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Preface

Calculus Reform and Computers

This lab manual is our latest e ort after more than a decade oféxperimenting
with the use of computers as an enhancement to learning calgs. In the
beginning we were working with Albert Rich and David Stouteryer, founders
of Soft Warehouse Inc. here in Honolulu, and theimuMATH computer
program. This program was the precursor t®erive . It was a PC-version
of the big mainframe computer programmacsyma. They could symbolically
integrate, di erentiate and do other calculus type problers. There were
no menus or graphics at that time, so we developed a small emlcament
program which included these features and distributed it tgeveral university
mathematics departments in the United States and elsewhere

This e ort took place in the mid to late 1980's. Since then, tlere has
been a national movement to include computers in the teactgnof calculus
and in fact to reform the teaching of calculus by discussing new ideas using
not only the traditional algebraic approach but also by exmring the ideas
graphically and numerically. In response to this movementew computer
programs were written such a®erive , Mathematica and Maple . Com-
puter calculus labs were created at most universities and llEges to take
advantage of this new technology and to start experimentingith new ideas
for teaching calculus.

Calculus text books are now starting to include substantiasupplements
on computer experiments and some have been completely reten to involve
computers as an integral component of the course. It is hard say right now
what calculus instruction will look like in ten years but thee is no doubt that
computers are completely changing the teaching approach tertain topics
with intensive graphics or computation components.

In this book we try to highlight those areas of calculus whictare best

iX



studied by using the computer to explore, to visualize and teuggest further
directions to study. We also try to convey that studying calalus can be fun
to do and is very important to understanding other topics in nathematics
and other elds.

This manual usesDerive because of its ease of use due to its menus and
on-line help. It turns out that there are also functions whib are equivalent
to the various menu commands; for example, in place ofa@ulus/I ntegrate
to integrate f (x) = x? one can alternately Aithor int(x*2,x) . However,
there is no need to know these functional equivalents if yousaDerive as
a calculus calculator On the other hand, knowing these functions enables
one to write programs which extend the power oDerive . We will give
numerous examples demonstrating both the simple calculatmode and the
powerful programming language.



c 1990{1997 Ralph Freese and David Stegenga, all rights resexd.

Chapter O

Introduction and Derive Basics

0.1 Overview

In this course you will learn to use the computer mathematicgrogram De-
rive . This program, along with others such as Maple and Mathemaia,
are very powerful tools for doing calculus. They are capabtd doing exact
computations with arbitrary precision. This means that youcan work with
numbers of any size or number of decimal places (most sprelagsts only
use 10-20 signi cant digits). These programs can simplify athematical ex-
pressions by canceling common factors and doing other algaib operations.
They can do symbolic calculus such as di erentiation and imtgration, solve
equations and factor polynomials. When possible these prags solve these
problems exactly and when exact solutions do not exist, sucks factoring
high degree polynomials or integration of some non-polynaah expressions,
then numerical methods are applied to obtain approximate seilts.

Probably the most important numerical technique is to graphand com-
pare functions. This will be a key feature of the labs. Typidy we will
explore a topic by rst graphing the functions involved and hen trying to
do symbolic calculus on them using the insight gained from éhpicture. If
the problem is too di cult algebraically we then try numerical techniques
to gain further insight into the problem. It is this combination of graphics,
algebra and numerical approximation that we want to emphase in these
labs.

Calculus is a hard subject to learn because it involves mangaas such as
slopes of curves, areas under graphs, nding maximums andmmums, ana-

1



2 CHAPTER 0. INTRODUCTION AND DERIVE BASICS

lyzing dynamic behavior and so on. On the other hand, many cqmtations
involve algebraic manipulations, simplifying powers, ddéiag with basic trig
expressions, solving equations and other techniques. Owagis to help you
understand calculus better by concentrating on the ideas drapplications in
the labs and let the computer do the algebra, simplifying andraphing.

Another important goal of the lab is to teach you a tool which an used
from now on to help you understand advanced work, both in matmatics
and in subjects which use mathematics. There are many feaas such as
matrices and vector calculus which we will not discuss but nabe learned
later as you continue with your studies in mathematics, physs, engineering,
economics or whatever. Any time you have a problem to analyz®u can
use the computer to more thoroughly explore the fundamentaloncepts of
the problem, by looking at graphs and freeing you from tedicucalculations.

This chapter contains a brief introduction on how to useDerive . We
suggest you sit down at the computer and experiment as you lloaver the
material. Derive is very easy to learn thanks to its system of menus. The
few special things you need to remember are discussed belowl @an also
be found using the help feature irDerive .

0.2 Starting Derive

The computers in the Bilger labs are IBM-PCs running the Windw 95 op-
erating system. In some of the other labs such as K214 and CLt@e older
Window system and the DOS operating system are still being ed although
they are going to be upgraded by the Fall 1997. We will mostly escribe
how to use the new DfW Derive for Windows) software in the Window
95 environment. The DOS version which is also available in ¢hBilger lab
is currently the only version available in some of the otherabs and so we
will say a few words about its use also. On a DOS based computaart
Derive for DOS by just typing derive on the command line. If you are
in Windows, either look for theDerive icon or else open a DOS window and
type derive . Finally, in Win95 we start both versions by double clickingon
it's startup icon which is located on the desktop. To start DW look for

and double click it. The Derive for DOS  startup is nearby.



0.3. ENTERING AN EXPRESSION 3

In DfW we use the drop down menus on the top strip or else clickna
appropriate button. If you move the cursor onto a button and éave it there
a brief explanation of what the button does will appear. All pssible options
can be found on the drop down menus but the buttons provide a ok way
of doing most common operations. For example, to enter a mamatical

expression you click the _I button which represents a pencil. Alternately,
you click the Author menu and then click Expression. In this manual we will
indicate that two step combination by simply Author/E xpression.

Derive for DOS  uses a menu at the bottom of the screen from which
we make selections by pressing the capitalized letter. Foxample, we type
a (or Abut uppercase doesn't matter toDerive on input so don't bother)
to select Author. Each menu item has one capital letter (usually, but nb
always, the rst). You can choose that menu item by pressinghiat letter.
We denote this by showing the capital letter in bold; for examle, Simplify or
sdLve. You can also choose this by hitting thd@ab key until it is highlighted
and then pressing theEnterkey. Note that the mouse is not used ifDerive
for DOS so all selections are done by typing.

In this manual we use a typewriter like font, eg.a(b + ¢) to indicate
something you might type in. We use a sans serif font for spatikeys on
the keyboard like Enter (the return key) and Tab. The special keys are
mostly usedDerive for DOS  whereas in DfW the analogous procedures
are accomplished by clicking the OK or Simplify boxes on vanus data entry
forms. Most of Derive has easy to use menus described below.

0.3 Entering an Expression

After clicking the _I button (or selecting A uthor in Derive for DOS ),
you enter a mathematical expression, i.e., you type it in anthen press the
Enter key or else click OK. You enter an expression using the custany
syntax: addition +-key, subtraction - -key, division /-key, powers”™-key and
multiplication *-key (however; multiplication doesnot require a*, i.e., 2x is
the same a®2*x). Derive then displays it on the screen in two-dimensional
form with raised superscripts, displayed fractions, and srth. You should
always check to make sure the two-dimensional form agreegiwwhat you
thought you entered (seeediting below to see how to correct typing errors).
Table 1 gives some examples.
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Table 1:

You enter: You get:
Q) 25 25
(2) X2 X2
(3) an2x a’x
(4) a™(2x) a’
(5) sin X sin(x)
(6) sin a x sin(a)x
(7 sin(a x) sin(ax)
(8) (5x*2 - X)/(4x"3 - 7) S X
(9) (a + b)*(1/2) (a+ b2
(10) P (a+b) Pa+ b

If you get a syntax error when you press enter (or click OK) th@roblem
is usually mismatched parentheses. Carefully check that@aleft parenthe-
sis is matched with a corresponding right one. Also be caréfto use the
round parentheses and not the square brackets since they aised for vector
notation; see Section 0.14 on page 22.

Note from (3) and (4) and from (6) and (7) of Table 1 that it is sanetimes
necessary to use parentheses. Also note in (8), that to getettiraction you
want, it is necessary to put parentheses around the numeratand denomi-
nator. See what happens if you enter (8) without the parenttses. Also try
entering some expressions of your own. There are two ways ttex square
roots. One way is using the 0.5 or=2 power as in (9) and the other is to
enter the special square root character as in (10). In DfW yoenter special
characters by clicking on them in the author form, see Figur@.1 on the next
page. In Derive for DOS you enter Alt-q which means hold down the
Alt-key and presq.
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0.4 Special Constants and Functions

In DfW all the special characters are on the author form and yojust click on
them to enter them in an expression. There are also key equieat such as
Ctrl-p for and Ctrl-e for Euler's constant e which is displayed byDerive
ase

Author Expression - 22?2 MTH | x|

o By &€t ine|vixx nviElon plexvlo(xyao e

(=]
=
-}
1
=
;—‘
.-
=
=
=
=
g
I8 {14
u
>
J
(I
= I+

TS Simpity | Cancel |

Figure 0.1: Author entry form with special symbols

In Derive for DOS  a slightly di erent key combination is used for
special characters. To gefl , type inf . To get , type pi or Alt-p. Euler's
constant e is obtained by typing either Alt-e or #e. The help feature in
Derive for DOS  can be used at any time to remind you how to type these
constants. Just selectHelp or F1 when authoring and then select either
constants or functions. The list of functions is very large rad you might
want to avoid that in the beginning.

It either version it is important to distinguish & from just e. Derive takes
e to just be some constant likea. To get the functions tan x = arctan(x),
sin 1x = arcsin(x), etc., you type atan x and asin X.

0.5 Editing

Suppose that you author an expression, click OK and then obse that you

typed something wrong. In DfW you would click the _I button again and
then click the right mouse button A menu opens up with several options,
one of which is_hsert Expression. Clicking this option puts the highlighte
expression of the current algebra window into the author box You edit

1Leonhard Euler (oi'lar) was a 18" century Swiss mathematician.
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this expression as you would in any windows program. That iSoy position
the cursor either by clicking or using the arrow keys. By hidighting or
selecting a subexpression and typing you replace the sedsttext with the
new text. One can use the Hit/C opy Expressions menu ofntl-C to place
a highlighed expression from any algebra window onto the ghoard and
then in the authoring form right click the mouse and click Rste to copy the
clipboard contents. The simpler method of just right clickng the mouse and
then Insert is the best way as long as your expressions are in a sengindow.
There is also an option for inserting the expression enclasa parenthesis.
A key equivalent to these techniques, which is the same f@erive for
DOS, is F3 and F4.

You select or highlight expressions in the algebra window lglicking on
them. For more complicated expressions you can click sevetimnes until the
desired subexpression is selected. This requires a littleaptice but you can,

. . 2 . .
for example, select thex + 2 part of the expression smK(XX—JrZ) by clicking on

it 4 times (each click takes you deeper into the expression).

When you are A uthoring' an expression inDerive for DOS , you can
use the left and right arrow keys, theEndkey and the Homekey to move
forward and back. The Delete key will delete characters. Thisertkey
toggles between insert and overstrike mode. If you press ti#-key, the
expression highlighted on the screen will be inserte4 will insert it with
parentheses around it. You can use the up and down arrows toasige which
expression is highlighted on the screen. The help featurepéxins these
techniques, just selecH elp and then choosde for edit.

The displayed expressions are numbered. You can refer to theas #n.
So, for example, with the expressions in Table 1, you couldtggn(x)=x2 by
A uthoring #5/#2.

When you start Derive it is in a character mode. This means it treats
each single character as a variable, so if you typex Derive takes this to
be a times x. This mode is what is best for calculus. The exception to this
are the functionsDerive knows about. If you type xsinx , Derive knows
you want x sin(x). Actually on the screen you will seex SIN(x): Derive
displays all variables in lower case and all functions in ugp case.
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Table 2: Special Keys and Function Names

Expression/Action

Type:

Menu:

e Alt-e (DOS) or #e Author entry form
Alt-p (DOS) or pi Author entry form
1,1 inf , -inf Author entry form

The square sign:IO

alt-q (DOS)

Author entry form

Inx, log, x

In x , log(b, x)

Inverse trigonometric functions

asin x, atan X,

etc.

d—dxf (X) dif(f(x), x) Calc/Di erentiate
dn
gx”f (%) dif(f(x), x, n) Calc/Di erentiate
f (x) dx int(f(x), x) Calc/l ntegrate
7
=D
f (x) dx int(f(x), x, a, b) Calc/l ntegrate
a
Simplify an expression S-key(DOS) Simplify
Approximate X-key(DOS) Simplify/A _pprox
Cancel a menu choice Esckey
Move around in a menu Tab-key (DOS)
Change highlighted expression| N, H-key Click expression

Insert highlighted expression

F3, F4 with ()'s

Right mouse button
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0.6 Simplifying and Approximating

After you enter an expressionDerive displays it in two-dimensional form,
but does not simplify it. Thus, integrals are displayed withthe integral sign
and derivatives are displayed using the usual notation. Taraplify (that is

evaluate) the expression, click theil button. The alternate method is the
Simplify/B_asic drop down menu. InDerive for DOS  you chooseSimplify
from the menu by pressing thes-key.
Derive uses exact calculations. If you Athor the square root of eight,
8 will be displayed in the algebra window. If you simplify thé, you get

2 2. If you want to see a decimal approximation, you click theil button.
In Derive for DOS  choose the appr imate menu item by pressing the
x{key. See Figure 0.5 on page 19 for several examples. The nemiof
decimal places displayed can be changed to any number. In Df#u choose
Declare/Algebra State/Output and then reset the number of decimals places.
In Derive for DOS it's done by choosingOptions/ Precision and changing
Digits by pressing theTab-key and entering a number. This results in a
change in the State variables fobDerive and in DfW you will be prompted
on whether you want to save these changes when you exit the gram. Since
you can't change les on the system directory you should ckcNo.

An alternate way to do this is choose &plify/A_pproximate from the drop
down menus and enter a new number of decimals. The only troeblith this
method is that if you save your le the extra decimals will be gnored unless
you set the Output decimal places appropriately. When you am the le
later you will also need to reset the Output decimal place aacacy.

0.7 Solving Equations

An important problem is to nd all solutions to the equation f (x) = 0. If
f (x) is a quadratic polynomial such asx? x 2, then this can be done
using the quadratic formula or by factoring. To factor in DfW you choose
Simplify/F_actor from the menu bar and click_8nplify on the entry form.
In Derive for DOS  we chooséd-actor, press theEnterkey and ignore the
other options for now. The resultis that k+1)(x 2). This means that the
roots off (x) arex = 1, 2, i.e., these are the only solutions tb(x) = 0.

We can also do this by using theSOLVEunction. To do this in DfW
we highlight the equation, sayx®> x 2 (it's assume to be equal to zero),
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and click the gl . If you forget the function of a button just hold the
cursor on it and a brief explanation will appear. An alterna¢ method is to
choose Sake/A lgebraically from the drop down menu. Similarly, inDerive
for DOS we choose dove with the quadratic expression highlighted. The
quadratic formula is used to solve for the roots so it is posde the answer
will involve square roots (and even complex solution, e.g? + 1 has noreal
roots but it does have two complex ones, namely,= i).

If f(x) is not a quadratic polynomial thenDerive may not be able to
factor it; nevertheless, it may be able to solve the equatioh(x) = 0. As
an example, sikx = 0 has innitely many solution x = m wherem is
any integer. If we useDerive to solve this equation it gives the 3 solutions
corresponding tom = 1;0; 1 (these are the principle solutions and all others
are obtained by adding or subtracting multiples of 2).

Finally, the simple equation sirx x? = 0 cannot be solved exactly in
Derive although it is obvious that x = 0 is one solution and by viewing
the graph we see another one witlx 1. In order to approximate this
solution we need to choose Sa/N umerically. We will then be asked for a
range ofx's (initially it is the interval [ 10; 10]). Since we have (at least) 2
solutions in [ 1G; 10], we should restrict the interval to say:p; 1] which seems
reasonable based on the graphical evidence. The result istlDerive gives
the solution x = :876626. We will discuss how this computation is done later
in Chapter 5.

Note that Solve/N umerically will only give one solution (or none if there
are none) even if the interval you choose cantains severalwimns. To nd
additional solutions you need to use Seé/Numerically again but with an
interval avoiding the rst solution.

In Derive for DOS  we have to proceed a little di erently andA uthor
the expression

solve(sin x - x*2, x, .5, 10)

directly and then simplify. Of course, we could do this in DfWoo but the
menu method is easier. Yet another method is to change the s&tavariables
so that all simpli cation is done numerically instead of exatly but this is
less desirable because you have to remember to switch modaskbto exact
mode for other calculations.
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0.8 Substituting

If you have an expression Iikep x2+1=x and you want to evaluate this
with say x = 3 or if you solved an equationf (x) = 0 and you want to
substitute that value of x back into f (x), you start by highlighting the desired

expression. Next you click the EI button and the substitution form opens
up. You need to Il in the substitution value so you would justtype 3 in the
rst example. On the other hand, if the substitution value islarge, say lots
of digits or some other complicated expression in the algebwindow, the
easiest way is to move the form out of the way (just hold down #hleft mouse
button in the top strip and drag to another location) and selet the desired
expression by clicking on it. Then, paste it into the form by ight clicking
and choosing hsert. If there happen to be other variables in the expressio
you may have to change the variable in the variable list box.

Again the method inDerive for DOS s a little di erent. You highlight
the expression and then chooskl anage/Substitute. This will ask you for
the expression. It will guess the highlighted expression hweh is usually what
you want so you can just hit return in this case. It then giveste name of
a variable occurring in the expression. In the rst examplex is the only
variable. You then type overx with the value you want to substitute, in
this case 3. You can therSimplify or approXimate. You do not have to
substitute a number forx; you can substitute another expression.

0.9 Calculus

This menu item is very important for us. After choosing the_ @lculus
drop down menu, you get a submenu with Derentiate, | ntegrate, Limit,
Product, Sum, Taylor and Vector. After you have authored an expression,

you can dierentiate it by either clicking the il button or choosing
Calculus/Di erentiate from the drop down menu. The form will have entries
for what variable to use and how many times to di erentiate, loit it usually
guesses right so you can just click OK. Then simplify.

To integrate an expression, rst author it or highlight it if it is already
in the algebra window, then either click the il button or else choose

Calculus/Integrate. The form will have entries for what expression tonte-
grate; it will guess you want to integrate the highlighted egression. It will
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have an entry for what variable you what to integrate with; agin it will prob-
ably guess right. It will also have entries for the limits ofritegration. If you
want an inde nite integral, just click the appropriate butt on and click OK.
For a de nite integral click the appropriate button, type in the upper/lower
limit, then click OK. (Note: the procedure is similar in Derive for DOS
except that we need to use thélab-key to get to the other menus options
such as the upper/lower limits). See Figure 0.2 for severakamples using
Di erentiate and | ntegrate on the Galculus menu.

E] DERIVE for Windows M=
File Edit Author Simplify Solve Declare DOptions Window Help
Ol 1 Y e = Limit... lim
[Sla] 8] ol E b [wlals[zln] A&
B8 Algebra 1:1 F-CALC1.MTH Taplor series...  thra 21 F-CALC2.MTH Y ] S
2 BT ) 5
SIM(S -x 3 Sum... , ;
Product.. Mow choose Calculus-Integrate
2: "Now choose CalculussDi
Yector... 2
d 2 I 18-x-C08{5-x )} dx
3: — BIN(S5-
dx (5-x 3 4: "Now choose Simplify"
A : P 2
4 Mow choose Simplify 5: SIN(S-x )
2
5: 18-x-COS¢5 -x ) 6: "Redo with definite integral"
"The logarithm function is LN » R 2
LN¢x) 7 I 18-x-CO08(5-x ) dx
a
d e : sou
8: — LN(x) 8: Simplify again
d —
x ?: 8
1
9: — 18: "Check that #5 is zero for x=Jr—
x 2
1@: “Integration takes us back." | “||#11: SIN{S-Jm } hd
< | Dl 4L | Dz

Calculate the definite integral or antiderivative HUM 4|

Figure 0.2: Using the_Glculus menu

The options Calculus/Limits is similar to the above. To nd

im X
xI' 1 X+1

you enter the expression, then either click im| or choose limits from the
Calculus menu. You Il in the variable (which is x) and the limit point which

is 1 sincex ! 1. Then click il or choose _Bnplify to get the answer.
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In a similar mannerDerive does summation and product problems. Special
notations are used; namely,

a = a+ +a, and a =a; an.

DERIVE for Windows o [=1)E3

File Edit Author Simplify Solve Calculuz Declare Dptions Window Help

D] [&] []en]wi] (A=l [=]x ]05w] tn] o | =] (] 4]

[F/Algebra 1:1 F-LIMIT1.MTH —|O][x]| | E]Algebra 2:1 F-LIMITZ.MTH -10] x|
_I 1: “Enter x raised to the ith power.
1
2: X
"Choose Calculus/Limit"
2 3: "Choose Calculus/Sum"
x —1 3 i
lim 4z E x

2 o|B|v|6E|Einetikx nvElon e xolexyo@el<us®CclE:
n|Br|aE|z[He|1|x/a/nn|zlojn|r|z|T|v|ex|¥rt]«|zn~5L
"Now
x =1 [0"2 - 130+ 1)
"Thi: .
¥ ‘Warniable: Ix vl Limit Point: |1| Approach From
"heci - O Left
€ Right
@ Both
_
u] I Simnplify Cancel

Figure 0.3: Examples of imits, Products and Sims

Let us discuss the summation notation which may be new to youlf

P
The symbol on the left, ir':l a;, is read as \the sum ofg; asi runs from 1
to n." Often & is a formula involvingi. So

i2=0%+1%2+2%+3%2+4?+5%2=55;

i=0
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You can do this computation inDerive by clicking the El or using the

Sum option on the Calculus menu. Just authori®2 then click EI . Fill
in the required variablei along with the starting value 0 and end value 5.
Simplify to get 5% As an interesting aside, edit the above surand have
Derive Simplify = [, i to get the formula:

X _n(n+1)
i=1 2
This formula is used in many calculus texts to evaluate ceria Riemann
sums.
See Figure 0.3 on the facing page for some examples. Note thmaFig-
ure 0.3

The option Calculus/T aylor will be explained in Chapter 10.

0.10 Plotting

Supposed you wanted to graph the functiorx sinx. In DfW you simply
author the expression, by clicking the pencil button _I , to be plotted
and then click the il button. A plot window will then opens up and

the icon-bar will change to a new set of buttons. You then clcthe il
button again (it's position is di erent in the plot window) a nd the graph
will be drawn. There are several di erent ways to view the algbra and plot
window together. The one we used to produce the pictures inghmanual is
to rst select the algebra window (if you are currently in theplot window you

can go to the algebra window by clicking the _| button) and then choose
Window/Tile V ertically from the menus. This will split the screen into two
windows: an algebra window on the left and a plotting window rothe right.

These windows each have a number in their upper left hand c&mn You can
have several plot windows associated with a single algebrandow but you

cannot plot together expressions from di erent algebra withows. You can
switch windows by either clicking the top strip of the windowor clicking the

il or _| buttons. Actually you can click anywhere in the window to
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select it but the top strip avoids changing the highlighted gpression in the
algebra window or moving the cross in the plot window.

