Both of these are de�ned in ADD-UTIL.MTH.

Figure 6.2 illustrates both of thes. One must zoom in a bit to see that
the trapezoid is actually di�erent from the original curve (even forn = 4).

Figure 6.2: Rectangular vs trapezoidal approximation

6.3 Theorem on Error Estimates �

Let us indicate how one obtains some of these error estimatesby proving the
following theorem:

Theorem 1. Suppose thatf (x) is a continuous function on the interval[a; b].
The following hold:
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(a) If f 0(x) is bounded on the interval[a; b], then the error in approximatingRb
a f (x) dx with LEFT( f (x); x; n; a; b) is proportional to 1=n.

(b) If f 00(x) is bounded on the interval[a; b], then the error in approximatingRb
a f (x) dx with TRAP( f (x); x; n; a; b) is is proportional to 1=n2.

(c) Finally, if f (4) (x) is bounded then the error in approximating the inte-
gral using Simpson's RuleSIMP(f (x); x; n; a; b) is proportional to 1=n4.

Proof. We'll prove parts (a),(b) and leave (c) to a more advanced text. We
�rst show that the error obtained by approximating a function f (x), over the
kth sub-interval [xk� 1; xk ], by the constantf (xk� 1) is proportional to 1=n. (xk

is de�ned by (1).) This estimate uses the Mean Value Theorem as follows:
for xk� 1 � x � xk we have

jf (x) � f (xk� 1)j = jf 0(cx )(x � xk� 1)j � max
x2 [a;b]

jf 0(x)j
(b� a)

n
:

This bounds how muchf (x) and f (xk� 1) can di�er for x betweenxk� 1 and
xk ; and this means the error in using the left endpoint estimatefor the strip
betweenxk� 1 and xk is at most the width of the strip, (b� a)=n, times this
bound. Adding this over all n strips gives

�
�
�
�

Z b

a
f (x) dx � LEFT( f (x); x; n; a; b)

�
�
�
� �

�
(b� a)2 max

x2 [a;b]
jf 0(x)j

�
1
n

which is the desired result. This completes the proof of part(a).
The proof of part (b) is similar except it uses the Mean Value Theorem

three times. We estimate the error from approximatingf (x) by the linear
function obtained from the endpoints valuesf (xk� 1) and f (xk). Thus, for
xk� 1 � x � xk we have

�
�
�
� f (x) �

�
f (xk) � f (xk� 1)

xk � xk� 1
� (x � xk� 1) + f (xk� 1)

� �
�
�
�

=

�
�
�
�(f (x) � f (xk� 1)) �

f (xk) � f (xk� 1)
xk � xk� 1

� (x � xk� 1)

�
�
�
�

= jf 0(c1)(x � xk� 1) � f 0(c2)(x � xk� 1)j = jf 00(c3)jj c1 � c2jj x � xk� 1j

� max
x2 [a;b]

jf 00(x)j
�

b� a
n

� 2
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and thus at each point the error is proportional to 1=n2 and so is the integral
over [a; b]. More precisely,

�
�
�
�

Z b

a
f (x) dx � TRAP( f (x); x; n; a; b)

�
�
�
� �

�
(b� a)3 max

x2 [a;b]
jf 00(x)j

�
1
n2

We note that the error estimates above di�er from (3) and (4) only in the
constant term and not the power ofn. To obtain the better constant more
careful estimation needs to done in the above argument. On the other hand,
the constants obtained above su�ce for most applications.

6.4 More on Error Estimates �

In order for any method of approximation to be useful we must know some-
thing about the error. The error estimates given in equations (4) and (5)
usually work quite well. But they do require certain boundedness assump-
tions which are not always true. Consider

(6)
Z 1

0

dx
1 + x3=2

Use Derive to graph g(x) = 1 =(1 + x3=2). Notice that the graph is pretty
tame; there are no wild oscillations and it would appear thatthe trapezoid
method could be used to obtain a good approximation of (6). Infact it does
give a good approximation.

In order to use (4) to estimate the error in using the trapezoid rule to
evaluate (6) we need to �ndg00. Use Derive to do this. Note that g00(0)
is unde�ned; but that lim x! 0+

p
xg00(x) = � 3

4 . This means that g00(x) �
� 3

4x � 1=2 and hence is not bounded on [0; 1] so that (4) gives us no information
about the error.

We can work around this problem by noticing that for eachn we can
apply (4) to the interval [ 1

n ; 1] instead and use a di�erent technique for that
�rst interval. Thus, using jg00(1=n)j for the maximum on [1=n;1] (check that
this is valid for all large n), we obtain from (4) that

�
�
�
�

Z 1

1=n
g(x) dx � TRAP( g(x); x; n � 1; 1=n;1)

�
�
�
� � c

p
n �

1
(n � 1)2

�
c

n3=2
:
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On the small interval we observe thatg(x) is decreasing forx > 0 and that
g(0) � g(x) = x3=2=(1 + x3=2) � x3=2. Thus, by comparing areas we see that

�
�
�
�
�

Z 1=n

0
g(x) dx � TRAP( g(x); x; 1; 0; 1=n)

�
�
�
�
�

�
1
n

(g(0) � g(
1
n

)) �
1

n5=2
:

Combining these estimates shows that the error obtained using the trapezoid
method is proportional ton� 3=2 (which is the larger of the two errors). This is
a better result than 1=n but not as good as 1=n2. Actually, one can improve
the 3=2-power a little by re�ning these estimates.

The next question is what can you do without explicit estimates like the
above but only using monotonicity or convexity of the graph.If f is increas-
ing on [a; b] notice that the left endpoint method of estimating

Rb
a f (x) dx

always underestimates the integral while the right endpoint method overes-
timates it. Similarly, if f is decreasing the opposite inequalities hold. If we
let LEFT( f (x); x; n; a; b) and RIGHT( f (x); x; n; a; b) be the left and right
endpoint estimates then:

(7) LEFT( f (x); x; n; a; b) �
Z b

a
f (x) dx � RIGHT( f (x); x; n; a; b)

if f 0(x) � 0 on [a; b]

and

(8) RIGHT( f (x); x; n; a; b) �
Z b

a
f (x) dx � LEFT( f (x); x; n; a; b)

if f 0(x) � 0 on [a; b]

See Figure 9.2 on page 141 which makes these relations quite obvious.
A similar relation holds between the trapezoid and midpointmethods

but depends on the concavity, i.e., the second derivative off rather than
the slope, i.e., the �rst derivative of f . If we let TRAP( f (x); x; n; a; b) and
MID( f (x); x; n; a; b) be the trapezoid and midpoint estimates then

Theorem 2. If f is concave up on[a; b], i.e., f 00(x) � 0, then

MID( f (x); x; n; a; b) �
Z b

a
f (x) dx � TRAP( f (x); x; n; a; b)
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If f is concave down on[a; b], i.e., f 00(x) � 0, then

TRAP( f (x); x; n; a; b) �
Z b

a
f (x) dx � MID( f (x); x; n; a; b)

Figure 6.3 shows why this is true. It has two graphs of the samefunction
which is concave up. the line in the left part shows the trapezoid used in the
trapezoid rule. Clearly it overestimates the integral. Themidpoint rule is
illustrated in the right graph. The midpoint rule gives the area under the line
AB . The line CD is the tangent line through the midpoint. The area below
AB is the same as the area belowCD (why?). So both are the midpoint
estimate. But clearly the area underCD is less than the area under the
curve.

A

C

B

D

Figure 6.3: Trapezoid and midpoint rule for concave functions

6.5 Deriving Simpson's Rule �

Simpson's Rule uses the quantity

(9)
1
6

�
f (x1) + 4 f (

x1 + x2

2
) + f (x2)

�
(x2 � x1)
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to approximate
Rx2

x1
f (x) dx. The can be derived by solving for the quadratic

g(x) = ax2 + bx + c which passes through the 3 points (x1; y1), (x2; y2) and
(x3; y3); whereyi = f (x i ) and x3 = ( x1 + x2)=2 which is simply the midpoint
or average ofx1 and x2. One then computes

Rx2

x1
g(x) dx and uses this for

our approximation. Now the algebra involved in this computation is fairly
formidable and yet the beauty of it is that the answer (given in (9)) is so
simple. That's why the formula for Simpson's Rule looks hardly any di�erent
from the formula for the left endpoint rule and as a result thecomputation
times are approximately the same.

Now the algebra involved is the same as that of Chapter 4. We solve 3
equations for the unknownsa, b and c, then we integrate the result. Al-
ternately, we can make the derivation into a two step processby using the
function CURVEFIT(x,data) where the data matrix is

data :=

2

4
x1 y1

x2 y2
x1+ x2

2 y3

3

5

The resulting quadratic polynomial contains some pretty large expressions
involving x i and yi . Nevertheless, one need only integrate this expression
over the interval x1 � x � x2 to get the desired result.

6.6 Laboratory Exercises

Start o� your lab by L oading the ADD-HEAD.MTH �le and simplifying
the LOAD("add-util") expression1. After you have done this the functions
described in Section 6.2: LEFT, MID, TRAP, and SIMP, which compute
the integral approximations using respectively the left endpoint method, the
midpoint method, the trapezoid method and Simpson's rule, will all be de-
�ned. In addition the functions DRAW LEFT and DRAW TRAP, which
draw the rectangles and trapezoids used in the graphical demonstration of
Figure 6.2 on page 92, will be de�ned.

1. Evaluate TRAP(1=x; x; n; 1; 2) and SIMP(1=x; x; n; 1; 2) for n = 10,
100, and 1; 000. Also useDerive to �nd ln 2 using 15 decimal place

1This expression must evaluate to TRUE or else something is wrong. Typically, if it
evaluates to FALSE then the �le is not in the default director y.
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precision. Which of the 6 approximations above (if any) gives ln 2 to
10 or more decimal places?

2. Use the trapezoid method and Simpson's Rule to approximate each of
the following integrals. Usen = 10, 20, and 30. Derive has its own
method of doing approximate integration. Find the answer itgets.
You can do this by authoring the integral and choosing approximate.
Compare the decimal accuracy of the Simpson approximates with the
one computed byDerive above.

a.
Z 1

� 1
sin(x2) dx b.

Z 3

0

1
1 + x3

dx

3. Using the midpoint method MID(1=x; x; n; a; b), approximate ln 10 (=R10
1 (1=x)dx) using n = 10, 100, 1000 and compare your answers with

Derive 's approximation.

4. For the following integrals use the error estimate (4) described above
to �nd an n large enough so that the trapezoid method will give an
approximation of the integral with error at most 0:005. Give both the
approximate value of the integral and the smallestn which guarantees
(using formula (4)) that you will be within this error, and also give
M2 = maxfj f 00(x)j : a � x � bg.
Hints: UseDerive to �nd f 0, f 00, and f 000. For the �rst integral below,
you can easily see that the maximum forjf 00j occurs whenx = 1. For
the second, solvef 000(x) = 0; this tells you where the maximums of
jf 00(x)j can occur, and, using this (and maybe some plotting), you can
�nd M2. For the third integral don't forget that M2 if the maximum of
the absolute value of f 00(x) on [0; 2]. Once you haveM2, �nd n large
enough so that the error given in (4) is at most 0:005.

a.
Z e2

1
ln x dx b.

Z 2

1
2

1
1 + x2

dx

c.
Z 2

0

1
1 + x2

dx

5. Do the same as the last problem, but use Simpson's Rule this time and
of course use formula (5) instead of (4).
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*6. Explain why the area belowAB is the same as the area belowCD in
Figure 6.3.

7. Find where 1=(1 + x3=2) is concave up and where it is concave down in
the interval [0; 1]. Use Theorem 2 to give lower and upper estimates
for Z 1

0

dx
1 + x3=2

:

Usen = 20.

8. Prove the following simple relationship between the trapezoid, mid-
point, and Simpson's rules:

SIMP(f (x); x; n; a; b) =
1
3

TRAP( f (x); x; n; a; b)+
2
3

MID( f (x); x; n; a; b)

Hint: First de�ne f (x) to an unspeci�ed function by Authoring f(x) := .
Now Author and Simplify the two expressions

SIMP(f(x),x,n,a,b)

(1/3) TRAP(f(x),x,n,a,b) + (2/3) MID(f(x),x,n,a,b)

Finally simplify the di�erence of the two resulting expressions.

9. Do the calculations needed to verify Simpson's rule as outlined in Sec-
tion 6.5. This is the same problem as Exercise 4 in Chapter 4.
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Chapter 7

Exponential Growth and
Di�erential Equations

7.1 Introduction

Suppose thaty is a function of x. A �rst order di�erential equation is an
equation which involvesx, y and its derivative y0. An nth order di�erential
equation involvesx; y; y0; : : : ; y(n) . For example,y00+ xy0 = x2 + 1 is a second
order di�erential equation.

Di�erential equations occur frequently in every �eld of science and engi-
neering, especially biology. Libraries have many volumes devoted to solving
di�erential equations (even for �rst order di�erential equ ations). In this
chapter we study �rst order di�erential equations and show some of the ap-
plications. One of the most important examples ispopulation growth (of
humans, cells, radioactive substances, savings account balances, etc.)

We will show you how to get an exact solution to what are known as
linear �rst order di�erential equations and we will introdu ce slope �elds and
Euler's method for obtaining approximate solutions to moregeneral �rst
order di�erential equations.

7.2 Examples

Population Growth. The standard model for population growth states
that the rate of changey0(x), of the population sizey(x), with respect to
time x is proportional to the population size at any given time. This means

101
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that y0(x) = ky(x) for some �xed constant k and all x. Now it is easy to
check that y(x) = y0ekx satis�es the relations

(1) y0 = ky y(0) = y0

where we simplify our notation by dropping the explicit reference to the
variable x. Thus, the exponential function provides a model for population
growth. Recall from Problem7 on page 64 that we compared a linear model
versus the exponential model above for the population of Mexico and found
a signi�cant di�erence in the long run behavior with the exponential model
giving a much larger growth. This comparison was also made inSection 3.3
where it was shown that exponential growth eventually exceeds the growth
of any polynomial.

Now it turns out that the exponential solution to equation (1) is the only
solution to that equation. To prove this we suppose thatu(x) is any solution
to (1). We need to show that u(x)=ekx = e� kx u(x) is a constant, so we
compute it's derivative and observe that

(2) (e� kx u)
0
= e� kx u0� ke� kx u = e� kx (u0 � ku) = 0

holds for all x. Hence integrating gives

e� kx u(x) = c:

We solve for the constantc by substituting x = 0 in the above to get c =
u(0) = y0 and then multiply both sides byekx to obtain

u(x) = y0ekx

as we claimed1.
Equation (1) is a special case of the general equation

(3) y0+ p(x)y = q(x); y(x0) = y0

since (1) can be written asy0� ky = 0. Thus, in (3) the functions p(x) = � k,
q(x) = 0 and initial time x0 = 0. Any di�erential equation with the form
of (3) is called alinear �rst order di�erential equation . In Section 7.5 we

1In Derive multiply the equation e� kx u(x) = c by ekx by right clicking and inserting
(or press theF4-key). Then, simplify.
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prove that any such equation has a unique solution which is obtained in
manner a similar to the above. See Theorem 1 in that section for the formula
for the solution.

The formula for the solution to (3) can be made into aDerive function
quite easily. This has been done inDerive 's utility �le ODE1.MTH with the
name LINEAR1. For convenience we have added this function to our utility
�le ADD-HEAD.MTH but we use the shorter name DE. It has the form

DE(p, q, x, y, x0, y0)

where p and q are expressions in the variablex. The initial conditions are
y = y0 when x = x0. For example, simplifying DE(-2,0,x,y,0,5) would
yield the expressiony = 5e2x . This is the solution to y0 = 2y wherey(0) = 5;
see Figure 7.1 on the next page.

Newton's Law of Cooling. Another important example of di�erential
equations isNewton's Law of Cooling. According to this law a hot pan of tem-
perature yhot will have a temperature ofy(t) at time t which decreases, i.e.,
will cool down, when placed in a vat of cool water of temperature ycool < y hot .
The key point of the law is that the rate of change in the temperature, y0, is
proportional to y(t) � ycool, which is the di�erence in the current temperature
of the (hot) pan and the (cool) water. This says that

(4) y0 = � k(y � ycool) where y(0) = yhot > y cool

and k > 0 is a constant which depends on the physical properties of the
pan, for example, copper cools faster than iron so the corresponding k-value
would be larger. Notice that the derivativey0 above is negative since the
temperature is decreasing.

We rewrite equation (4) so that it has the form of the general �rst order
linear di�erential equation in (3):

(5) y0+ ky = kycool y(0) = yhot

and thus we can solve this equation withDerive by using the DEfunction.
We will use the variablesyh and yc in place ofyhot and ycool. So that these
are treated as single variables (and not asy � h) we �rst A uthor the vector
[yh:=,yc:=] . Then we Author

de(k,k*yc,t,y,0,yh)
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Simplifying the expression gives the solution

(6) y(t) = ( yh � yc)e� kt + yc.

See Figure 7.1 for a demonstration of these functions and observe how rapidly
the temperature y(t) tends to the water temperatureyc. Use Derive to
calculate limt !1 y(t).

Figure 7.1: Solving Newton's cooling equation

By looking back at (2) on page 102 and making a small modi�cation of
that argument we see how the above solution is derived; namely, by (5),

(7) (ekx y)
0
= ekx y0+ kekx y = ekx (y0+ ky) = ycoolkekx

and hence integrating gives

ekx y(x) =
Z

ycoolkekx dx = ycoolekx + c:

Now solving for c by substituting x = 0 in the above yieldsc = yhot � ycool

and then multiplying both sides bye� kx gives the desired result above.
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The argument above gives us a pretty good idea how to solve thegeneral
di�erential equation y0+ p(x)y = q(x). One multiplies y by an appropriate
exponential � , di�erentiates and then replaces the quantityy0 + p(x)y by
q(x). Integrating the result essentially solves the problem. That critical
multiplying exponential turns out to be

� (x) = e
R

p(x) dx since � 0(x) = p(x)� (x):

See the proof of Theorem 1 on page 110 for the details.

Radioactive Decay. In certain radioactive materials some particles change
from one form to another. The number of particles decaying inthis way in
a small time period is proportional to the size of the material. So that, for
example, if you have twice as much radioactive material the number of parti-
cles decaying is twice as great. IfA(t) is the amount of radioactive material
at time t, then A satis�es the di�erential equation A0(t) = � kA. Here we
have k > 0 and have written it in this way to emphasize that the derivative
is negative since the amount of material decreases with time. Except for this
minus sign this is the same as the population model above. It is easy to see
the solution is

(8) A(t) = A0e� kt

The half-life of a radioactive substance is the time it takes for half of it to
decay. We can �nd this by solvingA(t) = A0=2 for t. By (8) this gives the
equation A0=2 = A0e� kt . Cancelling theA0, we get the equation 1=2 = e� kt ,
so that � kt = ln(1 =2) = � ln 2 or t = ln 2 =k. Notice that the half-life is
independent ofA0.

Observe that we can compute the solution above withDerive using the
variables t and a. We Author a0:= (to declare it as a multi-letter variable)
then Author DE(k,0,t,a,0,a0) and simplify to get a = a0e� kt .

7.3 Approximation of Solutions

The general �rst order di�erential equation has the form y0 = f (x; y) with
initial conditions (x0; y0), i.e., y = y0 whenx = x0. The techniques for solving
di�erential equations that we discussed in the previous sections and which
are used to prove Theorem 1 on page 110 do not extend to all di�erential
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equations. In fact, many important di�erential equations cannot be solved
explicitly. We encountered this situation earlier with integrals2 and this
suggests trying to �nd numerical approximations to the solution. The critical
observation to make is that the equationy0 = f (x; y) tells us the slopeof
the tangent line to the solution y(x). Thus, by drawing many small line
segments of slopef (x; y), through the point (x; y) in the plane, we obtain an
approximate picture of the solution whose graph contains the point (x; y). By
drawing several of these partial tangent lines we get an approximate picture
of y(x) by drawing a curve which conforms to these slopes. These diagrams
are calledslopeor direction fields .

The �le ADD-UTIL.MTH has the function DF(for direction �eld) which
will make a matrix. When this matrix is plotted it draws the `slope �eld.'
The form of DFis

DF(r,x,x0,xm,m,y,y0,yn,n)

where the �rst argument r is f (x; y) and x0, xm, m represent the initial
and �nal x-values in a rectangular grid withm x-values plotted. Similarly,
y0, yn, n represent the initial and �nal y-values in a rectangular grid with
n y-values. Hence, the total number of line segments plotted will be m �
n. In order that line segments are plotted, not just the endpoints, we put
the plotting window into connected mode by choosing Options/P oints and
setting Connect to `Yes.'