You can plot several functions in the same plot window. Moveotthe
algebra window, highlight the expression you want to plot,witch to the plot

window and then click the il in the plot window. Now both expressions
will be graphed. You can plot as many as you want this way. Thelgqt
window also has a menu option, &it/Delete P lot, for removing some or all
of the expressions to be plotted. Pressing thBeletekey also removes the
current plot.

When you plot, there is a small crosshair in the plot window nitially at
the (1;1) position. You can move the cross around using the arrow ker
by clicking at a new location. The coordinates of the cross argive at the
bottom of the screen. This is useful for such things as ndinthe coordinates
of a maximum or a minimum, or where two graphs meet. In order toenter

the graph so that the cross is in the center of the window, ckcthe £|
button. This is useful for zooming in and out to get a better \@w of the
graph. There are several buttons for doing this in the plot widow. Take a

. . . & .
look and you will see a button for zooming in, namely +.,+| , and for zooming

out |%?| and various ways of changing just the x-scale or just the y-ale.
You should try clicking these buttons to see exactly what hagens.
In general, these buttons change the scale of the plot windduwy either

doubling or halving it. You can customize these by using theil button
(that's a picture of a balance scale). Just click this buttonand Il out the

form the appears with your own numbers. You can see the curtescale at
the bottom of the screen.

We mentioned above how to plot any number of graphs simultanasly by
repeatedly switching between the algebra window and the gohics window.
Another technique for plotting three or more functions is toplot a vector
of functions. This just means authoring a collection of furtons, separated
by commas and surrounded by square brackets. For examplepfping the
expression[x, x*2, x*3] will graph the three functions: x, x2, and x3.
In order to plot a collection of individual points one enterghe points as a
matrix, for example authoring the expression[-2,-2], [0,-3], [1,-1]]
and then plotting it will graph the 3 points: ( 2; 2), (0; 3) and (1, 1).

A quick way of authoring a vector is to use the :l button and a quick
way to enter a matrix is to use the ul button. One then just lIs out the
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form that open up. So for example with the 3 points above we wiliclick

the matrix button UI and select 3 rows and 2 columns. The form will
open up and we then Il in the 6 numbers above in the obvious oedt. You
move between elds by either clicking or using th&ab-key.

When plotting points you have a choice of connecting the pdm with a
line segment so that it appear like the graph of a function. Yo do this by
choosing (otions from the menu bar. There are lots of interesting itemsn
this menu that will allow you to customize plotting colors, he size points
are plotted, axes and so on. To connect points we chooseifts and then
check the Yes button. We can also modify the size of the points by clickin
the appropriate button. See the Figure 0.4 where each of tleesechniques
is demonstrated. The color of a plot is controlled by choosinOption/P _lot
Color and then making sections on the menu.

] DERIVE for Windows
File Edit Set Plou [Ty Window Help
|§| |‘=|v|'><f|_l Aes...

Cross.._

[{algebra F-PLOTS.M7  Grids...

Coordinate System...

1: "Enter funct:
2 Plot Color...
2: SIN{x } Background Color. ..
2 Printing....
3: x 1 v Follow Mode
4 Trace Mode F3
4: “To plot poir Autozcale Mode
“of {x,y) points, then plot."
-2 -2
6 : a -3
1 -1
E'?: "If you want to plot just points"
B: “choose Option-sPoints and pick No"
< I O|F . . . -4 .
HH Cross: 1,-2 [Center: 0, 0 [Scale: 111 A\
Figure 0.4: Using_Rot for graphics
Graphing with Derive for DOS. In Derive for DOS  the analogous

procedure are as follows: You would rs uthor the expression to be plotted
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and then choosePlot. You then get the submenu: B eside,U nder, Overlay.

You will usually want B eside. After choosing this (by pressing thi{key or

pressing theEnter key), you are asked for the column. You can pregsnter
to get column 40. This will split the screen into two windows:an algebra
window on the left and a plotting window on the right. These widows each
have a number in their upper left hand corner. You can tell wich window

you are in by which number is highlighted. You can switch winows by
pressing theF1-key or choosingA Igebra when you are in the plot window or
choosingPlot from the algebra window.

After you have created the plot window, you are in that window You
need to choosd’lot from that window to actually do the plotting. This will
plot the expression highlighted in the algebra window. Youan plot several
functions in the same plot window. Move to the algebra windowuse the up
and down arrows to highlight the expression you want to plotswitch to the
plot window (by pressingF1 or choosingPlot), and then chooseP lot from
the plot window. Now both expressions will be graphed. You oaplot as
many as you want this way. The plot window also has ® elete option for
removing some or all of the expressions to be plotted.

When you plot, there is a small crosshair in the plot window,nitially
at the (1;1) position. You can move it around using the arrow keys. The
coordinates of the position of the cross are give at the botto of the screen.
This is useful for such things as nding the coordinates of a aximum or
a minimum, or where two graphs meet. The&Center option will redraw the
graph so that the cross is in the center of the window. You carsa theZoom
option to move in or out.

We mentioned above how to plot any number of graphs simultanasly by
repeatedly switching between the algebra window and the grhics window.
Another technique for plotting three or more functions is tgolot a vector of
functions. This just meansA uthoring a collection of functions, separated by
commas and surrounded by brackets. For exampl®,lotting the expression
[x, x*2, x~3] will graph the three functions: x, x2, and x3. In order to
plot a collection of individual points one enters the pointsaas a matrix, for
example A uthoring the expression[[-2,-2], [0,-3], [1,-1]] and then
Plotting it will graph the 3 points: ( 2; 2), (0; 3) and (L, 1). In the
graphics window chooséption/ State then press theTab key followed by
Connected. Then choosingdp lot again will graph the 3 points above but also
draw the line segment between them. See the Figure 0.4 on theepeding
page where each of these techniques is demonstrated. Theocalf a plot is
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controlled by choosingOption/ Color/ Plot and then making sections on the
menu.

Tips for graphing with Derive for DOS. The main tools for manipu-
lating the view of your graph are:

Use Zoom to zoom in or out on either thex or y{axis or both. You
can also usd=9to zoom in andF10to zoom out. You can choos&cale
to control the scale exactly.

UseCenter to reposition the view so that the crosshair is in the ceer.

Range can be used to control the range. By changing the four nbers,
Left, Right, Bottom, and T op, you can control where the view window
is. You can either type in the values you want or use the arrowelys to
visually change a range box on the screen.

Choose Scale/Auto get auto-scaling mode. In this modeDerive
chooses a goog-scaling to t your graph for you.

You can get the crosshair to follow along the curve (it changeo a small
square when it does this) by choosin@ption/ State and choosingY es
in the Trace eld. If you have more than one graph, the up and down
arrows will change which graph the cursor is on.

For some graphs you might need more accuracy in the plotting tsee
what is going on, for examplex sin(1=x). Options/ A ccuracy controls
this.

One easy way go back to the default coordinates in a plot windois
to chooseW indow/ D esignate/2d-plot.

0.11 De ning Functions and Constants

If you Author f(x) , Derive will put fx on the screen because it thinks
both x and f are variables. If you wish tode ne say f (x) = x? + 2x +
1 for example, you could Asthor f(x) := x*2 + 2x + 1 . Note that we
use := for assignments and = for equations. Alternately, yowwould choose
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Table 3: Special Keys for the DOS Graphing Window

E ect: Type: Menu:

Switch windows F1 Algebra orPlot
Zoom in, zoom out F9, F10 Zoom

Move Crosshair 4 arrow keys

Move crosshair quickly| Ctrl-J, Ctrl-l , PgUp PgDn

Center on crosshair Center

change the scale Scale

Declare/Function, and then Il in the form with f(x) for the function name
and x"2 + 2x + 1for its value. Derive will then enter this as above with
the :=-sign. See Figure 0.5 on the next page. The procedurelrerive for
DOS is similar.

Constant are treated just like functions except there are narguments.
In order to seta=2 for example you typea := 2 pi. Then, whenever you
simplify an expression containinga, each occurrence is replaced with 2

In many problems you nd it useful to have constant names withmore
than one letter or symbol, which is the default inDerive . For example
variables with names likex1, y2, etc. will be used frequently as are names
like \gravity". This can be done by declaring the variable for example, to
use the variablex1 we author x1:=. Now any use of these letters will be
treated as the single variablex1.

Alternately, this can be done by changingerive to word input modeby
choosing _Declare/Algebra State/Input and then clicking the Word button.
In Derive for DOS  you would choosé ptions/ I nput/ W ord. In this mode
variables can have several letters but when in word input me&dyou have to
be more careful with spaces: to gedx? you should entera x*2, not ax"2
(otherwise ax will be treated as a variable)Derive indicates multiplication
with a centered dot. So on the screen you should saex?, not ax?. Due to
these side e ects it is usually best to use the previous mettldor multi-letter
variables and not make any changes to State Variables.

An interesting function de ning technique is provided by the factorials.
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E] DERIVE for Windows | _ O] x|
File Edit Author m Solve Calculuz Declare Options Window Help
ol Basic... Ctrl+B by S| s
LAY 31 T RO -l CXEN ) Wb e RS R
ﬁnlgehla 2:1 F-SIMP2.MTH

[F4Algebra 1:1 F-51 _ Factor... Ctrl+F ﬁ

1: "Define a Approzimate... Ctril+G : 48
i Substitute for 3
= 2: "Press = button to simplify."
2: F{x) ==x + 2-x +1
3: 2-J2
3: F{1)
4: 4 4: "Press approximate button."
G: 2.82842
L: Fix — 1)
2 6: "Another example:"
4 7 om
"Enter the polynomial again" 8: 3.14159
2 ?: "Alternately: Highlight #7. the
x +2-x+1
) ) 1@: "choose Simplify Approximate ar
?: "Choose Simplify-/Factor to Fact
2 11: "set Digits te 12_." —
18: {x + 1) 12: APPROM{n. 12)
11: "This should explain #6. since’ 13: 3.14159265358
12: "peplacing x in x+1 with x-1" =~ 14: "Mote: Decimal precision is Si|;|
< | |l | aW

Approximate the highlighted expression HNUM

Figure 0.5: Examples of Bclare, $mplify and approximating

Forn=1;2;::: we de ne n-factorial, denoted byn!, as
n=n (n 1) 21 n=1;2:::

and for completeness we de ne 0! = 1. These numbers are impant in many
formulas, e.g., the binomial theorem. One observes the impant recursive
relationshipn! = n(n 1)! which gives the value oh! in terms of the previous
one (h 1)!. Thus, since 5! = 120 we see immediately that 6! = 720 withua
multiplying all 6 numbers together.
In Derive we can recursively de ne a functior=(n) satisfyingF(n) = n!
by simply typing
F(n) := IF(n=0, 1, n F(n-1))

where the properties of thderive function IF(test, true, false) should
be clear from the context. The de nition forces the functionto circle back
over and over again until we get to the beginning value at =0, i.e.,

FNN)=nFn 1)=n(n 1) F(n 2)= =n(n 1) 21F@0O)=n!
We will give several other examples of this technique in theext.
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0.12 De ning The Derivative Function

A common application of de ning functions is to havef (x) de ned but the
calculus problem requires a formula involving botl (x) and f {x). For ex-
ample, the equation of the tangent line at the point &;f (a)) is given by
y=f(@+ fqa)(x a).

If you try to de ne the derivative of f (x) by g(x) := dif(f(x), x) and
then evaluateg(2), you get DIF(F(2), 2) , which is not what you want. Of
course we could also just compute the derivative and de ng(x) := to
be that expression. The advantage of de ning it as a functioms that if we
change the de nition of f (x), then g(x) will also change to the derivative of
the newf (x). Thus, we get to use the formula for more than one applicatio

Here's the correct way to de ne the derivative as a function:Start by
Authoring f(x):= and we can enter the speci c de nition off (x) now or

wait until later. Next, click the derivative il button and enter f(u) in
the form (note the variable isu not x). Select the Variable u and press OK.

Now click the limit ll_ml button (with the previous expression highlighted)
and enter the Variable u and the Point x. Finally, A uthor g(x):= and insert
the previous expression by right-clicking and selectingsert.

The result is the expressiorG(x):= LIM( DIF( F(u), u), u, x) . Ac-
tually, you could have just Authored this expression directly but the syntax
and the number of parentheses is a little confusing in the bieging so the
above method is easier and probably faster. See all this wetkout on page 38
in Chapter 2 where a more technical discussion of this issuegiven.

0.13 Functions Described By Tables

In calculus functions are typically described by giving a fonula like f (x) =

2x3 + 5 but another technique is to describe the values restricteto certain
intervals or with di erent formulas on di erent ranges of x-values. As an
example, consider the function

8

22x+1 forx<1
f(x):>x2 forl x 2

"4 for 4< x
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which de nes a unique valuef (x) for each value ofx. The problem is how
do we de ne such a function usingerive ?

One basic technique is to use the logicdF statement. The syntax is
IF(test, true, false) . For example, if we enter and simplifflF(1 < 2,
0, 1) we get 0 whereasF(1 = 2, 0, 1) simplies to 1. Now our function
above is entered as:

fx):= IF(x < 1, 2x + 1, IF(x <= 2, x"2, 4))

Notice how we use nestetF statements to deal with the three conditions
and that with four conditions even more nesting would be redgred. Now once
f (x) has been de ned we can make computations such &smplifying F(1)
(should get 1), computing limits such as the right-hand lintilim, 1+ f (X)
(should get x? evaluated atx = 1) or de nite integrals using approX to
simplify. We can also plotf (x) in the usual manner described in the previous
section.

El DERIVE for Windows L [O] x|

File Edit 5et Plo!! Options Window Help

R I G S e e e e A R e

3: F(x):=IF(x(1,2-x+1,IF(x£2,x2,4)) ;I Y
4:  F{1} . . . 5 .
b 1
6: F(x) . . . 4
v iiT+ FGO . . . 3
g: 1

2 . . . 2

9: I Fix) dx
a

1@: "Choose Simplify/Approximate to calc

2 3 -2 -1 1 2 3 4 5
11: APPROX I F{x) dx.6
a -1 -
12: 4.33354 el
< | 4 PR . . -2 . .
H cross: 1,2 [Center: 1, 2 [Scale: 1:1 4

Figure 0.6: Functions de ned by tables of expressions

Notice from Figure 0.6 that the functiony = f (x) is continuous at all
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x 6 1. At x =1, both left and right limits exist but they are not equal so
the graph has a jump discontinuity.

As the number of table entries increases we are forced intang nestedIF
statements and the formulas become quite di cult to read andunderstand.
An alternate approach is to use theDerive function CHI(a,x,b) which is
simply

8

20 forx a
CHI(a;x;b)=>1 fora<x<b

"0 forb X

Then except forx = 1 our function f (x) above satis es:
F(x):=(2x+1) CHI(-inf,x,1) + x*2 CHI(1,x,2) + 4 CHI(2,x,in f)

This technique works for graphing and limit problems and m@over gives
the exact result at each point where the function is continugs.

0.14 Vectors

Vectors are quite useful inDerive , even for calculus. They are also useful
in plotting. To enter the 3 element vector with entriesa, b, and c, we can
Author [a, b, c] directly. Itis important to note the square brackets which
are used inDerive for vectors; commas are used to separate the elements.

An easier approach is just click the =] button and Il in the three values
on the vector input form.

Derive also provides a useful function for constructing vectors waise
elements follow a specic pattern. Thevector function is a good way to
make lists and tables inDerive . For example, if you Author vector(n"2,

n, 1, 3) , it will simplify to [1, 4, 9] . The form of the vector function is
vector(u,i,k,m)  whereu is an expression containing. This will produce

menu option to create a vector. So, for example, to obtain theame vector
as before, you start by authoringn”2. Now choose @lculus/V ector and |l
in the form setting the Variable to n (not x), the start value to 1, the end
value to 3 and the step size to 1 (that's the default value).

A table (or matrix) can be produced by making a vector with vetr en-
tries. If we modify the previous example slightly by replacig the expression
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n"2 with [n, n*2] and then repeating the above we gdf1, 1], [2, 4],

[3, 9]] which displays as a table with the rst column containing thevalue

of the index n and the second column containing the value of the expression
n2. This is a good technique for studying patterns in data. Seeigure 0.7
for some examples.

[E| DERIVE for Windows -10][x]
File Edit Author Simplifp Solve Calculuz Declare Options Window Help
D]@]d] [&] (i en] ] [Aofi] [= ][] m]a] r]Z]TT] [+]X]
[F:Algebra 1:1 FVECT1.MTH -10][x]| [ agebra 2:1 FVECT2MTH -1olx]
T 3
1: x  dx
1: ﬂ
n n
2: "Choose Calculus-Uector" 2 [n. ¥ . Ix dx]
2 [ n J‘ n ]
3: UECTOR{n . n,. 1, 4) 3: UECTOR{|n. x . » dx]. n. 8.
i alg|veledinet kdnviEonpexviexyaelde<iu~lcEz
. ABCAEZHBG|IKAMMNEOIIPETYEXYAIezN~=LT
rH |n“2
Wanable: In vl Starting Value: |1
8: Ending Value: |4|
Step Size: |1
-
o | Simplfy | Cancel | L 4
|

Figure 0.7: Using the Glculus/V ector command

We have already seen two important applications of vectora Section 0.10;
namely,

Plotting a vector of 3 or more functions{ (x); g(x); h(x);: ::] plots each
of these functions in order.

Plotting a vector of 2-vectors [kq; yal; [X2; V2]; : : :] will plot the individ-
ual points (X1; Y1), (X2;Y2);:: 1.

We will have other application that will require us to refer b the individ-
ual expression inside of a vector. This is done with thBerive SUBunction
(which is short for subscrip). Thus, for example,[a,b,c] SUB 2 simplies
to the second elemenb. Derive will display this as [a; b; d, which explains
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the name. For a matrix or vector of vectors then double subdgpting is used
so that, for example, if
_ 12
Y= 3 4

then Authoring y SUB 2 SUB Will be displayed asy,.; and simplify to 3
(because it's on row 2 and column 1).

0.15 Printing and Saving to a Disk

You can save the expressions in an algebra window to either appy disk or
the network hard drive H: and come back later to continue woikg on them.
Unfortunately, the plot windows are not saved but the pictues can be put
on the clip board and saved as graphics les using suitableaphics software.
To save to a oppy, put a the diskette in say the A: drive and adwate the
algebra window that you want to save. Click He/Save As and Il out the
menu of options with the drive A: and a le name such as Lab5 owpt save
to A:LABS and enter. DfW will add the extension .MTH to indicate that
this is a le consisting of Derive expressions. If you are usin@erive for
DOS then instead choosel ransfeiSave, thenD erive and enter a le name
such as A:LAB5 or A:LAB5.MTH or H:LAB5 for the hard drive. In DfW
after the le name has been established you can update it byrmsply pressing

the | button.

You will most likely save your les to the network harddisk. The H: drive
(H is for "Home") is your private area which is accessible only using your
password. To save a le, just refer to it as say H:LAB5 or switt to the H:
drive and view your les.

Later, you can recall these expressions by using either théld?O pen or
File/L oad/Math options. The second method is used primarily to add ex-
pressions to an existing window. Ierive for DOS  you do this by choos-
ing T ransfer/Load/D erive, and then entering the desired le name A:LAB5
(or A:.LAB5.MTH). If you forget the name of your les just type either A:
or H: and press theF1{key to select from a listing of your les.

When you do a le operation you will notice that the default drectory
L:nDfWnM206L has lots of les of the form F-*. MTH. These les are the #ge-
bra window expressions from the various gures in the manuaFor example,
Figure 0.7 on the preceding page has two algebra windows F-€E1.MTH
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and F-VECT2.MTH which are identi ed in the top stripe of the correspond-
ing algebra windows. You can load these les at any time to sé®w expres-
sions are entered or to experiment with the material.

During the course of your session with the computer you will ake lots
of typing and mathematical mistakes. Before saving your wkrto a le or
before printing and turning your lab in for grading you shoul erase the
unneeded entries and clean up the le. The three buttons %i|#n| #%| can
be used for this purpose. For example, if you select severapeessions by say
dragging the mouse pointer over them with the left button hel down and

then press the ﬂl button these expression will be removed. CIickingﬂl
will undo the last delete. You can move a block of highlightsHes by holding
down the right mouse button and dragging the block to a new lation. Of
course, when you delete or move some lines then the line numsb®iill no
longer be in a proper sequence of #1, #2, .... You can correchis by

pressing the renumbering button #_él . In Derive for DOS  you do these
operations with the Remove, theU nremove and the m& e commands. You
should practice these commands on some scratch work to maletain you

understand them.

One way to use the move command is to write comments in the lena
placing them before computation. Many of the *MTH les that we wrote
for this lab manual use this technique. To do it, just author aine of text
enclosed in double quotes, for exampléNow substitute x=0." . Then,
move this comment to the appropriate location.

You can print all the expressions in the algebra window (evetihe ones

you can't see) by pressing the@l button. You do the same thing to print a

graph. Just activate the plot window and press@l . In Derive for DOS

to print just a window with a graph in it, make it the current wi ndow, and
then pressShift-FQ Typically, students turn in the labs by printing out the

algebra window and penciling in remarks and simple graphs. dvk extensive
graphs can be printed out. Some combination of hand writingra printouts

should be the most e cient.

0.16 Help

You can obtain on-line help by choosing Elp. This help feature provides
information on all Derive functions and symbols. Suppose that you want
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to know how to enter the second derivative of a function§ (x) by typing.
For example, maybe this expression is to be used as part of #mar function.
There are three techniques for learning how to do this.

The rst method starts by authoring F(x):= to declaref (x) to be a
function of x. Next we use the menus with @lculus/Di erentiate to calculate
the second derivative by entering=(x) for the function and 2 for the order.
Then, press_Aithor followed by the pull-down key F3 or right click in the
author box and select hsert. This will enter Derive 's way of typing the
expression, in this case it'DIF(f(x),x,2) . The second method is to use
the online help by choosing ldlp on the main menu (inDerive for DOS
you can press theé~1-key while authoring an expression). One then searches
for a topic like di erentiation or vector to get further info rmation. In Derive
for DOS one has to page through the help pages since there is no seizgh
feature. For example, one selects (for functions) and then by pressingenter
several times one nds the appropriate page of explanations

We have included a few quick reference tables with common keysed
for entering things like , 1 and Euler's constante. Table 2 on page 7 gives
a summary of commands that can be issued from the algebra wowl and
Table 3 on page 18 gives a summary of useful commands that cam tsed
in the plot window.

0.17 Common Mistakes

Here are a few common mistakes that everyone makes, incluglitme authors,
every once in a while. It just takes practice and disciplinect avoid these
problems, although, it is human nature to blame the computefor your
own mistakes. Fortunately, the computer never takes insults psonally and
it nevertakes revenge by creating sticky keys, erasing les, lockjnup, or
anything else like that ... or does it?

Q1. I tried to plot the line ax + b and instead | got an error message about
\too many variables”. What did | do wrong? You must dene a, b
to have numerical values, otherwisderive treats your function as
f (a; b; ¥ which it cannot plot.

Q2. | tried to plot the family of parabolasx? + cin Derive for DOS  and
instead | got a picture of some surface. What did | do wrong? 8w
problem as above, except nowerive is plotting a surfacez = f (x; c).
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Q3.

Q4.

Q5.

Q6.

Q7.