As an example, we can take the cooling problem above, namely,

y0+ y = 1

so that f (x; y) = � (y � 1) = 1 � y. We simplify the expression

df(1-y,x,0,4,8,y,0,4,8)

to get the slope �eld. In the plot window select Option/P lot Color and set
it to `O�' so that all slope lines will be in one color. Of course, if you like
colorful diagrams then you can skip that last step. Also choose Option/P oints
to set the Connected Mode and to set Size to Small. Make sure todelete
all existing graphs and then plot the slope �eld. Try to picture the solution
though a given initial point (0; y0) by following the slope �eld. Finally, plot
some actual solutions that we obtained above using theDEfunction and see

2Notice that the simple di�erential equation y0 = f (x) has solution y =
R

f (x) dx so
that the class of di�erential equations contains all integration problems.
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how it conforms to the slope �eld. See Figure 7.2 where we havegraphed the
solution y = 3e� x + 1, which corresponds to the initial conditiony(0) = 4.
Try several other initial conditions to see how the slope lines approximate
the solution.

Figure 7.2: Slope �eld for the Newton cooling problem

Another Population Model. � In the model we used for population growth
we had

dP
dt

= kP:

This works well for many populations. But the population cannot continue
to grow forever. When a country no longer has room for expansion the rate of
growth slows. For example, a bacteria culture in a petri dishwill satisfy the
above di�erential equation for awhile, but as the dish �lls the above equation
becomes invalid. Verhulst, a Belgian mathematician, proposed a model using
the di�erential equation

(9)
dP
dt

= kP
�

1 �
P
P1

�
:
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Notice that when P is small compared toP1, the derivative is approximately
kP, as before. But asP approachesP1, P0 approaches 0.

Unfortunately this equation is not of the form of (3) so no exact solution
is apparent. But we can always look at the slope �eld to get an approximate
idea as to what the solution looks like. To see a demonstration we Load the
�le F-VERHUL.MTH and look it over line by line. The given example

dP
dt

= P
�

1 �
P
5

�
where P(0) = 1 :

has the slope �eld function entered on line 6 with the above equation entered.

You should highlight this expression, press and then plot the resulting
data matrix. Now starting at the initial point (0 ; 1) follow the slopes �eld
with your �nger to get an approximate solution. See Figure 7.3 for a graph
of the exact solution to the above along with some of the derivation below.

Figure 7.3: A graph of a Verhulst population curve

Even though the Verhulst equation is not of the form of (3) we can still
solve the equation exactly provided we solve for 1=P instead P. If we let
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R = 1=P (R stands for reciprocal) then

dP
dt

=
d(1=R)

dt
= �

1
R2

dR
dt

and (9) becomes

dR
dt

= � R2 k
R

�
1 �

1
P1R

�

=
k
P1

� kR

This is of the form of (3) with p(x) = k and q(x) = k=P1, so we can solve it
by Authoring DE(k,k/P1,t,R,0,1/P0) . (P0 = P(0) is the initial population
so R0 = 1=P0.) This gives the solution

R = e� kt

�
1
P0

�
1
P1

�
+

1
P1

Inverting R gives

P =
1
R

=
P0P1ekt

P0ekt � P0 + P1

or

(10) P =
P0P1

P0 + ( P1 � P0)e� kt

Notice that P(0) = P0, as we would expect, and that limt !1 P(t) = P1.

7.4 Euler's Approximation Method �

The method of slope �elds suggest an approximation technique known as
Euler's method. The idea is to approximate the solution to

y0 = f (x; y) where y(x0) = y0

by a piecewise linear function passing through a sequence ofpoints

(x0; y0); (x1; y1); : : : ; (xn ; yn)
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obtained by using the slope at (x i � 1; yi � 1), which is f (x i � 1; yi � 1), to construct
the next point (x i ; yi ), where the increment in x is a �xed amount, say
x i = x i � 1 + h. The Derive function is deceptively simple:

EULER(r,x,y,x0,y0,xn,n):=

ITERATES(v+[1,LIM(r,[x,y],v)]*(xn-x0)/n,v,[x0,y0],n )

wherex varies betweenx0 � x � xn and we usen points in the approximation
scheme. This function is also in the �le ADD-UTIL.MTH. It is a slight variant
of the EULERfunction in the utility �le ODE APPR.MTH that comes with
Derive . Try the Newton cooling problem

EULER(1-y,x,y,0,4,4,16)

to see how this works. Again, you must be sure that your graphics window is
in single color, connected mode for this to plot properly. See the Figure 7.4
on the next page for a demonstration of this technique. You should try
larger and largern to see that the approximations converge, asn ! 1 , to
the solution for 0 � x � 4.

7.5 Linear First Order Di�erential Equations

In this section we solve the linear �rst order di�erential equation

(11) y0+ p(x)y = q(x) with y(x0) = y0

by proving the following theorem:

Theorem 1. Suppose thaty(x) satis�es (11) wherep(x) and q(x) are con-
tinuous functions ofx. If y satis�es the initial condition y(x0) = y0 then

(12) y = e�
Rx

x 0
p(u) du �

� Z x

x0

q(u)e
Ru

x 0
p(v) dv du + y0

�
:

Proof. Let h(x) = e
Rx

x 0
p(u) du . By the fundamental theorem of calculus,

d
dx

Rx
x0

p(u) du = p(x). So h0(x) = d
dx

h
e

Rx
x 0

p(u) du
i

= p(x)h(x). Thus

(h(x)y)0 = h(x)y0+ h0(x)y = h(x)y0+ p(x)h(x)y
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Figure 7.4: Euler's method for approximating solutions

If we multiply equation (11) by h(x) and use the above, we see that (h(x)y)0 =
h(x)q(x). If we integrate both sides of this fromx0 to x and use the fact that
h(x0) = 0, we get h(x)y =

Rx
x0

h(u)q(u) du + C, or

y = e�
Rx

x 0
p(u) du �

� Z x

x0

q(u)e
Ru

x 0
p(v) dv du + C

�
:

Sincey(x0) = y0, we see thatC = y0 and thus (12) holds.

As we said, the solution (12) to the di�erential equation canbe made into
a Derive function quite easily. You should look at the formula above and
see if you can write aDerive function that will produce the solution. Then
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compare your answer with the following de�nition of the function DE.3

(13) de(p,q,x,y,x0,y0):= y =

ê^(-int(p,x,x0,x)) * (int(q*ê^int(p,x,x0,x),x,x0,x) +y0)

7.6 Laboratory Exercises

The functions discussed in this chapter,DE, DF, and EULER, are all de�ned in
the �le ADD-UTIL.MTH. Be sure to F ile/L oad/Math this �le.

1. If money earns interest compounded continuously andy(t) is the amount
of money at time t, then y satis�es the di�erential equation y0 = ry ,
wherer is the interest rate.

a. What is the solution to the di�erential equation y0 = ry?

b. Find how long it takes for your money to double forr = 3%, 5%,
and 10%? (This means thatr = 0:03, 0:05, and 0:1 in the above
equation.)

2. Normal body temperature is 98:6� F. If someone dies, then the body
cools according to Newton's law of cooling. It is known that,if the
surrounding temperature is a constant 64� , then the body will cool to
92� in 3 hours.

a. Use this information to compute the constantk in (6) on page 104.

3You might notice that the formula for the solution to the di�e rential equation in
Theorem 1 is careful about the \dummy variables" in the integrals. This is because in
calculus we avoid integrals of the form

Rx
a f (x) dx because the integration variablex might

be mistaken for the upper limit x. Since the integration variable is completely arbitrary
we usually take it to be t or u in such a situation. On the other hand, for the Derive
function de above we used expressions likeint(f(x),x,0,x) because the integration is
done before the limits of integration are substituted. The computer does this correctly
but it is usually foolhardy for students to try this since it i s so easy to make mistakes such
as Z x

0
x dx = x

Z x

0
dx = x2

when then answer should bex2=2.
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b. Now suppose that a murder victim's body is found at 12am with
a temperature of 86� . Assuming an air temperature of 64� , deter-
mine when the murder was committed?

3. Consider the di�erential equation

y0+ y = sin x with y(� 1) = � 1:

a. Use the DFfunction to draw a 10� 10 grid of slope lines using
� 1 � x � 3 and � 1 � y � 1. (You need to have the graphics
window in the connected state; see the instructions for thison
page 106.)

b. Now use theDEfunction to �nd the solution to the di�erential
equation and plot the answer to see how it conforms to the slope
lines.

c. Double check that the answer you get from theDEfunction is in-
deed the solution by verifying that it solves the di�erential equa-
tion and the initial conditions.

4. Suppose a body of massm is dropped from high in the atmosphere.
Let v be its downward velocity as a function of timet. There are
two forces acting on the body: gravity and wind resistance. The force
due to gravity is mg, where g is a constant; the force due to wind
resistance is� kv (the minus since it is upward). Newton's law says
F = ma, where a = v0 is the body's acceleration. This leads to the
di�erential equation

ma = mv0 = mg � kv:

Solve this equation forv with v(0) = 0. Find lim t !1 v(t) (don't in-
clude thev= part from above). Derive returns an expression contain-
ing SIGN(km)because it does not know thatk and m are positive. Use
Declare/Variable Domain to declare that k is a positive real number,
and do the same form. Now reevaluate the limit. Note that v never
exceeds this value, which is called theterminal velocity. No wind re-
sistance corresponds tok = 0. Find v in this case both by solving the
di�erential equation with k = 0, and by taking the limit of the general
solution for v found above ask ! 0.
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*5. Suppose the population growth of a small country satis�es (9) with
P1 = 10 and k = 0:05 (with population in millions). Plot the direction
�eld for this. (There are instructions for doing this in Section 7.3.)
SupposeP(0) = 2. Find P(20), P(50), and P(100). Graph P(t).
Adjust the scale of the graph so that you get a clear picture ofthe
nature of the population growth.

6. Carbon-14, 14C, is an unstable isotope of carbon that slowly decays
to the more stable12C. While an organism is alive it has a constant
amount of 14C, but after it dies, the amount decreases according to (8).
If 200 years after the organism dies, the amount of14C is 97:6% of the
original amount, what is the half-life of14C? If the burnt wood from a
prehistoric campsite contains 29% of the original amount of14C, how
old is the campsite?



c 1990{1997 Ralph Freese and David Stegenga, all rights reserved.

Chapter 8

Polar and Parametric Graphs

8.1 Introduction

Graphs of the formy = f (x) or x = g(y) can be used to represent a wide
variety of curves in the plane, there are many important curves, such as
circles or ellipses, that cannot be represented by a single graph of this type.
More generally, imagine the curve traced out by an ant walking on a at
surface. In this chapter we will introduce two techniques for plotting general
curves. One is the method of polar coordinates, which is a coordinate system
based on angles and distance from the origin. The other is themethod of
parametric representation, which allows one to specify completely arbitrary
curves like the motion of a particles (or the ant).

8.2 Polar Coordinates

We can specify a point in the plane by how far it is from the origin and
what angle the line from the point to the origin makes with thex{axis.
If r is the distance from the origin and� is the angle, we say that [r; � ]
are the polar coordinatesof the point; see Figure 8.1 on the following page.
Thus, for example, the point with rectangular coordinates (1; 1) would have
polar coordinates [

p
2; �= 4]. The way to envision plotting a polar point [r; � ]

is to stand at the origin facing out towards the positivex{axis and then
turn counter-clockwise by the angle� and then mover unit in the direction
you are now facing. We usually think ofr as being nonnegative, but ifr is
negative, we simply go backwardsjr j units. Similarly, we plot negative angles

115
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�

[r; � ]
r

Figure 8.1: Polar Coordinates

by turning clockwise instead of counter-clockwise. This leads to a surprising
di�erence compared to rectangular coordinates; namely, two di�erent polar
coordinates can represent the same point. Thus, [� 2; �= 4] = [2; 5�= 4] =
[2; � 3�= 4]. Note that [0; � ] is the origin regardless of what� is. Your calculus
text has a more detailed description of polar coordinates.

A basic problem in polar graphing is to plot a function such asr = � (� ),
i.e., plot all points [r; � ] where r is given by the function � (� ). For example
the circle of radiusa, centered at the origin, is the graph ofr = a. Thus,
� (� ) = a is a constant functions. Note that to draw this circle in rectangular
coordinates you must think of this curve as two graphs, namely, y =

p
a2 � x2

and y = �
p

a2 � x2. This simple example already shows that some curves
are more easily represented with polar coordinates.

Let us now try something harder such asr = 1 + cos � . One then graphs
the curve by computingr for lots of � 's by thinking about the geometry of the
angle � and the value ofr . This is usually done with angles such as� = 0,
�= 4, �= 2, 3�= 4 and � which corresponds to 45� increments in the angle.
By authoring vector([1+cos � , � ], � , 0, � , � /4) and simplifying this
expression gives a table of polar points which can be plottedby hand or as
a set of points inDerive . We'll need to plot more � 's but this is a start.
A nice technique for viewing the data is to use theAPPROXfunction to get
decimals for ther {values. We then getr as a decimal and� expressed in the
usual radian notation for the angles. See Figure 8.2 on the next page.

Derive can plot these points in polar coordinates by selecting the Option
menu and then selecting the Polar option on the Coordinates menu. Then,
plot the points just as we did in rectangular coordinates by highlighting the
matrix of points and clicking the plot button in the graphics window. After
plotting these 5 points we try to imagine the rest of the graphby interpolating
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Figure 8.2: Plotting points in polar coordinates

other values of� . Of course,Derive will plot the curve for us. We enter
either 1 + cos t or just highlight expression#1 in Figure 8.2, then click
the Plot button in the graphics window. So far, this is just like rectangular
plots except for the change in the coordinate mode. But nowDerive will
prompt you for the parameter interval (interval of � 's to use) and suggest the
default range of� � � � � � . Since many of the standard examples of polar
curves involve the� -variable only in the form of either cos� or sin� , it usually
su�ces to only consider 0 � � � 2� (or as Derive prefers � � � � � � ).
Of course, you can change it to whatever interval you want. For example, in
Figure 8.2 the range 0� � � � was used. You might want to plot the full
graph at this point by using the default range. The resultinggraph heart
shaped curve is called acardioid.

Tracing. It is important to actually see the curve being plotted but the
computer plots so quickly that it is nearly impossible to seeit happen. De-
rive has an approach for \driving" around a curve calledtracing. After
plotting the polar curves above select the Trace Mode option on the Options
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menu (or just pressF3 to toggle the Trace mode) and the cross will turn into
a box and it will be moved onto the last curve plotted. Now press and hold
down the right arrow key and watch the little car drive aroundthe curve.
You can see the value of� , which we can also interpret as time, as it increases,
as well as ther and � coordinates, on the lower part of the screen. If you
have more than one graph you can switch between curves by using the up or
down arrow keys.

When plotting the cardioid a = 1 pay particular attention to the way the
plotting slows down as we approach the cusp. It turns out thatthe only way
for cusps or corners to occur in the graph, whenr (� ) is di�erentiable, is for
the plotting to slow to a stop and then to start up again. This notion of
speed will be discussed in Section 8.4.

8.3 Rotating Polar Curves

A nice feature of polar coordinates is the ease with which we can rotate a
�gure. For example, if we plot r = � (� ) and we want to rotate the picture
clockwise by an angle� we simply plot r = � (� + � ) instead. Try this out in
for yourself usingDerive .

Here is an interesting application of this idea. Did you knowthat the
curve y = 1=x, which is used to de�ne the natural logarithm, is a hyperbola.
The equation does not make this apparent since using the usual convention;
namely, the axes should be chosen parallel and perpendicular to the axes of
symmetry, we are supposed to have the equation of the form:

x2

a2
�

y2

b2
= � 1:

We need to discuss converting polar graphs to rectangular graphs and
vice versa. Figure 8.1 on page 116 makes it clear how to do this. The
algebraic relationship between the polar coordinates [r; � ] and the rectangular
coordinates (x; y) is given by the right triangle formed from the 3 points:
(0; 0), (x; y) and (x; 0). The equations are:

(1) x = r cos� and y = r sin�:

In Figure 8.3 on the next page we enterxy = 1, convert to polar coor-
dinates by using the above equations and then rotate by� = �= 4 in the
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clockwise direction by substituting� + �= 4 for � . We now what to apply the
trigonometric formulas:

sin(A + B) = sin A cosB + sin B cosA

cos(A + B) = cos A cosB � sinA sinB

but Derive does not simplify these by default. Instead we need to choose
Declare/Algebra State/Simpli�cation and on the Trigonometry box we select
Expand. Simplifying these standard formulas will now yieldthe above.

Simplifying our rotated curve now yields:r 2 cos2 t � r 2=2 = 1. Converting
back to rectangular coordinates we use (1) to replacer 2 cos2 t with x2 and
r 2 with x2 + y2. This yields the desired result; namely, rotating the graph
y = 1=x by 45� results in an equationx2 � y2 = 2 which is a hyperbola.

Figure 8.3: Showing thaty = 1=x is a hyperbola

Actually, the method used in Figure 8.3 to convert back to rectangular
coordinates is to substituter =

p
x2 + y2 and � = tan � 1(y=x) (Derive

denotes the inverse tangent function byATAN). But there can be problems
with this approach. For example, consider the polar point [

p
2; 3�= 4] which
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clearly corresponds to the point (� 1; 1) in rectangular coordinates. But
tan� 1(� 1) = � �= 4 instead of 3�= 4 because the de�nition of the inverse
tangent uses theprinciple angles� �= 2 < � < �= 2. Thus, for points with
x < 0 we should substitute� = tan � 1(y=x) + � instead.1 Of course, in our
example it doesn't cause a problem thanks to the fact that

cos2(� + � ) = cos2 �

for all � (check this usingDerive ).

8.4 Parametric Curves

As we saw in the last section we obtain many interesting curves by plot-
ting r = � (� ) with � � � � � in polar coordinates. However, there are
still limitations on the shape of a polar curve (just as thereare limitations
on the shape of a rectangular graph) although these limitations are not as
transparent since we have seen examples of looping in the lima�con curves.

To study general curves we need the idea ofparametric curves. To specify
the motion of a particle in the plane; for example, the position of the ant
crawling around on the plane, we return to rectangular coordinates and give
the x{coordinate as a function,x = x(t), of a parametert (which is usually
thought of as time) and similarly for y = y(t). This means that at time t0

the particle is at the point (x(t0); y(t0)).
As an example, the equations (1) on page 118 show that the polar graph

r = � (� ) for � � � � � can be thought of as a parametric graph if we set

x(t) = � (t) cost; y(t) = � (t) sin t where � � t � �:

Of course, this makes the plotting problem harder since we probably wouldn't
use the geometry of polar coordinates to plot points. The computer on the
other hand doesn't use geometric consideration since it just plots lots of
points and connects them with line segments.

Let us consider the non-polar example

x(t) = 4 cost; y(t) = sin t; where 0� t � �:

1Derive 's function ATANhas a two-variable form ATAN(y, x) which does the right
thing.
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We can plot n points in order by taking t i = t i � 1 + � t where � t = ( � � � )=n
and making an � 2{matrix using the vector function. Enter [4*cos t,sin
t] and then use Calculus/Vector with Start: 0, End: � and Step: .2 (this
gives 16 points). Now we can plot this as usual in rectangularcoordinates
(you will need to switch back to rectangular coordinates). To draw a curve,
select Options/P oints again and set plotting mode to connected. Then, re-
plot the points. See Figure 8.4 and Load the �le F-PARAM1.MTH for a
demonstration.

Figure 8.4: Parametric plot of a semi-ellipse

As with polar curves Derive has a simpli�ed way to plot parametric
curves. You simply plot the vector[4*cos t,sin t] . Derive will ask for
the parameter interval and then plot the curve. You might have thought that
Derive would plot the two functions 4 cost and sint since we know that this
happens for 3 or more functions in a vector. But when a vector contains only
two functions, it is treated as a parametric curve.

Looking at the picture you might have guessed that the curve in Figure 8.4
was an ellipse (even if you didn't read the caption) because of it's oval shape.
Of course, not all oval shaped curves are ellipses but indeedthis example is
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one since one easily checks that

x(t)2

42
+

y(t)2

12
= sin2 t + cos2 t = 1 for all t

and hence the particle travels along the ellipsex2=4 + y2 = 1 centered at
the origin with semi-major axis 4 and semi-minor axis 1. Observe that this
information does not tell you how the particle travels around on this ellipse.
For instance, is it going clockwise or counterclockwise? Does it ever stop?

See Figure 8.4 again and try the slow down technique to understand how
the parametric curve can be thought of as a particle moving along a curve
(like a car traveling over a roadway). By using this technique it is apparent
that the motion is counterclockwise (as timet increases) and it never stops.
This interpretation will be extremely important in later courses when Newton
famousF = ma law is used to analyze the forces acting on a moving particle.

Tracing parametric curves. Let us recall the tracing technique from
Section 8.2, which we used for polar curves. We now want to \drive" around
a parametric curve and observe its speed. After plotting theparametric curve
above pressF3. The cross will turn into a box on the curve and pressing and
holding down the right arrow key will move the little car drive around the
curve. You can see the time parameter as it increases, as wellas the x and
y coordinates, on the lower part of the screen.

By watching the particle move while you press and hold down the right
arrow key, you can see that the particle is traveling in the counterclockwise
direction and a careful inspection will reveal that the speed (rate of change of
distance with respect to time) is slower on the sides than thetop and bottom
parts of the curve. This is actually a consequence of one of Kepler's laws of
planetary motion. This law states that certain moving bodies revolving about
a central point (such as the origin in this example) sweep outequal area in
equal time. Assuming this fact, then the particle needs to befaster near the
top and bottom since these points are closer to the origin andhence sweep
out less area. Whereas the left and right portions of the curve are further
from the origin and hence require less time to sweep out an equal amount of
area.

One can calculate the speed directly as follows: Over a smalltime interval
� t the x-position changes by �x (= x(t + � t) � x(t)) and the y-position
changes by �y. Thus, the distance traveled during that time interval is
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approximately
p

� x2 + � y2 and hence the average speed is given by

p
� x2 + � y2

� t
=

s �
� x
� t

� 2

+
�

� x
� t

� 2

�
p

x0(t)2 + y0(t)2

Taking limits as � t ! 0 leads to the formula:

(2) Speed at timet =
p

x0(t)2 + y0(t)2:

Derive has an alternate approach for curves described by[x(t),y(t)] ;
namely, one uses Calculus/Di�erentiate on the vector and then appliesABS
to the result. This works becauseABS([a,b]) simpli�es to

p
a2 + b2.

Another use ofDerive 's tracing feature is for curves that retrace them-
selves and hence make motion on the curve di�cult to see. Try the example,
x = sin t cost and y = sin 2t for 0 � t � 2� . That is, plot the vector [sin
t cos t, sin(2t)] . Surprisingly, the picture is simply a line segment with
endpoints (� 1=2; � 1) and (1=2; 1). But how does the particle travel around
this curve? By pressingF3 and tracing the curve we see a back and forth
motion which reminds us of a swinging pendulum. In fact, by carefully ob-
serving the motion near the endpoints we see the particle slow down and
stop. Then, it turns around and goes back in the opposite direction gaining
speed as it approaches the center of the line segment and thenslowing down
as it approaches the other endpoint. A point where the speed is zero is ac-
tually the only way a smoothly parametrized curve, i.e., onefor which x(t)
and y(t) are continuously di�erentiable, can have cusps (like the cardioid) or
corners (as in this example) or otherwise exhibit nonsmoothbehavior. Check
directly the speed at the endpoints.

As a last example, enterx = 2 cos2 t and y = 2 sin t cost for 0 � t � � . In
this case we have another surprising picture of a circle, which we can verify
by showing

(x(t) � 1)2 + y(t)2 = 1 for all t:

Two interesting features are that the complete circle is plotted with t in the
[0; � ] (instead of requiring 0� t � 2� ) and also that a particle travels around
the curve with uniform speed. Observe this with the tracing technique and
then verify it directly using (2).
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Figure 8.5: More parametric plots

8.5 Laboratory Exercises

1. Consider the polar curver = 2 cos� .

a. Plot the curve using polar coordinates.

b. Describe how the curve is traced for 0� � � 2� .

c. Use equations (1) on page 118 to convert the polar equation to
rectangular coordinates. Use this to show that the curve is acircle
of radius 1 with center at (1; 0).

2. Let r = 2 sin � be a polar curve.

a. Plot the curve using polar coordinates.

b. Show that the graph is a rotation of the graph in Problem 1.

3. Let r = sec(� � �= 4) be a polar curve.
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a. Plot the curve using polar coordinates.

b. Show that in rectangular coordinates the curve satis�es theequa-
tion: x + y =

p
2. (Hint: Use the Trigonometry Expand mode to

simplify the equation.)

4. Plot several petal curves,r = 2 cos(n� ) for di�erent integer choices ofn.
How many petals are there as a function ofn?

5. Choose positive numberd and e, then the family of polar curves

r =
ed

1 + ecos�

turns out to be conic sections (see your calculus text as a reference).
We will examine this phenomenon withd = 2 and e set to 4 di�erent
positive values:e = :5, e = :75, e = 1 and e = 2.

a. Plot the �rst two curves ( e = :5 and e = :75) with � � < � < �
and identify the conics.

b. Plot the curve with e = 1 with � 3:10 < � < 3:10. Can you
identify this conic?

c. Plot the curve with e = 2 with � 2:09 < � < 2:09. Can you
identify this conic?

d. In the last plot, what is the signi�cance of the number� = 2:09?
What curves do you get when� � < � < � 2:10 or 2:10 < � < � ?
(Warning: If you try plotting with the default range [ � �; � ] it will
eventuallygraph the complete conic but it takes a very long time!
PressEscif you can't wait.)

6. Let x = (cos t)3 and y = (sin t)3 for � � � t � � .

a. Plot the parametric curve.

b. UseDerive 's tracing method described on page 122 to �nd where
the speed is 0 on the graph.

c. Switch to the algebra window and verify your empirical observa-
tions by using (2) on page 123 to determine exactly where the
speed is zero.
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7. Let x = t sint and y = t cost for � 3�= 2 � t � 3�= 2

a. Plot the parametric curve.

b. Use tracing to determine how a particle (ant) traverses the curve
over the givent interval. Sketch arrows on the graph to indicate
the motion.

c. What will happen if t is allowed to exceed 3�= 2? Does it go around
the curve again?

*8. Start by authoring

r (�; a ) := a(esin � � 2 cos(4� ))

where we think of this function as a polar curve in� with a para-
menter a. UseDerive 's vector function to make a vector of the func-
tion r (�; a ) where the parametera goes from 1 to 2 in increments of
size 0:25. (So after you simplify it, the vector will contain 5 functions.)
Plot this vector of 5 functions using polar coordinates. Does it look
like a buttery? (This curve is similar to one described by T.H. Fay,
The buttery curve, Amer. Math. Monthly, vol. 96, May 1989, p. 442.)
It can be viewed on the Web as Figure 3 on our home page

http://www.math.hawaii.edu/206L/

9. Let x = t � sint and y = 1 � cost for t � 0.

a. Plot the parametric curve.

b. Use tracing to verify that the motion stops briey each time it
touches thex{axis.

c. Verify your observations in part b by using the formula for speed
given in (2) on page 123.

10. Imagine a circle (or wheel) of radius one rolling along thex{axis at
unit speed. Now try to picture the path followed by a �xed point on
this circle as its rolls. This is the parametric curve in problem 9, it is
called acycloid curve. It may seem a little surprising that the speed of
the point on the wheel is 0 once every time the wheel revolves even as
the center of the wheel travels at a constant speed.
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a. Make a graph of the speed function (2) and determine how fast
the point on the wheel going when it is at its highest point? (Hint:
Plot the speed function and cycloid curve together on the same
graph.)

b. Load the �le F-CYCL.MTH and plot expression#8 which contains
the parametric curves for 5 positions of the rolling wheel along
with a dot marking the particle's position on the wheel. Then
plot the cycloid expression#3, see Figure 8.6.

Figure 8.6: The cycloid curve and the rolling wheel

11. Plot the parametric curve x = sin( � sint) and x = cos(� sint) for
� � � t � � .

a. What geometric object does this look like? Prove that your answer
is correct.

b. Using the trace feature to see how a particle following thesepara-
metric equations moves along this geometric object. Describe this
motion in words.
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c. Are there places where the point seems to have speed 0? Find a
formula for the speed of the particle at timet. At what times does
the particle have speed 0 and what is the position of the particle
at these times?

12. Two particles move in the plane. The motion of the �rst is described
by the parametric equations

x(t) = 16=3 � 8t=3; y(t) = 4 t � 5; t � 0

and the second one by

x(t) = 2 sin( �t= 2); y(t) = � 3 cos(�t= 2); t � 0

Plot both of these curves. Find where the curves intersect. But just
because the curves cross does not mean the particles collide; they might
arrive at the intersection point at di�erent times. Where do the parti-
cles collide?
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Chapter 9

Series

9.1 Introduction

An in�nite series is a sum with in�nitely many terms:

1X

i =0

ai = a0 + a1 + a2 + � � �

We de�ne
P 1

i =0 ai = s to mean that

lim
n!1

nX

i =0

ai = s;

if this limit exists. If the limit does exist we say the seriesconverges; oth-
erwise we say itdiverges. There are two basic techniques for showing that
a series is convergent. One method is to show directly that the above limit
exists. There are not many examples when we can do this but a particularly
important one isgeometric serieswhich will be discussed in the next section.

The second method for showing convergence applies to serieswith non-
negative terms, i.e., the case thatai � 0 for all i = 1; 2; : : : . In this case the
partial sums,

sn = a0 + a1 + � � � + an =
nX

i =0

ai ; n = 0; 1; : : :

form an increasing sequence,s0 � s1 � s2 � : : : . Hence, by a fundamen-
tal property of real numbers, the limit limn!1 sn exists if and only if the

129
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sequencef sng is bounded. This second technique is used extensively for
proving convergence and obtaining estimates on the answer.Particular ex-
amples are theratio test and the integral test which we will discuss in this
chapter.

9.2 Geometric Series

A geometric seriesis one in which the ratio of consecutive terms is constant,
i.e., series of the form

P
axi . To evaluate this series letsn =

P n
i =0 x i = 1 +

x + x2 + � � � + xn . Then

sn � xsn = (1 + x + x2 + � � � + xn )

� (x + x2 + � � � + xn + xn+1 )

= 1 � xn+1

Factoring out sn and solving, we get

(1) sn =
nX

i =0

x i = 1 + x + x2 + � � � + xn =
1 � xn+1

1 � x
; if x 6= 1

It's instructive to verify this formula in DfW. You start by c licking the sum

button and enter x^k. Make sure the variable isk (not x) and set the
Start value to 0 and the End value to n. Click OK and edit the resulting
expressionSUM( x^k, k, 0, n) by multiplying it by the factor (1 � x).
Lastly, use Simplify/E xpand to get the desired 1� xn+1 .

If jxj < 1, then limn!1 xn+1 = 0. Thus, we get that limn!1 sn exists
and so the series is convergent. In addition, the following simple formula for
evaluating geometric series holds:

(2)
1X

i =0

axi = a + ax + ax2 + � � � =
a

1 � x
; if jxj < 1

If jxj � 1 then the series diverges because limn!1 sn does not exist.
We can verify this formula in Derive by entering, as we did above or

directly, the expressionSUM( ax^k, k, 0, inf) which displays as the left
hand side of (2). Now we must declare that� 1 < x < 1. We do this using
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the Declare/Variable Domain menu for the variablex and the open interval
(� 1; 1). If you do this right the expressionx : 2 Real (-1,1) will be the
result. If not you should be able to edit the expression untilit is right.
Finally simplify the in�nite series to get a=(1� x) which is the desired result.

9.3 Applications

Geometric series are useful in several areas, for example, business and �nance.
We will give some of the important examples.

Interest. If you start with p dollars (p for principal ) in a bank account
which earns 6% per year how much money will you have aftern years?
Assuming the interest is compounded yearly, you will be given an interest
payment of 0:06p after one year. You will still have the originalp dollars
so that the amount of money in the account after one year will be p(1:06).
Notice that this is saying that each year the amount of money in the account
gets multiplied by 1:06. Thus after n years the account will havep(1:06)n

dollars. If we let r denote the interest rate, the amount aftern years is
p(1 + r )n .

An interesting alternative to this formula is obtained by focusing on the
year to year change in the savings account balance. Lets bal(k,p,r) denote
the balance afterk years, starting with an amount p which is compounded
annually at a rate r . This function can be de�ned in DfW by

s bal(k,p,r):=IF(k=0,p,(1+r)*s bal(k-1,p,r)).

Notice how we use the functionIF(test,true,false) . To compute say
s bal(2,p,r) the �rst thing that happens is the test k = 0 fails and hence we
get (1+r)*s bal(1,p,r) . But then s bal(1,p,r) is computed in a similar
manner, i.e., the testk = 0 fails again so now

s bal(2,p,r)=(1+r)*s bal(1,p,r)=(1+r)*((1+r)*s bal(0,p,r)).

Finally, s bal(0,p,r) is evaluated but this time the test k = 0 succeeds
and so the answer isp. Combining the answers we get the same result as
before (1 + r )2p. This type of computation has a fancy name; it's called
recursive programmingand it is particularly useful in situations where you
have a sequence of numbers which change one to the next by a �xed rule.
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Now suppose that the bank compounds your money quarterly instead of
annually. This means that they give you 6=4 = 1:5% interest four times a
year. So the amount of money in your account aftern years isp(1:015)4n .
For a general rater compoundedk times a year, the amount of money aftern
years is

(3) p
�
1 +

r
k

� kn

This can be also be expressed ass bal(kn,p,r/k) .
Now suppose that you deposita dollars each year into a bank account

paying a rate r in interest, compounded annually. Suppose that you opened
the account with an amount p dollars. How much money will the account
have aftern years? This is easy to do using a small modi�cation in thes bal
function as follows:

s bal(k,p,r,a):=IF(k=0,p,(1+r)*s bal(k-1,p,r,a)+a).

In other words we need only account for the extraa dollars which are de-
posited each year. We can get a nice table of values by numerically approxi-
mating

VECTOR([k,sbal(k,1000,.06,100)], k, 0, 10)

to see how an initial balance of $1000 will grow over a ten yearperiod, at
6% annual interest, if we add an extra $100 each year.

Now if you make the same table as above using the symbolic values for
p, r and a you get a sequence of expressions which don't appear to follow
any clear pattern. On the other hand, if we substituter1 = 1 + r everything
is much clearer. In DfW you would declare a variabler1 and user1-1 as a
replacement forr , then the table obtained by entering

VECTOR([k,sbal(k,p,r1-1,a)], k, 0, 10)

and pressing presents the following pattern fors bal(k,p,r,a) :

a(r k� 1
1 + r k� 2

1 + � � � + r1 + 1) + prk
1

= a
r k

1 � 1
r1 � 1

+ prk
1

= a
(1 + r )k � 1

r
+ p(1 + r )k



9.3. APPLICATIONS 133

Here we used (1) withx = r1 = 1 + r . Thus, the geometric series arises nat-
urally in compound interest problems and provides us with a useful formula.

Loan repayment. Suppose we borrowp at an annual rate ofR. We are
to pay this loan back by paying a monthly amount ofa dollars for n years.
Now the monthly interest is r = R

12. Thus, at the end of the �rst month we
owe the p dollars plus the interest it would have earned,rp, for a total of
(1 + r )p. We also make a payment ofa dollars so the net amount we owe is
(1 + r )p � A. The same computation is used month after month except that
the p is replaced with the loan balance for the previous month. Hence, if let
l bal(k,p,r,a) denote the loan balance afterk months on a loan amount
of p dollars at a monthly interest rate r and monthly payment a then

l bal(k,p,r):=IF(k=0,p,(1+r)*l bal(k-1,p,r)-a).

which is very similar to our de�nition for s bal .
Now suppose we are interested in a loan of $20,000 at a monthlyinterest

rate of r = 0:01. The problem is to compute the monthly paymenta which
will result in paying o� the loan in four years. We can displaya four year
history of the loan in a table when the payments area = $500 by �rst
authoring the vector [k, l bal(k,20000,0.01,500)] and then using the
Calculus/Vector menu to produce the expression

VECTOR([k, l bal(k,20000,0.01,500)], k, 0, 48, 1) :

We see1 that after 4 year (sok = 48 payments) we still have an outstanding
balance of $1633.21 (of course, we could also discover this by just simplify-
ing l bal(48,20000,0.01,500) ). This means that $500 per month is not
enough to pay o� the loan in 4 years. At this point we could try increas-
ing the payment a and then computingbal(48,20000,0.01,a) until we get
nearly zero. We might start by incrementinga by $10 until we get the answer
within $10 and then increment by a dollar until we get the answer within a
dollar. For repeated computations this would be a rather tedious approach.

By comparing with the formula derived for s bal using the geometric

1Due to a bug it's necessary to author a comment or any other expression before you
can scroll through this matrix.
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series we get a similar formula forl bal(k,p,r,a) , namely,

(1 + r )kp � a
k� 1X

i =0

(1 + r ) i = (1 + r )kp � a
1 � (1 + r )k

1 � (1 + r )

= (1 + r )kp � a
(1 + r )k � 1

r
(4)

Using this formula we can easily get the general formula fora by solving
l bal(k,p,r,a) = 0 for a. Thus, the monthly payments a on a loan ofp
dollars at a monthly interest rater (divide the annual rate by 12) for a period
of n years (sok = 12n payments) is:

(5) a =
r (1 + r )kp

(1 + r )k � 1
where k = 12n:

Thus, in our $20,000 example you needa = $526:68, i.e.,

bal(48,20000,0.01,526.68) = 0:

Repeating Decimals. What exactly is meant by the decimal representa-
tion of a number x = 0:d1d2d3 � � � , where each of the digitsdk are integers
0 � dk � 9? One explanation is that there is no di�culty as long as it isa

�nite decimal, i.e., 0:d1 =
d1

10
, 0:d1d2 =

d1

10
+

d2

100
, etc. For the in�nite case,

we can think of our decimal as the limit of an increasing sequence which is
bounded from above:

0:d1 � 0:d1d2 � 0:d1d2d3 � � � � � 1 :

and hence this sequence has a limit, as mentioned above.
Another approach is to view the decimal as anin�nite series as follows:

(6) x = 0:d1d2 � � � =
d1

10
+

d2

102
+

d3

103
+ � � � =

1X

k=1

dk

10k

Now clearly, the partial sums form an increasing sequence since the terms
are nonnegative numbers. However, maybe it is not completely obvious that
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they are bounded by 1! Here's a proof:

d1

10
+

d2

102
+ � � � +

dn

10n
�

9
10

+
9

102
+ � � � +

9
10n

=
9
10

+
9
10

1
10

+
9
10

1
102

� � � +
9
10

1
10n� 1

�
9
10

+
9
10

1
10

+
9
10

1
102

+ � � � =
9
10

1 � 1
10

= 1:

Note that the key step above was recognizing that the geometric seriesP 1
k=0 a(1=10)k , wherea = 9=10, sums to 1 by (2) on page 130.
Of course, we also notice that repeating decimals like 0:999� � � = 1 and

0:333� � � = 1=3 are all geometric series when represented as above. Try to
�gure out the a, x in (2) in each case. This turns out to be true of any
repeating decimal and hence by the formula (2) these decimalnumbers must
be fractions a=bwhere a, b are integers. In fact, the converse is also true,
namely, a decimal is a fraction if and only if it is eventuallyrepeating.

Example. Consider the eventually repeating decimalx = 0:5010101� � � .
We express this as

x =
5
10

+
1

103
+

1
105

+ � � � =
1
2

+
1X

k=0

10� 3
�
10� 2

� k

=
1
2

+
10� 3

1 � 10� 2
=

1
2

+
1

990
=

248
495

:

We might notice that it is not possible to enterx in Derive as a decimal
but we can de�ne it by means of the in�nite series above. Then,simplifying
we get the above result.

9.4 Approximating In�nite Series

We can determine the sum of a geometric series exactly but formost conver-
gent in�nite series this is impossible. If the series converges tos =

P 1
k=0 ak ,

then by de�nition s can be approximated arbitrarily closely by the partial
sums

P n
k=0 ak for large enoughn. In this section we investigate two methods

for approximating in�nite series, with a given precision.
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The Ratio Test. In a convergent geometric series,ak = axk , and hence
ak+1 = akx, i.e., the ratio of consecutive terms isx, where jxj < 1. In this
section we consider positive series (ak > 0) where the the ratio of consecutive
is approximately equalto somex with 0 < x < 1. It will turn out that all
such series converge and that we can estimate their size by comparisons with
appropriate geometric series. This technique is called theratio test.