Qs.

In DfW you would get an error message. You probably want to eat
and Smplify a vector of functions such as

VECTOR(X"2 + ¢, ¢, 0, 4).

Now Plot this vector of 5 functions: x2, x?+1, x?+2, x?+3, and x*+4.

| entered the expressiorﬁ) x correctly, but when | substituted x = 9
and simpli ed | got 2. What happened? You took the square root of
a negative number which is not allowed when you are working thithe
real number system.Derive treats this as a computation with complex
numbers and uses the complex number(wherei? =  1).

| solved for the 3 roots of the cubix® 2x?+x 2 and | gotx = 2 which

| guessed from the graph but the other two solutions were= T and 1.

Where do these last two come from? If you factor the cubic insad of
using SoVve you would get & 2)(x?+ 1). The complex solutions come
from that quadratic term. In calculus, we just ignore those @mplex

solutions. For example, numerically solving the above cubiwill give

only real solutions.

| di erentiated € and | got € In e, what's wrong? Nothing, Derive is
treating the letter e as an ordinary symbol likea or b. You probably
wanted Euler's constante which can be entered with#e .

| tried to author the inverse tangent functionarctan x and I gota r
c tanx instead. What's wrong?Derive recognized thegan x part but
treated the other symbols as individual constants. Usatan x.

| entered the vector ¥y; v,; v3] by typing [vl,v2,v3] andlgot[v 1;v
2;v 3] instead. What happened? You must declare these multi-ter
variables rst before they can be treated as a single variadl To do this
just author v1:=, v2:= and v3:=. A quick way to do this is to simply
author the vector [v1:=, v2:=, v3:5]

| tried to author x™n and | got a syntax error! How was this possible?
The problem here is that eitherx or n is previously de ned as a function.
For example, maybe you had authorec(t) := sin t. You can check on
this by scrolling up to nd the de nition. If instead, you kno w the prob-
lem is that x(t) is de ned and you want to remove that de nition, then
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just author x:=. In extreme cases you might just open a new window
and copy over some of your expressions using thefy and Paste tech-
nique. In Derive for DOS if you are sure that neither de nition is
needed you can selec ransfer/Clear and then choosd-unctions. This
will clear all function de nitions.

Q9. | entered and simpli ed sin(2 ) and | got SIN([2 ]) instead, what hap-
pened? You authoredsin[2pi] instead of sin(2pi) . Derive treats
square brackets not as parenthesis but as a device for de giwectors
see Section 0.14.

Q10. | tried to show that lim,; (1 + %)” = g, instead Derive returns a
question mark indicating that it can't do this problem. What's wrong?
Same as above, check your parenthesis. This last example iditte
tricky becauseDerive for DOS  uses square brackets to display some
expressions, when in fact, those expressions must be entlenéth paren-
thesis. This situation has been corrected in DfW.
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Chapter 1

Basic Algebra and Graphics

1.1 Introduction

Calculus is a beautiful and important subject. It derives i importance
from its ability to describe and model basic phenomena in soany elds.
Besides physics, chemistry and engineering, it is used irolamgy, economics,
and probability. In order for calculus to be useful to you, ya will need
to understand calculus graphically and numerically as welis algebraically.
Algebraically you learn how to di erentiate functions given as complicated
expressions. But you also need to understand the derivativgsually as a
rate of change.

With Derive it is easy to learn all three of these aspects and to see the
relations between them.

1.2 Finding Extreme Points

As an example, consider the functiori (x) = 2x* 3x3. In order to under-
stand the behavior of this function we can plot it usingerive 's plot window
(see Section 0.10 for instructions on plotting.). The restithg graph can be
seen in Figure 1.1 on the next page. The graph suggesti) has one local
minimum which is the absolute minimum. Using the crosshaimithe plot

window (see Section 0.10) we can determine that the locatiofthe minimum
point has coordinates approximately given by = 1:125 andy = 1:0625.
We can get exact results by switching to the algebra window drdoing some
calculus. InDerive 's algebra window we choose dlculus/Di erentiate or

29
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click the il button to nd the derivative. You get the answer by clicking
the simplify button il . We can then choose @&ve/Algebraically to nd
where the derivative is 0, i.e., these are theritical points. Alternately, just
click the solve button gl . The critical points occurs whernx = 0 and when
X = 9=8. Pressing the approximate il button to get decimal answers we

see that approximately 8 = 1:125, which is exact equality in this case.
Now if we substitute this value forx into f (x) by highlighting the expression

2x*  3x3 and then using the substitution EI button to replace x with 9=8
we get, after approximating, thaty = 1:06787 which is close to our rst
estimate.

Figure 1.1: Finding critical points

Looking further at the graph we can see that (x) does not have a local
minimum or maximum at x = 0; in fact f {x) < 0 on both sides of 0. The
graph also shows thak = 9=8 is where the minimum occurs and that (x) is
decreasing on  ;9=8] and increasing on [88;1 ). If we highlight the rst

derivative and click il (or choose _@lculus/Di erentiate), then we get
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the second derivative. We can then solve to nd the points ohiection, i.e.,
the places where the bending in the graph changes. The secalativative
must be zero at these points but this criteria alone is not sucient. Solving
f %x) = 0 yields x = 0 and x = 3=4. Again looking at the graph we see that
both of these are indeed points of in ection since the grapls iconcave up on
(1 ;0], concave down on [(B=4], and concave up on &4;1 ).

Insertion Tip In a typical problem the critical point will be complicated
and retyping the expression in the substitution form is di cult and slow.
A quicker method is to highlight the f (x) expression, %  3x3 in our ex-

ample, and then click the EI button. Now click on parts of the answer
vector several times until the desired quantity, say 8B is highlighted. In the

Substitution box click the right mouse button and selectrisert. The high-
lighted quantity will be inserted in the form. You will nd th is a particularly

useful techniqgue when doing critical point problems algebrcally instead of
numerically. For example,f (x) = ax?+ bx+ c. In this case the critical point
is a large expression involving the parameteig b, and c.

1.3 Zooming and Asymptotes

As another example of using both plotting and calculus opetians, consider
the problem does the functiong(x) = W have a horizontal asymp-
tote? In other words, we are interested in the behavior of the graph= g(x)
for very large values ok and we want to know whether they-values tend to
a limit. To solve this you begin by entering the function by cleosing Author
and typing

(Bx"3 + 5x"2 - x + 1)/(x*3 - 1)

Now plot this. Zoom out by clicking il and see if it appears thaig(x) has

a horizontal asymptote. A nice technique to do this is to leathe vertical

scale alone and zoom out in the horizontal direction. Therer@ several ways
to do this; one way is use the zoom buttons on the menu bar. Caoly guess
which button does this? Another way is change the scale, say= 100 (click

the button with the balance scale on it). Use the cross-hairtestimate the
value ofy that g(x) is tending to for large x. You should gety = 3 (see
Figure 1.2).
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Figure 1.2: Zooming to nd the horizontal asymptote

Now return to the algebra window by clicking _I . We want to verify

that lim,; g(x) = 3. Now choose @lculus/Limit or click lim| . When
asked for the \point," type in inf orclick1 symbol on the form. $mplify the
answer; you should get 3. This means that asgets large,g(x) approaches 3,
l.e., the liney = 3 is a horizontal asymptote. We can check this calculation
by the method of polynomial division which is accomplishedhiDerive using
the Expand option. As we see at the bottom of Figure 1.2,

3x¥+5x%2 x+1 8
=3+
x3 1 3x 1)

+

where all the terms other than the 3 are small neax = 1 . This is because
the denominator of each term has a larger power af than the numerator.

(The answer above is too wide for the window to display so yolate to see
the 3. Use the horizontal scroll bar at the bottom of the windw.)
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1.4 Laboratory Exercises

1.

Enter the expressionx® x + 1 and plot it. Using the crosshair as
described in Section 0.10, nd an approximation for the botththe x
and y{coordinates of the local minimum ofx® x +1.

. Using the same method nd an approximation for the uniquex satis-

fying x3 x+1=0, i.e., the place where the graph crosses thgaxis.

In the algebra window click 3' or use_Slve to nd the root exactly.
Approximate this and see how good your answer for the last gotem
IS.

In the algebra window nd the derivative ofx®> x+1 and solve to nd
the exact coordinates of the local minimum you approximateth Ex-
ercise 1. (This will give you thex{coordinate; to get the y{coordinate

substitute the value of thex{coordinate into the cubic by clicking ﬂl
or by using Smplify/S ubstitute/V_ariable; see Section 0.8.)

Use the author button _| and the approximate button il (or
Simplify/A _pproximate) to get decimal approximations for each of the
following.

a. 8%
b. sin(z)
c. sin(z)=5'2

Integrate each expression using the il button (or Calculus/I ntegrate).
(See Section 0.9 for instructions.)

Z ) zZ _,
X 2
de b. ) (1 + cosx)“dx
zZ _, Z

X sin(x?) dx d. xp 1+ xdx

o

0
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7. Graph the function f (x) = ( 1+Xx2)7. At rst there appears to be no

part of the graph showing in the graphics window but this can ot be
sincef (0) = 0. Try replotting the graph in another color by either just

clicking il several times or using the @tions/P lot Color menu.
Now the graph appears to the horizontal ling/ = 0 but this can not be
since clearlyf (x) = 0 only for x = 0.

a. In the Algebra window, nd the critical points of f (x) by using
the |2] and & buttons.

b. Determine the x and y coordinates of the local maximums and
local minimums by using the | button to substitute the values
in part (a) into the function.

c. Inthe Graphics window, use the Zoom buttons or else thee8R ange
menu in such a way that both the local maximum and local min-
imum points are visible. Furthermore, make they-scale compara-
ble to the y-coordinate of the local maximum.

d. After you get a good looking graph, print out the result.
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Chapter 2

The Derivative

2.1 The Derivative as a Limit of Secant Lines

Geometrically the derivative of a functionf (x) at a point a is the slope of the
tangent line of f (x) going through the point (a; f (a)). We can approximate
the tangent line by the “secant' line which goes through thegints (a;f (a))
and (a+ h;f (a+ h)). The slope of this line, the rise over the run, isf((a+
h) f (a))=h, and so, by the usual point-slope formula for a line, the eqtian
of this secant line is

y f(a)= f(a+hr)] @  a)

As a+ h gets closer toa, i.e., ash gets smaller, this secant line approximates
the tangent line at a better and better, and so its slope approaches the
derivative f {a). We can visualize this withDerive by entering the following
expressions:

F(x) := x"3/3
SL(a, h) := f(a) + (f(a+h) - f(a))/h (x - a)

The rst step declaresf (x) to be the function x3=3. The second de nes a
function SL(a; h) which gives the secant line through the pointsg; f (a)) and
(a+ h;f (a+ h)). For example, if we Smplify SL(1,1) we get *.° so that
the equation of the secant line determined by =1 and x =2isy = 7X—36
Now we want to x a = 1 and plot several secant lines corresponding

to dierent h's. We can, for example, just Author and Smplify SL(1;1),

35
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SL(1; 1=2), SL(L;1=4), SL(L; 1-8), and SL(Z 1=16), and plot these lines and
f (x) on the same graph. This simply means you highlight each of ¢hsim-

pli ed expression and then click the plot button il in the plot window,
see Section 0.10 on page 13 in Chapter O for the details on hawdo this.
This is illustrated in Figure 2.1 on the next page.

A nice way to calculate and plot these secant lines is to usecter tech-

niques. Here's how you would do it: Click the vector button :I and set
the number of elements to 5. Now enter the 5 expressions abavarting with
SL(1,1) and using theTab to move from entry to entry. Finally, simplify

and click il on the resulting vector[SL(1,1),...,SL(1/16)] . All ve
lines will be plotted one at a time. It all happens very quickt but if you
stare at the screen carefully just as you click the plot butto you possibly
can see an animation-like e ect.

If the drawing is too quick to see the animation, try the follaving method
instead. Erase the 5 secant lines in the plot window by presgji the Del key
5 times. In the algebra window select an individual line in tb vector by

repeatedly clicking on it. Then, activate the plot window awl press _| .
Finally, repeat this process several times to see the patteevolving in the
plot window.

other approach involving theVECTOfnction on the Calculus/V ector menu.
Select this menu option and enteSL(1,1/2"n) in the form. Note that using
uppercase letters is not necessary and that the highlightegkpression will
be replaced with whatever you type. For the ¥riable, scroll down and se-
lect n. Next we take the Sarting value to be 0 since 2 = 1 and the Ending
value to be 4 since 2= 16. Click OK and simplify the resulting expression
VECTOR(SL(1, 2*-n), n, 0, 4) 1. The result is a vector of ve secant lines
as above. You will nd that this is a convenient method of prodcing a large
number of expressions without typing them individually.

We can later change the de nition off (x) to a di erent function and
use the SL&; h) function to get secant lines to the new function. The le
F-SECANT.MTH contains the de nitions of SL(a;h) and the tangent line
function, TL(a), discussed below.

In Figure 2.1 on the next page the secant lines tend to the taegt line
by rotating in a clockwise manner, i.e., with decreasing g&. We can use

1See Section 0.14 on page 22 for more information about theector function
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Derive to illustrate this e ect using calculus. That is, ash tends to 0, the
secant line tends to the tangent line by taking the limit: Author SL(1,h)
and choose @lculus/Limit, taking the variable to be h (not x). We get
limy, o SL(L; h), which Smpli es to

X 2 2,

3 73
which, in fact, yields the tangent line tox3=3 at x = 1. Check this out for
yourself by plotting this function on your previous graph. $ce the slope

of the secant line is {(a+ h) f(a))=h, this explains why we de ne the
derivative as

f(x+h) f(x)
h
and why the derivative is the slope of the tangent line.

(1) F9x) = lim_

Figure 2.1: Secant lines approximating the tangent line

In order to get a function TL(a) for the tangent line at a analogous to
the secant line functionSL(a,h) , we need to be a little careful since the most
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obvious de nition; namely,
TL(@) := F(a) + DIF(F(a),a) (x - a)

doesn't work. This is because the order of evaluation is wrgn Consider
what would happen if we evaluatedl'L(5). First 5 would be substituted for
a and then the resulting expression,

F(5) + DIF(F(5),5) (x - 5) ;

would be evaluated. ButDIF(F(5),5) doesn't make sense.

To solve this problem we use th&UBSTunction in the utility le ADD-
UTIL.MTH. This le contains several new functions that we wil be using
for now on and so we suggest adding a few lines to start of evedfw
session. This can be done by @2ning or using load/M ath on the le ADD-
HEAD.MTH. Once this has been done, these new functions can beed. See
Appendix A for a more detailed explanation.

For example, the function SUBST(u, X, a) simpli es the expressionu
and then substitutes the valuea for x in u. The three variables in theSUBST
function are the expression the variableand the evaluationpoint. It has the

same e ect as rst Smplifying u and then using the ﬂl button to replace
X with a.
To de ne the TLfunction we rst make a function DF(x) of the derivative

using the SUBSTunction. Click il and enter F(u) with the variable

set to u. With this expression highlighted click _| and type in SUBST,(

Then, insert the derivative by right-clicking and selectiig Insert from the

menu. Finally, type in next two argumentsu and x separated by commas
to complete the three arguments for this function. Pressin@K, you should

get the rst expression below:

(2) DF(x):= SUBST(DIF(F(u), u), u, X)
(3) TL(@) = F(a) + DF(@)(x - a)

The TL function can then be de ned as above.

The utility le contains two more functions which you can usefor the
exercises and that eliminate the need to reproduce the detions we've been
discussing. To nd the tangent line of sayx®=3 at x = 5 you enter and sim-
plify the expressionTANGENT (x"3/3, X, 5). Here again, the three variables
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in the TANGENTinction are the expression the variable and the evaluation
point. Similarly, the secant line computed earlier can be obtaideby entering
SECANT(x"3/3, X, 1, 1/16) . Here the last variable is theh-increment.

The answer to these function is of the forny = mx + b rather than just
mx + b, You can still plot the entire equation and get the right resit since
DfW knows how to plot equations in addition to functions. Youcan test this
by plotting the familiar equation y> = x2 + 1 to get the unit circle.

Notice that using these functions it is not necessary to de@any functions
such asF(x):= or DF(x):= in order to get an answer. This is usually a better
approach because the use of variables or de nitions causesigem when you
forget that something is de ned. As a result you get some strege answers
to your problems and you don't know why. This diculty is part icularly
common as you go from problem to problem in the exercises. Jusmember
to start o your labs by doing L oad/M ath to the ADD-HEAD le.

2.2 Local Linearity and Approximation

One of the properties of a function with a derivative ai is that the function
can be well approximated by the tangent line. This means as yomove
in close the function appears to be quite at, not di ering muwh from the
tangent line. This ‘local linearity' is very useful in many aplications. To
see this local atness, move the crosshair in the plot we ohbteed above to
the point (1;1=3) where all the lines intersect, then center on the cross by

clicking the H button. Now we want to zoom in several times by clicking
the zoomin *_i*l button. Notice how at the curve appears. Try clicking

The zoom out button *_i*l several times and then repeating to completely
visualize this process.

We can use the above approach to approximate the derivativé afunction
and plot the result. For example, we know that the derivativeof f (x) = x3
is 3x? by using the standard formulas. On the other hand, the funatin of
X, g(x;h) = M with h xed at some value likeh = :01 is a good
approximation to 3x? as one can see from Figure 2.2 on the following page.
The gure actually shows both plots although they appear to kb only one
curve. In Derive you should enter and_$8nplify the above expression (it
sometimes helps to Kpand the result to further simplify it). Then compare
the graph with 3x? by plotting both expressions together.
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Figure 2.2: Approximating derivatives using the di erencequotient

2.3 Laboratory Exercises

Start o your lab by L oading the ADD-HEAD.MTH le (use F ile/L oad/M ath).
Note that the syntax of the SECANa@nd TANGENTinctions are displayed on
the second line of the ADD-HEAD le.

1.

a. Using the TANGENB’(u,x,a)function nd the equation of the tan-

gent line forf (x) = * x (enter cube roots ax*(1/3) ) at the point
a =8 and plot it along with the graph of f (x).

_part a you found the tangent line toFg X at a = 8. Estimate

9 by nding the y{value of this line whenx = 9. Compare your
answers with DfW's own approximation to this quantity obtained

by clicking the il button.

. Using the plot window again give a reasonably accurate inteal

[c,d] containing the pointx = 8 for which the tangent line approx-
imates the function to 2 decimal place accuracy.Hint: Plot the
di erence between the function and the tangent line and reste
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to get a good picture. It is also helpful to use the flace Mode
which can be set from the @tions menu of the graphics window.)

2. Consider the class of all function of the fornfi (x) = x3 + bx? + cx.

*3.

a. Author the expression formx® + bx? + cx. Click the substitution

button *&| and enter some speci ¢ values fdp, c, then plot the
result?. Do this for several di erent choices foband c and observe
the critical points and in ection points of the di erent gra phs.

. Using Derive 's calculus facilities in the algebra window, show

that the function f (x) = x3+ bx? + cx always has exactly one
in ection point, regardless of the values ob, c.

c. Again usingDerive 's calculus facilities, show thatf (x) can have

either O, 1 or 2 critical points. Determine for what values o and
¢ doesf (x) have no critical point?

. Choose valued, ¢ which demonstrate thatf (x) may have either

0, 1 or 2 critical points and plot their graphs.

Let f (x) = x?sin(1=x) for x 6 0 and f (0) = 0. In this problem you will
show thatf (x) is continuous and di erentiable for all x but f {x) is not
continuous at 0. This means to ndf 40) you must use the de nition of
the derivative; you cannot just nd f {x) and take the limit asx ! 0.

a. De ne f (x) as above by Aithoring F(x) := x"2 sin(1/x)  (don't

worry about x = 0 for now). Show limy, of (x) = 0. (Hint: Click
11'_m| and Il in the form.)

. Graph f (x), x?, and x2, setting the plot scale to 01 horizon-

tal and 0:01 vertical. Zoom in several times towards the origin

by clicking the *_1'*' button and convince yourself thatf (x) is
continuous atx = 0. But notice that the curve oscillates up and
down slightly.

c. Find fY0) by nding lim p, o (@ 1O

d. Find the derivative of f (x) using the £| button.

2Derive can't plot the function unless the values are provided.



42

CHAPTER 2. THE DERIVATIVE

e. Make a new graph off {x) and by zooming in several times con-
vince yourself thatf {x) oscillates wildly between approximately
1 asx approachs zero.

4. The volume of a tin can isV = r 2h wherer is the radius of the

*5.

top (and the bottom) and h is the height. The surface area i\ =
2rh +2r 2. (The rst term is the area of the side and the second is
the area of the top and bottom.)

a. A manufacturing company wants to make cans with volume 42 in
To minimize their costs they want to minimize the area of thean.
What values ofr and h do this? (Hint: Author the formula for the
area, 2rh +2 r 2; use the equation for the volume, 42 =r 2h, to
solve forh in terms of r and substitute this into you expression for
the area. Now nd the value ofr that minimizes the area using
calculus techniques and use this value ofto nd what h is.)

b. You may have noticed thath = 2r for the can of minimum area
you found in part a. Show that this relation always holds for
the can of least surface area (not just for cans with volume %2
(Hint: Do this just as in part a except don't replaceV by 42 in
the equation for the volume.)

Suppose we have the situation of the previous problem exceptt now
the metal for the top and the bottom of the can costs 1.5 timessanuch
as the metal for the side. What ish=r for the can of minimun cost?

The acceleration due to gravity,a, varies with the height above the
surface of the earth. If you go down below the surface of therda a
varies in a di erent way. It can be shown that, as a function of, the
distance from the center of the eartha is given by

<S¥ forr<R
a(r) = .
-8 forr R

whereR is the radius of the earth,M is the mass of the earth, ands is
the gravitational constant. All three of these are constars. In order to
de ne the function a(r) and examine its graph, we'll use the numerical
values:GM =4:002 10“andR =6:4 10° meters.
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a. De ne a(r) using the technique in Section 0.13 and plot its graph.
Rescale as necessary to give a good picture.

b. Is a a continuous function ofr?
c. Is a a di erentiable function of r? Explain your answer.

*7. ( x) is a di erentiable function for x > 0 which is very important in
applications. Derive knows this function but not how to di erentiate
it. You can get in either version of Derive by typing gammaéut in
DfW you can also just click on the in the Author Dialog Box.

a. Graph ( x) and the four secant lines to (x) through the points
(3; 3)) and (83+ h; (3+ h)), for h = 1=2, 14, 1=8, and k=16.
[It is known that (3) = 2, but you don't really need this here. ]

b. Use the secant line you obtained in para with h = 1=16 to
approximate (3:1).

c. Have Derive approximate (3:1).

d. Use the graph to verify that (n+1)= n!=1 2 n whenever
n=0;1:::, 5. (Since factorials play an important role in many
applications this explain why the function is important.)
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Chapter 3

Curve Sketching

3.1 Introduction

Before the widespread use of computers and graphing caldols, graphing
a function f (x) was done by a combination of techniques including:

Plotting some judiciously chosen points.
Finding solutions to f (x) = 0.

Finding the local minima and maxima and wherd (x) is increasing
and decreasing.

Finding the in ection points and concavity.
Finding the horizontal and vertical asymptotes.

As we have seen graphing is easier with a computer algebrateys. More-
over, we can also nd the local minima and maxima and the othetems above
if we need them. It is also possible to make a small changefi(x) and graph
that and see how the graph is a ected. But we have also seen tha order
to see the important aspects of (x) it may be necessary to zoom in or out
and to move around in the graph. In this lab you will develop yor skills at
graphing with the computer.

45
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3.2 Working with Graphs

In many problems involving periodic behavior, such as odating springs,
pendulums, planetary motion and others, the solutions geraly have the
form

asin(b(x  Xp))

where a, b and x, are given numbers. This raises the question of how the
graph of a function, such as sir, changes when subject to the above mod-
i cations. You should observe the changes by comparing witthe original
function but you should also think about why the changes makeense, for
example, what does changing do, what is the geometrical signi cance of
the point x = Xy on the x-axis.

Figure 3.1:. Usingvector to plot several graphs

Now to see how the transformationy = f (x)+ ca ect the graph y = f (x)
for various choices ot we start by Authoring our function, sayf(x) := sin
X. It's always a good idea to de ne our function usind(x):= because then
later we can change the de nition and see the e ects on a di ent function.
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Next we select the @lculus/V ector menu and enterf(x) + ¢ in the form.

Click the Variable list box and select the variablec. For this example, set
the Sarting value to -2 and the Ending value to 2. The Step Sie can be
left at 1 although in other examples you might want to changehis. Press
OK. Finally, simplify the resulting expressionVECTOR( F(x) + ¢, c, -2,

2) by clicking the il button and then plotting by clicking the plot il
button twice (once to open the plot window and the second timeo plot the

highlighted expression).

If you look carefully at the plot window as you click il you might
see the successive graphs are just that of the usual sine fiimie but moved
in the vertical direction. They start below the x-axis and then rise to a few
units above the x-axis. If the drawing is too quick to see the animation,
try clicking the individual functions in the vector expreson in the algebra
window and plotting them. By deleting the graphs and redrawig you should
be able to see the pattern.

Many other options are also possible; for example, editinge vector for-
mula above by replacingf(x) + ¢ with f(x + ¢) gives an interesting result
upon graphing. See if you can seetemveling wavein the plot window. Is it
traveling from left to right or right to left?

Also, you can change the function by simply Athoring f(x) :=  with a
new expression. Remember that the symbol is forassignmentwhereas the
= sign is used for equations and comparisons. It is importanbtnote that
once you de ne a function by this method it willnot go away if you simply
erase that line from your algebra window because it is in theomputers
memory. The way to completely remove a de nition using the keer f is to
author the expressionF:=. This givesF an empty de nition.

3.3 Exponential vs Polynomial Growth

Suppose we want to compare the behavior of the function$ and e*. * If we
graph x* we see it has the same basic shape as the parabddyou probably
guessed this). It is a little atter than the parabola between 1 and 1 and
seems to grow more quickly fopxj > 1.

If we now graphe* on the same graph and zoom out once, we see that

1This problem is essentially taken from Calculus by Deborah Hughes-Hallett, Andrew
M. Gleason, et al. It is one of the most popular “calculus refom' texts.
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the graph seems to get close to the{axis as x gets larger in the negative
direction (asx approachesl ); that it crossesx* at least twice; and it grows
quickly whenx is positive, but not as quickly asx*; see Figure 3.2. One way
to verify that the x{axis is a horizontal asymptote ofe* is to highlight e
in the algebra window and choose &lculus/Limit and enter -inf for the
"Point," as we did in Figure 3.2.

Figure 3.2: The functionsx* and &

To see where the curves cross we need to solve the equatidF €. We
cannot solve it exactly but we can get approximate solutionsTo do this with
Derive we use the $lve/Numerically menu. Enter the equationx*4 = e”x
and choose an appropriate interval. When you solve numeriba things work
slightly di erently. You need to specify an interval in which to search for a
solution. If there are no solutions in the interval,Derive returns [] which
means no solutions. If it nds a solution it gives that as the aswer. But
it only gives one solution, even if the interval contains sev eral!
To nd other solutions you need to specify new intervals thatdo not contain
the solution already found. So if you originally choose thaterval from O to
2 and Derive found a solution 13 and you suspect there is also a smaller
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solution, you could solve again but this time use the intervad to 1:29.

The graph in Figure 3.2 on the facing page suggests that therea solution
between 2 and 0. If you use this intervalDerive givesx = 0:815553,
which seems to agree with the graph. (Another way to nd an apximate
solution is to move the crosshair to where the curves interste) The graph
also shows there is a solution between 0 and 2. If we solve gsihat interval
we getx = 1:42961.

Are there any other solutions? It is pretty clear that there @ no other
solutions forx < 0 but what about largex? From the graph it appears that
x* grows much faster thane*. But of coursee* has \exponential growth" so
perhapse® > x 4 for large enoughx. To test this we can try to solvex* = €
for larger x. If we choose the interval to be 2 to 20, we get the solution
X = 8:61316. So the graphs cross at this point. To nd the value of this
point, we use the Substitute button to substitute 861316 intox*. The result
approximates to 5503%4.

To see this on the graph we need to zoom out once so that th¢scale
includes x = 8:61316. Then we need to zoom out on thg{axis without
zooming out on thex{axis. We do this by choosingY on the zoom menu.
After zooming out several times we obtain the graph of Figur8.3 on the
next page.

There are a couple things this demonstration shows. First #t in order
to see the important features of a graph it may take some skidit moving
around and manipulating the scale of the graph. Moreover, em though we
can clearly see the two graphs intersecting at = 8:61316 in Figure 3.3, we
can no longer see the other two solutions. So it may not be pdds to see
all the important features in one plot. In this lesson you willearn how to
move and scale in the plot window and to use the algebra window order
to nd all the important features of one or more graphs.

3.4 Laboratory Exercises
1. Let f (x) = 1=(1+2x?).

a. Graph each of the followingf (x) 1,f(x), f(x)+1, and f (x)+2
in a plot window. Then, use the Wndow/New 2D-Plot Window
command to open another plot window and plof (x 1), f (x),
f(x+1) and f (x + 2) in that window. (Hint: The V_ector menu
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Figure 3.3: The functionsx* and €, rescaled

can be used to simplify the typing.)

b. What does the transformationf (x) ! f(x) + a do to the shape
of the graph? to the position of the graph?

c. What does the transformationf (x) ! f(x + a) do to the shape
and position of the graph?

. Graph cosx, 2 cosx, and cos(X) and explain what the transformations

f(x)! f(ax)andf(x)! af(x) do to the graph off (x).

. What do the transformationsf (x) ! f( x) and f (x) ! f (x) do?

Graphf(x)= x> x?+1andf( x)and f(x).

. Let g(t) =sint + cost.

a. Graph g(t).
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*8.

b. What sort of transformations should be applied to sih to make

*e.

its graph look like the graph ofg(t)?
UseDerive 's crosshair to nd the maximum value ofg(t) and to
nd the rst root of g(t) to the left of zero.

Use these numbers to nda and b so that g(t) = asin(t + b), at
least approximately.

Find exact values ofa and b so that
sint + cost = asin(t + b):

Hint: Set the simpli cation of trigonometry functions to \Ex-
pand" using the Declare/Algebra State/Smpli cation menu. Then
evaluateasin(t + b).

Let f (x) = e ®” wherea is a constant.

a.

Plot f(x) fora= 2, 1,0, 1, and 2. You can use th&ector
function if you like.

Using calculus facilities in the algebra window, nd the paits of
in ection for e &,

Find the points where the curves Ix and x** intersect. Make two (or
more) graphs with di erent scales showing the places wherbd curves
intersect.

Make separate graphs of each of the following functions. dgi some
of the graphing techniques such as zooming, centering, etdake sure
your graphs show the main features such as thxeand y{intercepts, the
critical points, and the in ection points.

a.

1+5000(x 1)

. 3x
sin(x) cos(2& —
(x) cos(20x) ——
! d. xsin(1=x)

Enter the rational function

(1)

x6+3x°+ x*+1
x4 1
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a. Choose 8nplify/E xpand and select Rational. This gives a patrtial
fractions decomposition of the function. (Partial fraction decom-
positions are used in integrating rational functions) Notie that
the partial fraction decomposition consists of (a sum of) @nor
more proper rational functions (where the denominator hasidgher
degree than the numerator) and a polynomial. What is the poly
nomial?

b. Graph the rational function given by (1) and the polynomial yu
found in the rst part. Zoom out a few times. How are the two
graphs related whenxj is large? Explain why this is.

*9. Let

2x3+6x2 3x+5
4x2 6x 7

a. Graph g(x) so that your graph shows the main features of this
function.

a(x) =

b. This graph has a slant asymptote, i.e., an asymptote which s
line with nonzero slope. Zoom out a few times until you can see
this slant asymptote.

c. Find the formula for the slant asymptote by using 8nplify/E xpand.

*10. In reading this chapter you might have wondered i€ and x* intersect

some place beyona = 8:61316 . You could useDerive to verify

that there is no solution say between :@ and 100 and this would be
strong evidence that they don't intersect beyond, but not a proof. So
in this problem you are to nd a proof that & and x* don't intersect

beyondc (without using Derive ). Hint: By taking 4™ roots we must
showe*=* > x for all large x. Now show the slope 0&* x is positive

for all x 8 and use this to showe* > x 4 for all x > c.
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Chapter 4

Graphing Data and Curve
Fitting

4.1 Introduction

Consider the population of a certain countryP (t), as a function of time. We
may not know exactly what P(t) is but instead just have a table of data,
for example, the population at the beginning of each year fahe last few
years. We are interested in nding an appropriate curve forhie data. We
might try comparing the data against a linear functionax + b, a quadratic

function ax? + bx + ¢ or say an exponential curve of the fornP(t) = ae'.

Under a certain model of population growthP (t) will have this last form.

Our problem is to determine the parameters; b;::; from the data. Once
we do this then we can us@(t) to estimate the population at times between
the data and predict the population in the future.

This kind of problem of tting a function from a family of functions to
numerical data arises frequently in many applied areas inaling statistics.
In this lab we use the computer to help visualize data and t tle data to a
function from a class of functions. We begin with the class @il polynomial
functions.

4.2 Fitting Polynomials to Data Points

Given a nite set of data points:

53
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let's consider the problem of nding a polynomial functionf (x) which goes
through these points. That is, we wantf (x) to satisfy f (x;) = y; fori =

unique polynomial of degree at mosh 1 going through these points. This
is quite obvious whenn = 2 since there is a unique line passing through any
2 distinct points.

If we are given 3 points, X1;VY1), (X2;¥2), and (X3;ys), and want to nd a
quadratic polynomial passing through these points, we lét(x) = ax?+ bx+ ¢
be an arbitrary quadratic. Sincef (x;) = y; fori =1, 2, and 3, we obtain
three (linear) equations

2 —

axi+bx;+c=y;

(1) axs+ bx+ c=y,
2 —

axs+ bxs+ c=y3

in the unknownsa, b, and c. (Remember, we are given the pointsx(;y;) so
they are known and we want to nd the unknownsa, b, and c.) We then
solve this system of 3 equations for the 3 unknowrss b, and c.

For example, suppose we want to nd a quadratic polynomiaf (x) =
ax?+ bx+ c passing through (00), (1;2), and (2, 8). The way to do this with
DfW is to rst author f(x) := ax*2 + bx + ¢ then choose Sek/System
from the menu bar, set the number of equation to be 3, and themer the
three equations (you can either use th&ab-key after entering an equation
or click the next equation box)

f0)=0 f1) =2 f2) =8

Click on the Equation Variables box and select the variable® solve for asa,
b, and c. Click OK and then simplify the resulting expressiorSOLVE( [F(0)
=0, F(1) = 2, F(2) = 8], [a, b, c]) (see Section 0.7 on page 8pe-
rive returns

[@=2 b=0 c=0]

So in this casef (x) = 2x2.
We can double check this result by plotting the function 22 determined

above along with the 3 2 data matrix

2 3
00

41 25
2 8
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Figure 4.1: Fitting a polynomial to data points

entered by using the ul button. See Figure 4.1.
For more complicated problems we would have to substitute ithe values

of a;b;cinto the expressionax? + bx + c using the |*&| button. The
utility le ADD-UTIL has a function CURVEFIT(x, data) which does this
automatically. Here thex is the variable and data is the matrix of point we
want to t the curve to. The more points we use the higher the dgree of
the polynomial needs to be.

As we mentioned above, for 3 points with distinck{coordinates there is
a unique quadratic polynomial function passing through th@. We can use
Derive to demonstrate this by showing that the system of equationslj can
always be solved fom, b, and c, regardless of the values ofx(;y;). To do
this we will just have Derive solve the system (1).

However, there is a slight problem. In its normal input modegcalled
character input, Derive treats each letter as a separate variable. So if you
author ab Derive will read this as a times b and the algebra window will
show it asa h. This is very convenient for calculus where we almost always
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use single characters for our variables. But to solve (1) weed the variables
x1, x2, etc. When we enterx1, Derive will think of this as x times 1, which
is not what we want. So we need to declare thatl, x2, etc., are variables.
To declarex1 as a variable you can authoxl :=. You need to do this for

all three x's andy's. You can do this quickly by clicking the UI button
and selecting 3 rows and 2 columns. Then, entefl:= pressTab and enter
yl:=. Continuing, enter all the remainingx;'s andy;'s but be sure to use the
assignment character= and not the = sign alone. Click the_8nplify button

in the matrix form instead of the OK button and the result shoud be

2 3
x1l yl

4x2 y25
x3 y3

Now we Author CURVEFIT(x,data) where data is the above matrix of
points. Simplifying yields a complicated looking answer wth is a little
di cult to digest. However, if you factor the answer; using Smplify/F actor
where in the Factor dialog box we highlight each of th&; variables to factor
over, the result shows that the denominator cannot be O sinee are assuming
that X4, X, and x3 are distinct. See Figure 4.2 on the facing page.

As an interesting variant on the above, suppose we want to nd, b, and
c for a function f (x) = ax? + bx+ ¢ when we know

f(x1)= w1
(2) f(X2)=y2
fqx3) = ys (That's the derivative!)

In other words we specify thatf (x) must pass through &;;y:) and (Xz;y2)
and that its slope atx = x3 is y3. We de ne f(x) as before and de neg(x)
as the derivative

(3) g(x) := 2ax+b
Now if we solve the system of equations

f(x1) = yl1 f(x2) = y2 g(x3) = vy3

INote that you can't simply de ne g(x):=DIF(f(x),x) . We ran into this problem
earlier on page 38 (see Section 0.12 on page 20 for a complei@lanation). One solution
to this problem is to use the utility le and de ne g(x):= SUBST( DIF(f(u),u), u, X)
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Figure 4.2: The algebra behind tting polynomials to data pants

as before and then factor the answer, we see that the denontimaof each of
the 3 fractions is

(X1 X2)(X1+ X2 2X3)

(You can do this just as in Figure 4.2 except you need to de ng(x) and
useg(x3) = y3 in place of f(x3) = y3 .) Of course we are assuming that
X1 6 X, so the factorx; X, will not be 0. The other factor is 0 when

X1+ Xz

X3 = 5

This means we can always ndf (x) except possibly ifxz = (X3 + x2)=2.
This is somewhat surprising since one expects to be able tdveofor 3 un-
knowns satisfying 3 equations just as one can solve for 2 uiskyns satisfying
2 equations. However, in both cases there are exceptionakes that need
to be considered. In this case, the diculty is related to the mean value
theorem and is explored in Exercise 3. Related results forla functions
are examined in Exercises 4 and 7.
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The solution to curve tting problems involving the derivative can also
be found using theCURVEFIT(x,data,ddata) function. As beforex is the
variable anddata is a matrix of points satis ed by the function. The matrix
ddata represents the points satis ed by thelerivative. In the above example,
we would author

CURVEFIT(x,[[x1,y1],[x2,y2]],[[x3,y3]])

and simplify to get the answer.

4.3 Exponential Functions and
Population Growth

A good rst model for population growth is
(4) P(t)= ag(t ')

Population models are studied more thoroughly in Chapter 71ing the theory
of di erential equations but for now we will just consider the exponential
model. HereP (t) is the population at time t and a is the population at the
starting time, to. Problem 7 uses this model.

There are two parameters in (4),a and r. These parameters can be
determined if we know the population at two di erent times, t; and t,, i.e.,
if we know P (t;) = y; and P (t2) = y.. This gives the equations

aé(tl tO) = yl

aé(tZ tO) = y2
but solving fora andr is a little more di cult since this is not a linear system
of equations. The way to do this is to use the rst equation to clve for a
and then substitute that value into the second equation andhen solve the
resulting equation forr.

Another approach is to observe that the equationare linear in the quan-
tities In a and r because, if we let = In a, they are equivalent to:

ctr(ts to)=Iny
c+r(tz to)=Iny;

Of course, once we ndcthen a = €°, so you're done. Problem 6 will require
solving these equations.
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4.4  Approximation Using Spline Functions

Suppose that, as before, we are given data points in the formhann 2
matrix declared asdata. To take a simple example let's assume that

2 3
00

_al 15
data.—g2 0?3

31

We want to nd a smooth function f (x) whose graph passes through the
data points. One solution to this problem is to useCURVEFIT(x, data)
which gives us a degre@ 1 polynomial passing though the given data
points. Unfortunately, for problems with a large number of dta points this
can take a long time to solve because it requires solving adar system of
equations fi 1 equations andn 1 unknowns).

One simple technique that doesn't involve solving large sgsns of equa-
tions is to use a piecewise quadratic polygonal approximati to the graph.
The idea is nd a quadratic polynomial connecting each pairfoconsecutive
data points but the catch is that in order for the graph to be smoth you
need to make the derivatives match at each data point.

Here's how we do it: We start with an arbitrary slope, sayn = 2, at the
rst data point, which is (0;0) in our example, and use the second form of
CURVEFITo nd a quadratic polynomial f;(x) which satis es the equations

f1(0)=0; fi(1)=1 and fJ0)=2:
This solution is
CURVEFIT(x,[data SUB 1, data SUB 2],[[0,2]])

where we note that each data point can be referred to atata SUB i or
alternately, using the symbol bar asdata#i .

Now to nd our second quadraticf ,(x) connecting the second pair of data
points and making sure that the graph of the two functions ismmooth atx = 1
we simply solve forf »(x) using the equation: f (1) = fJ1). Continuing in
this way we get quadraticd 1(x), f2(x), ..., fn 1(x) corresponding to each of
then 1lintervals: [data.q; datay.1], [datay.1; datas], ..., [data, 1.1;data,q].
Note that we have used the double subscript notation to get #x-values in
the rst column of the data matrix.
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We combine these functions into a single function using th@HI function.
Here CHI(a,x,b) is O unlessa x b in which case it is 1. Thus, the
combined function is

x3
(5) f(x)= fx(x) CHI(datag.1; x; datag+1 1)
k=1

In our example we can solve for the three quadratics and get

fax)=2x %2 fa(x)=2x x? and fz(x)=3x% 14x+16

Application  The resulting function f (x) above is called aquadratic spline
function and is important in approximation theory and computer graplcs.

One important example is in generating fonts for computer seens. Com-
puters used to view a highly stylized letter like the capitalS in some fancy
font as a bitmap picture which required lots of memory to stax and lots of
time to draw on the screen. The modern approach is to view thetter as
say 10-20 carefully chosen data points and then Il in the réf the letter

using spline function techniques.

You can experiment with these techniques by using the utiljt function
SPLINE(x,data,m1) which gives the quadratic spline passing the data points
data and having derivative m1 atx = data;.;. Using our example, we enter
the above with m1 =2 and Smplify. It's instructive to plot the points data
as a (non-connected) set of points and then plot the splineriation to make
sure that it passes through the points and that it indeed has amooth graph.

The de nition behind the SPLINEunction (see the le ADD-UTIL.MTH)
is fairly straightforward. The function f(x) depends on the previous function
fx 1(x) and more speci cally on the quantityf 2 ;(xx), where thek" interval
IS [Xk; Xk+1]. It turns out that it is more e cient to make a vector out of th e
n 1 slopesm =[mg;my;:::] using the formula

(6) mk=2M me 1 k=2;:::;n 1:

Xk+1 Xk
which can be derived using DfW(see the le F-SPLINE.MTH). Uing this
formula one produces the vector of slopes using thEERATE®unction. The
formula looks a little complicated at rst but should look straigtforward after
some careful examination (see either the le ADD-UTIL.MTH o the SLOPE
function in the le F-SPLINE.MTH).
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Using these quantities one then computefs(x) using

CURVEFIT(x, [data#k, data #(k+1)], [[data #k#1, mik]])

Figure 4.3: Approximation using spline functions

See Figure 4.3 where we use this method of approximation to@pximate
the function y = sin x usingn = 7, which is the smallest integer greater than
2 . Thus, based on the numbers sin1::;sin7 plus the derivative atx = 0,
l.e., mg = 1, we get a good approximation to the sine function.

4.5 Laboratory Exercises

Start o your lab by L oading the ADD-HEAD.MTH le (use File/L oad/M ath).
Note that the syntax of the CURVEFITunction is displayed on the second
line of the ADD-HEAD le. There are two possibilities: CURVEFIT(x, data)

where data is a matrix of data points satis ed by the functionor CURVEFIT,
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data, ddata) where now the derivative satis es the matrix of data points
ddata.

1. a. Use the CURVEFITunction to nd the cubic polynomial passing
through the points: (G;0), (1;1), (2;0) and (3;1).

b. What degree polynomial is required to pass through 7 points?
(Hint: Make up a 7 point data set and examine the solution.)

2. Use the CURVEFITunction to nd a, b, and c if ax?> + bx+ ¢ passes
through

a. (1;1), (3;4), and (4, 4).
b. (1;1), (3;4), and (4 1).

c. Show that the functions determined in parta and b both have
the same slope ak = 2.

d. Do you think it is possible that

f(1)=1
f(3)=4
fq2) =2

(see equation 2). Use the second form of tiiJRVEFIfunction to

nd the solution. Note that the ddataisal 2 matrix in this case.
What doesDerive tell you? What if you change the derivative
to f {2) = 3=2? Can you explain what the answer means?

For the following problems you will need to enter the varialdsx1, x2, x3, x4,
y0, y1, y2, y3, and y4. You can declare these as variables easily by authoring

X1 =, x2 = x3 =, x4 =, y0 = yl = y2 = y3 = y4 =]
See the discussion on page 55.

3. Let (X1;y1) and (x»;y,) be two points in the plane withx; 6 x,. Let
m = 2% pe the slope of the line through these points. The Mean
Value Theorem says that iff (x) is a di erentiable function which passes
through these points thenf {x3) = m for somexs; betweenx; and X».
Show that if f (x) has the formax?+ bx+ ¢ then we can takexs = ( X1+
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X)=2, i.e., show thatf {(x1 + x,)=2) = m if f (x) has this form. Hint:
Solve the systemf (x1) = Y1, f(X2) = y, for b and ¢ and substitute
those values back intaax? + bx+ c. Then show that the derivative of
the resulting expression ism when x = (x; + X3)=2. Of course this
means that all quadratic functions through &;;y:1) and (x;;y,) have
the same slope atX; + x;)=2.

Use theCURVEFITunction to nd the quadratic function f (x) = ax?+
bx + c that satis es

f (X0) = Yo
f(x))=w1
f(x2) = y2

Integrate the resulting function over the interval k0O; x2]. Observe that
your answer is a pretty big expression that requires scrailj to view.