Theorem 1. Let ai be positive.

(a) If lim i !1 ai +1 =ai = � < 1, then the series
P

ai converges.

(b) Suppose that0 < x < 1 and that for somen, ai +1 =ai � x for all i > n .
Then

(7) 0 �
1X

i =1

ai �
nX

i =1

ai �
an+1

1 � x

Proof. If lim i !1 ai +1 =ai = � < 1, then for any x satisfying � < x < 1,
we know that the ratios will be less thanx for all large i . Thus, given x
there is an n for which ai +1 � xai wheneveri > n . So an+2 � xan+1 and
an+3 � xan+2 � x2an+1 . In general,an+1+ k � xkan+1 and hence for allm > n

0 �
mX

i =1

ai �
nX

i =1

ai = an+1 + an+2 + � � � + am

� an+1 (1 + x + x2 + � � � ) =
an+1

1 � x
:

Thus, the partial sumsf sm g are bounded and the series is convergent. More-
over, the inequality (7) follows by taking limits asm ! 1 .

Example. Suppose we want to use Theorem 1 to prove that the series

1X

k=0

2k

k!
=

1
1

+
2
1

+
4
2

+ : : :

converges and estimate its value with an error of at most 10� 6. The �rst
step is to show that limk!1 ak+1 =ai < 1. We think of the terms as a
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function of k by authoring term(k):=2^k/k! . Now simplifying the ratio
term(k+1)/term(k) we see that

ak+1

ak
=

2
k + 1

�
1
2

for all k > 2. Thus, limk!1 ak+1 =ak = lim k!1 2=(k +1) = 0 < 1 so the series
converges and furthermore we can takex = 1=2 and n = 2 in Theorem 1(b).

Now we must determinen so that

an+1

1 � x
= 2an+1 < 10� 6 :

We do this by authoring

VECTOR([n,2*term(n+1)],n,2,20) ,

approximating the result and then searching the entries (byscrolling) until
we �nd one smaller than 10� 6. It turns out n = 13 works. The last step is
to compute the partial sums13 =

P 13
k=0 2k=k! giving 7:38906.

We might observe how fortunate we were thatk turned out to be so small.
Recall some of our computations using the trapezoid method or Simpson's
rule where similar accuracy required thousands or even millions of computa-
tions (using the left endpoint method, for example). It is one of the funda-
mental properties of geometric series that they converge very rapidly. Think
about it, 6{decimal place accuracy with just 15 computations!

As it turns out this series is rather special since

1X

k=0

2k

k!
= e2 = 7:38905� � �

This important fact will be explained in the next chapter. For now, try
authoring the above in�nite series and haveDerive simplify the result.
What if the 2 is replaced with 3 orx?

Example � . Now consider the harder problem of approximating

1X

k=1

k!
kk
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with error again of at most 10� 6. Proceeding as before we author the formula
term(k):=k!/k^k . Now by �rst simplifying and then taking limits we see
that

lim
k!1

ak+1

ak
= lim

k!1

kk

(k + 1) k
=

1
e

<
1
2

sincee > 2. Thus, the limit is less than 1 so the series converges. Further-
more, we can takex = 1=2 in Theorem 1(b). But now we need to �nd an
integer n so that ak+1 =ak = kk=(1 + k)k < 1=2 for all k > n .

This step is harder than before. If we graphf (x) = ( x=(x+1)) x it appears
to be decreasing for allx � 0. See Figure 9.1.

Figure 9.1: Ratio test example

In order to prove that f (x) is a decreasing function we di�erentiate and
show that f 0(x) < 0. Using Derive we get

f 0(x) = �
xx

(x + 1) x+1
[(x + 1) ln( x + 1) � (x + 1) ln x � 1]

= �
xx

(x + 1) x

�
ln(x + 1) � ln x �

1
x + 1

�
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after some rearrangement (see the �le F-RATIO.MTH for the step-by-step
procedure). Sincexx=(x + 1) x is positive for x > 0, we need to show that
ln(x + 1) � ln x � 1=(x + 1) is positive. At this point Derive can't help so
we need an idea from calculus. One quick way to solve this problem is to
use the Mean Value Theorem for the functiong(x) = ln x. The Mean Value
Theorem says:g(b) � g(a) = g0(c)(b� a) for somea < c < b. For a = x and
b= x + 1 this gives ln(x + 1) � ln x = 1=c for somex < c < x + 1. Thus

ln(x + 1) � ln x �
1

x + 1
=

1
c

�
1

x + 1
> 0

where we obtain the desired inequality sincec < x + 1. Thus, f 0(x) < 0 for
all x > 0 and sof is decreasing.

Now that we have established that the ratios decrease we needto know
when they are less than 1/2. Since

ak+1

ak
=

kk

(k + 1) k
= f (k) � f (1) =

1
2

:

for all k � 1, it follows that we may apply the theorem for anyn. Finally,
by (7), we must determinen so that

an+1

1 � 1
2

= 2an+1 < 10� 6 :

As before we author

VECTOR([n,2*term(n+1)],n,2,20) ,

approximate the result and then search the entries until we �nd one smaller
than 10� 6. It turns out in this case that k = 16. Computing the partial sum
s15 gives 1:87985.

Now suppose that your series
P

ak satis�es lim ak+1 =ak = � but that
� � 1. The case� > 1 is pretty much like the case� < 1 except that now
the series diverges. The idea is to pick 1< x < � and observe that

1 = an + anx + anx2 � � � � an + an+1 + an+2 + : : :

for some largen since nowak+1 =ak � x for all k � n. The case� = 1 is
much harder since, as we see in the next section, there are examples in which
the series converges and examples where it diverges.
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The Integral Test Suppose thatf (x) is a decreasing positive valued func-
tion, for x � 1. Let an = f (n). We want to approximate

P 1
i =1 ai and

determine whether the series is convergent or divergent.
In Section 6.4 we saw that, for a decreasing function likef (x), the left

endpoint method of estimating a de�nite integral of f (x) always overesti-
mates the integral while the right endpoint method underestimates it. This
is quite obvious by looking at Figure 9.2 on the facing page where we use
f (x) = 1 =x as our function and apply the box drawing function from Chap-
ter 6; see the �le F-SERINT.MTH for a demonstration. Now, we observe
that since the interval size is one, the area of the box with height f (n) is just
an . From this we get that adding the area of boxes corresponds topartials
sums of the series

P
ak . Thus, for any 1� n � m

(8)
m+1X

i = n+1

ai �
Z m

n
f (x) dx �

mX

i = n

ai

The sum on the left is the right endpoint estimate and the sum on the right
is the left endpoint estimate, when we use �x = 1 as the subinterval size.
From this inequality, we obtain the following theorem:

Theorem 2. Suppose thatf (x) is a continuous, nonnegative, decreasing
function for x � 1. Put an = f (n).

(a) The sum
P 1

i =1 ai converges if and only if the improper integral
R1

1 f (x) dx
does.

(b) Moreover, the inequality

(9)
nX

i =1

ai �
nX

i =1

ai +
Z 1

n+1
f (x) dx �

1X

i =1

ai �
nX

i =1

ai +
Z 1

n
f (x) dx

holds for all n = 1; 2; : : : .

(c) The value of the series can be estimated using the following:

(10) 0 �
1X

i =1

ai �

 
nX

i =1

ai +
Z 1

n+1
f (x) dx

!

� an
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Figure 9.2: The geometric estimate used in the integral test

Proof. Suppose that the improper integral
R1

1 f (x) dx is convergent so that
the total area under the curve is �nite. From (8) it follows that

m+1X

i = n+1

ai �
Z m

n
f (x) dx �

Z 1

n
f (x) dx < 1

and hence the partial sumsf sm g arebounded(the �rst n terms are irrelevant).
Thus, the series converges and the second inequality in (9) follows from

1X

i =1

ai =
nX

i =1

ai +
1X

i = n+1

ai �
nX

i =1

ai +
Z 1

n
f (x) dx :

A similar argument shows that the integral is convergent if the series is and
that the �rst inequality in (9) holds.

The �rst inequality in (10) is an immediate consequence of (9) and simi-
larly it follows that the middle expression in (10) is bounded by

Rn+1
n f (x) dx.

But since f (x) is decreasing this integral is less than or equal tof (n) = an

and the theorem is proved.
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We note that (9) actually gives us two methods for approximating the
sum of a convergent seriess =

P 1
k=1 ak . The �rst technique looks more like

the one used in the ratio test:

0 � s � sn =
1X

i =1

ai �
nX

i =1

ai �
Z 1

n
f (x) dx

and the second one is the more re�ned estimate (10) which usesthe quantity

nX

i =1

ai +
Z 1

n+1
f (x) dx

to approximate s instead of the partial sum sn . As we shall see in the
examples, this more re�ned method has a dramatic computational advantage.

A curious formula. As our �rst application of the integral test let us
prove that the series

1X

k=1

1
k2

= 1 +
1
22

+
1
32

+ : : :

is convergent. First note that � = 1 in the ratio test so we cannot use that
approach. Next, we takef (x) = 1 =x2 and observe (say usingDerive ) that

Z n

1

dx
x2

= �
1
x

�
�
�
�

n

1

= 1 �
1
n

! 1 as n ! 1

and hence the improper integral
R1

1 dx=x2 is convergent. Now, by the integral
test the series

P
1=i2 < 1 , that is the series is convergent. Actually, a similar

argument shows that
P

1=ip < 1 wheneverp > 1.
Now it is a remarkable fact that

(11)
1X

i =1

1
i2

= 1 +
1
4

+
1
9

+ � � � =
� 2

6
:

You have to wonder how the� {term can possibly be involved in this compu-
tation. The proof of this fact is beyond the scope of this textbut Derive
can help usbelievethis result. One way to do this is to haveDerive simplify
the series and get� 2=6 as the answer. It works, try it. A more independent
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approach would be to compute the partial sumssn for severaln and com-
pare with a decimal approximation to� 2=6. In Figure 9.3 on the next page
we haveDerive make these comparisons withn = 100, 1000, and 10,000.
We also observe thatDerive knows about (11) and simpli�es the series
accordingly.

Figure 9.3: Summing the series
P

1=i2

Problem: Compute this series to m decimal places. We solve this
problem by using (10) which in this case says:

(12) 0 �
1X

i =1

1
i2

�

 
nX

i =1

1
i2

+
1

n + 1

!

�
1
n2

:

Thus, to solve our problem we need only �ndn so that right-hand side of
(12) is less than 10� m , and then use

nX

i =1

1
i2

+
1

n + 1
= 1 +

1
4

+
1
9

+ � � � +
1
n2

+
1

n + 1
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for our estimate. For example, withm = 6 we need to taken2 > 10m or
n > 1000.

Something rather amazing occurred in this problem. In Figure 9.3 we
used the partial sumsf sng to approximate the sums. This is the natural
thing to do sinces = lim sn . But the accuracy in Figure 9.3 is only 3 or 4
decimal places withn = 1000. This error is to expected since (8) yields

0 � s � sn =
1X

i = n+1

1
i2

�
Z 1

n

dx
x2

=
1
n

and the right-hand side is just less than 10� 3. On the other hand, adding
the term 1=(n + 1) (which is the integral in (10)) increases the accuracy to
1=n2 = 10� 6. This accuracy is1000 times betterthan the other estimate.
Put another way, suppose for example that both computationstake about
3 seconds withn = 1000 on your PC, the amount of computation time
needed to produce 6 decimal place accuracy using the less e�cient method is
almost an hour! See the �le F-2-SER.MTH which contains a comparison of
these methods. This problem illustrates the potential value of a innovative
approach to a computation compared to the conventional solution.

The Harmonic Series Let us apply the integral test to the harmonic
series, namely,

1X

i =1

1
i

= 1 +
1
2

+
1
3

+ : : :

We take f (x) = 1 =x in the theorem and observe that
Z x

1

dt
t

= ln x ! 1 as x ! 1

and hence the integral is divergent. Thus, the series is divergent. Another
way to express this is that

P 1
i =1

1
i = + 1 or in other words, the partials sums

are eventually larger than any given number.
Consider this: How many terms of the harmonic series are necessary

before the partial sums exceed 100? Is the answer 1000? 1,000,000? 1010?
Amazingly, none of these answers are even close to the actualresult. Suppose
that 100 < ln n, then by (8)

100< ln n =
Z n

1

dt
t

�
nX

1

1
i
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so that any n > e100 � 2:6 � 1043 is certainly large enough. On the other
hand, using (8) again we have

100�
nX

1

1
i

= 1 +
nX

2

1
i

� 1 +
Z n� 1

1

dt
t

< 1 + ln n

so that when combined with the above we see that the bestn satis�es: e99 <
n < e100.

9.5 Laboratory Exercises

For these problems it is a good idea to have more digits of precision: choose
Declare/Algebraic State/Simpli�cation and the Digits box to 10 or 12.

1. Formula (3) on page 132 shows the amount of money in an account
after n years if the interest rate isr , the original amount is A, and
the interest is compoundedk times a year. In Problem 1 on page 112
you showed that if interest is compoundedcontinuously, the amount of
money would beAern .

a. Show that the limit as k ! 1 of compoundingk times a year is
the same as compounding continuously.

b. If you put $1000:00 into an account earning 4:5% interest, how
much money will be in the account after one year if the interest
is compounded yearly? quarterly? daily? continuously?

c. Do the previous part only assume that the bank is paying 9%.

2. Suppose you get a 30 year mortgage loan for $200; 000 which is to be
repaid in 30� 12 equal monthly payments, based on an annual interest
rate of 7:5%.

a. Find your monthly payment.

b. How much do you still owe after your �rst payment? How much
of your �rst year's payment went to interest and how much went
to paying o� the principal?
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c. Formula (4) gives the amount you still owe afterk months. Re-
place thek with 12k in Formula (4) so that k now represents years,
approximate the resulting expression and then plot. (You'll need
to adjust the range in such a way that the visiblex-axis contains
the range 0 to 30 and they{axis contains the range 0 to 200; 000.)
Notice that at the beginning the amount you owe changes slowly
but that near the end of the 30 years it changes quickly.

3. In some problems involving monthly payments or interest themonthly
interest rate is computed by dividing the annual rate by 12. But some-
times the monthly rate m is not speci�ed and instead thee�ective
annual rate r is given. This means that compounding the monthly rate
m 12 times gives the annual rater , i.e. (1 + m)12 = 1 + r . Consider
the previous problem but now suppose that thee�ective annual rate is
7:5%.

a. Calculate the monthly rate for this problem.

b. Find the monthly mortgage payments using this new rate.

4. The bank says that it will give you a car loan of $6,000 provided you
make monthly payments of $135 for 5 years. What interest rateis the
bank charging? (Hint: You may need to be a little careful how you
compute this.)

5. Consider the fraction 1=7.

a. Using Derive show that 1=7 appearsto have a repeating decimal
expansion. What is it?

b. Express this repeating decimal from parta as an in�nite series,
see the example on page 135.

c. Have Derive simplify this series.

d. Identify the a and x terms from (2) and verify using that formula
that your in�nite series simpli�es to 1=7.

6. Have Derive evaluate the sum
P 1

n=1 1=n2. (Make sure you use Exact
mode.) Evaluate the left and right sides of formula (9) in Theorem 2
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on page 140 forn = 1000. You should approximate the sum rather
than Simplify, otherwise the computation time is fairly long. Usethese
to estimate � giving upper and lower bounds.

7. For each of the following series
P 1

k=0 ak �nd � = lim i !1 ak+1 =ak and
show that � < 1=2. Now use Theorem 1 withx = 1=2 to �nd n large
enough so that

P n
k=0 ak approximates the series with error at most

10� 6.

a.
1X

k=0

k3

4k
b.

1X

k=0

(k!)2

(2k)!

8. Use Theorem 2(c) to evaluate each of the following series with an
error of at most 10� 6. (The �nite sum of Theorem 2(c) should be
Approximated but the improper integral should be evaluated exactly.)

a.
1X

k=2

1
k(ln k)2

b.
1X

k=1

1
k3

c.
1X

k=1

1
1 + k2

9. Some of the following series converge and some diverge. Decide which
do which and state the required Theorem needed to prove your conclu-
sion.

a.
1X

k=0

2k b.
1X

k=2

1
k ln k

c.
1X

k=0

1
ek

d.
1X

k=1

2 � 4� � � 2k
(2k)!

10. Consider the series
P 1

k=0 1=k!.

a. Show that the series converges by the ratio test.

b. Have Derive simplify this series.
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c. Use these results to approximate the Euler constante with an
accuracy of 10� 6

*11. The following formula

(13) 1 + 2
1X

k=1

e� k2=t =
p

t�

 

1 + 2
1X

k=1

e� k2 � 2 t

!

is known to hold for all t > 0. The formula is derived from an im-
portant technique in the theory of Fourier transforms called Poisson
summation. We will not attempt to prove this formula but instead try
to use it as a method of approximating� more e�ciently than in an
earlier problem. It has a number of other useful applications too. We
will �x the value of t = 2 for the rest of this problem.

a. Using the ratio test, show that both in�nite series in (13) are
convergent.

b. Use Theorem 1 withx = e� 6� 2
andn = 1 to show that

P 1
k=1 e� 2k2 � 2

is less than 10� 8. Thus, with an accuracy of 2
p

2� 10� 8 or roughly
7 decimal places we can take the right hand side of equation (13)
to be

p
2� .

c. Using Theorem 1 again, show that

0 <

 

1 + 2
1X

k=1

e� k2=2

!

�

 

1 + 2
6X

k=1

e� k2=2

!

= 2
1X

k=7

e� k2=2 < 10� 10

and hence

� �
1
2

 

1 + 2
6X

k=1

e� k2=2

! 2

:

d. Approximate the above expression using Simplify/A pproximate
with the number of precision digits set to 10. Compare the above
approximation of � with Derive 's. What is the decimal place
accuracy?
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e. To achieve more decimal places you should increase the valueof
t. Show that with t = 10, the analogous estimate in partb is

1X

k=1

e� 10k2 � 2
< 10� 42

(This problem is essentially due to George Csordas.)
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Chapter 10

Taylor Polynomials

10.1 Polynomial Approximations

Suppose we want to approximate a functionf (x) by a polynomial

f (x) � Pn (x) = a0 + a1x + a2x2 + � � � + anxn =
nX

k=0

akxk :

One natural way to to do this is to require thatf (0) = Pn (0), f 0(0) = P0
n (0),

f 00(0) = P00
n (0), etc., i.e., f (k)(0) = P (k)

n (0) for k = 0; : : : ; n. This givesn + 1
equations for then + 1 unknowns a0; : : : ; an . If we di�erentiate, say P3(x),
several times these equations become quite clear:

P3(x) = a0 + a1x + a2x2 + a3x3(1)

P0
3(x) = 1 � a1 + 2 � a2x + 3 � a3x2(2)

P00
3 (x) = 2 � 1 � a2 + 3 � 2 � a3x(3)

P000
3 (x) = 3 � 2 � 1 � a3(4)

Setting x = 0 in the �rst of these equations givesa0 = f (0). Setting x = 0
in the second of these equations gives 1� a1 = f 0(0). Taking more derivatives
and setting x = 0, we get 2� 1 � a2 = f 00(0), 3 � 2 � 1 � a3 = f 000(0). By thinking
about factorials, you can see the pattern evolving: the general term (solving
for ak) is

(5) ak =
f (k)(0)

k!
for 0 � k � n

151
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Pn (x) is what is known as thenth Taylor polynomial for f (x):

(6) Pn (x) =
nX

k=0

f (k)(0)
k!

xk

The coe�cient of xk in Pn (x) is just f (k)(0)=k! (which is the same for alln
as long asn � k). This quantity is called the kth{Taylor coe�cient for f (x).

As our �rst application, notice that it follows from (5) that the graph of
y = P1(x) is just the tangent lineto the curve y = f (x) at the point (0; f (0)).
We studied this method of approximation extensively in Section 2.2. Thus,
since the tangent line yields the best degree-one approximation to the func-
tion, near the point x = 0, it is reasonable that guess thatPn (x) is the best
nth {degree approximation, nearx = 0.

Notice that if m < n , then the terms of degreem or less in the polynomial
Pn (x) equal Pm (x), i.e., we obtainPn (x) from Pm (x) by adding higher order
terms. Now, we de�ne theTaylor series for f (x), about the point x = 0, as
the correspondingin�nite series :

(7)
1X

k=0

f (k)(0)
k!

xk = lim
n!1

nX

k=0

f (k)(0)
k!

xk = lim
n!1

Pn (x)

provided this series converges. Naturally, when this series converges we hope
that it converges to f (x) and hence the Taylor polynomials would converge
to the function. The conditions under which this occurs willbe explored
throughout this chapter. The use of graphics in speci�c examples will make
the success of this important approximation technique especially clear.

To have Derive compute a Taylor polynomial for a function �rst select
the Calculus/T aylor menu, then enter the function in the form, enter some
integer n, say n = 5, for the Degree and leave the Point1 value at its default
value of 0. This results in the expressionTAYLOR(f(x),x,0,5) . An alternate
approach after becoming familiar with its syntax is to simply author this
expression. See Figure 10.1 on the next page for some of the basic examples
and a comparison of the graph off (x) = 1 =(1 � x) and it's 5th degree
Taylor polynomial approximation. An interesting exerciseis to load the �le
F-TAY0.MTH which contains the expressions from Figure 10.1and compare
graphically the various functions with their Taylor polynomials of di�erent
degrees.

1For now we just take the Point value to be 0. Later, in Section 10.6 we discuss how
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Figure 10.1: Basic examples of Taylor polynomials

10.2 Examples

As we see from Figure 10.1, the formula for the geometric series in Chapter 9
looks to be very closely related to the Taylor polynomials for the function
f (x) = 1 =(1 � x):

(8)
1

1 � x
= 1 + x + x2 + x3 + � � � = lim

n!1

nX

k=0

xk :

This suggests that the partial sums above,
P n

k=0 xk , are thenth Taylor poly-
nomials. To verify this we must use (5) to compute the Taylor coe�cients.
We will need to showf (k)(0) = k!. Using Derive we can make a table of
derivatives by authoring

VECTOR([k, DIF((1-x)^-1,x,k)], k, 0, 4)

to use this variable.
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and then simplifying. The answers seem to follow the patternk!=(1 � x)k+1

which can be veri�ed by havingDerive check that:

DIF((1-x)^(-k-1) k!,x) = (1-x)^(-k-2) (k+1)!

(Try this for yourself).
Note that in Figure 10.1 the 5th degree Taylor polynomial approximation

gives a very good approximation on the interval [� :5; :5]. As we mentioned
earlier, you should Load the �le F-TAY0.MTH and experiment with higher
degree approximations to see how the interval size improves, but we must
bear in mind that the in�nite series is only valid for � 1 < x < 1 (even
though the function appears well behaved nearx = � 1).

Three other important examples are the series forex , sinx, and cosx.
If we look carefully at Figure 10.1 we might guess the patternfor the ex-
ponential function because the denominators 1, 1, 2, 6, 24, 120 are just k!
as k varies from 0� k � 5. On the other hand, equation (5) gives the re-
quired formula easily since all derivativesf (k)(x) = ex and so are 1 atx = 0.
Thus, in this casef (k)(0)=k! = 1=k! so the nth Taylor polynomial is simplyP n

k=0 xk=k! = 1 + x + x2=2! + � � � + xn=n!. Now, if we could take the limit as
in the case of the geometric series, then

(9) ex =
1X

k=0

xk

k!
= 1 + x +

x2

2!
+ � � � = lim

n!1

nX

k=0

xk

k!
:

We encountered this series earlier on page 136 withx = 2 and also in Prob-
lem 10 on page 147 withx = 1. In fact, the series above does converge, for all
values ofx, to the exponential function. Moreover, it is this series that forms
the basis for numerical calculations of the exponential function on computers
and calculators. Section 10.5 will give a complete explanation of this matter.

We can proceed in a like manner to compute the Taylor polynomials
for the sine and cosine functions. The only problem is that the pattern
for the successive derivatives is a little trickier. Let us discuss the function
f (x) = sin x since the analysis of the cosine function is similar. If we make a
vector of f (k)(x) with 0 � k � 4 we get [sinx; cosx; � sinx; � cosx; sinx] and
it is clear that the pattern will repeat in groups of 4 with f (4k)(x) = sin x.
Substituting x = 0 gives the pattern [0; 1; 0; � 1] and hence everyevenpower
of x, i.e., x0; x2; x4; : : :, will have a zero coe�cient; whereas, the odd power
x2k+1 will have the coe�cient ( � 1)k=(2k + 1)! by (5). See Figure 10.2 on
the next page for several Taylor polynomials of the sine function. The only



10.2. EXAMPLES 155

Figure 10.2: Taylor polynomials for sinx

unfortunate part about making these computations inDerive is that the
factorials are expanded to their integer values which makesit di�cult to
recognize the patterns. On the other hand, it's easy to see how fast the
factorials in the denominator grow which means that the added terms are
quite small in magnitude. At any rate, the Taylor polynomials form the
partial sums of an in�nite series representation of sinx which is convergent
for all �1 < x < 1 . This series and the one for cosx are given below:

sinx = x �
x3

3!
+

x5

5!
+ � � � =

1X

n=0

(� 1)n x2n+1

(2n + 1)!
(10)

cosx = 1 �
x2

2!
+

x4

4!
+ � � � =

1X

n=0

(� 1)n x2n

(2n)!
(11)

Next we want to graph several of these Taylor polynomials andcompare
them with the graph of sinx. This is done in Figure 10.3. Another instructive
exercise is to plot 3 or more Taylor polynomials all at once bymaking a vector
of the functions and then plotting the vector. As each successively higher
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Figure 10.3: Approximating sinx with its Taylor polynomials

degree polynomial is plotted, the range of close approximation gets larger
and larger. Curiously, one sees from Figure 10.3 that the approximation
is good up to a point and then is very bad thereafter. The basicidea in
approximating is simply to take more terms; i.e., use a higher degree Taylor
polynomial, to obtain more accuracy. An example of a more precise question
we shall be interested in is: What degreen is needed for approximating the
sine function on the interval [0; �= 2] to within 6 decimal places?

10.3 Taylor's Theorem with Remainder

We are interested in how accurately a Taylor polynomial approximates f (x)
and for what values ofx does the Taylor series converge tof (x). The basic
result is the following theorem:

Theorem 1. Suppose thatf (x) is (n + 1) {times continuously di�erentiable
on the interval [0; b]. Let the nth degree Taylor polynomial be denoted by
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Pn (x). Then, for any 0 � x � b we have

(12) jf (x) � Pn (x)j � max
0� t � x

jf (n+1) (t)j �
jxjn+1

(n + 1)!
= M �

jxjn+1

(n + 1)!

where we abbreviate the maximum byM .
Furthermore, the theorem also holds when the de�ning interval is [� b;0]

for some positiveb. The only change is that now� b � x � 0 and the
maximum in (12) is taken over the intervalx � t � 0.

Observe that the error estimate in (12) is similar to those weobtained
for the approximate integral formulas (Trapezoid method, Simpson's rule)
in that they depend on the maximum of a high order derivative,look back
at the formulas on page 91. Also, notice that whenn = 0 then (12) follows
immediately from the Mean Value Theorem and in fact, you can think of
(12) as ahigher orderMean Value Theorem.

The proof is based on a simple application of the integrationby parts for-
mula; namely, for any continuously di�erentiable functiong(t) which satis�es
g(0) = 0, then

(13)
Z x

0
g(t)

(x � t)m

m!
dt =

Z x

0
g0(t)

(x � t)m+1

(m + 1)!
dt m = 0; 1; : : :

Just put u = g(t) and v = ( x � t)m+1 =(m + 1)! and apply the integration by
parts formula. Notice that the integrated terms, i.e., theuvjx0 vanish because
g(0) = 0 at the left endpoint and (x � t)m+1 is zero whent = x.

Proof. Put g(t) = f (t) � Pn (t) let M be the maximum of jf (n+1) j on the
interval [0; x]. By the de�nition of the Taylor polynomial, observe that

g(m)(0) = 0 for m = 0; 1; : : : ; n and g(n+1) (t) = f (n+1) (t)

where the second fact follows since the (n + 1) st{derivative of any degreen
polynomial is zero (look back at (1) on page 149). Now we get toapply (13)
to g0; g00; : : : ; g(n) with the result that

Z x

0
g0(t) dt =

Z x

0
g00(t)(x � t) dt =

Z x

0
g000(t)

(x � t)2

2
dt

= � � � =
Z x

0
g(n+1) (t)

(x � t)n

n
dt
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and hence that

f (x) � Pn (x) = g(x) � g(0) =
Z x

0
g0(t) dt

=
Z x

0
g(n+1) (t)

(x � t)n

n
dt =

Z x

0
f (n+1) (t)

(x � t)n

n
dt :

We take absolute values of the left and right-hand sides of the above to get

jf (x) � Pn (x)j �
Z x

0
jf (n+1) (t)j

(x � t)n

n
dt

�
Z x

0
M

(x � t)n

n
dt = M

xn+1

(n + 1)!

which proves the theorem.

10.4 Computing the Sine Function

First observe that we don't need to compute, for example, sin100 directly
since the sine function is 2� periodic. We just set x = 100 � 2k� where
the integer k is chosen so 0� x < 2� . In Derive we simplify the function
MOD(100, 2� ) to get k = 15 and x = 5:75221 approximately. Now it's
an interesting exercise to use the properties of the sine function to reduce
the computation to the interval [0; � ]. For example, if � < x < 2� then
sinx = � sin(2� � x) where now 0� 2� � x < � . Similarly, you can use
the identity sin( � � x) = sin x to reduce the problem to the smaller interval
[0; �= 2]. It's even possible to reduce the interval to [0; �= 4].

We can use formula (12) to estimate the error in using the Taylor poly-
nomial to estimate sinx. The computation of M = max jf (n+1) j might look
a little formidable at �rst but we observe that any derivative is equal to ei-
ther � sint or � cost and in either caseM � 1. Thus, we can takeM = 1
and achieve 6 decimals of accuracy by determining the smallest integer n
satisfying

(14)
jxjn+1

(n + 1)!
� 10� 6

For approximations on the interval [0; �= 2] we could just take the worst case
by setting x = �= 2 in the above.
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We now have reduced the problem to solving (14) for the smallest possible
integer n. Unfortunately, the factorial expression means that we can't use
simple algebra to solve this inequality. A simple numericalapproach would
be to make a table withn in the �rst column and the above expression in the
second column. Examining the data will result in an answer provided n is
reasonably small. We did this earlier on page 136 when we studied the ratio
test. If this fails, as with the 1=k2 series, you might try testing various powers
of 10. Both of these techniques are easy to do using thevector function. (In
the next section we present another way of �ndingn.) In Figure 10.4, see
the �le F-TAY3.MTH, we analyze sin 100 by reducing the computation to a
smaller value ofx (x = 0:530973), determining whichn yields an error of less
than 10� 6 (n = 7) and then computing usingP7(0:530973). Observe that for
the sine functionP2n+1 (x) = P2n+2 (x) and so for the error computation (14)
we use the higher power 2n + 3 instead 2n + 2 and hence

(15) j sinx �
nX

k=0

(� 1)k x2k+1

(2k + 1)!
j �

jxj2n+3

(2n + 3)!
for n = 0; 1; : : :

Lastly, let us observe that the right hand side of (15) tends to zero for
any x. After all, for x �xed, the ratio of terms above is

jxj2n+5

(2n + 5)!
�

(2n + 3)!
jxj2n+3

=
jxj2

(2n + 5)(2 n + 4)
�

1
2

for all large n. Thus, jxj2n+3 =(2n + 3)! � cx=2n (or for that matter jxjn=n! �
cx=2n ) for some constantcx and the sequence tends to zero because 1=2n ! 0.
By applying Theorem 1 we see that the Taylor series convergesfor all x and
we indeed have the representation

(16) sinx = x �
x3

3!
+

x5

5!
+ � � � =

1X

n=0

(� 1)n x2n+1

(2n + 1)!

which is valid for all �1 < x < 1 . In a similar manner we establish (11)
on page 153.

10.5 Computing the Exponential Function.

Now let's repeat the above procedure forex . We use the partial sums of
(9) for approximating and (12) for determining the number ofterms to use.



160 CHAPTER 10. TAYLOR POLYNOMIALS

Figure 10.4: Approximating sin 100 within 6 decimals

Let's assumex > 0. Sincef (n+1) (x) = ex is an increasing function, we can
take M = ex or more conveniently we will replacee with the larger value 3.
Thus,

(17) jex � (1 + x +
x2

2!
+ � � � +

xn

n!
)j <

3xxn+1

(n + 1)!

and so we need only �ndn so that the right-hand side is su�ciently small.
We would like to de�ne a function in Derive to determine the number of

terms n necessary to achieve 6 decimals places, rather than lookingat tables.
First of all, recall from the previous section that

lim
n!1

3xxn+1

(n + 1)!
= 0

for all values ofx. Hence we are guaranteed that there is a �rstn for which
the above quantity is less than 10� 6. Moreover, this proves that the Taylor
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series converges for allx, by Theorem 1, toex . Thus, as stated earlier

ex =
1X

k=0

xk

k!
= 1 + x +

x2

2!
+ � � � = lim

n!1

nX

k=0

xk

k!

for all �1 < x < 1 .
Now consider the functions

1: N1(x,k) := IF(
3x xk

k!
< 10� 6, k-1, N1(x,k+1))

2: N(x) := N1(x,1)

and consider what happens when you Simplify N (5). The N -function com-
putes the N 1-function with a starting value of k = 1. The error expression
is compared to 10� 6 and if successful thenk � 1 is the value ofN (5); oth-
erwise,k is increased by one and the process continues. Eventually, we get
to a large enoughk so that the comparison with 10� 6 is successful and that
value of k � 1 is returned as the value of the function. The functionN 1 is
called a recursive function because its de�nition refers to itself. Care has
to exercised with such functions to make sure that they eventually return a
value and don't continue computing forever (press theEscif this happens).
See Figure 10.5 and load the �le F-TAY4.MTH where these functions are
used to de�ne a new version of the exponential function (forx � 0) which is
accurate to 6 decimal places. A comparison of this function with the built in
version obtained by approximating shows that the build in function is faster
but the accuracy is the same for the �rst 6 decimals usingP25(x).

10.6 Taylor Expansions About x = c

Up to this point we have been approximating functions nearx = 0. Suppose
instead we want to approximatef (x) near x = c. A simple approach is to
de�ne g(x) = f (x + c) and approximateg(x) near x = 0 as before. Observe,
that for x � c we then have

f (x) = g(x � c) � Pn (x � c) =
nX

k=0

ak(x � c)k

wherePn is the Taylor polynomial for g(x) and hence

ak =
g(k)(0)

k!
=

f (k)(c)
k!

:
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Figure 10.5: Approximating e5 within 6 decimals

By the above observation it makes sense to de�ne

Pn (x; c) =
nX

k=0

f (k)(c)
k!

(x � c)k

to be the nth {Taylor polynomial of f (x), expanded about the pointx = c. In
Derive we just enter TAYLOR(f(x),x,c,n) or put the Point variable equal
to c if we use the menu method.

Similarly, the Taylor series expansion about the pointc is

f (x) =
1X

k=0

f (k)(c)
k!

(x � c)k

provided this series converges tof (x). To discuss convergence of the above
we use Theorem 1 applied to the functiong(x) = f (x + c). We do the same
thing when we are computing withDerive . The advantage of this method
for Derive is that if the �fth Taylor polynomial of f (x) around c is say
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P 5
k=0 ak(x � c)k , Derive will expand the powers ofx � c so you get an

expression likeb5x5 + b4x4 + b3x3 + b2x2 + b1x + b0, and you won't be able to
see what theak 's are. Thus,

If you want a Taylor polynomial of f (x) expanded about the
point c, it is best to �nd the Taylor polynomial of f (x + c)
expanded about 0.

Figure 10.6: Taylor expansion of the logarithm function

A nice illustration of this technique is to examine Figure 10.6 where
f (x) = ln x is plotted along with P5(x; 1). Since ln 0 is not even de�ned it
would be foolish to think about its Taylor expansion aboutx = 0, however,
expanding aboutx = 1 is a reasonable alternative. Notice thatTAYLOR(ln
x,x,1,5) produces a messy result in which the 6th term is hard to guess but
that there is a clear pattern inTAYLOR(ln (x+1),x,0,5) . In fact, it can be
shown that

(18) ln(1 + x) = x �
x2

2
+

x3

3
� � � =

1X

k=1

(� 1)k+1

k
xk ; � 1 < x � 1
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although the proof that the series converges to lnx on the interval 0 <
x � 1=2 is straightforward, see Exercise 4, is quite a bit harder than our
earlier examples to get the full interval 0< x � 1. You can load the �le F-
LOG.MTH and try approximating ln x with higher degree Taylor polynomials
to see if you can con�rm the above representation. The full convergence
problem for the logarithm function will be studied in the next chapter.

10.7 Interval of Convergence

The Taylor series for f (x) = sin x, cosx, or ex converges tof (x) for all
values ofx. This means that, by taking the degree large enough, the Taylor
polynomials of these functions will approximatef (x) accurately on arbitrarily
large intervals. However, the geometric series (8) only converged forjxj < 1
and so the Taylor polynomial will approximate 1=(1� x) only on this interval.
Of course, 1=(1 � x) is not continuous atx = 1 and hence it is not surprising
that the Taylor polynomials will not converge at x = 1. Surprisingly, this
divergence atx = 1 turns out to inuence the convergence of the series for
negative values ofx! It is an important basic theorem about the convergence
of Taylor series that if the series converges at a pointx1 6= 0, then it also
converges atall jxj < jx1j. Thus, any Taylor series which diverges atx = 1
cannot converge at anyx < � 1. Why? If it did converge say atx1 = � 2,
then it would also converge atx = 1. But it diverges for x = 1 so it cannot
possibly converge atx1 = � 2 (or any jxj > 1). This fact also leads to the
observation that the set of pointsx where the Taylor series converges must
be an interval which is centered about the origin. Actually,there are four
possibilities for the interval of convergence: (� r; + r ), ( � r; + r ], [� r; + r ) or
[� r; + r ] for some 0� r � + 1 .2 This number r is called the radius of
convergence.

Now consider the function 1=(1 + x2). We can obtain the Taylor series
for this function by substituting � x2 for x in (8):

(19)
1

1 + x2
= 1 � x2 + x4 � x6 + � � � =

1X

k=0

(� 1)kx2k

As before we can useDerive to plot several of the Taylor polynomials for
this function; see Figure 10.7.

2We need to allow the notation r = + 1 so that the set of all real numbers can be
represented as the interval (� r; r ).
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Figure 10.7: Graphically �nding the radius of convergence

Notice that although the higher degree polynomials do a better job of
approximating the function for jxj < 1, none of them work outside of this
region. This strongly suggests that the radius of convergence of 1=(1 + x2)
is r = 1. This can be proved by observing the following: if the series s =P 1

k=1 ak converges then the termsak ! 0. This is becausean = sn � sn� 1 !
s � s = 0. Now, in our casejak j = jxj2k ! 1 wheneverjxj > 1. So even
though the function 1=(1 + x2) is de�ned and di�erentiable to all orders on
the whole real line, the radius of convergence of its power series is r = 1. It
is therefore impossible to deduce the radius of convergencefor a function by
looking at its graph.

In the case of our example 1=(1 + x2), an interesting explanation as to
why r = 1 can be based on the fact thatx2 + 1 has a complexroot at the
point x = i , which a distance one from the origin. We will not pursue this
approach here but let us say that this application of complexnumbers turned
out to be one the the great triumphs for this man-made invention.
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10.8 Laboratory Exercises

1. Start by declaring f (x) to be a function, i.e., Author F(x):= . Use the
Calculus/T aylor series menu to produce the expressionTAYLOR( F(x),
x, 0, 5) and then edit this expression by replacing the 5 withn (note
that the Taylor menu requires integer values for the degree). With this
last expression highlighted, use the Calculus/Vector menu twice, with
the Variable set to n, Start value 4, End value 10 and Step size 1 to
produce the two expressions:

VECTOR(TAYLOR( F(x), x, 0, n), n, 4, 10, 1)
VECTOR([n, TAYLOR( F(x), x, 0, n)], n, 4, 10, 1)

For each of the functions below do the following:

(i) De�ne f (x) to be the given function.

(ii) Simplify the �rst vector function above to make a 7{vector which
has the degreen Taylor polynomial, expanded aboutx = 0, for
n = 4; : : : ; 10 as its entries.

(iii) Graph this vector to plot each of these Taylor polynomial in suc-
cession. Then, plot the function, say in the color red, and compare
the graphs using an appropriate scale.

(iv) Simplify the second vector function to make a 7� 2{table that
has the degreesn in the �rst column and Pn(x) in the second
column.

(v) Use your table to guess what the in�nite Taylor series expansion
is.