Now substitute in this expressiorx1 = (x0+ x2)=2 using the “&| but-
ton and simplify. Note that x1 is the midpoint of the interval [x0; x2].
The answer should be a very simple formula in terms &, X2, Yo, Y1
and y,. In the next chapter this calculation will be the basis for tle
Simpson Methodof numerical integration.

Suppose we want to nd a cubic functionf (x) = ax®+ bx® + cx+ d
such that

f(x1) = w1
f(x2) = y2
f(X3) =3
fO%x4) = ya

Show that this is always possible ik,, X5, and x3 are all distinct and
X4 6 (X1 + X2 + X3)=3. The algebra in this problem gets fairly messy.

Let (X1;Yy1) and (Xz; y2) be two points in the plane withy; > 0,y, > 0,
and x; 6 X,. Let f (x) = a€* be an exponential function. Show that
it always possible to nd a and r so that f (x) passes through these
points. Hint: you need to solve the equations

ag*t =y,
agd*2 = Y2
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To do this rst solve for a in one of these and substitute the answer
into the other and then solve forr.

. Table 4.1 on the next page shows the population of the US forezy

decade from 1800{1900. Consider two models for the data: axpe-
nential model P(t) = ag® %) (take t, = 1800) and a linear model
L(t) = bt+ c

a. Use the data for 1800 and 1810 to determire r, b and c.

b. What does each model predict for 18307

c. How do the models compare during the rst 50 years? 100 years?
Do this by graphing both functions and the population data. Al-
just the scale to get a good picture.

d. Make up your own value ofr in the exponential model and see
if you can get a better representation of the data. Do this by
plotting the model and comparing with the data.

e. The population for 1990 is 248.7 million. What value of would
yield a population model which would result in this populatn
size after 190 years?

Suppose thatdata is ann 2 matrix of data points

2 3
X1 Y1
data := EXZ yzz :
X'n Yn
where X1, Y1, ...have numerical values and; < x, <:::. We know

that plotting this vector in connected mode gives a piece-gg linear
graph. You can test this using a sample value fatata. Write a function
f(x) in DfW which will have the same graph, i.e., between any two
consecutivex-values, Xxx X Xy+1, f(X) linearly interpolates the
data points. (Hint: Look at equation 5 on page 60 for doing spline
function interpolation and use theCHI function as is done there. You
will need to use subscript notation to refer to thex, y values. For
example,data#1#1 is x; and data#3#2 is ys.)
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Table 4.1: Population of the US, 1800{1990

Year | Population (millions)
1800 5:3
1810 7:2
1820 9:6
1830 128
1840 17.0
1850 230
1860 314
1870 385
1880 500
1890 629
1900 76.2
1910 922
1920 1060
1930 1232
1940 1322
1950 1613
1960 1793
1970 2033
1980 2265
1990 2487
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*9. Let (X1;Y1), (X2;Y2), and (Xs;y3) be three points in the plane with
X1 6 X2, X1 6 X3, and X, 6 x3. Show that all cubic functions,f (x) =
ax® + bx? + cx + d which go through all three of these points have the
same second derivative a2z, (Hint: Just solve the 3 equations in
the 3 unknownsb, ¢, and d in terms of the 4" unknown a. Di erentiate
twice and substitute in the above value ok. Check that the answer

does not depend ora.)
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Chapter 5

Finding Roots Using
Computers

5.1 Introduction

This lab explains two techniques for numerically solving etions, Newton's
famous method and the bisection method. If we have any equati we want
to solve forx, we can subtract one side from the other to get an equation of
the form f (x) = 0. Of course, in casd (x) is a polynomial then solving this
equation means nding the roots off (x).Thus, for quadratic polynomials we
would ordinarily use the quadratic formula. However, we wilbe considering
very general functions which typically involve trigonometic functions, loga-
rithms and exponentials and hence algebraic methods are afly hopeless.

Newton's method is called alynamic processand is related to interesting
topics such as chaos and fractals. We will explore these cepts later in this
chapter.

5.2 Newton's Method

Newton's method for nding a solution r to the equation f (x) = 0 is to
start with a guessx, (presumably not too far fromr) and form the tangent
line to f (x) through (Xxo;f (X0)). Then nd the place, call it x;, that this
tangent line crosses thex{axis. Now we repeat this process with, in place
of Xo. (See Figure 5.1 on the next page.) In this way we obtain a sespce
of numbersXg; X1; Xo; : :: which, under reasonable conditions, will converge

67
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tor.
Sincey Yo = m(X Xg) is the equation of the line through &o; yo) with
slopem, the equation for the tangent line off (x) through (xq; f (X)) is

y f(xo)= fAXo)(X Xo):

Solving for x wheny = 0 gives x = Xo f (X0)=fYXo). Thus we get the
(n + 1)t approximation from the n™ by the formula:

f (Xn)
f AXn)

(1) Xn+1 = Xp

Figure 5.1: Newton's method for nding roots

In the graphics window of Figure 5.1 the rst several approxnations in
Newton's method are shown fobthe equationx? + x 1 = 0 which has
the unique positive solutionx = 5=2 1=2  0:618. The initial guess is
Xo = 5. From the point (5;0) we go up to the curve at the point (5f (5))
and then follow the tangent line until it intersects the x{axis at the point



5.2. NEWTON'S METHOD 69

(x1;0) (2:363630). The process is now repeated, starting with the guess
X1.
It is convenient to view the computations as an iteration proess:

_ f(x)
(2) NG(x) = X Q%)
which changes a guess into a (hopefully) better guess NGk). (Note that
Xn+1 = NG(X,).) You can think of NG as standing for "Newton guess' or
for "next guess'. To make aerive function to do this for our function
f(x)= x2+x 1wedene

(3) NG(X) = x-(x"2+x-1)/(2x+1)

Now starting with X, and successively applying this function to the previous
result produces a sequence of approximations:

Xo

X1 = NG( Xo)

X2 = NG(X1) = NG(NG( Xo))

X3 = NG(X2) = NG(NG( x1)) = NG(NG(NG( Xp)))

which we hope get closer and closer to the exact answer. In theit we
want this sequence of approximations to converge to the raot

We can compute several approximates by rst Athoring NG(5), and then
approximating. Now we can authoNGpress the right mouse button and then
click (Insert expression) or pres$4. This will bring down the highlighted
expression in parentheses givinlG(2.36363) which we approximate (just
press $mplify instead of OK) again and then repeat this process.

A somewhat fancier method is to use théerive 's ITERATESunc-
tion. ITERATES(u,x,a,n) simplies to an (n + 1)-vector whose rst en-
try is a and each subsequent entry is obtained by substituting the pr
vious entry for x in u. Thus, ITERATES(x"2,x,2, 4) returns the vector
[2; 4; 16,256 65536]. (The functionITERATHS similar, but just gives the
last value, solITERATE(x"2,x,2,4) gives 65536.) We can get the rst 4
approximates by authoringITERATES(NG(x), x, 5, 4) and approximating
the result.
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The utility le ADD-UTIL.MTH contains two functions that ma ke com-
puting the Newton iterations easier. The functionNEWT(u,x,a) computes
the Newton guess of the expression, in the variable x, starting with an
initial guess atxo, = a. In our previous example off (x) = x2+ x 1 with
starting point xo = 5 we would enter NEWT(x"2+x-1,x,5). To get a vector
containing the starting point and the rst 4 Newton iterates you author and
simplify NEWT(x"2+x-1,X,5,4) . The general syntax isSNEWT(u,x,a,k).

Looking at the algebra window in Figure 5.1 we see the aboventttion
along with the rst 4 iterates starting at X, = 5. The graphic demonstration
shows the Newton method in action by plotting a part of the tagent line
until it crosses the x-axis. The picture clearly shows how well the Newton
method works since one has to zoom-in several times near tretual root in
order to see the last two iterations. The utility functionDRAWEWT (u,X,a,k)
simpli es to a matrix which plots the gure shown in Figure 5.1.

Alternately, that le contains the necessary de nition for doing the graph-
ics directly. The basic idea is to make a vector out of severtlples of points
which have the form §; 0), the initial guess on thex{axis, (x;f (x)), the cor-
responding point on the curve, and (NG&X); 0), the place where the tangent
to the curve at (x;f (X)) intersects the x{axis. When we graph these points
we want the lines connecting them to be drawn. If this is not tl case then
adjust the Options/P oints menu.

You might note that a little trick is used in the above of DRAW in the
le F-NEWT.MTH. The special form of the VECTOR(u,x,v)function setsx

Example. Suppose we want a numerical approximation ol?‘ 2. We think
of it as a solution to the equationx? 2 = 0. Then formula (2) gives the
very simple expression:

B f(x) _ x2 2 x*+2 x 1
NGOI=X =% T T T 27 x

We get several approximates by clicking il after authoring either
(4) NEWT(x2-2,x,2,5)

or equivalently as in the le F-NEWT.MTH

(5) ITERATES(X/2+1/X,X,2,5)
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with precision digits set to 10 decimal places. We get
(6) [2;1:5;1:416666661:4142156861:4142135621:414213562]

which is accurate to 10 decimal places. In fact, Figure 5.2 @his a remark-
able property about Newton approximation: the number of demal place
accuracy approximatelydoubleswith each iteration!

Figure 5.2: Each iteration gives twice as many digits

5.3 When Do These Methods Work

For Newton's method to work we need at least thaf (x) is di erentiable,
since the derivative appears in the formula (2). If we assumihat f %¢x)
exists we get the following theorem:

Theorem 1. Supposef (r) =0 and that f °0x) exists in some open interval
containing r. If f{r) 6 0 then the iterates of

f (x)

NG(x) = x Q%)
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converge tor provided the starting pointx, is su ciently close to r. More
precisely, given0<" < 1, there exists a > 0 such that:

(7) ING(x) rj<"jx rj
wheneverjx rj<

Proof. Sincef %is continuous (becausd “exists) and is not zero atx = r,
we know that f {x) 6 0 near x = r and hence NGK) is de ned for thesex.
Clearly, NG(r) = r sincef (r) = 0 and also

fA? FOfRr) _ 0% _ .
fqr)? - fanpz

Hence by the de nition of the derivative, given" > 0, thereisa > 0 so that

NGqr)=1

NG(x) r _ NG(x) NG(r) <

X r X r

wheneverjx rj < . This shows that (7) holds which is what we needed to
prove. O

Notice how this proof works. First we showed that (under the ypotheses
of the theorem) NGX(r) = 0. This is the crux of the proof. It means for any
"> 0 there is an interval aroundr where NG(x) <" for all x in this interval.
By the Mean Value Theorem we get ax betweenr and x such that

NG(x) NG(r)
r

-~ = jNGYx®)j <":

This implies that (7) holds for all x in this interval and this says that the
error of the next guess, N&X), is " times smaller than the last one. If we take
" = 1=10 say, then each guess will be 10 times as accurate as the jes one.
This implies each new guess has at least one more decimal placcuracy.
But if we look at the example above, or the examples below, weesthat
the convergence is much faster. This is because if we are in iaterval
where NGY{x) < 1=10, then NG() is at least 10 times closer tor and,
since NG{r) = 0, we are now likely to be in an interval where N§Xx) is
much smaller. So not only are we getting closer but the amoutty which
we are getting closer is also increasing. This is why the camgence when
NGYr) = 0 is so fast. It means the next guess after N&(, i.e., NG(NG(x)),
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will tend to be much more than 10 times as accurate as N&). In dynamic
systems like this, a pointr with NGqr) = 0 is called a super attractor.
Once x gets close to a super attractor, repeated applications ofN will
move it towardsr very quickly.

The next theorem investigates a situation where 8 NGYr) < 1. In this
caseNk(x) still tends to r but not nearly as fast. In this caser is no longer
a super attractor but is simply anattractor .

Theorem 2. Suppose thatf (r) = 0 and thatf(x) = (x r)™g(x) where
g(x) is di erentiable, m is a positive integer andg(r) 6 0. Then, NG(x) is

de ned for all x 6 r which are su ciently close tor and the iterates converge
tor.

Proof. Sincefqr) =0 for m > 1 (check!) it is not clear that we can even
de ne NG(x) for x nearr. But

FO)=mix ™ fgx)+(x  r)"gix)
(8) =(x )™ mg()+(x ngx)]  (x )™ mg(r)
and sinceg(r) 6 0 it is easy to see that the bracketed expression above can
not be zero for allx near tor and hence the same is true df{x) provided

X6r.
Now using (8) to simplify NG(x) (do this using Derive ) we get

NG(x) r_(m Lgx)+(x rglx) m 1

x 1 mge) + (x  NGX) m -1
and hence the iterates converge as before. O
5.4 Fractals and Chaos
MVhich rooFg does Newton nd? Of coursef (x) = x? 2 has two roots,

2 and 2. If pur initial guess is any positive number, 6\I_ewton's methd
will converge to 2 and, if it is any negative number, to = 2. If the initial
guess is 0 the method fails since NG(0) is not de ned.

The situation for this f (x) is pretty simple but that is not always the
case. To get a clearer picture of what can happen we need toaliss the
complex numbers Recall that a complex number has the forna+ bi, wherea
and b are real numbers and is a square root of 1, i.e.,i?= 1. Complex
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numbers can be represented as points in the plane; P for a+ bi. We call
this the complex plane In Derive we input i by using the symbol bar or
typing #i. This is displayed with?.

You probably have already encountered complex numbers iDerive
when, for example, you try to ®Ive an equation such ax?+ 1 = 0 or
something more complicated, while trying to nd extreme paits. The result
is that Derive computes the two solutionsx = i. Of course, in calculus we
usually ignore complex solutions since they are not relevaio max-min the-
ory or graphics. Nevertheless, they do play an important relin algebra since
they provide a complete theory for the solution to polynomiequations.

Using the same functiorf (x) = x? 2, let's see what happens if we start
with a complex number forx, like 3+ 2i. This time we Author

data := NEWT(x"2-2,x,3+2 #i,5)
If we approximate this with precision set to 6 decimal placesve obtain

[3+2i;1:73076 + 0846153; 1:33170 + Q195097;
1:40099 0:0101504; 1:41423 + 959747 10 °i; 1:41421]

so that it still converges top 2. We can get a picture of this convergence by
plotting the complex numbera + ib as the point (@;b. To do this we need
one of the utility functions. Thus, authoring

DRAWEOMPLEX(data)

and then simplifying the result will give the matrix of 6 poiﬁts: We plot
this matrix to observe how the iterates converge to the point 2;0) on the
x-axis, see Figure 5.3 on the next page.
, . P =

It's a fact that the Newton method will copverge to 2 whenever we
start with xo = a+ biwherea > 0. We call 2 an attraca'v_e xed point
and the right half plane is called thebasin of attrac&jo_n for 8._If we start
with xo = a+ bi wherea < 0 it will converge to 2, so 2 is also an
attractor with the left half plane as its basin of attraction.

What happens if we start with a point on the imaginary axis (the y{axis
Xo = bi? Simplify and plot the expression

DRAWOMPLEX(NEWT (x"2-2,x,#i,25))
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Figure 5.3: Newton's method with complex starting point

Notice that all the values are purely imaginary (they only hae ani com-
ponent) and that they seem to bounce around randomly. Moreey, if you
author

DRAWOMPLEX(NEWT (x"2-2,x,1.01#i,25))

you'll notice that the corresponding entries of the answerare approximately
the same for the rst few terms but very quickly seem to have neelation to
each other. Here's a nice way to do this: De ne the rst set of pints to be
datal and the second set to belata2. Author the vector [datal,data2]
and simplify. Then scroll though the matrix to compare entres.

In other words, even though the two starting points above; maely i
and 101 are quite close together their long-term behavior seem cotefely
di erent. The above phenomenon is what is known ashaos

We can illustrate this last property graphically by lookingat the ﬁquation
x>+ 2 = 0 rather than x?> 2 =0. The former equation has roots 2i and

2i. Just as before if we start with any pointa+ ib in the upper half of the
coer_Iex plane b > 0), the Newton iterates of the functionx? + 2 con rge
to ~ 2i and any point in the lower half plane p < 0) converges to = 2i.
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Test this by plotting
DRAWOMPLEX(NEWT (x"2+2,x,1+#i,5))

But we get chaos on the real axis. To see this chaos plot the fition x? + 2
and the output to DRAWEWT (x"2+2,x,2,4) in connected mode, see Fig-
ure 5.4.

Figure 5.4: Chaos

Now considerf (x) = x* 1. This has three roots:x = 1, x = 1=2+

i 3=2,andx = 1=2 i 3=2. Thisis easy to do inDerive just Solve the
equationx® 1 =0. Each of these is an attractor with a basin of attraction.
However the shapes of these basins of attraction are reallyitg interesting
and bizarre. Figure 5.5 on the next page shows the basin of @tttion for
the root x = 1 in white. The basins of attraction of both of the other roos
are black. In Figure 5.5 the center is the origin in the compieplane and the
right hand edge hasx = 2. So the point (1;0) (i.e., 1 + 0i) is between the
center and the right hand edge.
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A color version of this gure which indicates the number of irates needed
to converge can be viewed on our World Wide Web home page at

http://www.math.hawaii.edu/206L/

An interactive Java applet which can be used to show the itet@mns of New-
ton's method is also available at this site.

Figure 5.5: Basins of attraction ofx®> 1 in the complex plane

Constructing the Julia set The set of points where Newton's method
fails, that is, the set of pointsxo where the sequence

(9) Xo; NG(X0); NG(NG(Xp));:::

fails to converge, is called thelulia set for NG(x). In the examplef (x) =
x3 1 these are the points on the edge or boundary of the basin ofraction.
As the picture in Figure 5.5 shows this set can be very compdited, it looks
a little like a necklace with in nitely many smaller and smaler loops coming
out in many di erent directions.
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There are two basic methods for constructing this set. SindeG(x,) is
not even de ned whenf {xy) = O this is a good place to start. Ifx is a
solution of

NG(X) = Xo
then the third term of the sequence (9) is not de ned and sa will be in
the Julia set. In the case wherf (x) = x3 1 the equation above has
three solutions. For each of these there are three more obtad by solving a
similar equation or in other words nding the points where NGNG(x)) = Xo.
Continuing in this way we get a close approximation to the Juh set. The
actual set is obtained by taking limits of these points. Thisnethod is called
the backward methodand is done in the le F-JULIA-BACKWARD.MTH
for the polynomial x> 3x which has cbitical points at 1. This function
has three real roots atx = 0 and x = 3 and the Julia set somehow has
to separate the three basins of attraction corresponding tihese roots. See
Figure 5.6 for a picture of it's Julia \necklace".

Figure 5.6: Bad Newton starting points forx> 3x = 0 in the complex plane

The trouble with the backward method is that it uses the cubidormula
for solving 3¢ order equations and this formula is pretty complicated. Eve
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worst is the fact that there is no analogous formula for deges 5 or greater.
To get around this problem there is the \forward method" whit involves
simply looking at the sequence:

NG(Xo0); NG(NG(X0)); NG(NG(NG(Xp)));:::

and checking whether it gets closer and closer to root or elgest wanders
around forever. Since you have to do this for each point or gkin the graph
this can be a very lengthy computation. A number of shortcutand tricks are
typically employed and you can study the le F-JULIA-FORWARD.MTH to
see how we did it. Or you can just check out the pictures; seedtire 5.7.

Figure 5.7: Basins of attraction forx® 3x =0

5.5 Bisection Method

We now consider a very simple technique which is applicable any continu-
ous functionf (x). If f (x) is continuous andf (a) < 0 andf (b) > 0, i.e., itis
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below thex{axis at a and above thex{axis at b, then the Intermediate Value
Theorem tells us thatf (x) must have a zero betweea and b. Assumea < b.
The bisection method evaluated (x) at x = %’ the midpoint of a and b
(which is why it is called the bisection method). Iff (%’) > 0 then there
must be a root in the interval [a; (a+ b)=2]; otherwise there must be a root in
the interval [(a+ b)=2; b. In the former case we take the intervald; (a+ b)=2]
and apply the bisection method to it; otherwise we usedft+ b)=2; b|. At each
stage the root lies in an interval which is only half the sizefdhe previous
stage. So we can eventually nd the root to any number of deciah places.

We can automate this process by authoring two functions:

F(x) :=
BIS2(a,b) := IF(f(a)f((a+b)/2)<0, [a, (a+b)/2], [(a+b)/2 , b))
BIS(v) := BIS2(v SUB 1, v SUB 2).

The main function is BIS(v) and BIS2(a,b) is a helper function. The ar-
gument v to BIS is a vector with two entries, e.g.,[a, b] . The Derive
function SUBwhich we discussed in the previous section, returns the par
of a vector so that[a,b] SUB 1 = a and[a,b] SUB 2 = b. SoBIS starts
with a vector like [a,b] and callsBIS2(a,b) . This then uses the value$ (a)
andf ((a+ b)=2) to decide if there is aroot in §; (a+ b=2] or in [(a+ b=2; .
In the discussion above we assumed thé&t(x) < 0 and that f (b) > 0. The
way we have de nedBIS it will work also in the casef (x) > 0 andf (b) < O.
To do this we test if the productf (a)f ((a+ b)=2) is negative. If it is, then
one off (a) and f ((a+ b)=2) is negative and the other is positive. In this
case the points §;f (a)) and (%b;f (%b)) lie on opposite sides of thex{axis
and so there must be a root in the intervald;(a+ b)=2]. In the other case,
f (a)f ((a+ b)=2) is positive and so they have the same sign. In this case
f ((a+ b)=2) and f (b) must have the opposite signs (why?) and so there is a
root in [(a+ b)=2; .

Let us try the equation Inx = 1 which has the (unique) solutionx = e=
2:718:::. Of course we are nding the root of Ik 1 so we authorf(x)
= 1In(x) - 1 and apply BIS. Graphing f (x) shows that there is a root
between 2 and 3 so we authdBIS([2,3]) . This returns [25; 3], indicating
that 2:5<e< 3.

Now we want to apply BIS to the answer [25; 3]. You can do this several
times by choosing author, typingBIS, and then inserting the highlighted
vector. Once again we have an iteration process and we can tis2ITERATES
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Figure 5.8: Bisection method for nding roots

function that does this for you.
Using this technique, we author

ITERATES(BIS(v),v,[2,3],10)

and then approximate it to see how well this approximates, see Figure 5.8.
An easier way to see the bisection method in action is to usedaHhunc-

tion BISECT(u,x,v,k) in the utility le ADD-UTIL.MTH. To get the above

results we would simply enterBISECT(In x-1,x,[2,3],10) and the press

the approximation il button. It is interesting to compare the results
of the bisection method with the Newton method of the previos section.
The bisection method is fairly fast at getting a good approxnation but not
nearly as fast as the Newton method.

The bisection method will work for anyf that is continuous on the interval
[a; and f (a) and f (b) have opposite signs. It is easy to see that after
iterates the error is at most p a)=2". (In fact this is the width of the
resulting interval. If we choose the midpoint as our estimat the error will
be at most @ a)=2"*1))
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5.6 Laboratory Exercises

Start o your lab by L oading the ADD-HEAD.MTH le (use F ile/L oad/M ath).
Note that the syntax of the NEW1unction is displayed on the second line of
the ADD-HEAD le. There are two possibilities: NEWT(u,x,a) where a is
the starting point in Newton's method applied to the expressn u in the
variable x. Alternately, the function NEWT(u,x,a,k) gives a vector contain-
ing the intial guessa followed by the rst k approximates. The function
DRAWEWT (u,x,a,k) produces the graphical demonstration of the Newton
method.