(vi) Prove that in each case, the Taylor series expansion converges to
the function and determine the interval ofx's for which it is valid.
Use the series techniques of the previous chapter to do this.(Hint:
Try using (2) on page 130.)

a. f (x) =
x8

8
+ � � � +

x2

2
+ x

b. f (x) =
1

3 � x
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c. f (x) =
1

x2 + 2
(Hint: For the pattern recognition you will need

to change the output mode to Rational. Use the Declare/Algebra
state menu to access the Output menu.)

2. Let f (x) = ln
�

1+ x
1� x

�
for � 1 < x < 1.

a. Do parts (i){(iv) of Problem 1 using f (x). Show that your analysis
suggests that

(20) ln
�

1 + x
1 � x

�
= 2

1X

k=0

x2k+1

2k + 1
for � 1 < x < 1

b. Plot g(x) = 1+ x
1� x and show that y = g(x) is a strictly increasing

function on � 1 < x < 1 with range 0< y < 1 .

c. Solve 1+ x
1� x = 3 for x. Let x3 be your answer.

d. Assuming that (20) above is indeed valid, we get an in�nite series
for ln 3 by substituting x = x3 into (20). Use the ratio test on
page 136 to prove that the series converges.

e. Compare the numerical values ofPn (x3) for various n with the
approximate value of ln 3.

3. If we take x = 1=3 in (20) above we get

Z 2

1

dt
t

= ln 2 =
1X

k=0

2
(2k + 1)32k+1

:

In Chapter 6 we studied numerical integration techniques for approxi-
mating the above integral with the most e�cient method being Simp-
son's rule. One the other hand, using the ratio test on page 136 we
approximated the in�nite series similar to the above.

a. Using the error in Simpson's rule, formula (5) on page 91, deter-
mine approximately how many subdivisions (and hence how many
computations) are needed to obtain 8 decimal place accuracy.

b. For completeness, also do part (a) using the left endpoint method
and the trapezoid method.
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c. Show that the ratio of terms in the above series is less than 1=9.

d. Using formula (7) of Theorem 1 on page 136 withx = 1=9, deter-
mine how many terms are needed to approximate ln 2 to 8 decimal
places.

e. Now compare all four approximation techniques. Which method
is the most e�cient?

4. Let f (x) = � ln(1 � x). We want to determine the Taylor series for
f (x) and prove that it converges tof (x) using Theorem 1 on page 154.

a. Compute the �rst several derivative off (x) and guess at a general
formula for f (n)(x) for all n = 0; 1; 2; : : : .

b. Use part a to establish the Taylor series off (x) and hence if the
Taylor series converges tof (x) we would have:

(21) ln
�

1
1 � x

�
=

1X

k=1

xk

k
= x +

x2

2
+

x3

3
+ : : :

c. Use Theorem 1 to show that the (1) holds for any� 1 � x � 1=2.
(Hint: Carefully compute the right-hand side of (12) on page155.
Then, show that the error estimate tends to zero asn ! 1 only
for � 1 � x � 1=2.)

d. Show that taking x = � 1 in (21) leads to another series represen-
tation of ln 2. Analyze how quickly the partial sums of this series
converge to ln 2 by making tables of numerical computations.How
e�cient is this approach compared with the previous problem?

e. It turns out that (21) actually holds for all � 1 � x < 1 and the
radius of convergence isr = 1. By computing Pn (x) for several
n and comparing their graphs with f (x), show that the Taylor
polynomials seemto converge tof (x) on the full interval � 1 �
x < 1

5. For each of the functions below do the following:

(i) Do parts (i){(iv) of Problem 1 using these functions.
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(ii) By comparing the graph of the function with several Taylor poly-
nomials make a guess at the interval ofx's for which the Taylor
expansion is valid, see Section 10.7.

(iii) Give further support for your answer in (ii) by picking some nonzero
x1 (where the Taylor representation is valid) and numericallycom-
paring the function's value atx1 with that of several of its Taylor
polynomials. Recall that tan� 1 x is entered asatan x in Derive .

a.
1

(x + 1) 2
b. tan� 1 x

c. e� x2

6. Load the �le F-TAY3.MTH and following the methods of Section 10.4
compute sin 7. Which degree Taylor polynomial should you useto get
an error of less than 10� 6?

7. In this problem we approximatee5 using the methods in Section 10.5.

a. Expresse5 using the Taylor series representation of the exponen-
tial function.

b. Compare the numerical value ofe5 using approximate with the
value of the �rst several Taylor polynomials. How many terms
appear to needed for 6 decimal place accuracy?

c. We now want to use Theorem 1 on page 154 to obtain a precise
estimate ofe5 within 10� 6. Compute an upper bound on the error
estimate on the right-hand side of (12) for severaln. Do this by
�rst giving an upper estimate for M and then making a list of
several error estimates until the value becomes less than 10� 6.

d. What is your estimate for e5 and how many terms do you need?

8. The functions f (x) = sin x has only odd powers in its Taylor series ex-
pansion. This property can be explained by the fact thatf (x) satis�es
the equationf (� x) = � f (x) as do all odd powers ofx. It is because of
this that we call any suchf (x) an odd function. Similarly, a function is
an even function iff (� x) = f (x) holds for all x, as do all even powers
of x.
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a. Prove that f (2k)(0) = 0 for k = 0; 1; : : : and any odd function
f (x).

b. Prove that f (2k+1) (0) = 0 for k = 0; 1; : : : and any even function
f (x).

*9. We discussed complex number in Section 5.4. Find the 6th Taylor
polynomial for the function eix . (Recall that i is entered in DfW using
the symbol bar and withAlt-i in Derive for DOS _) Now �nd the 6 th

Taylor polynomial for cosx and for sinx. Multiply the one for sin x by i
and add it to the one for cosx. Compare the result with the polynomial
for eix . What relation betweeneix , cosx, and sinx does this suggest?

*10. In this problem we use the Taylor polynomials for the arc tangent
function tan� 1 x to estimate� . Recall that tan� 1 x is entered asatan x .

a. UseDerive to verify the formula

�
4

= 4 tan � 1(1=5) � tan� 1(1=239)

b. Compute the eighth degree Taylor polynomialP8(x) for tan � 1 x.

c. UseP8(x) to approximate on the right side of the above formula
and use your answer to estimate� .

d. Let M be the maximum value of the 9th derivative of tan � 1(x) on
the interval [0; 1=5]. Use the error estimate (12) on page 155 to
give an upper bound for the error in your estimate of� in terms
of M . For example, give an answer likeM � 10� 2.

e. Use graphical techniques to give an upper bound onM .

f. Combine the last two parts to give an estimate on the number
of decimal places your estimate to� valid for. How does this
compare with Derive approximation to � ?

g. UseDerive to show that the absolute maximumvalue forjf (9) (x)j,
where f (x) = tan � 1(x), is achieved atx = 0.
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Chapter 11

Approximating Integrals with
Taylor Polynomials

11.1 Introduction

In Chapter 6 we developed several techniques for approximating a de�nite
integral I =

Rb
0 f (x) dx by applying the trapezoid method or Simpson's rule.

In the last chapter we saw that many of the important functions in Calculus
can be represented by a Taylor series and hence can be approximated by
their Taylor polynomials. This suggestanotherapproach to approximatingI ;
namely, approximate the integrandf (x) by its Taylor polynomials and then
use

Z b

0
f (x) dx �

Z b

0
Pn (x) dx =

Z b

0

nX

k=0

akxk dx =
nX

k=0

ak
bk+1

k + 1

whereak = f (k)(0)=k! to obtain the desired estimate.

The advantage to this approach was strongly suggested by Problem 3
on page 165. In that problem it was shown that approximating ln 3 using
Taylor series techniques gave 8{decimal place accuracy with approximately 8
computations. Whereas the standard approach using Simpson's rule require
approximately 100 computations.

171
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11.2 The Basic Error Estimate

Recall from (12) of Chapter 10 on page 155 that if
P n

k=0 akxk is thenth Taylor
polynomial for f (x), then an upper bound for the error made in estimating
f (x) with this Taylor polynomial is given by

(1)

�
�
�
�
�
f (x) �

nX

k=0

akxk

�
�
�
�
�

� M
jxjn+1

(n + 1)!

where M is the maximum of jf (n+1) (t)j on the interval connecting 0 tox.
This can be written as

(2) � M
jxjn+1

(n + 1)!
� f (x) �

nX

k=0

akxk � M
jxjn+1

(n + 1)!

If we integrate this from 0 to b, we get

(3) � M
jbjn+2

(n + 2)!
�

Z b

0
f (x) dx �

nX

k=0

ak

k + 1
bk+1 � M

jbjn+2

(n + 2)!

Writing this with absolute values:

(4)

�
�
�
�
�

Z b

0
f (x) dx �

nX

k=0

ak

k + 1
bk+1

�
�
�
�
�

� M
jbjn+2

(n + 2)!

This technique works for integrals going from 0 tob. If you want to
approximate

Rb
a f (x) dx, you can make the substitutionu = x � a so the

integral becomes
Rb� a

0 f (u) du.

11.3 The Logarithm Series

Consider the logarithm functionf (x) = ln
1

1 � x
where we shift the variable

so that x = 0 yields ln 1 = 0. First of all, we have the integral representation:

ln
1

1 � x
=

Z x

0

dt
1 � t

for � 1 < x < 1:

which can be easily checked usingDerive .
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Now, the idea is to approximate the integrand by its Taylor series but in
this case we recognize the connection with the geometric series; namely,

1X

k=0

tk =
1

1 � t
for � 1 < x < 1:

We'll actually use the following more re�ned estimate from Section 9.2:

(5)
1

1 � t
�

nX

k=0

tk =
1X

k= n+1

tk = tn+1 + tn+2 + � � � =
tn+1

1 � t

whenever jtj < 1. Now we integrate this equation from 0 tox, where we
assume that� 1 � x < 1, to get

ln
1

1 � x
�

nX

k=0

xk+1

k + 1
=

Z x

0

 
dt

1 � t
�

Z x

0

nX

k=0

tk

!

dt(6)

=
Z x

0

tn+1

1 � t
dt :(7)

Taking absolute values of the above we need to evaluate the integral in (7).
Since this looks complicated, we instead try to obtain an upper bound. For
positive x, we uses the inequality 0< 1

1� t � 1
1� x to obtain that

(8)

�
�
�
�

Z x

0

tk+1

1 � t
dt

�
�
�
� �

Z x

0

tn+1

1 � x
dt =

xn+2

(1 � x)(n + 2)
:

On the other hand, for negativex, we instead use 0< 1
1� t � 1 to get a similar

bound:

(9)

�
�
�
�

Z 0

x

tk+1

1 � t
dt

�
�
�
� �

Z 0

x
jt jn+1 dt =

jxjn+2

(n + 2)
:

Hence, we have the desired approximation result because

lim
n!1

xn+2

(1 � x)(n + 2)
= 0 whenever 0� x < 1

and

lim
n!1

jxjn+2

(n + 2)
= 0 whenever � 1 � x � 0
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One small point, the polynomial approximations in (6) look alittle di�er-
ent from the standard Taylor polynomials because the powersare expressed
with the index k + 1. This is just an arti�cial di�erence since

Pn+1 (x) =
n+1X

j =1

x j

j
= x +

x2

2
+ � � � +

xn+1

n + 1
=

nX

k=0

xk+1

k + 1

and hence we ultimately obtain that

(10)

�
�
�
� ln

1
1 � x

� Pn (x)

�
�
�
� �

8
>>><

>>>:

xn+1

(1 � x)(n + 1)
; 0 � x < 1;

jxjn+1

(n + 1)
; � 1 � x � 0

which tends to zero asn ! 1 . This leads to the Taylor series representation

(11) ln
1

1 � x
=

1X

j =1

x j

j
for � 1 � x < 1:

11.4 An Integral Approximation

Suppose we wanted to estimate the de�nite integral

Z 1

0

sinx
x

dx:

At �rst glance there appears to be a problem atx = 0 because we are
dividing by zero. However, L'Hospital rule shows that limx! 0 sinx=x = 1.
An interesting alternative way of proving this fact is use the Taylor series
representation for the sinx, i.e.

sinx = x �
x3

3!
+

x5

5!
� � � � =

1X

k=0

(� 1)k

(2k + 1)!
x2k+1

for all �1 < x < + 1 . Now for x 6= 0 we can divide both sides byx to get

sinx
x

= 1 �
x2

3!
+

x4

5!
� : : : :
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Formally then, the right-hand side above approaches 1 asx ! 0 because all
the xn {terms tend to zero. Of course, there is always the problem ofmaking
estimates forin�nite series, as opposed to �nite sums, which can be di�cult.

One way around this di�culty is use the approach we adopted for ap-
proximating sinx in Section 10.4. There we used Taylor's Theorem with
remainder to show that

(12)

�
�
�
�sinx �

�
x �

x3

3!
+

x5

5!
� : : :

(� 1)nx2n+1

(2n + 1)!

� �
�
�
� �

jx2n+3 j
(2n + 3)!

for all n = 0; 1; : : : . For example, even takingn = 0 in the above yields a

nice result; namely,j sinx � xj � j xj3=6. Hence,j
sinx

x
� 1j � x2=6 ! 0 as

x ! 0 and thus limx! 0
sinx

x
= 1.

Similarly, if we take a larger value ofn, say n = 3, we get

(13)

�
�
�
�sinx �

�
x �

x3

3!
+

x5

5!
�

x7

7!

� �
�
�
� �

jx9j
9!

and so dividing byx and integrating from 0 to 1 yields
�
�
�
�
�

Z 1

0

sinx
x

dx �
3X

n=0

1
(2n + 1)(2 n + 1)!

�
�
�
�
�

=

�
�
�
�

Z 1

0

sinx
x

dx �
�

1 �
1

3 � 3!
+

1
5 � 5!

�
1

7 � 7!

� �
�
�
�

=

�
�
�
�
�

Z 1

0

 
sinx

x
�

3X

n=0

(� 1)nx2n

(2n + 1)!

!

dx

�
�
�
�
�

�

�
�
�
�

Z 1

0

jxj8

9!
dx

�
�
�
� =

1
9 � 9!

:

Finally, since 1=(9 � 9!) � 3:0619� 10� 7 we get 6 decimal place accuracy by
approximating the integral using 4 terms from the series.

In Figure 11.1 on the following page we haveDerive approximate our
integral using 20 digit precision. This computation, whichuses Simpson's
rule, is actually quite slow, Load the �le F-SININT.MTH and try this your-
self. On the other hand, we enter the partial sums of the series solution and
make a table comparing the �rst several sums with the answer from Derive .
Notice that the theoretical error that we calculated above is practically the
same as the actual error whenn = 3.
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Figure 11.1: Using Taylor series to approximate integrals

11.5 Laboratory Exercises

1. Use (11) to prove that

ln
�

1 + x
1 � x

�
= 2

1X

k=0

x2k+1

2k + 1
for � 1 < x < 1

Look back at Problems 2 and 3 on page 165 to verify that the series
representation in those problems is valid.

2. Use the formula

tan� 1 x =
Z x

0

dt
1 + t2

and the techniques of this chapter to prove that the Taylor representa-
tion

tan� 1 x =
1X

k=0

(� 1)k

2k + 1
x2k+1 = x �

x3

3
+

x5

5
� : : : for � 1 � x � 1
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holds. Look back at Problem 8 on page 168 and also Problem 5b.
What are the implications of this problem to the earlier ones?

3. In this problem you are to estimate

Z 2

0
e

p
x dx

using the method outlined in the text.

a. De�ne and simplify P(x):= the 8th {degree Taylor polynomial for
ex .

b. Author P(
p

x) and integrate the result from 0 to 2. Simplify this
integral and then express the answer as a decimal.

c. Compute the maximum value of the ninth derivative ofex on the
interval 0 to

p
2. Denote this maximum byM . (Note: This is the

M value associated with the Taylor polynomialp(x) in (12) on
page 155 corresponding to the interval 0� x �

p
2. The reason

we use
p

2 and not 2 is that if jex � p(x)j � c for 0 � x �
p

2,
then je

p
x � p(

p
x)j � c for 0 �

p
x �

p
2, i.e., for 0 � x � 2.)

d. In a manner similar to what was done in Section 11.4, �nd the
error in the approximation you obtained in part b.

e. Have Derive evaluate
R2

0 e
p

x dx and then approximate it and
compare the answer with what you obtained in partb.

4. Do parts a. to e. but this time for
Z 1

0
e� x2

dx:

Instead of starting with the Taylor polynomial for ex , start with the
Taylor polynomial of e� x .
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Chapter 12

Harmonic Motion and
Di�erential Equations

12.1 Introduction

In this chapter we consider di�erential equations of the form

(1) y00+ by0+ cy = 0

These aresecond orderdi�erential equations because of they00Let's �rst
look at the special caseb= 0 and c = 1:

(2) y00= � y

If we try y = ert then y00= r 2ert so for y to satisfy (1) we needr 2 = � 1.
While there is no real numberr satisfying r 2 = � 1, the complex numberi
does. And so does� i . (Recall in Derive you input i by using the symbol
bar or typing #i . This is displayed with î . Try inputing i2. It should simplify
to � 1.) Thus both y = eit and e� it are solutions.

What is the function eit ? If we author this expression and then ask for
the 6th Taylor approximation we get

�
t6

720
+

t4

24
�

t2

2
+ 1 + î

�
t5

120
�

t3

6
+ t

�

If we �nd the 6 th Taylor polynomial for cos(x) and sin(x) we get � t6=720 +
t4=24� t2=2 + 1 and t5=120� t3=6 + t. This suggests that

(3) eit = cos(t) + i sin(t)

179
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We can check this by havingDerive simplify eit � (cos(t) + i sin(t)). Equa-
tion (3) breaks the function eit into it real and imaginary parts. Each one is
a solution of (2) as you can easily check. We will use this trick to solve (1),
�rst �nding the solution as a complex function and then taking the real and
imaginary parts to get the `real' solutions.

So now let's try y = ert in (1). We get

r 2ert + brert + cert = ( r 2 + br + c)ert = 0

so we want to solve

(4) r 2 + br + c = 0

This equation is called thecharacteristic equation. Its roots are

(5) r1 =
� b+

p
b2 � 4c

2
and r2 =

� b�
p

b2 � 4c
2

and so bothy = er 1 t and y = er 2 t are solutions to (1). If b2 � 4ac � 0 then
these are real solutions. Ifb2 � 4ac < 0 then both r1 and r2 are complex
numbers. We can writer1 = � + i� where� = � b=2 and� =

p
4c � b2 (since

b2 � 4ac < 0, 4ac� b2 > 0). Note r2 = � � i� which is known as thecomplex
conjugateof r1.

To �nd the real solutions corresponding toe(� + i� )t we calculate

e� + i� = e�t ei�t = e�t
�

cos(�t ) + i sin(�t )
�

This suggests thate�t cos(�t ) and e�t sin(�t ) are both solutions and we can
easily check that they are. (Just substitutee�t cos(�t ) for y in (1) and show
the left side simpli�es to 0.)

When b2 � 4ac = 0, r1 = r2. In this case bother 1 t and ter 1 t are solutions;
see Exercise 1 on page 189. Finally notice that if bothy(t) and z(t) are
solutions to (1), then C1y(t) + C2z(t) is a solution for any constantsC1

and C2.
Summarizing, with r1, r2, � , and � as above, the solutions of (1) are

y = C1er 1 t + C2er 2 t if b2 � 4c > 0(6)

y = C1er 1 t + C2ter 1 t if b2 � 4c = 0(7)

y = C1e�t cos(�t ) + C2e�t sin(�t ) if b2 � 4c < 0(8)
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Notice that all of these solutions have two arbitrary constants C1 and C2.
These will be determined by the initial value ofy, denoted y0, at t0, and
the initial velocity v0 at this time. Of course by velocity we meandy=dt.
Assuming you have loaded the ADD-HEAD.MTH �le, you can solve(1)
subject to these initial conditions by authoring

DE2(b, c, t, t0, y0, v0)

12.2 Applications

Springs and Hooke's Law. Suppose we have a massm attached to the
end of a spring hanging from the ceiling. If we pull the mass down a little it
will bounce (oscillate) up and down. We image it moving alongthe y{axis
with y = 0 denoting the rest position. Newton's law saysF = ma whereF
is the force on the mass anda = y00is the acceleration. A reasonably good
approximation of the force is given byHooke's Lawwhich states

F = � ky

where k is a positive constant. SinceF = my00 this gives the following
di�erential equation.

(9) y00+
k
m

y = 0

As an example suppose we pull the mass downa units and let go. Then
y0 = � a and v0 = 0 so we can �nd the motion by authoring DE2(0, k/m,
t, 0, -a, 0) . Derive gives an answer in terms of two exponential func-
tions because it does not know thatk and m are positive but if you use the
Declare/Variable Domain to tell Derive that k is positive and do the same
for m, the answer simpli�es to

� acos

 p
k

p
m

t

!

Figure 12.1 on the next page shows the graph of this function when k = 2
and m = 1 and a varies between� 2 and 2 in increments of 0:5. Notice all
of the graphs cross thex{axis at the same place; that is, at the same time.
So it doesn't matter how far the spring is pulled down it will take the same
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amount of time to return to its original position. If we let ! =
q

k
m then time

to return to the original position is 2�=! independent ofa. This is called the
period of oscillation. ! is called theangular frequencywhile the reciprocal of
the period, != 2� is the frequency. In Exercise 2 on page 189 you investigate
what happens if we start withy0 = 0 but vary the velocity.

Figure 12.1: Spring motion starting at di�erent positions

Damped oscillation. The frictional force due to air resistance is propor-
tional to the velocity of the mass. If we take this into account our di�erential
equation (9) becomes

(10) y00+
a
m

y0+
k
m

y = 0

wherea is a positive constant. The characteristic equation for this equation
is

r 2 +
a
m

r +
k
m

= 0
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It roots are
� a �

p
a2 � 4km

2m
The solutions to (10) are given in (6){(8). The sign of

p
a2 � 4km deter-

mines which equation applies. Ifa2 > 4km we say the spring isover damped.
In this case the solutions of (10) have the form of (6) withr1 and r2 the
solutions to the characteristic equation given above. Notice that sincea, k,
and m are all positive, both r1 and r2 are negative. So the general solution
is the sum of two decaying exponentials.

If a2 = 4km the spring is critically damped. The solutions are given
by (7). Again r1 is negative.

If a2 � 4km the spring isunder damped. The solutions are given by (8).
As an illustration we take a=m = 1 and k=m = 4 in (9). To solve (9) with
initial conditions t0 = 0, y0 = 2, and v0 = 0 we author DE2(1, 4, t, 0, 2,
0) . Simplifying this gives

e� t=2

 

2 cos(

p
15
2

t) +
2
p

15
15

sin(

p
15
2

t)

!

We use the Declare/Algebra State/Simpli�cation menu to set Trigonometry
to Collect and simplify again we get

8
p

15
15

e� t=2 sin

 p
15
2

t) + 2 arctan

p
15
5

!

� 2:06559e� t=2 sin(1:93649t + 1:31811)

Figure 12.2 on the next page graphs this function as well as� 8
p

15
15 e� t=2.

Pendulums. Suppose we have a massm at the end of a pendulum of
length l. It swings along a circular arc. When the pendulum is at rest it
hangs straight down and has velocity 0. Lets(t) denote the arc length from
this rest position as a function of time. Let� (t) be the angle the pendulum
makes from the vertical position. Thens = l� and so the acceleration is
d2s=dt2 = ld2�=dt 2. The force on the mass due to gravity is downward and
has magnitudemg, whereg is the gravitational constant. This force can be
broken into the part in the same direction as the pendulum rodand a part
part tangent to the arc traced out by the mass; see Figure 12.3on page 183.
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Figure 12.2: Under Damped Oscillations

The component of the force in the direction of the pendulum rod is can-
celled out by the rod. The force along the arc is� gmsin� . Newton's law,
F = ma saysmd2s=dt2 = � gmsin� . In terms of � we get the di�erential
equation:

(11)
d2�
dt2

= �
g
l

sin�

This is not a linear equation because of the sin� . But the Taylor series is
sin� = � � � 3=6 + � � � , so if � is small we can approximate sin� with � . Using
this (11) becomes

(12)
d2�
dt2

+
g
l
� = 0

If we start by pulling the pendulum back by an angle� 0 and letting go
we can solve the equation by authoringDE2(0, g/L, t, 0, � 0, 0) . This
gives the solution

� 0 cos
� r

g
l

t
�
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s

q

Figure 12.3: The pendulum

Notice that the period depends onl but not on � 0. This is why old clocks
often use pendulums. As the spring runs down the pendulum will continue to
swing with the same frequency (until it stops completely of course). You can
adjust the speed by making a small change in the length of the pendulum.

Later in this chapter we will show how to �nd approximate solutions
to (11).

12.3 Systems of Di�erential Equations

Predator prey population growth. Suppose we have a population of
rabbits. Let R(t) be the population at time t and let R0 = R(0) be the
initial population. In Chapter 7 we had two models forR(t). The �rst was
R0 = kR was the standard exponential growth model. The second was the
Verhulst modi�cation of this: R0 = kR=(1 � R=R1), where R1 is a constant
representing the ideal population. But suppose we also havea population,
F (t), of foxes which prey on the rabbits. This gives us asystemof di�erential
equations forR(t) and F (t). It is reasonable to assume that number of rabbits
eaten by foxes is proportional toR � F . Then the population of rabbits and
foxes can be modeled by the equations

(13)
R0 = kR(1 � R=R1) � cRF

F 0 = dRF � eF
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where k, c, d, and e are positive constants. IfR = 0 the second equation
becomesF 0 = � eF. This means that if there are no rabbits the fox popula-
tion will dwindle because there is nothing to eat. IfF = 0 then the rabbit
population will follow the Verhulst model.

The Runge-Kutta method of approximation. A general system of two
�rst order di�erential equations has the form

(14)
y0 = r (t; y; z)

z0 = s(t; y; z)

These can be solved exactly ifr (t; y; z) has the form ay + bz and s(t; y; z)
has a similar form. (Whenr and s have this form, the system of equations
(14) is calledlinear.) Since the examples we are interested are not linear, we
concentrate on �nding approximate solution to (14).

In Chapter 7 we described Euler's method for �nding an approximate
solution of a single �rst order equationy0 = f (t; y) subject to the initial
conditions y(t0) = y0. We start with the point ( t0; y0). Since we know the
slope ofy at this point is f (t0; y0) we draw a short line segment from (t0; y0)
to (t1; y1) = ( t0 + h; y0 + hf (t0; y0)), where h is a small increment. The
(n + 1) st point is obtained the nth by

(tn+1 ; yn+1 ) = ( tn + h; yn + hf (tn ; yn ))

Figure 12.4 on the next page gives the direction �eld for the simple dif-
ferential equation y0 = � 4(t � 1). Of course we can �nd the solutions by
integration. If y(0) = 0 this gives y = 2t(2 � t), which we have also graphed.
If we use Euler's method withh = 1=2 the �rst three points are (0; 0),
(1=2; 2), and (1; 3). As the graph indicates these points are not very close to
the true solution.

If instead of using the slope at (tn ; yn ) we average this slope with the slope
at the next point ( tn+1 ; yn+1 ) we obtain a much more accurate approximation
of the solution. This is known as thesecond order Runge-Kutta method. The
precise formulae fortn+1 and yn+1 are

(15)
tn+1 = tn + h = t0 + ( n + 1) h

yn+1 = yn +
h
2

�
f (tn ; yn) + f (tn + h; yn + hf (tn ; yn))

�
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As we can see from Figure 12.4 this is much more accurate. If wealso take into
account the slope at the midpoint of the two points we obtain thefourth order
Runge-Kutta method. This is usually just called theRunge-Kutta method.

Figure 12.4: Euler and the 2nd Runge-Kutta methods

If we have a system of equations like (14) we calculate triples of points
(tn ; yn ; zn) instead of pairs, but the formula is essentially the same. The
Derive utility function RK, which is included in ADD-HEAD.MTH, will
calculate approximate solutions to system of di�erential equations using the
Runge-Kutta method.1 To approximately solve (14) with initial conditions
y(t0) = y0 and z(t0) = z0, we author

RK([r(t,y,z), s(t,y,z)], [t, y, z], [t0, y0, z0], h, n)

whereh is the step size andn is the total number of steps you want. When we
approXimate this we get a matrix of triples. To graphy(t) we use the function

1RKis the same as the one inDerive 's utility �le ODE-APPR so the description of it
in Derive 's Help applies.
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extract 2 columns(m,1,2) (wheremis the matrix we got). This gives a ma-
trix of pairs which we can plot. To plot z(t) we useextract 2 columns(m,1,3) .

Returning to the predator-prey problem let's look at the rabbits and foxes
problem with speci�c data for the constants in (13):2

k = :1 rabbit per month per rabbit

R1 = 10000 rabbits

c = :005 rabbit per month per rabbit-fox

d = :0004 fox per month per rabbit-fox

e = :04 fox per month per fox

t0 = 0 months

R0 = 2000 rabbits

F0 = 10 foxes

To use the Runge-Kutta method to �nd an approximation of the solution
we author:

RK([.1r(1 - r/10000) - .005rf, .00004rf - .04f], [t,r,f],

[0,2000,10], 0.5, 600)

We approximate this and then useextract 2 columns for columns 1 and 2
to seeR(t). The result is graphed in the upper right window of Figure 12.5 on
the next page. Extracting column 1 and 3 gives the fox population graphed
in the lower right. Notice both populations oscillate with the fox population
following the rabbit population. After the rabbits increase the foxes will then
increase but when the fox population gets large the rabbit population will
decrease which in turn will cause the fox population to decrease and so on.

The window in the lower left of Figure 12.5 on the facing page shows
the results of extracting columns 2 and 3. The point near the crosshair in
that window is (2000; 10), the initial rabbit and fox populations. At the
beginning both the rabbit and fox populations increase. When they reach
the point furthest to the right the rabbit population starts to decrease while
the fox population continues to increase. As we continue along the curve it
spirals inward indicating that the oscillation in the populations get smaller.
In Exercise 4 on page 189 your �nd the point to which the spiralapproaches.

2This example is taken from J. Callahan and K. Ho�man Calculus in Context,
W. H. Freeman, 1995.
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Figure 12.5: Rabbits and Foxes

The pendulum revisited. A second order di�erential equation such as (11)
can be reduced to a system of two �rst order equations. To do this we intro-
duce a new variablew(t) = d�=dt. Then (11) becomes

(16)
� 0 = w

w0 = �
g
l

sin�

As an example supposeg=l = 25. Then to get an approximate solution
of (11) we author and then approximate the following.

EXTRACT2 COLUMNS((17)

RK([w,-25 SIN( � )], [t, � ,w], [0, � 0,0], 0.05, 60), 1, 2)

Figure 12.6 on the following page shows the resulting graphsfor � 0 = �= 8,
�= 4, �= 2, and 15�= 16. The graph of the solution of (11), namely� 0 cos(5t), is
also shown on each graph. Looking at these graphs we can see several things.
First for � 0 = �= 8 = 22:5� the curves are almost identical showing that using
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(12) rather than (11) works well for small and even moderate angles. Even
for � 0 = �= 4 = 45� , shown in the lower left, is fairly close to the true graph.

Since we are considering a pendulum without friction (undamped) we
expect that when we release it with an initial angle of� 0 it will swing to the
other side reaching the angle� = � � 0 and then return back to the original
position with � = � 0. Then of course it will just repeat this. This means
that the solution of (11) will be periodic. The linear approximation (12) has
a shorter period than the true equation (11). This makes sense since the
magnitude of the force pushing the pendulum back towards itsrest position
(� = 0) is proportional to sin � for the true equation and to � in the linear
approximation and sin� � � for � > 0.

The lower right frame of Figure 12.6 gives the graphs when� 0 = 15�= 16.
This corresponds to starting the pendulum almost at the top.Notice that
not only is the true period much greater than the linear approximation but
that the shape of curve is di�erent.

Figure 12.6: Pendulums
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12.4 Laboratory Exercises

1. Show that if the characteristic equation (4) has a double root, that is,
if r1 = r2, then both y = er 1 t and y = ter 1 t satisfy (1) on page 177.

2. Hooke's Law is given by equation 9 on page 179.

a. Solve this with the initial conditions y0 = 0 and v0 = v. (You
should useDerive 's Declare/Variable Domain to tell Derive
that m and k are positive.)

b. Graph your solutions with with k = 2, m = 1, and v varying
between� 2 and 2 in increments of 0:5.

3. A third order di�erential equation of the form

y000+ by00+ cy0+ dy = 0

has the characteristic equationr 3 + br2 + cr + d = 0. The roots of
the characteristic equation determine the solutions of thedi�erential
equation in the same way as for second order di�erential equations. The
solutions of second order di�erential equations involve two arbitrary
constants but for third order there are three.

a. Find the solutions to y000� 2y00� y0+ 2y = 0.

b. Find the solutions to y000� 2y00+ y0 � 2y = 0.

c. Find the solutions to y000� 4y00+ 5y0� 2y = 0.

4. Suppose we want to �nd solutions to (13) such that bothR(t) and
F (t) are constant. One (trivial) solution is R(t) = 0 = F (t) but we
would like something more interesting than this. If the populations are
constant then R0(t) = 0 and F 0(t) = 0.

a. Solve (13) forR and F when R0(t) = F 0(t) = 0. Hint: Use the
second equation of (13) to �ndR, substitute this into the �rst
equation and then solve forF .

b. The curve in the lower left window of Figure 12.5 on page 187
spirals inward. Use your answer from the previous part with the
constants on page 186 to guess where it is heading.
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5. Suppose in our rabbits and foxes example instead of (13) we use the
simpler equations

R0 = kR � cRF

F 0 = dRF � eF

without the Verhulst modi�cation.

a. In Figure 12.5 on page 187 we usedRKand EXTRACT2 COLUMNSto
make 3 graphs. Make the same 3 graphs but using these simpler
equations. Describe the di�erences between your graphs andthose
of Figure 12.5.

b. Find the solutions which are constant as in the previous problem.

6. We saw in the lower right frame of Figure 12.6 on page 188 on page 188
that for � 0 = 15�= 16 the solution to (11) and to the linear approxima-
tion (12) were quite di�erent. In this exercise we will compare the
solution to (11) with a cos function of the same amplitude andperiod.

a. Author the expression (17) with � 0 = 15�= 16 and then approxi-
mate it. Then graph the result.

b. Using this graph estimate the periodP of this function

c. Graph 15�
16 cos(2�

P t) using the P you found in the previous part.

d. Notice the graph you found in the �rst part is pretty at at the
top and bottom compared to the cos curve. What is the solution
of (11) if � 0 = � (and w0 = 0, of course)? You should be able to
just guess the solution.

7. In this problem we explore what happens to a pendulum with initial
position � 0 = 0 but with a nonzero value for w0. If the initial velocity
is not too large the pendulum will swing up to an angle� and then
swing back. The motion will be the same as if we started with� 0 = �
and w0 = 0 except that starting place for the graph will be di�erent.
That is, the curves will be the same except one will be shiftedto the
right. However if w0 is large enough, the pendulum will swing all the
way over the top.
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a. Author

EXTRACT2 COLUMNS(

RK([w,-25 SIN( � )], [t, � ,w], [0,0, w0], 0.05, 60), 1, 2)

Substitute w0 = 9:5 and approximate and then graph the result.
Do the same forw0 = 10 and w0 = 10:5.

b. The behavior of the solutions of the previous part are quite di�er-
ent depending on whetherw0 is large enough to send the pendulum
over the top (so it keeps spinning around and around) or it doesn't
make it to the top and so falls back. In this problem we look for
a value ofw0 so that it never falls back but also never goes over
the top. We will try to choose w0 so that it will have the exact
amount of energy to just get to the top. Since we are assuming our
pendulum is frictionless, there are two kinds of energy in our sys-
tem, kinetic and potential energy. Kinetic energy is1

2mv2 which
in our case is1

2m(ds=dt)2 = 1
2ml(d�=dt)2. Potential energy gained

as the pendulum swings above its rest position ismgh whereh is
the height above the rest position. So the potential energy at the
top is 2mgl. Use the law of conservation of energy to show that
if the kinetic energy at the bottom equals the potential energy at
the top then

w0 = � 0(0) = 2

r
g
l

which is 10 wheng=l = 25.

c. While the solution to (11) on page 182 cannot be expressed in
terms of elementary functions, the solution when� (0) = 0 and
� 0(0) = 2

p g
l can. Show that

� (t) = 4 arctan( e
p

g
l t ) � �

is a solution of (11) and that � 0(0) = 2
p g

l . You will need set
the trigonometry mode to Expand under the Declare/Algebra
StateSimpli�cation menu. Also remember that Derive usesATAN
for the arctan function.

d. When g=l = 25, � (t) = 4 arctan( e5t ) � � . Graph this function
and compare it with the graph you made in the �rst part with
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w0 = 10. Also graph

EXTRACT2 COLUMNS(

RK([w,-25 SIN( � )], [t, � ,w], [0,0,10], 0.01, 500), 1, 2)

e. Why do these graphs di�er?



Appendix A

Utility Files

This book de�nes 19 Derive functions. All of these functions are de-
�ned in the utility �le ADD-UTIL.MTH. This �le and its compan ion, ADD-
HEAD.MTH, can be downloaded from our web page

http://www.math.hawaii.edu/206L/

Listings of these �les are given at the end of this appendix inthe (hopefully
unlikely) event you have trouble downloading them. Additional information
on the use of the functions as well as examples are included onthe web site
above.

How to use these �les. When a student �rst starts to work on a lab
assignment he should:

1. Enter (Author) his name and the lab number as a comment. (Com-
ments are entered using the double quotes," .)

2. Do File/L oad/Math add-head.

3. Begin working on his assignment.

The �le ADD-HEAD.MTH has only four lines. Two of these are com-
ments and one gives the variable syntax for the commands. Theother line
is LOAD("add-util") . This automatically silently loads ADD-UTIL.MTH. 1

For this load command directory to work correctly, ADD-HEAD.MTH and
ADD-UTIL.MTH should both be in the current directory. It is b est to put
them in the default directory.

1This is only true for DfW version 4.08 or greater. If you have an earlier version you
can download the latest version from theDerive web site: http://www.derive.com . You

195
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Home use of these �les. If you have Derive for your own computer you
can install ADD-HEAD.MTH and ADD-UTIL.MTH. When Derive starts
it has a default directory it looks for MTH �les. If you haven't changed this it
is .. nDfWnMath. That directory contains the utility �les that come with the
system. You should add a new subdirectory, we use.. nDfWnM206L, using
the Win95 �le manager and then make that your default directory using
the File/C hange Directory command in DfW. Next, you put both ADD-
UTIL.MTH and ADD-HEAD.MTH in this default directory and the above
directions should work �ne. You can also add all theF-*.MTH �les that are
used in the book's �gures to this directory. All of these �lesare available
from our web site.

A.1 The Functions

Table A.1 on page 197 and A.2 on page 198 list the functions de�ned in
ADD-UTIL.MTH. In each of the examples below it is assumed that the
utility �le ADD-UTIL.MTH has been loaded as described above. Here are
some examples on their use.

Example 1. If you want to compute a tangent line for sayf (x) = x3=3 at
the point x = 1 you would Author and Simplify TANGENT(x^3/3, x, 1).
The result will be y = x � 2=3. We describe the variables for this and the
other functions typically as TANGENT( u, x, a)where the u refers to any
expression in the variablex and a is a parameter in the function which in
this case it is the point we are interested in.

Example 2. Suppose that you want to �nd the quadratic polynomialax2 +
bx + c that passes through the three points (0; 0), (1; 2), and (2; 8). You
Author CURVEFIT( x, [[0,1], [1,2], [2,8]]) . After simplifying the re-
sult will be 2x2. Probably the best way to do this is to start by de�ning

the 3 � 2 matrix of points using the matrix button and then plotting
the 3 points on a graph. Next you Author the CURVEFIT(x,part and then
right click and insert the matrix of data points. Simplify and plot to make
sure the answer function does indeed pass through the 3 data points. The

can use earlier versions ofDerive but after loading ADD-HEAD you need to highlight

and then evaluate (by pressing the button) the line LOAD(\add-util") . This
should evaluate to `true.'
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CURVEFIT function will �nd the appropriate degree polynomial through
the data regardless of the number of points.

Example 3. Suppose that now that you want to �nd the quadratic poly-
nomial ax2 + bx + c that passes through the two points: (0,0) and (1,2). In
addition, you want the derivative to be 1 whenx = 0. You A uthor CURVEFIT(
x, [[0,1], [1,2]], [[0,1]]) . In other words, you enter one matrix for
the points satis�ed by the function and another matrix for the points satis�ed
by the derivative. The degree of the answer polynomial is always one less
than the total number of equations for both the function and its derivative.