1. The equationx® = 2 has solutionsx = P 2. Use the functionx? 2
and NEWTo estimate = 2.

a. Give the 5" iterate starting at x = 10
b. Plotthe graph ofx? 2 and the output to DRAWEWT (x"*2-2,X,10,5) .
c. What happens when your start atx = 10?

d. What's wrong with the starting point x = 0? Explain this both
numerically and graphically.
-

2. In a manner similar to Problem 1, useNEW10 estimate ° 7.

a. Give the 5" iterate starting at x = 2.

b. By comparing with the approximate given byDerive how many
decimal places (roughly) does the Newton approximations ate
with the actual answer. Note that you may need to increase the
number of digits you are working with (see Section 0.6).

3. Plot the graphs ofx? and sinx.

a. Determine graphically where the two graphs intersect. Giva
rough estimate of the accuracy of this method? (Hint: If you se
the right arrow key to change the position of the crosshair, dw
much does itsx{coordinate change?)

b. Next use Newton's method to nd all solutions tox? sinx = 0.
Give the 3" iterate starting at x = 2.
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c. Solve this equation numerically by using &ve/N umerically menu.
Compare the solution you get using DfW'sSOLVHunction with
your approximation above using Newton's method.

4. Let f(x) = x3 5x. Graph f (x).

a. Use Slve to nd the all roots of x3 5x = 0.

b. Plot the output to DRAWEWT (x"3-5x,x,1,5) and analyze the
rst 5 iterates in the Newton approximation method starting at
x = 1. Explain in words what goes wrong when you start ax = 1.

c. Do the same but withxy = 1:01 and with xo = 0:99.

5. Again let f (x) = x3 5x.

a. Find the formula for NG(x) for this f .

b. Find a point X, where is NGk) unde ned. (There are two such
points; nd either one.) Give the exact answer and then apppa-
mate it.

c. Use Derive 's Solve/Numerical to solve NG&) = Xx,. Call the
answerx.

*d. Do this once more, that is, Solve/Nimerical NG(x) = x;. Call
the answerx,. If you continued this forever what do you think
the sequence

Xo; X1; X2; X3 111
would look like? What are their signs? What do you think
Iimnll anj is?
e. Choose any numbers and b which satisfy

JX2) <@ < jxqj <b < jXqj

To which root does Newton's method converge if we start with?
with b?

6. Let f (x) = x2+ 1. Graph f (x). Find 10 iterates of Newton's method
starting with xo = 0:5 and xo = 0:501. Explain why you think the
successive approximations don't seem to be converging toy#ring.
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The rate of the convergence of Newton's method to a solutionof f (x) =
0 is determined byj NGYr)j. Since NG¢) = r we say thatr is a xed point
for NG(x). If 0 < jNGYr)j < 1 thenr is said to be an attractive xed point
because nearby points are drawn to by iterating. If NGYr) = 0, then r
is called a super attractive xed point. The hypotheses of Teorem 1 on
page 71 imply that NG() = r and NGYr) = 0 which guarantees that the
convergence was very fast. In the following problems you dgpe situations
where NG(r) 6 0. As long asjNGYr)j < 1 Newton's method will still
converge tor if X is close enough ta, but not as fast as the super attractive
case.

*7. Theorem 1 had the hypothesis thaff (r) = 0 and f{r) 6 0. In this
problem we explore what happens to a function whehqr) = 0. Let
f(x)= x(x2 2)2

a. Graph f (x) and plot DRAWEWT (x(x"2-2)"2,x,3,5) (rescale to
get a good picture).

b. Find the rst 10 Newtgn iterates starting with x = 2. How fast
are they approaching 2 compared with the example shown in
formulas (4) and (6)? (Use 10 digits precision.)

c. Compute (exactly), NG(p 2) and NGO(IO 2), where NG is de ned
by formula (2). Is 2 a super attractor?

d. Find a and b so that a 6 b and NG(a) = b and NG(b) = a.
(Hint: Start by visualizing this situation graphically. Then try
guessing an approximate solution by looking at the graph and
experimenting with the DRAWEWT1unction. Finally, use algebra
to solve the equation: NG(NG@)) = a for a and then put b =
NG(a).)

e. Suppose now tlglatf (x) = x(x> 2). Find NGO(p 2). What do
you think NGY" 2) would be forf (x) = x(x®> 2)? (Look up
Theorem 2 on page 73 to see if this situation is a consequence o
that result.)

8. The function f (x) = x*™ has a root atx = 0. Find NG(x), NGYx), and
NGY0). Find 10 iterates of Newton's method starting withx, = 0:1.
(Note: Make sure that the Precision Mode is set to Exact or edsthere
may be problems with this exercise.)
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9. Use the bisection method to estimatg 2.

*10. The light area in Figure 5.5 on page 77 shows the basin of attt@gon
of the root 1 when using Newton's method or® 1. The origin of the
complex plane is in the middle of this gure. Note that most ofthe
negative real axis (the negativex{axis) is in the white area. This means
that starting with most negative real numbers, Newton's mdtod will
converge to 1. Try this forxo = 1 and 2. If you look closely at
the gure you see that black pinches down on the negative reakis at
various points. Find the value of the rst such point to the ldt of the
origin.
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Chapter 6

Numerical Integration
Techniques

6.1 Introduction

This lab discusses numerical integration. Numerical integtion is described
in most calculus books and is sometimes covered in second sster calculus.
You may want to look over this part of your calculus text.

A function is called elementaryif it is made up of sums, products, powers,
and compositions of the trig functions and Ix and €*. Although the deriva-
tive of any elementary function is elementary, not all suchuhctions have
elementary antiderivatives. Forpexample, there is no elemery function
whose derivative is sing?), i.e., sin(x?) dx is not an elementary function.

Consider the problem
1
sin(x?) dx
1

Even though sink?) has no elementary antiderivative, the area de ned by the
integral certainly exists. §o how do we nd it? We use numera integration.
Consider the integral abf (x) dx, and for simplicity assumef (x) 0 and
that a < b. The idea of numerical integration is to choose intermediatpoints
a= Xg<X1<X3< < Xp = band estimate the area in the strip below
f(x) for x; x Xj+1 and then add up these estimates; see Figure 6.2 on
page 92. Of course the width of this strip ixj+1  X;. The height varies
with x. Some of the most common ways of estimating the area of theiptr

87
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are:
Left endpoint: f(Xi)(Xis1 %)

Right endpoint:  f (Xj+1) (Xis1  Xi)

Midpoint: f(L;Xi)(Xm Xi)
) 1
Trapezoid: é[f(xi+1)+f(xi)] (Xi+1  Xj)

Xi+172+Xi)+f(xi) (Xier  Xi)

. 1
Simpson's Rule: 3 f(Xis1) 41 (
The last one, Simpson's Rule, is based on the best quadratippoximation
to f (x). This basic idea was derived in Exercise 4 on page 63 in Chapt.
Section 6.5 on page 96 has a detailed explanation.
Usually we choose the;'s equally spaced, so that

(1) xi = a+ 22
Of course, in this casexjs1 X = bn_a. Thus, if we use the left endpoint
approximation, we get
zZ, 1
b X
2 Fodx —= f(x)
a n i=0

. b a :
Notice that we factor out the term W and multiply by the sum rather
than multiplying every term.

6.2 An Example

Formula (2) suggests how we might do numerical integrationitthh Derive .
Let u be the expression fof (x). We can de ne aDerive function for the
left endpoint method by

LEFT(u,x,n,a,b) :=
(b-a)/n * SUM(SUBST(u, x, a + k*(b-a)/n), k, 0, n-1)
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(Recall that SUBST(u, X, a) substitutesaforx in usoSUBST(u, x, atk(b-a)/n)
really evaluatesu at x = a+ k(b a)=n.) LEFTis already de ned for you
in the le ADD-UTIL.MTH. All of the other methods mentioned a bove are
also de ned in that le with the names: RIGHTMIDQ TRAPand SIMP

Now let's try an example. Although we would normally use thesapprox-
imations for integrating expressions without an elementgrantiderivative, we
can test how good they are by applying them to something we dané&w how
to integrate: z,

1 dx=In2 0:693147180559
1

To use the left endpoint method withn = 10 intervals, we would just author
and then approximate

LEFT(1/x, X, 10, 1, 2)

Doing this gives the answer 18771. Similarly if we wanted to use the
trapezoid method we would author and approximatd§ RAP(1/x, x, 10, 1,
2) which gives 0693771.

We want to compare the accuracy of these methods of approxitian
and also see how much the accuracy is improved by increasimg We will
try them for n =10, 100, 1,000 and 10,000. A fancy way to see and compare
approximation values, using the left endpoint rule for a rage ofn is to start
by authoring the vector

[10°n,LN(2),LEFT(L/x,x,10"n,1,2),LEFT(1/x,x,10"n,1, 2)-LN(2)] .

Then, use the Glculus/V ector menu to produce

vector([10"n, LN(2), LEFT(1/x,x,10™n,1,2),
LEFT(1/x,x,10"n,1,2) - LN(2)], n, 1, 4)

where the Variable n varies from a_$arting value of 1 to an End value of 4.
Approximating this expression yields a 4 4 matrix with the rst column
being the number of partitions, the second column being thexact value, the
third column being the approximate value obtained from thedft endpoint
method and the fourth column being the error. See Section @.bn page 22
for more discussion on therector function.

Notice from Figure 6.1 that the accuracy in this method seem® be
roughly 1, 2, 3 and 4 digits respectively. This is in fact thease and it can
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Figure 6.1: Approximating In 2 with left endpoint method

be proved that using 10 subdivisions yields an accuracy af decimal places.
This is not very e cient since it requires a billion computations (1%) to

achieve calculator accuracy of 9 digits. Try comparing congpation times

for various powers of 10 to see how this rapidly becomes imptigal. If we

try to obtain simple calculator accuracy of 8-12 decimal ptzes, then this
can take hours on a PC which is impractical. It is for this reamn that we
investigate the other methods for computational purposes.

By replacing the left endpoint method with the trapezoid metod in the
computation in Figure 6.1 we see a remarkable di erence. Thaeccuracy now
appears to be approximately 2, 4, 6 and 8 digits respectivelyrhus, the 4
decimal place accuracy achieved by the left endpoint methagsing 10,000
rectangles is equivalent to the trapezoid method using onf00 trapezoids.

We can summarize the theoretical error for these methods adldws. It
can be shown that error in using the left endpoint method is ngreater than

(b a)? o 1
z AT

3)
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On the other hand, the error in using the trapezoid method is a greater
than

(B3 if %80)j

4 —.
( ) 12 x2[a;b] n2

In our example (with f (x) = 1=x, a =1 and b= 2) we have the bracketed
quantity in (4) is equal to 1=6 so that the error is no greater thann °=6.
Thus, n = 100 indeed yields an error of less tharD0002 or approximately
4 decimal digits. You might want to modify the previous tablewe did in
Derive to add another column displaying this theoretical error esmnate
(3) (and (4) for the trapezoid method) and compare it to the aiuial error.
Although the trapezoid method is quite accurate and fairly eient, the
Simpson's Rule is vastly more e cient. The error in using theSimpson
method is no greater than

(b a)° £ (4) (u\i :
180 IOl

()

Notice the main di erence between (4) and (5) is that we now ha an
error which is roughly En* (the bracketed quantity in our example is 24180).
Thus, with n = 10 we obtain the same accuracy as = 100 in the trapezoid
method orn = 10; 000 in the left endpoint method. A table illustrating these
di erences can be obtain by approximating

vector([LEFT(1/x,x,10"n,1,2) - LN(2), TRAP(1/x,x,10"n, 1,2)
- LN(2),SIMP(1/x,x,10"n,1,2) - LN(2)], n,1,4)

These functions are available by doing dad/Utility with the le ADD-
UTIL.MTH. Seeing the accuracy of SIMP(EXx; x; 10%; 1; 2) requires 16 digits
of accuracy. Recall from Section 0.6 how to increase the acacy of a calcu-
lation.

To get a geometric feeling for why the trapezoid method is south better
than the left endpoint method one need only draw a sketch corapgng the two
methods. It's possible to graphically represent these apmtimations using
Derive . Recall from Chapter 4 that one can plot a collection of poi,
(X1; Y1), (X2:¥2), :::, (Xn;¥Yn), by plotting an n 2 matrix. Thus, a rectangle
can be drawn by plotting a 5 2 matrix. (Note: The 5th point is the same
as the rst point so that the gure is closed.) In order to draw n rectangles,
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one plots ann-vector with entries corresponding to each of the rectangle
This vector resembles a 5 2n matrix but in facts its a vector with matrix
entries. To generate this vector use the functiodRAWEFT(u,x,n,a,b)
for the left endpoint method and DRAWRAP(u,x,n,a,b) for the trapezoid
method. Both of these are de ned in ADD-UTIL.MTH.

Figure 6.2 illustrates both of thes. One must zoom in a bit toee that
the trapezoid is actually di erent from the original curve (even forn = 4).

Figure 6.2: Rectangular vs trapezoidal approximation

6.3 Theorem on Error Estimates

Let us indicate how one obtains some of these error estimatgsproving the
following theorem:

Theorem 1. Suppose that (x) is a continuous function on the intervala; .
The following hold:
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€)) Lgf Yx) is bounded on the intervala; 4, then the error in approximating
abf (x) dx with LEFT(f (x); x; n; a; b) is proportional to 1=n.

(b) Lgf 9¢x) is bounded on the intervala; b, then the error in approximating
abf (x) dx with TRAP(f (x);x;n;a;b) is is proportional to 1=n.

(c) Finally, if f @ (x) is bounded then the error in approximating the inte-
gral using Simpson's RuUlSIMP(f (x); x; n; a; b) is proportional to 1=n*.

Proof. We'll prove parts (a),(b) and leave (c) to a more advanced tdéx We
rst show that the error obtained by approximating a function f (x), over the
k™ sub-interval [x, 1;Xk], by the constantf (x, 1) is proportional to 1=n. (x
is de ned by (1).) This estimate uses the Mean Value Theoremsafollows:
forxy 1 X Xk we have

(b a)
n

OO o )i =ifle)(x xe )i max jf 1x)j ;
X2 [a;b]
This bounds how muchf (x) and f (xx 1) can dier for x betweenxy, ; and
Xx; and this means the error in using the left endpoint estimatér the strip
betweenx, ; and xi is at most the width of the strip, (b a)=n, times this
bound. Adding this over alln strips gives
Zy

f(x)dx LEFT(f(x):x;n;a;b) (b a)? r?[aé]jfo(x)j 1
XZ\|a,;

a n

which is the desired result. This completes the proof of pafg).

The proof of part (b) is similar except it uses the Mean Value fieorem
three times. We estimate the error from approximating (x) by the linear
function obtained from the endpoints valued (xx 1) and f (xx). Thus, for
Xk 1 X Xy we have

R (CO BRI

(X Xk 1)+ f(Xk 1)

Xk Xk 1
(00 foxe) e

ij(Cl)(X Xk 1) fO(Cz)(X Xk 1)J':J'f0?c3)jj01 CojjX Xk 1]
2
a

b
. 0 .
Xrg[gﬁjf 189) —

(X Xk 1)
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and thus at each point the error is proportional to £n? and so is the integral
over [a; . More precisely,
Zy
f(x)dx TRAP(f (x);x;n;a;b) (b a)°® maxjf tx)j =
a x2[a;b] n
O

We note that the error estimates above di er from (3) and (4) aly in the
constant term and not the power ofn. To obtain the better constant more
careful estimation needs to done in the above argument. Ondfother hand,
the constants obtained above su ce for most applications.

6.4 More on Error Estimates

In order for any method of approximation to be useful we mustriow some-
thing about the error. The error estimates given in equation (4) and (5)

usually work quite well. But they do require certain boundedess assump-
tions which are not always true. Consider

Z
bodx
o 1+x32

(6)

Use Derive to graph g(x) = 1=(1 + x3%2). Notice that the graph is pretty
tame; there are no wild oscillations and it would appear thathe trapezoid
method could be used to obtain a good approximation of (6). Ifact it does
give a good approximation.

In order to use (4) to estimate the error in using the trapezdirule to
evaluate (6) we need to ndg® Use Derive to do this. Note that g°?0)
is unde ned; but that lim, o~ xg°¢x) = 2. This means that g°{x)

%x 122 and hence is not bounded on [A] so that (4) gives us no information
about the error.

We can work around this problem by noticing that for eachn we can
apply (4) to the interval [%; 1] instead and use a di erent technique for that
rst interval. Thus, using jg°¢1=n)j for the maximum on [1=n;1] (check that
this is valid for all large n), we obtain from (4) that

21 p_ 1 c

l:ng(x)dx TRAP(g(x);x;n 1;1=n;1) cCc n 12 n3=2:
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On the small interval we observe thatg(x) is decreasing forx > 0 and that
g9(0) g(x) = x*2=(1+ x*?) x32, Thus, by comparing areas we see that
£ 1=n 1 1 1
) g(x)dx  TRAP(g(x);x;L,0;1=n)  —(9(0) o(7)) ==
Combining these estimates shows that the error obtained ug the trapezoid
method is proportional ton 32 (which is the larger of the two errors). This is
a better result than 1=n but not as good as £n?. Actually, one can improve
the 3=2-power a little by re ning these estimates.

The next question is what can you do without explicit estimags like the
above but only using monotonicity or convexity of the graphlf f ﬁbincreas-
ing on [a; b notice that the left endpoint method of estimating _'f (x) dx
always underestimates the integral while the right endpotrmethod overes-
timates it. Similarly, if f is decreasing the opposite inequalities hold. If we
let LEFT(f (x);x;n;a;b) and RIGHT(f (x);x;n;a;b) be the left and right
endpoint estimates then:

Z
(7) LEFT(f (x);x;n;a;b) bf (xX)dx  RIGHT(f (x);x;n;a;b)
iffqx) OonfY
and
Zb
(8) RIGHT(f (x);x;n;a;b) f(x)dx LEFT(f (x);x;n;a;h)

a

iffqx) Oonfh

See Figure 9.2 on page 141 which makes these relations qultgiaus.

A similar relation holds between the trapezoid and midpointmethods
but depends on the concavity, i.e., the second derivative ®f rather than
the slope, i.e., the rst derivative of f. If we let TRAP(f (x);x;n;a;b) and
MID(f (x); x; n; a; b) be the trapezoid and midpoint estimates then

Theorem 2. If f is concave up or{a;H, i.e., f °¥x) 0, then
Zy
MID(f (x);x;n; a; b) f(x)dx TRAP(f (x);x;n;a;b)

a
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If f is concave down ora; 4, i.e., f°%x) O, then
Z b
TRAP(f (x);x;n;a;b) f(x)dx MID(f (x);x;n;a;b)
a
Figure 6.3 shows why this is true. It has two graphs of the sanfanction
which is concave up. the line in the left part shows the traped used in the
trapezoid rule. Clearly it overestimates the integral. Themidpoint rule is
illustrated in the right graph. The midpoint rule gives the aea under the line
AB. The line CD is the tangent line through the midpoint. The area below
AB is the same as the area belo®&D (why?). So both are the midpoint
estimate. But clearly the area underCD is less than the area under the
curve.

A\ B
o

Figure 6.3: Trapezoid and midpoint rule for concave functits

6.5 Deriving Simpson's Rule

Simpson's Rule uses the quantity

X1+ X2
2

© 5 (O +Af (04 100) (ko x)
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to approximate Fixf f (x) dx. The can be derived by solving for the quadratic
g(x) = ax?+ bx+ c which passes through the 3 pointsxg; y:), (X2;Y») and
(X3;y3); wherey; = f (x;) and x5 = (X1 + X2)=2 which is simply the midpoint
or average ofx; and x,. One then computes Xxlz g(x) dx and uses this for
our approximation. Now the algebra involved in this computton is fairly
formidable and yet the beauty of it is that the answer (givenn (9)) is so
simple. That's why the formula for Simpson's Rule looks halg any di erent
from the formula for the left endpoint rule and as a result thecomputation
times are approximately the same.

Now the algebra involved is the same as that of Chapter 4. Welge 3
equations for the unknownsa, b and c, then we integrate the result. Al-
ternately, we can make the derivation into a two step procedsy using the
function CURVEFIT(x,data) where the data matrix is

2 3
X1 Y

data:=4 x, y,°
Xl';Xz y3

The resulting quadratic polynomial contains some pretty lege expressions
involving x; and y;. Nevertheless, one need only integrate this expression
over the interval x;, X X, to get the desired result.

6.6 Laboratory Exercises

Start o your lab by L oading the ADD-HEAD.MTH le and simplifying
the LOAD("add-util") expressioh. After you have done this the functions
described in Section 6.2: LEFT, MID, TRAP, and SIMP, which cenpute
the integral approximations using respectively the left edpoint method, the
midpoint method, the trapezoid method and Simpson's rule, W all be de-
ned. In addition the functions DRAW LEFT and DRAW _TRAP, which
draw the rectangles and trapezoids used in the graphical demstration of
Figure 6.2 on page 92, will be de ned.

1. Evaluate TRAP(1=x;x;n;1;2) and SIMP(1=x;x;n;1;2) for n = 10,
100, and 1000. Also useDerive to nd In2 using 15 decimal place

1This expression must evaluate to TRUE or else something is wong. Typically, if it
evaluates to FALSE then the le is not in the default director y.
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precision. Which of the 6 approximations above (if any) giwelIn2 to
10 or more decimal places?

2. Use the trapezoid method and Simpson's Rule to approximataeh of
the following integrals. Usen = 10, 20, and 30. Derive has its own
method of doing approximate integration. Find the answer itgets.
You can do this by authoring the integral and choosing appramate.
Compare the decimal accuracy of the Simpson approximatestiwthe
one computed byDerive above.

Z, Z,

: 2
a. 1sm(x)dx b. e

3. Hsmg the midpoint method MID(1=x; x; n; a; b), approximate In10 (=
(1 x)dx) using n = 10, 100, 1000 and compare your answers with
Derlve 's approximation.

4. For the following integrals use the error estimate (4) desitred above
to nd an n large enough so that the trapezoid method will give an
approximation of the integral with error at most 0005. Give both the
approximate value of the integral and the smallesh which guarantees
(using formula (4)) that you will be within this error, and also give
M, =maxfifx)j:a x ho.

Hints: UseDerive to nd f° f% andf % For the rstintegral below,
you can easily see that the maximum fojf % occurs whenx = 1. For
the second, solve °%) = 0; this tells you where the maximums of
jf %¥x)j can occur, and, using this (and maybe some plotting), you can
nd M,. For the third integral don't forget that M, if the maximum of
the absolute value of f °¥x) on [0; 2]. Once you haveM,, nd n large
enough so that the error given in (4) is at most ©05.

ZeZ Zz
1

a. In x dx b. —

1 1 1+X2

2

Z
C * 1
o 1+ x2

5. Do the same as the last problem, but use Simpson's Rule thisne and
of course use formula (5) instead of (4).
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Explain why the area belowAB is the same as the area belo@D in
Figure 6.3.

Find where 1=(1 + x3%2) is concave up and where it is concave down in
the interval [0; 1]. Use Theorem 2 to give lower and upper estimates

for Z, i

o 1+ X352’
Usen = 20.

Prove the following simple relationship between the trapeid, mid-
point, and Simpson's rules:

SIMP(f (x);x;n;a;b) = %TRAP(f (x);x;n; a; b)+ g MID(f (x); x; n;a;b)

Hint: Firstde ne f (x) to an unspeci ed function by Authoring f(x) = .
Now Author and Smplify the two expressions

SIMP(f(x),x,n,a,b)
(1/3) TRAP(f(x),x,n,a,b) + (2/3) MID(f(x),x,n,a,b)

Finally simplify the di erence of the two resulting expresgns.

Do the calculations needed to verify Simpson's rule as outéd in Sec-
tion 6.5. This is the same problem as Exercise 4 in Chapter 4.
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Chapter 7

Exponential Growth and
Di erential Equations

7.1 Introduction

Suppose thaty is a function of x. A rst order di erential equation is an
equation which involvesx, y and its derivative y°. An n"" order di erential
equation involvesx;y;y%:::;y™. For example,y°% xy°= x?+1 is a second
order di erential equation.

Di erential equations occur frequently in every eld of scence and engi-
neering, especially biology. Libraries have many volumegwbted to solving
di erential equations (even for rst order dierential equations). In this
chapter we study rst order di erential equations and show sme of the ap-
plications. One of the most important examples igpopulation growth (of
humans, cells, radioactive substances, savings accountdrees, etc.)

We will show you how to get an exact solution to what are knownsa
linear rst order di erential equations and we will introdu ce slope elds and
Euler's method for obtaining approximate solutions to moregeneral rst
order di erential equations.

7.2 Examples
Population Growth. The standard model for population growth states

that the rate of changey{x), of the population sizey(x), with respect to
time x is proportional to the population size at any given time. Ths means

101
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that y{x) = ky(x) for some xed constantk and all x. Now it is easy to
check thaty(x) = y,e* satis es the relations

(1) y’=ky  y(0)=yo

where we simplify our notation by dropping the explicit refeence to the
variable x. Thus, the exponential function provides a model for poputan
growth. Recall from Problem7 on page 64 that we compared a linear model
versus the exponential model above for the population of Meo and found
a signi cant di erence in the long run behavior with the expmential model
giving a much larger growth. This comparison was also made 8ection 3.3
where it was shown that exponential growth eventually excde the growth
of any polynomial.

Now it turns out that the exponential solution to equation (1) is the only
solution to that equation. To prove this we suppose thati(x) is any solution
to (1). We need to show thatu(x)=€* = e *u(x) is a constant, so we
compute it's derivative and observe that

(2) (e *u)’=e *u® ke ®u=e W’ ku)=0
holds for all x. Hence integrating gives
e *u(x) = c:

We solve for the constantc by substituting x = 0 in the above to getc =
u(0) = yp and then multiply both sides by €~ to obtain

u(x) = yoekX

as we claimed.
Equation (1) is a special case of the general equation

3) Yo+ p(X)y = a(X);  Y(Xo) = Yo

since (1) can be written ag/® ky = 0. Thus, in (3) the functions p(x) = Kk,
g(x) = 0 and initial time x, = 0. Any di erential equation with the form
of (3) is called alinear rst order di erential equation . In Section 7.5 we

lIn Derive multiply the equatione ®u(x) = c by € by right clicking and inserting
(or press the F4-key). Then, simplify.
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prove that any such equation has a unique solution which is tbned in
manner a similar to the above. See Theorem 1 in that sectionrftine formula
for the solution.

The formula for the solution to (3) can be made into @&erive function
quite easily. This has been done iDerive 's utility le ODE1.MTH with the
name LINEARL1 For convenience we have added this function to our utility
le ADD-HEAD.MTH but we use the shorter name DE It has the form

DE(p, g, X, vy, x0, y0)

where p and q are expressions in the variabl&. The initial conditions are
y = y0 when x = x0. For example, simplifying DE(-2,0,x,y,0,5)  would
yield the expressiony = 5e*. This is the solution toy°= 2y wherey(0) = 5;
see Figure 7.1 on the next page.

Newton's Law of Cooling. Another important example of di erential
equations isNewton's Law of Cooling According to this law a hot pan of tem-
perature ynot Will have a temperature ofy(t) at time t which decreases, i.e.,
will cool down, when placed in a vat of cool water of temperata Yeoo < Y hot -
The key point of the law is that the rate of change in the tempeture, y° is
proportional to y(t) Yoo, Which is the di erence in the current temperature
of the (hot) pan and the (cool) water. This says that

(4) y0= K(Y  Yeoor) where Y(0) = Yhot > Y cool

and k > 0 is a constant which depends on the physical properties ofeh
pan, for example, copper cools faster than iron so the corpemding k-value
would be larger. Notice that the derivativey® above is negative since the
temperature is decreasing.

We rewrite equation (4) so that it has the form of the general rst order
linear di erential equation in (3):

(5) Yo+ Ky = KYeool  Y(0) = Yhot

and thus we can solve this equation witlDerive by using the DEfunction.
We will use the variablesyh and yc in place ofy,, and yeo. So that these
are treated as single variables (and not ag h) we rst A uthor the vector
[yh:=,yc:=] . Then we Author

de(k,k*yc,t,y,0,yh)
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Simplifying the expression gives the solution

(6) y(t)=(yh yoe "+ yc

See Figure 7.1 for a demonstration of these functions and ebg how rapidly
the temperature y(t) tends to the water temperatureyc. Use Derive to
calculate limy;  y(t).

Figure 7.1: Solving Newton's cooling equation

By looking back at (2) on page 102 and making a small modi catin of
that argument we see how the above solution is derived; nameby (5),

(7) (€%y)’ = €*y%+ key = &*(yO+ ky) = Yeooke™

and hence integrating gives
Z

ekxy(x) = yCOOIkekX dX = ycoolekx + C:

Now solving forc by substituting x = 0 in the above yieldSC = Yhot  Yeool
and then multiplying both sides bye ** gives the desired result above.
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The argument above gives us a pretty good idea how to solve theneral
di erential equation y°+ p(x)y = g(x). One multiplies y by an appropriate
exponential , di erentiates and then replaces the quantityy®+ p(x)y by
g(x). Integrating the result essentially solves the problem. Hat critical
multiplying exponential turns out to be

(x) = eRp(x)dX since %) = p(x) (x):

See the proof of Theorem 1 on page 110 for the details.

Radioactive Decay. In certain radioactive materials some particles change
from one form to another. The number of particles decaying ithis way in

a small time period is proportional to the size of the materia So that, for
example, if you have twice as much radioactive material theumber of parti-
cles decaying is twice as great. K (t) is the amount of radioactive material
at time t, then A satis es the di erential equation Aqt) = kA. Here we
have k > 0 and have written it in this way to emphasize that the derivaive

IS negative since the amount of material decreases with tim&xcept for this
minus sign this is the same as the population model above. & easy to see
the solution is

(8) A(t) = Age ©

The half-life of a radioactive substance is the time it takes for half of itd
decay. We can nd this by solvingA(t) = Aqg=2 for t. By (8) this gives the
equation Ap=2 = Age X'. Cancelling theAg, we get the equation £2 = e ¥,
so that kt =In(1=2) = In2ort =In2=k. Notice that the half-life is
independent ofA,.

Observe that we can compute the solution above witBerive using the
variablest and a. We Author a0:= (to declare it as a multi-letter variable)
then Author DE(k,0,t,a,0,a0)  and simplify to geta = age K.

7.3 Approximation of Solutions

The general rst order di erential equation has the formy®= f (x;y) with
initial conditions (Xo; Yo), i.€., Y = Yo Whenx = Xg. The techniques for solving
di erential equations that we discussed in the previous s&ons and which
are used to prove Theorem 1 on page 110 do not extend to all diential
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equations. In fact, many important di erential equations @nnot be solved
explicitly. We encountered this situation earlier with integral$¢ and this
suggests trying to nd numerical approximations to the soltion. The critical

observation to make is that the equationy® = f (x;y) tells us the slope of
the tangent line to the solution y(x). Thus, by drawing many small line
segments of slopé&(x;y), through the point (x;y) in the plane, we obtain an
approximate picture of the solution whose graph contains thpoint (x;y). By

drawing several of these partial tangent lines we get an appimate picture
of y(x) by drawing a curve which conforms to these slopes. These giiams
are calledslopeor direction fields .

The le ADD-UTIL.MTH has the function DF(for direction eld) which
will make a matrix. When this matrix is plotted it draws the "dope eld.’
The form of DFis

DF(r,x,x0,xm,m,y,y0,yn,n)

where the rst argument r is f (x;y) and x0, xm, m represent the initial
and nal x-values in a rectangular grid withm x-values plotted. Similarly,
y0, yn, n represent the initial and nal y-values in a rectangular grid with
n y-values. Hence, the total number of line segments plotted Nvbe m
n. In order that line segments are plotted, not just the endpaits, we put
the plotting window into connected mode by choosing fions/P oints and
setting Connect to "Yes.'
As an example, we can take the cooling problem above, namely,

y+y=1
sothatf (x;y)= (y 1)=1 y. We simplify the expression
df(1-y,x,0,4,8,y,0,4,8)

to get the slope eld. In the plot window select_(tion/P_lot Color and set
it to 'O ' so that all slope lines will be in one color. Of courg, if you like
colorful diagrams then you can skip that last step. Also ch@ae ption/P_oints

to set the Connected Mode and to set Size to Small. Make sure delete
all existing graphs and then plot the slope eld. Try to picture the solution
though a given initial point (0;yo) by following the slope eld. Finally, plot

some actual solutions that we obtained above using tHeEfunction and see

R
2Notice that the simple di erential equation y°= f (x) has solutiony = f (x)dx so
that the class of di erential equations contains all integration problems.
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how it conforms to the slope eld. See Figure 7.2 where we hageaphed the
solutiony = 3e * + 1, which corresponds to the initial conditiony(0) = 4.
Try several other initial conditions to see how the slope lies approximate
the solution.

Figure 7.2: Slope eld for the Newton cooling problem

Another Population Model. In the model we used for population growth
we had 4P

— = kP:

dt

This works well for many populations. But the population canot continue
to grow forever. When a country no longer has room for expasi the rate of
growth slows. For example, a bacteria culture in a petri dislill satisfy the
above di erential equation for awhile, but as the dish lIs the above equation
becomes invalid. Verhulst, a Belgian mathematician, proged a model using
the di erential equation

dP P

9) Er N B
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Notice that when P is small compared taP,, the derivative is approximately
kP, as before. But asP approachesP;, P°approaches O.

Unfortunately this equation is not of the form of (3) so no exet solution
is apparent. But we can always look at the slope eld to get angproximate
idea as to what the solution looks like. To see a demonstratiove Load the
le F-VERHUL.MTH and look it over line by line. The given example

dP P
—=P 1 = her P(@©)=1:
gt 5 where (0)
has the slope eld function entered on line 6 with the above eqtion entered.

You should highlight this expression, pressil and then plot the resulting
data matrix. Now starting at the initial point (O ;1) follow the slopes eld
with your nger to get an approximate solution. See Figure @ for a graph
of the exact solution to the above along with some of the degtion below.

Figure 7.3: A graph of a Verhulst population curve

Even though the Verhulst equation is not of the form of (3) we an still
solve the equation exactly provided we solve for=P instead P. If we let
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R = 1=P (R stands for reciprocal) then

dP _d(1=R) _ 1 dR

dt ~  dt  R?dt
and (9) becomes
dR _ , k 1
a” VR ' ORR
k
= — kR
Py

This is of the form of (3) with p(x) = k and q(x) = k=P, so we can solve it
by Authoring DE(k,k/P1,t,R,0,1/P0) . (Po = P(0) is the initial population
SoRg = 1=P,.) This gives the solution

1 1 1
R = kt &~ i T
B PP
Inverting R gives
po Lo PoP; ekt
"R Pt P+ Py
or
PoP1
10 P =
(10) Po+(P1 Pole X

Notice that P(0) = Py, as we would expect, and that lim; P(t) = P;.

7.4 Euler's Approximation Method

The method of slope elds suggest an approximation techniguknown as
Euler's method The idea is to approximate the solution to

y’=f(x;y) where y(xo)= Yo
by a piecewise linear function passing through a sequencepoints

(Xo; Yo); (X1; Y1) 275 (Xn; Yn)



110 CHAPTER 7. DIFFERENTIAL EQUATIONS

obtained by using the slope atX; 1;yi 1), whichisf (x; 1;y; 1), to construct
the next point (X;;yi), where the increment inx is a xed amount, say
Xi = X; 1+ h. The Derive function is deceptively simple:

EULER(r,x,y,x0,y0,xn,n):=
ITERATES(v+[1,LIM(r,[X,y],V)]*(xn-x0)/n,v,[x0,y0],n )

wherex varies betweerx, X X, and we usen points in the approximation
scheme. This function is also in the le ADD-UTIL.MTH. Itis a slight variant
of the EULERunction in the utility le ODE _APPR.MTH that comes with
Derive . Try the Newton cooling problem

EULER(1-y,x,y,0,4,4,16)

to see how this works. Again, you must be sure that your grapts window is
in single color, connected mode for this to plot properly. ®ethe Figure 7.4
on the next page for a demonstration of this technique. You shld try
larger and largern to see that the approximations converge, as ! 1 , to
the solution for0 x 4.

7.5 Linear First Order Di erential Equations

In this section we solve the linear rst order di erential equation

(11) yo+ p()y = q(x)  with  y(xo) = Yo
by proving the following theorem:

Theorem 1. Suppose thaty(x) satis es (11) wherep(x) and q(x) are con-
tinuous functions ofx. If y satis es the initial condition y(Xo) = Yo then

RX Z X Ru
(12) y=e xof a(uye o "% du+ yo

Xo

RX
Proof. Let h(x) = exo Pt Byithe fundamental theorem of calculus,
4 p(u)du= p(x). SohYx) = & exP = p(x)h(x). Thus

&Xo

(h(x)y)°= h(x)y’+ hqx)y = h(x)y°+ p(x)h(x)y
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Figure 7.4: Euler's method for approximating solutions

If we multiply equation (11) by h(x) and use the above, we see thah(x)y)°=
h(x)d(x). If we integrate beth sides of this fromx, to x and use the fact that
h(xo) = 0, we get h(x)y = XXO h(u)g(u) du+ C, or

Ry d £ X Ru d
y=e roPWd q(u)e PV ¥ du+ C

X0

Sincey(Xo) = Yo, We see thatC = y, and thus (12) holds. O

As we said, the solution (12) to the di erential equation carbe made into
a Derive function quite easily. You should look at the formula above rad
see if you can write eDerive function that will produce the solution. Then
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compare your answer with the following de nition of the funtion DE

(13) de(p,q,x,y,x0,y0):=y =
en(-int(p,x,x0,x)) * (int(g*e”int(p,x,x0,x),X,x0,X) +y0)

7.6 Laboratory Exercises

The functions discussed in this chapteDE DF and EULERare all de ned in
the le ADD-UTIL.MTH. Be sure to F _ile/L oad/Math this le.

1. If money earns interest compounded continuously andt) is the amount
of money at timet, then y satis es the di erential equation y° = ry,
wherer is the interest rate.

a. What is the solution to the di erential equation y°= ry?

b. Find how long it takes for your money to double for = 3%, 5%,
and 10%? (This means that = 0:03, Q05, and 01 in the above
equation.)

2. Normal body temperature is 98 F. If someone dies, then the body
cools according to Newton's law of cooling. It is known thatif the
surrounding temperature is a constant 64 then the body will cool to
92 in 3 hours.

a. Use this information to compute the constank in (6) on page 104.

3You might notice that the formula for the solution to the die rential equation in
Theorem 1 is careful about the \dumgly variables” in the integrals. This is because in
calculus we avoid integrals of the form ax f (x) dx because the integration variablex might
be mistaken for the upper limit x. Since the integration variable is completely arbitrary
we usually take it to be t or u in such a situation. On the other hand, for the Derive
function de above we used expressions likt(f(x),x,0,x) because the integration is
done before the limits of integration are substituted. The mmputer does this correctly
but it is usually foolhardy for students to try this since iti s so easy to make mistakes such

as z Z,

xdx = x  dx= x?
0 0

X

when then answer should bex2=2.
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b. Now suppose that a murder victim's body is found at 1&m with
a temperature of 86. Assuming an air temperature of 64 deter-
mine when the murder was committed?

3. Consider the di erential equation
yo+y=sinx with y( 1)= 1L

a. Use the DFfunction to draw a 10 10 grid of slope lines using
1 x 3and 1 vy 1. (You need to have the graphics
window in the connected state; see the instructions for thien
page 106.)

b. Now use theDEfunction to nd the solution to the di erential
equation and plot the answer to see how it conforms to the slep
lines.

c. Double check that the answer you get from th®Efunction is in-
deed the solution by verifying that it solves the di erentid equa-
tion and the initial conditions.

4. Suppose a body of masm is dropped from high in the atmosphere.
Let v be its downward velocity as a function of timet. There are
two forces acting on the body: gravity and wind resistance. fie force
due to gravity is mg, where g is a constant; the force due to wind
resistance is kv (the minus since it is upward). Newton's law says
F = ma, wherea = V°is the body's acceleration. This leads to the
di erential equation

ma= mv®= mg Kkv:

Solve this equation forv with v(0) = 0. Find lim; v(t) (don't in-
clude thev= part from above). Derive returns an expression contain-
ing SIGN(km)because it does not know thak and m are positive. Use
Declare/Variable Domain to declare thatk is a positive real number,
and do the same fom. Now reevaluate the limit. Note that v never
exceeds this value, which is called theerminal velocity. No wind re-
sistance corresponds t& = 0. Find v in this case both by solving the
di erential equation with k = 0, and by taking the limit of the general
solution for v found above ak ! 0.
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Suppose the population growth of a small country satis es j9with
P, =10 and k = 0:05 (with population in millions). Plot the direction
eld for this. (There are instructions for doing this in Secton 7.3.)
SupposeP(0) = 2. Find P(20), P(50), and P(100). Graph P(t).
Adjust the scale of the graph so that you get a clear picture ahe
nature of the population growth.

Carbon-14,C, is an unstable isotope of carbon that slowly decays
to the more stable!?C. While an organism is alive it has a constant
amount of 14C, but after it dies, the amount decreases according to (8).
If 200 years after the organism dies, the amount 8fC is 976% of the
original amount, what is the half-life of*C? If the burnt wood from a
prehistoric campsite contains 29% of the original amount dfC, how
old is the campsite?
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Chapter 8

Polar and Parametric Graphs

8.1 Introduction

Graphs of the formy = f (x) or x = g(y) can be used to represent a wide
variety of curves in the plane, there are many important cures, such as
circles or ellipses, that cannot be represented by a singleagh of this type.
More generally, imagine the curve traced out by an ant walkognon a at
surface. In this chapter we will introduce two techniques folotting general
curves. One is the method of polar coordinates, which is a edmate system
based on angles and distance from the origin. The other is timeethod of
parametric representation, which allows one to specify cquietely arbitrary
curves like the motion of a particles (or the ant).

8.2 Polar Coordinates

We can specify a point in the plane by how far it is from the orig and
what angle the line from the point to the origin makes with thex{axis.
If r is the distance from the origin and is the angle, we say thatif |
are the polar coordinatesof the point; see Figure 8.1 on the following page.
Thus, for example,, the point with rectangular coordinates; 1) would have
polar coordinates | 2; =4]. The way to envision plotting a polar point [; ]
is to stand at the origin facing out towards the positivex{axis and then
turn counter-clockwise by the angle and then mover unit in the direction
you are now facing. We usually think ofr as being nonnegative, but it is
negative, we simply go backwardgj units. Similarly, we plot negative angles

115
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[r 1

Figure 8.1: Polar Coordinates

by turning clockwise instead of counter-clockwise. Thisagls to a surprising
di erence compared to rectangular coordinates; namely, tvdi erent polar
coordinates can represent the same point. Thus, P; =4] = [2;5=4] =
[2; 3=4]. Note that [0; ]is the origin regardless of what is. Your calculus
text has a more detailed description of polar coordinates.

A basic problem in polar graphing is to plot a function such as = (),
l.e., plot all points [r; ] wherer is given by the function ( ). For example
the circle of radiusa, centered at the origin, is the graph of = a. Thus,

( ) = ais a constant functions. Note that to draw this circle in r%:angular
coordinateﬁ you must think of this curve as two graphs, namely = = a2 x?
andy = a2 x2. This simple example already shows that some curves
are more easily represented with polar coordinates.

Let us now try something harder such as =1+ cos . One then graphs
the curve by computingr for lots of 's by thinking about the geometry of the
angle and the value ofr. This is usually done with angles such as = 0,
=4, =2, 3=4 and which corresponds to 45 increments in the angle.
By authoring vector([1+cos , ], , 0, , [/4) and simplifying this
expression gives a table of polar points which can be plottdry hand or as
a set of points inDerive . We'll need to plot more 's but this is a start.

A nice technique for viewing the data is to use th&PPROXinction to get
decimals for ther{values. We then getr as a decimal and expressed in the
usual radian notation for the angles. See Figure 8.2 on thexigage.

Derive can plot these points in polar coordinates by selecting thepfion
menu and then selecting the Polar option on the @ordinates menu. Then,
plot the points just as we did in rectangular coordinates by ighlighting the
matrix of points and clicking the plot button in the graphics window. After
plotting these 5 points we try to imagine the rest of the graplby interpolating
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Figure 8.2: Plotting points in polar coordinates

other values of . Of course,Derive will plot the curve for us. We enter
either 1 + cos t or just highlight expression#1 in Figure 8.2, then click
the Plot button in the graphics window. So far, this is just Ike rectangular
plots except for the change in the coordinate mode. But no®erive will
prompt you for the parameter interval (interval of 's to use) and suggest the
default range of . Since many of the standard examples of polar
curves involve the -variable only in the form of either cos or sin , it usually
su ces to only consider 0 2 (or as Derive prefers ).
Of course, you can change it to whatever interval you want. Fexample, in
Figure 8.2 the range 0 was used. You might want to plot the full
graph at this point by using the default range. The resultinggraph heart
shaped curve is called &ardioid.

Tracing. It is important to actually see the curve being plotted but the
computer plots so quickly that it is nearly impossible to seé happen. De-
rive has an approach for \driving" around a curve calledracing. After
plotting the polar curves above select the flace Mode option on the @tions
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menu (or just pressF3to toggle the Trace mode) and the cross will turn into
a box and it will be moved onto the last curve plotted. Now presand hold
down the right arrow key and watch the little car drive aroundthe curve.
You can see the value of, which we can also interpret as time, as it increases,
as well as ther and coordinates, on the lower part of the screen. If you
have more than one graph you can switch between curves by wgithe up or
down arrow keys.

When plotting the cardioid a = 1 pay particular attention to the way the
plotting slows down as we approach the cusp. It turns out thathe only way
for cusps or corners to occur in the graph, when( ) is di erentiable, is for
the plotting to slow to a stop and then to start up again. This rotion of
speed will be discussed in Section 8.4.

8.3 Rotating Polar Curves

A nice feature of polar coordinates is the ease with which weurt rotate a
gure. For example, if we plotr = () and we want to rotate the picture
clockwise by an angle we simply plotr = ( + ) instead. Try this out in
for yourself usingDerive .