Example 4. Let's solve the equationx2 + x � 1 = 0 using Newton's method
of Chapter 5. We'll usex0 = 5 as our initial guess. We obtain our �rst
approximation by Authoring NEWT(x^2+x-1, x, 5) and then Simplifying
to get 2:63263. We repeat this process using this new value as our starting
point. After 4{5 iterations we obtain an approximation we good to 6 decimal
places.

Example 5. More generally, to approximate the solution to the equation
u = 0, where u is an expression inx, using Newton's method with initial
guessa you author and approximateNEWT(u, x, a). Suppose instead that
you want the �rst k approximates starting with x = a, then you approximate
NEWT(u, x, a, k) . The 4th argument is optional. You get a nice picture
of the Newton method in action by approximatingDRAWNEWT(u, x, a, k)
and then plotting the result. Notice that the starting point can be a complex
number in which case the approximates are also complex. The function
DRAWCOMPLEX(v)can be applied to the solution vector to get a matrix of
[x; y] points which can then be plotted in a 2D-plot window.

Example 6. Suppose that you want to approximate the integral which de-
�nes the natural logarithm of 2, i.e.,

ln 2 =
Z 2

1

dx
x

using say the trapezoid rule or Simpson's rule for numericalintegration.
We do this for n = 100 subdivisions by Authoring either the expression
TRAP(1/x, x, 100, 1, 2) or the expressionSIMP(1/x, x, 100, 1, 2) .

Now since we are interested in a decimal approximation we usethe
button to simplify the expression. More generally, supposeyou approximate
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the integral of the expressionu, in the variable x over the interval [a; b], using
Simpson's rule withn subdivisions. You Author SIMP(u,x,n,a,b) and press

.

Example 7. Suppose that you want to solve a Newton cooling type di�er-
ential equation: y0 = � (y � 2) with initial conditions y(0) = 4. You start by
manipulating the equation to the formy0+ py = q where p = 1 and q = 2.
The function DE(p,q,x,y,x0,y0) solves this equation so we just substitute
in the right values which in this case means that we Author DE(1,2,x,y,0,4)

and press .

Example 8. Suppose that you want to look at the direction �eld for the
equation y0 = r wherer is an expression inx and y. You use the function

DF(r,x,x0,xm,m,y,y0,yn,n))

where the grid of points is determined byx0 < x < xm with m subdivisions
and y0 < y < yn with n subdivsions. Doing this for the previous example
would mean Authoring say DF(-(y-2),x,0,6,12,y,-2,4,12) and then ap-

proximating the expression by pressing . You get a graph with a slope
line at every half integer in an appropriate range ofx and y's by plotting the
result.
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Table A.1: Functions De�ned in ADD-UTIL.MTH

SUBST(u; x; a) Substitutes x = a in the expressionu.

SECANT(u; x; a; h) Secant line ofu(x) through x = a and x =
a + h.

TANGENT( u; x; a) Tangent line of u(x) at x = a.

CURVEFIT( x; data)
CURVEFIT( x; data; ddata)

Fits a polynomial in the variablex, though
the points data := [[x0; y0]; [x1; y1]; :::]
provided ddata is either omitted or []. Oth-
erwise, the graph of the derivative must
pass through the ddata points.

NEWT( u; x; x0)
NEWT( u; x; x0; k)

Newton algorithm for root ofu(x) = 0 with
initial guess x0. If the optional k argu-
ment is used then a vector ofk iterates is
returned.

DRAW NEWT( u; x; x0; k) Draws a picture of Newton method applied
to u(x) = 0 with initial guess x0 and k
iterates. Simplify expression and plot the
result.

DRAW COMPLEX( v) Converts the vector of complex numbers
[x0 + iy0; x1 + iy1; :::] into a matrix of
points [[x0; y0]; [x1; y1]; :::] which can then
be plotted in a 2D-plot window.

BISECT(u; x; v)
BISECT(u; x; v; k)

Bisection method for solvingu(x) = 0 with
interval v = [ a; b]. The answer is either the
left or right half of the interval depending
on the root. If the optional k argument is
used then a vector ofk iterates is returned.

LEFT( u; x; n; a; b) Numerical approximation to the integral
of u(x) over [a; b] using the left-endpoint
method with n rectangles.

MID( u; x; n; a; b) Numerical approximation to the integral of
u(x) over [a; b] using the midpoint method
with n rectangles.
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Table A.2: Functions De�ned in ADD-UTIL.MTH (cont.)

RIGHT( u; x; n; a; b) Numerical approximation to the integral
of u(x) over [a; b] using the right-endpoint
method with n rectangles.

TRAP( u; x; n; a; b) Numerical approximation to the integral of
u(x) over [a; b] using the trapezoid method
with n trapezoids.

SIMP(u; x; n; a; b) Numerical approximation to the integral
of u(x) over [a; b] using Simpson's method
with n subdivisions.

DRAW LEFT( u; x; n; a; b) Draws graphic demonstration of the left-
endpoint method for numerically integrat-
ing u(x) over the interval [a; b] usingn rect-
angles.

DRAW RIGHT( u; x; n; a; b) Same as above except for the right-
endpoint method.

DRAW TRAP( u; x; n; a; b) Draws graphic demonstration of the trape-
zoid method for numerically integrating
u(x) over the interval [a; b] using n trape-
zoids.

DE(p; q; x; y; x0; y0) Solves the di�erential equation (DE) y0+
p(x)y = q(x) with y( x0) = y0.

DF(r; x; x 0; xm; m; y; y0; yn; n) The direction �eld (DF) for the di�erential
equation: y0 = r (x; y) with a grid deter-
mined by x0 < x < xm with m subdivi-
sions andy0 < y < ym with n subdivi-
sions.

EULER(r; x; y; x 0; y0; xn; n) This gives an approximate solution to:
y0 = r (x; y) with y( x0) = y0. The answer
is a vector of points [[x0; y0]; [x1; y1]; :::]
from which one makes a piecewise linear
approximating function, i.e., connect the
points with straight line segments to get
the approximating function's graph.
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A.2 Listings of the Utility Files

In the event you are unable to download these �les, you can type them in.
Probably the easiest way to do this is to startDerive and author each line.
Then save the �rst asadd-head and the second asadd-util .

A.2.1 The ADD-HEAD.MTH File
"The vector below declares all the utility functions in add- util.mth."

[SUBST(u,x,a):=,SECANT(u,x,a,h):=,TANGENT(u,x,a):=, CURVEFIT(x,data):=,SPLINE(~

x,data,m1):=,NEWT(u,x,x0,k):=,DRAW_NEWT(u,x,x0,k):= ,DRAW_COMPLEX(v):=,BISECT(~

u,x,v0,k):=,LEFT(u,x,n,a,b):=,MID(u,x,n,a,b):=,RIGH T(u,x,n,a,b):=,TRAP(u,x,n,~

a,b):=,SIMP(u,x,n,a,b):=,DRAW_LEFT(u,x,n,a,b):=,DRA W_TRAP(u,x,n,a,b):=,DE(p,q~

,x,y,x0,y0):=,DF(r,x,x0,xm,m,y,y0,yn,n):=,EULER(r,x ,y,x0,y0,xn,n):=]

LOAD("add-util")

"Your file starts here:"

A.2.2 The ADD-UTIL.MTH File
"File add-util.mth, (c) 1997 Ralph Freese and David Stegeng a."

"See add-summary.mth for a summary of new functions defined below:"

"Substitute x=a into the expression u."

SUBST(u,x,a):=LIM(u,x,a)

"The secant line of u(x) through x = a and x = a + h."

SECANT(u,x,a,h):=y=(SUBST(u,x,a+h)-SUBST(u,x,a))/h* (x-a)+SUBST(u,x,a)

"The tangent line of u(x) at x = a."

TANGENT(u,x,a):=y=SUBST(u,x,a)+SUBST(DIF(u,x),x,a)* (x-a)

"Helper functions for CURVEFIT."

POLY(x,a,n):=SUM(a SUB (i+1)*x^i,i,0,n)

DPOLY(x,a,n):=SUM(i*a SUB (i+1)*x^(i-1),i,1,n)

EQNS(data,ddata,a,n):=APPEND(VECTOR(POLY(data SUB i SUB 1,a,n)=data
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SUB i SUB~
2,i,1,DIMENSION(data),1),VECTOR(DPOLY(ddata SUB i SUB 1,a,n)=ddata
SUB i SUB~
2,i,1,DIMENSION(ddata),1))

UNK(n):=RHS(VECTOR(SOLVE(upsilon=upsilon,upsilon),i ,1,n,1)` SUB 1)

ANS(x,data,ddata,a,n):=IF(DIMENSION(ans_:=SOLVE(EQN S(data,ddata,a,n),[a]))=0,~

[],POLY(x,(RHS(ans_)) SUB 1,n))

"Finds the polynomial of the right degree through the nx2-da ta matrix."

CURVEFIT1(x,data):=ANS(x,data,[],UNK(DIMENSION(data )),DIMENSION(data)-1)

CURVEFIT2(x,data,ddata):=ANS(x,data,ddata,UNK(DIMEN SION(data)+DIMENSION(ddata~

)),DIMENSION(data)+DIMENSION(ddata)-1)

CURVEFIT(x,data,ddata):=IF(DIMENSION(ddata)>0,CURVEFIT2(x,data,ddata),CURVEFI~

T1(x,data),CURVEFIT1(x,data))

"Quadratic spline function interpolating data points with initial
slope m1."

SPLINE_AUX(x,data,m):=SUM(CURVEFIT(x,[data SUB k,data SUB
(k+1)],[[data SUB k~
SUB 1,m SUB k SUB 2]])*CHI(data SUB k SUB 1,x,data SUB (k+1) SUB
1),k,1,DIME~
NSION(data)-1)

SLOPE(data,m1):=ITERATES([v SUB 1+1,2*(data SUB (v SUB 1+1) SUB
2-data SUB (v~
SUB 1) SUB 2)/(data SUB (v SUB 1+1) SUB 1-data SUB (v SUB 1) SUB 1)-v
SUB 2]~
,v,[1,m1],DIMENSION(data)-1)

"Note that SLOPE returns the matrix [[1,m1], [2,m2], ...]."

SPLINE(x,data,m1):=SPLINE_AUX(x,data,SLOPE(data,m1) )

"Newton algorithm"

NEWT_ITERATES(u,x,x0,k):=ITERATES(x-u/DIF(u,x),x,x0 ,k)

NEWT(u,x,x0,k):=IF(k>0,NEWT_ITERATES(u,x,x0,k),?,SU BST(x-u/DIF(u,x),x,x0))

"This produces a vector which when plotted demonstrates New ton's method."

DRAW_NEWT(u,x,x0,k):=VECTOR([[v,0],[v,SUBST(u,x,v)] ,[NEWT(u,x,v),0]],v,ITERAT~

ES(NEWT(u,x,w),w,x0,k))

DRAW_COMPLEX(v):=VECTOR([RE(z),IM(z)],z,v)
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"Bisection method helper"

BIS_AUX(u,x,a,b):=IF(SUBST(u,x,a)*SUBST(u,x,(a+b)/2 )<0,[a,(a+b)/2],[(a+b)/2,b~

])

"Bisection method"

BISECT(u,x,v0,k):=IF(k>0,ITERATES(BIS_AUX(u,x,v SUB 1 ,v SUB
2),v,v0,k),?,BIS_~
AUX(u,x,v0 SUB 1,v0 SUB 2))

"Formula for the left-endpoint method for integrating u(x) over [a,b]
with n ~
subdivisions."

LEFT(u,x,n,a,b):=(b-a)/n*SUM(SUBST(u,x,a+k*(b-a)/n) ,k,0,n-1)

"Formula for the midpoint method for integrating u(x) over [ a,b] with
n subdi~
visions."

MID(u,x,n,a,b):=(b-a)/n*SUM(SUBST(u,x,a+(k+0.5)*(b- a)/n),k,0,n-1)

"Formula for the right-endpoint method for integrating u(x ) over
[a,b] with n~
subdivisions."

RIGHT(u,x,n,a,b):=(b-a)/n*SUM(SUBST(u,x,a+k*(b-a)/n ),k,1,n)

"Formula for the trapezoid method for integrating u(x) over [a,b]
with n subd~
ivisions."

TRAP(u,x,n,a,b):=(b-a)/(2*n)*(SUBST(u,x,a)+SUBST(u, x,b)+2*SUM(SUBST(u,x,a+k*(~

b-a)/n),k,1,n-1))

"Formula for Simpson's rule for integrating u(x) over [a,b] with n
subdivisio~
ns."

SIMP(u,x,n,a,b):=(b-a)/(6*n)*(SUBST(u,x,a)+SUBST(u, x,b)+2*SUM(SUBST(u,x,a+k*(~

b-a)/n),k,1,n-1)+4*SUM(SUBST(u,x,a+(k+1/2)*(b-a)/n) ,k,0,n-1))

"The box and trapezoid drawing functions used in the graphic al
demonstrations~
of numerical integration techniques."

D_BOX(x1,y1,x2,y2):=[[x1,y1],[x2,y1],[x2,y2],[x1,y2 ],[x1,y1]]

D_TRAP(x1,y1,x2,y2,x3,y3,x4,y4):=[[x1,y1],[x2,y2],[ x3,y3],[x4,y4],[x1,y1]]

DRAW_LEFT(u,x,n,a,b):=VECTOR(D_BOX(t,0,t+(b-a)/n,SU BST(u,x,t)),t,a,b-(b-a)/n,~
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(b-a)/n)

DRAW_RIGHT(u,x,n,a,b):=VECTOR(D_BOX(t,0,t+(b-a)/n,S UBST(u,x,t+(b-a)/n)),t,a,b~

-(b-a)/n,(b-a)/n)

DRAW_TRAP(u,x,n,a,b):=VECTOR(D_TRAP(t,0,t+(b-a)/n,0 ,t+(b-a)/n,SUBST(u,x,t+(b-~

a)/n),t,SUBST(u,x,t)),t,a,b-(b-a)/n,(b-a)/n)

"The solution to the differential equation (DE) y'+p(x)y=q (x) with
y(x0)=y0."

DE(p,q,x,y,x0,y0):=y=(y0+INT(q*#e^INT(p,x,x0,x),x,x 0,x))/#e^INT(p,x,x0,x)

"Direction field helper function."

SEG(rc,x,y,x,y):=IF(ABS(rc)>1 AND
y<ABS(rc)*x,[[x-y/rc,y-y],[x+y/rc,y+~
y]],[[x-x,y-rc*x],[x+x,y+rc*x]])

"The direction field (DF) for the differential equation: y' =r(x,y)
with a de~
termined by x0<x<xm with m subdivisions and y0<y<ym with n su bdivisions."

DF(r,x,x0,xm,m,y,y0,yn,n):=VECTOR(VECTOR(SEG(LIM(r, [x,y],[x0+j*(xm-x0)/m,y0+k~

*(yn-y0)/n]),x0+j*(xm-x0)/m,y0+k*(yn-y0)/n,(xm-x0)/ (4*m),(yn-y0)/(4*n)),j,0,m~

),k,0,n)

"The EULER function gives an approximate solution to: y'=r( x,y) with
y(x0)=y0~
."

EULER(r,x,y,x0,y0,xn,n):=ITERATES(v+(xn-x0)/n*[1,LI M(r,[x,y],v)],v,[x0,y0],n)



Appendix B

Instructors' Manual

This appendix, which obviously isn't complete, will contain general informa-
tion about using this book and for each chapter

� a short description on what we hope to accomplish,

� things to remind the students about,

� possible class demos, and

� advanced topics.

Chapter 5

This chapter primarily deals with solving equations using Newton's method.
Even thoughDerive has built in method for numerically solving equations,
there are many reasons for choosing this topic. The method itself is a nice
application of both di�erential calculus and the geometry behind it. It intro-
duces the students to the idea of approximation. More interestingly it forms
a subtle introduction to dynamic systems and includes such topics as �xed
points, attractors, super attractors, cycles, chaos and fractals.

You should take some time to prove and explain Theorem 1 on page 71 to
your students. It is easy to prove and shows the importance the derivative,
NG0(x), of the Newton iterate. The discussion after it explains why we get
convergence as long as NG0(r ) < 1 and why is is so fast if NG0(r ) = 0.

205
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Advanced topics. There are several advanced topics in the text and the
exercises that you might want to cover. For an open ended project for stu-
dents or for a more advanced demonstration you might consider the function
x3 � 5x from Exercise 4 and 5 on page 83. This function has three roots0
and �

p
5. By Theorem 1 on page 71 there are intervals around each of these

such that

NG(t) = NEWT( x3 � 5x; x; t ) =
2t3

3t2 � 5
applied to any elements of these intervals moves closer to the root. The
project would be to have the student investigate what happens to the seqence
of Newton iterates,

(1) t, NG(t), NG(NG( t)), NG(NG(NG( t))), : : :,

for an arbitrary real number t.
The exercise shows that there is also a cycle of length two, namely 1

and � 1. And, of course, NG(t) is unde�ned when t = �
p

5=3. This means
it will become unde�ned if we start with t such that NGk(t) =

p
5=3, for

somek. Examining the graph ofx3� 5x we can see that there is exactly onet1

with NG( t1) =
p

5=3 and that there is a uniquet2 with NG( t2) = t1, etc.
Derive can �nd t1 by solving NG(t) =

p
5=3 numerically. This will return

the vector [t = -1.04111] . We can make this into aDerive function which
just returns the number as follows:

INV(t) := RHS(SOLVE(2x^3/(3x^2-5) = t, x, -3, 3) SUB 1)

and then
ITERATES(INV(t), t, (5/3)^(1/2), 7)

will show t1; t2; : : : ; t7. These alternate in sign and their absolute values
converge to 1. Interestingly if jtk+1 j < t < jtk j then the sequence (1) of
Newton iterates will converge to

p
5 or �

p
5, depending on the parity ofk.

Thus we get smaller and smaller intervals near 1 (and� 1) whose elements
alternately converge to

p
5 and �

p
5.

Chapter 7

This chapter covers di�erential equation in more detail than is usually done
in the �rst year of calculus and, if the more advanced parts are covered,



207

would be suitable for second year students. Nevertheless itstill concentrates
primarily on tradition population growth and related problems.

The Derive function DE(p,q,x,y,x0,y0) solves the general �rst order
linear di�erential equation

(3) y0+ p(x)y = q(x); y(x0) = y0

In order to use this the student needs to rewrite his di�erential equation into
this form so he can identifyp(x) and q(x).

For population problems, where the general solutions has the formy(t) =
y0ek(t � t0 ) , the student is usually give some information which allows him to
�nd y0, k, and t0 and then ask for the population at some other time. It may
be a good idea to do one such problem in class. Also note in half-life and
doubling time problems it may not be necessary to solve fory0.

Advanced topics. We consider the Verhulst population model:

(9)
dP
dt

= kP
�

1 �
P
P1

�

This makes a very nice demonstration of the methods of this chapter. We
�rst draw the direction �eld for this equation; see Figure 7.3 on page 108.
This screen clearly shows that under this population model the population
tends to P1 whether it starts below or aboveP1. We then note that even
though (9) is not of the form of (3), the substitutionQ = 1=P transforms the
equation into a linear �rst order equation. This is then solved and plotted.

We also introduce Euler's method of �nding an approximate solution to
an equation of the formy0 = f (x; y).
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Index

asymptote, 31
attractor, 71

super, 71

basin of attraction, 72
bisection method, 77{79

chaos, 73
character input mode, 53
complex numbers, 71
complex plane, 72
complex roots, 9
critical points, 30

de�ning variables, 17
di�erential equations, 56, 97{108

linear �rst order, 98
direction �eld, 102
dynamic system, 71

Euler's constant, 5
Euler's method, 105
exponential growth, 46

�xed point, 81
attractive, 72

Gamma function, 42

half-life, 101

integral test, 126, 134{139
interest, 127

continuous, 139
e�ective annual rate, 140

loan repayment, 127{128

Newton's Law of Cooling, 99{101
Newton's method, 65{75

Poisson summation, 142
population growth, 51, 97{99, 103{

105

radioactive decay, 101
ratio test, 126, 130{134
recursion, 19
right mouse button, 5

series
convergent, 125
divergent, 125
geometric, 125, 126
harmonic, 139

Simpson's rule
derivation, 92{93
error estimate, 87

slope �eld, 102
solving equations, 8{9

numerically, 45
spline functions, 58
subscripts, 23
super attractor, 71

tangent line, 37
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trapezoid rule
error estimate, 87

vectors, 22

web page, xii
word input mode, 18