Here is an interesting application of this idea. Did you knowthat the
curvey = 1=x, which is used to de ne the natural logarithm, is a hyperbola
The equation does not make this apparent since using the uswanvention;
namely, the axes should be chosen parallel and perpendicula the axes of
symmetry, we are supposed to have the equation of the form:

2 2
X Y= 1

az
We need to discuss converting polar graphs to rectangularaphs and
vice versa. Figure 8.1 on page 116 makes it clear how to do thi§he
algebraic relationship between the polar coordinates [ ] and the rectangular
coordinates §;y) is given by the right triangle formed from the 3 points:
(0;0), (x;y¥) and (x; 0). The equations are:

(1) Xx=rcos and y=rsin:

In Figure 8.3 on the next page we entery = 1, convert to polar coor-
dinates by using the above equations and then rotate by = =4 in the
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clockwise direction by substituting + =4 for . We now what to apply the
trigonometric formulas:

sin(A + B) = sin A cosB + sin B cosA
cosA + B) =cosAcosB sinAsinB

but Derive does not simplify these by default. Instead we need to choose

Declare/Algebra State/Smpli cation and on the Trigonometry box we select

Expand. Simplifying these standard formulas will now yieldhe above.
Simplifying our rotated curve now yields:r>cogt r2=2 =1. Converting

back to rectangular coordinates we use (1) to replaaé cogt with x? and

r2 with x2 + y2. This yields the desired result; namely, rotating the graph

y = 1=x by 45 results in an equationx? y2 =2 which is a hyperbola.

Figure 8.3: Showing thaty = 1=x is a hyperbola

Actually, the method used in Figure 8.3 to convert back to rgangular
coordinates is to substituter = = x2+ y2 and = tan (y=x) (Derive
denotes the inverse tangent function byATAIN But there gan be problems
with this approach. For example, consider the polar point [2; 3 = 4] which
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clearly corresponds to the point ( 1;1) in rectangular coordinates. But
tan 1( 1) = =4 instead of 3=4 because the de nition of the inverse
tangent uses theprinciple angles =2 < < = 2. Thus, for points with
X < 0 we should substitute =tan !(y=x)+ instead! Of course, in our
example it doesn't cause a problem thanks to the fact that

cog( + )=cos?

for all (check this usingDerive ).

8.4 Parametric Curves

As we saw in the last section we obtain many interesting curseby plot-
ting r = () with in polar coordinates. However, there are
still limitations on the shape of a polar curve (just as therare limitations
on the shape of a rectangular graph) although these limitains are not as
transparent since we have seen examples of looping in thedoon curves.

To study general curves we need the idea parametric curves To specify
the motion of a particle in the plane; for example, the positin of the ant
crawling around on the plane, we return to rectangular coordates and give
the x{coordinate as a function,x = x(t), of a parametert (which is usually
thought of as time) and similarly fory = y(t). This means that at time tq
the particle is at the point (X(to); y(to)).

As an example, the equations (1) on page 118 show that the pot@raph
r= ()for can be thought of as a parametric graph if we set

x(t) = (t)cost; y(t) = (t)sint where t

Of course, this makes the plotting problem harder since wegdrably wouldn't
use the geometry of polar coordinates to plot points. The cqmter on the
other hand doesn't use geometric consideration since it juplots lots of
points and connects them with line segments.

Let us consider the non-polar example

x(t) = 4 cost; y(t) =sin t; where 0 t

1Derive 's function ATANhas a two-variable form ATAN(y, x) which does the right
thing.
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We can plotn points in order by takingt; = t; 1+ twhere t=( )=n
and making an 2{matrix using the vector function. Enter [4*cos t,sin

t] and then use Glculus/V ector with Start: 0, End: and Step: .2 (this
gives 16 points). Now we can plot this as usual in rectangulaoordinates
(you will need to switch back to rectangular coordinates). @ draw a curve,
select ptions/P oints again and set plotting mode to connected. Then, re-
plot the points. See Figure 8.4 and dad the le F-PARAM1.MTH for a
demonstration.

Figure 8.4: Parametric plot of a semi-ellipse

As with polar curves Derive has a simplied way to plot parametric
curves. You simply plot the vector[4*cos t,sin tf] . Derive will ask for
the parameter interval and then plot the curve. You might hae thought that
Derive would plot the two functions 4 cog and sint since we know that this
happens for 3 or more functions in a vector. But when a vectoontains only
two functions, it is treated as a parametric curve.

Looking at the picture you might have guessed that the curvaiFigure 8.4
was an ellipse (even if you didn't read the caption) becausé ils oval shape.
Of course, not all oval shaped curves are ellipses but indetiils example is
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one since one easily checks that

X(®? , (1)’

7 o =sin?t+cos’t=1 forall t

and hence the particle travels along the ellips&?=4 + y2 = 1 centered at
the origin with semi-major axis 4 and semi-minor axis 1. Obsee that this
information does not tell you how the particle travels aroud on this ellipse.
For instance, is it going clockwise or counterclockwise? B® it ever stop?
See Figure 8.4 again and try the slow down technique to unde&asad how
the parametric curve can be thought of as a particle moving @hg a curve
(like a car traveling over a roadway). By using this technige it is apparent
that the motion is counterclockwise (as timd increases) and it never stops.
This interpretation will be extremely important in later courses when Newton
famousF = ma law is used to analyze the forces acting on a moving particle.

Tracing parametric curves. Let us recall the tracing technique from
Section 8.2, which we used for polar curves. We now want to \ae" around
a parametric curve and observe its speed. After plotting thparametric curve
above pres$=3. The cross will turn into a box on the curve and pressing and
holding down the right arrow key will move the little car drive around the
curve. You can see the time parameter as it increases, as vadlthex and
y coordinates, on the lower part of the screen.

By watching the particle move while you press and hold down #hright
arrow key, you can see that the particle is traveling in the amterclockwise
direction and a careful inspection will reveal that the spek(rate of change of
distance with respect to time) is slower on the sides than thep and bottom
parts of the curve. This is actually a consequence of one of der's laws of
planetary motion. This law states that certain moving bodis revolving about
a central point (such as the origin in this example) sweep owqual area in
equal time. Assuming this fact, then the particle needs to bfaster near the
top and bottom since these points are closer to the origin artience sweep
out less area. Whereas the left and right portions of the cuevare further
from the origin and hence require less time to sweep out an ed@amount of
area.

One can calculate the speed directly as follows: Over a smiathe interval

t the x-position changes by x (= x(t+ t) x(t)) and the y-position
changes by y. Thus, the distance traveled during that time interval is



8.4. PARAMETRIC CURVES 123

approximately P x2+ y2 and hence the average speed is given by
s

P X2+ y? X
ot Tt

2 2

S A0

Taking limits as t! O leads to the formula:
p__
(2) Speed at timet = x{qt)2+ yqt)2:

Derive has an alternate approach for curves described x(t),y(t)] ;
namely, one uses @lculus/Di erentiate on the vector and tgen appliesABS
to the result. This works becauséABS([a,b]) simplies to  a? + K.

Another use ofDerive 's tracing feature is for curves that retrace them-
selves and hence make motion on the curve di cult to see. Tryhite example,
x =sintcost andy =sin2t forO t 2 . That is, plot the vector [sin
t cos t, sin(2t)] . Surprisingly, the picture is simply a line segment with
endpoints ( 1=2; 1) and (1=2;1). But how does the particle travel around
this curve? By pressingF3 and tracing the curve we see a back and forth
motion which reminds us of a swinging pendulum. In fact, by cafully ob-
serving the motion near the endpoints we see the particle sladown and
stop. Then, it turns around and goes back in the opposite dicdon gaining
speed as it approaches the center of the line segment and theowing down
as it approaches the other endpoint. A point where the speed kero is ac-
tually the only way a smoothly parametrized curve, i.e., onéor which x(t)
and y(t) are continuously di erentiable, can have cusps (like theardioid) or
corners (as in this example) or otherwise exhibit nonsmoothehavior. Check
directly the speed at the endpoints.

As a last example, entex = 2cos’t andy = 2sintcost for0 t . In
this case we have another surprising picture of a circle, vahi we can verify
by showing

(x(t) 12+ y((t)>=1 forall t:

Two interesting features are that the complete circle is ptted with t in the
[0; ](instead of requiring0 t 2 ) and also that a particle travels around
the curve with uniform speed. Observe this with the tracing échnique and
then verify it directly using (2).
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Figure 8.5: More parametric plots

8.5 Laboratory Exercises

1. Consider the polar curver = 2cos .

a. Plot the curve using polar coordinates.
b. Describe how the curve is traced for O 2 .

c. Use equations (1) on page 118 to convert the polar equation to
rectangular coordinates. Use this to show that the curve is@rcle
of radius 1 with center at (1 0).

2. Letr =2sin be a polar curve.

a. Plot the curve using polar coordinates.
b. Show that the graph is a rotation of the graph in Problem 1.

3. Letr =sec( =4) be a polar curve.
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a. Plot the curve using polar coordinates.

b. Show that in rﬁgtangular coordinates the curve satis es thequa-
tion: x+y =" 2. (Hint: Use the Trigonometry Expand mode to
simplify the equation.)

4. Plot several petal curvesy = 2 cos(n ) for di erent integer choices ofn.
How many petals are there as a function ai?

5. Choose positive numbed and e, then the family of polar curves

[ = ed
1+ ecos

turns out to be conic sections (see your calculus text as a ee¢nce).
We will examine this phenomenon withd = 2 and e set to 4 di erent
positive values:e= :5,e= :75,e=1and e=2.

a. Plot the rst two curves (e = :5 ande = :75) with < <
and identify the conics.

1 with 310< < 310. Can you

b. Plot the curve with e
identify this conic?

c. Plot the curve with e = 2 with 209 < < 209. Can you
identify this conic?

d. In the last plot, what is the signi cance of the number = 2:09?
What curves do you get when < < 210 o0r 210< < ?
(Warning: If you try plotting with the default range [ ; ]itwill
eventuallygraph the complete conic but it takes a very long time!
PressEscif you can't wait.)

6. Let x = (cost)® andy = (sin t)® for t

a. Plot the parametric curve.

b. UseDerive 'stracing method described on page 122 to nd where
the speed is 0 on the graph.

c. Switch to the algebra window and verify your empirical obse&a-
tions by using (2) on page 123 to determine exactly where the
speed is zero.
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Letx = tsintandy = tcost for 3=2 t 3=2

a. Plot the parametric curve.

b. Use tracing to determine how a particle (ant) traverses theurve
over the givent interval. Sketch arrows on the graph to indicate
the motion.

c. What will happen if t is allowed to exceed & 2? Does it go around
the curve again?

Start by authoring
r(;a):= a(e" 2cos(4))

where we think of this function as a polar curve in with a para-
menter a. UseDerive 's vector function to make a vector of the func-
tion r(;a) where the parametera goes from 1 to 2 in increments of
size 025. (So after you simplify it, the vector will contain 5 functons.)
Plot this vector of 5 functions using polar coordinates. Daeit look
like a butter y? (This curve is similar to one described by T.H. Fay,
The butter y curve, Amer. Math. Monthly, vol. 96, May 1989, p. 442.)
It can be viewed on the Web as Figure 3 on our home page

http://www.math.hawaii.edu/206L/

Letx=1t sintandy=1 costfort O.

a. Plot the parametric curve.

b. Use tracing to verify that the motion stops briey each time t
touches thex{axis.

c. Verify your observations in partb by using the formula for speed
given in (2) on page 123.

Imagine a circle (or wheel) of radius one rolling along thg{axis at
unit speed. Now try to picture the path followed by a xed poirt on
this circle as its rolls. This is the parametric curve in prolem 9, it is
called acycloid curve It may seem a little surprising that the speed of
the point on the wheel is 0 once every time the wheel revolvegea as
the center of the wheel travels at a constant speed.
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a. Make a graph of the speed function (2) and determine how fast
the point on the wheel going when it is at its highest point? (liht:
Plot the speed function and cycloid curve together on the sam
graph.)

b. Loadthe le F-CYCL.MTH and plot expression#8 which contains
the parametric curves for 5 positions of the rolling wheel ahg
with a dot marking the particle's position on the wheel. Then
plot the cycloid expressiorn#3, see Figure 8.6.

Figure 8.6: The cycloid curve and the rolling wheel

11. Plot the parametric curve x = sin( sint) and x = cos( sint) for
t

a. What geometric object does this look like? Prove that your aawer
is correct.

b. Using the trace feature to see how a particle following thegara-
metric equations moves along this geometric object. Deduei this
motion in words.



128 CHAPTER 8. POLAR AND PARAMETRIC GRAPHS

c. Are there places where the point seems to have speed 0? Find a
formula for the speed of the particle at time. At what times does
the particle have speed 0 and what is the position of the padie
at these times?

12. Two particles move in the plane. The motion of the rst is desgbed
by the parametric equations

x(t) =16=3 8t=3; y(t) =4t 5 t O
and the second one by
x(t) = 2sin( t= 2); y(t) = 3cos(t= 2); t O

Plot both of these curves. Find where the curves intersect. uB just
because the curves cross does not mean the particles cojlitey might
arrive at the intersection point at di erent times. Where do the parti-
cles collide?
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Chapter 9

Series

9.1 Introduction

An in nite series is a sum with in nitely many terms:

X
a=a+atat
i=0

P
We dene ., & = s to mean that

X
jm A=
i=0
if this limit exists. If the limit does exist we say the seriesonverges oth-
erwise we say itdiverges There are two basic techniques for showing that
a series is convergent. One method is to show directly that¢habove limit
exists. There are not many examples when we can do this but arpeularly
important one is geometric serieswhich will be discussed in the next section.
The second method for showing convergence applies to semgh non-

negative termsi.e., the case thata; O foralli =1;2;:::. In this case the
partial sums,
X
Sh=at ag+ +an = a;, n=0;1:::
i=0
form an increasing sequences, S; S, :::. Hence, by a fundamen-

tal property of real numbers, the limit lim,; s, exists if and only if the

129
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sequencef s,g is bounded. This second technique is used extensively for
proving convergence and obtaining estimates on the answeparticular ex-
amples are theratio test and the integral test which we will discuss in this
chapter.

9.2 Geometric Series

A geometric seriess gpe in which the ratio of consecutive tggms is constant,
i.e., series of the form ax'. To evaluate this series les, = L/ x' = 1+
X+ x2+  +x". Then

Sn Xsp=(1+ x+x2+ +x")
(X+ X2+ + Xn+ Xn+1)

=1 x"

Factoring out s, and solving, we get

xn ) 1 Xn+l
(1) [sh= X =1l+x+x2+ +x"= "
i=0 Lox

if x61

It's instructive to verify this formula in DfW. You start by c licking the sum

El button and enter x*k. Make sure the variable ik (not x) and set the
Start value to 0 and the End value to n. Click OK and edit the resulting
expressionSUM( x*k, k, 0, n) by multiplying it by the factor (1  x).
Lastly, use Smplify/E xpand to get the desired 1 x"*!.

If jxj < 1, then lim,; x"*' = 0. Thus, we get that lim,; S, exists
and so the series is convergent. In addition, the followingnsple formula for
evaluating geometric series holds:

b3 _ a
(2) ax' = a+ ax+ ax®?+ = : if jxj <1
i=0

If j)xj 1 then the series diverges because Jim s, does not exist.

We can verify this formula in Derive by entering, as we did above or
directly, the expressionSUM( ax”k, k, 0O, inf) which displays as the left
hand side of (2). Now we must declare that 1 < x < 1. We do this using
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the Declare/Variable Domain menu for the variablex and the open interval
( 1;1). If you do this right the expressionx :2 Real (-1,1) will be the
result. If not you should be able to edit the expression untilt is right.

Finally simplify the in nite series to get ax1 x) which is the desired result.

9.3 Applications

Geometric series are useful in several areas, for examplasibess and nance.
We will give some of the important examples.

Interest.  If you start with p dollars (p for principal) in a bank account
which earns 6% per year how much money will you have after years?
Assuming the interest is compounded yearly, you will be giwean interest
payment of Q06p after one year. You will still have the originalp dollars
so that the amount of money in the account after one year will éop(1:06).
Notice that this is saying that each year the amount of moneynithe account
gets multiplied by 1:06. Thus after n years the account will havep(1:06)"
dollars. If we let r denote the interest rate, the amount aftern years is
p(1+ )"

An interesting alternative to this formula is obtained by facusing on the
year to year change in the savings account balance. Lebal(k,p,r) denote
the balance afterk years, starting with an amountp which is compounded
annually at a rater. This function can be de ned in DfW by

s_bal(k,p,r):=IF(k=0,p,(1+r)*s _bal(k-1,p,r)).

Notice how we use the functionlF(test,true,false) . To compute say
s_bal(2,p,r) the rstthing that happens is the test k = 0 fails and hence we
get (1+r)*s _bal(1,p,r) . Butthen s_bal(1,p,r) is computed in a similar
manner, i.e., the testk = 0 fails again so now

s_bal(2,p,nN=(1+n*s  _bal(1,p,n)=(1+r)*((1+r)*s _bal(0,p,n)).

Finally, s_bal(O,p,r) is evaluated but this time the testk = 0 succeeds
and so the answer ip. Combining the answers we get the same result as
before (1 +r)?p. This type of computation has a fancy name; it's called
recursive programmingand it is particularly useful in situations where you
have a sequence of numbers which change one to the next by adxile.
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Now suppose that the bank compounds your money quarterly itead of
annually. This means that they give you 64 = 1:5% interest four times a
year. So the amount of money in your account aften years isp(1:015)".
For a general rater compoundedk times a year, the amount of money aften
years is

I kn
(3) p1+E

This can be also be expressed asbal(kn,p,r/k)

Now suppose that you deposita dollars each year into a bank account
paying a rater in interest, compounded annually. Suppose that you opened
the account with an amountp dollars. How much money will the account
have aftern years? This is easy to do using a small modi cation in the_bal
function as follows:

s_bal(k,p,r,a):=IF(k=0,p,(1+r)*s _bal(k-1,p,r,a)+a).

In other words we need only account for the extra dollars which are de-
posited each year. We can get a nice table of values by numailg approxi-
mating

VECTOR([k,sbal(k,1000,.06,100)], k, 0, 10)

to see how an initial balance of $1000 will grow over a ten yegeriod, at
6% annual interest, if we add an extra $100 each year.

Now if you make the same table as above using the symbolic vesufor
p, r and a you get a sequence of expressions which don't appear to fallo
any clear pattern. On the other hand, if we substituter; = 1 + r everything
is much clearer. In DfW you would declare a variablel and userl-1 as a
replacement forr, then the table obtained by entering

VECTOR([k,sbal(k,p,r1-1,a)], k, 0, 10)

and pressing il presents the following pattern fors_bal(k,p,r,a)

a(ry Y+t +r+D)+ pry

ko1 k

= + r
arl 1 Pry
(L+n)k 1

=a————+p(l+ r)
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Here we used (1) withx = r;, = 1+ r. Thus, the geometric series arises nat-
urally in compound interest problems and provides us with aseful formula.

Loan repayment. Suppose we borrowp at an annual rate ofR. We are
to pay this loan back by paying a monthly amount ofa dollars for n years.
Now the monthly interest isr = %. Thus, at the end of the rst month we
owe the p dollars plus the interest it would have earnedrp, for a total of
(1 + r)p. We also make a payment oé dollars so the net amount we owe is
(1+r)p A. The same computation is used month after month except that
the p is replaced with the loan balance for the previous month. Hen, if let

| _bal(k,p,r,a) denote the loan balance aftek months on a loan amount
of p dollars at a monthly interest rater and monthly payment a then

| _bal(k,p,n):=IF(k=0,p,(1+r)* _bal(k-1,p,n-a).

which is very similar to our de nition for s_bal.

Now suppose we are interested in a loan of $20,000 at a monthiterest
rate of r = 0:01. The problem is to compute the monthly paymenta which
will result in paying o the loan in four years. We can displaya four year
history of the loan in a table when the payments area = $500 by rst
authoring the vector [k, | _bal(k,20000,0.01,500)] and then using the
Calculus/V ector menu to produce the expression

VECTOR([k, Lbal(k,20000,0.01,500)], k, 0, 48, 1)

We seé that after 4 year (sok = 48 payments) we still have an outstanding
balance of $1633.21 (of course, we could also discover thysjust simplify-
ing | _bal(48,20000,0.01,500) ). This means that $500 per month is not
enough to pay o the loan in 4 years. At this point we could try ncreas-
ing the paymenta and then computingbal(48,20000,0.01,a) until we get
nearly zero. We might start by incrementinga by $10 until we get the answer
within $10 and then increment by a dollar until we get the anser within a
dollar. For repeated computations this would be a rather teédus approach.
By comparing with the formula derived fors_bal using the geometric

1Due to a bug it's necessary to author a comment or any other exgession before you
can scroll through this matrix.
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series we get a similar formula for _bal(k,p,r,a) , namely,

1
(1+1)p ai=0(1+r)‘:(1+ r*p aill ((111?;
4) =1+ r)kp At 1

r

Using this formula we can easily get the general formula farby solving
| _bal(k,p,r,a) = 0 for a. Thus, the monthly paymentsa on a loan ofp
dollars at a monthly interest rater (divide the annual rate by 12) for a period
of n years (sok = 12n payments) is:

r(1+r)p

= W where k =12n:

(5)

Thus, in our $20,000 example you neea= $526:68, i.e.,

bal(48,20000,0.01,526.68) =0:

Repeating Decimals.  What exactly is meant by the decimal representa-
tion of a numberx = 0:d,d,ds , where each of the digitsdy are integers

0 d« 97 One explanation is that there is no di culty as long as it isa

. . . d d d L
nite decimal, i.e., 0:d; = —, 0:d;d, = 1—B+ 1—50 etc. For the in nite case,
we can think of our decimal as the limit of an increasing seqguee which is

bounded from above:
O:dl O:dldg 0:d1d2d3 1:

and hence this sequence has a limit, as mentioned above.
Another approach is to view the decimal as am nite series as follows:

. _di | dp | g AN
©) S T M T T A T2

Now clearly, the partial sums form an increasing sequencence the terms
are nonnegative numbers. However, maybe it is not complegabbvious that
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they are bounded by 1! Here's a proof:

d d dn 9 9 9
<+ o+ 0 T4 4 4=
10 1® 10 10 1 10
9 91 91 o 1

=~ 4+ 4+ = _— + - =
10 1010 101 10100 1

9
9,91 191 _ B .

—+ ——+ ——— +
10 1010 101 1 55

ote that the key step above was recognizing that the geomaetrseries
ﬁzo a(1=10)<, wherea = 9=10, sums to 1 by (2) on page 130.

Of course, we also notice that repeating decimals like9®9 =1 and
0:333 = 1=3 are all geometric series when represented as above. Try to
gure out the a, x in (2) in each case. This turns out to be true of any
repeating decimal and hence by the formula (2) these decimaimbers must
be fractionsa=bwhere a, b are integers. In fact, the converse is also true,
namely, a decimal is a fraction if and only if it is eventuallyrepeating.

Example. Consider the eventually repeating decimak = 0:5010101
We express this as

5 1 1 1 X Lk
= "+ __ 4+ _—_ 4+ =_+
*“ 10710 10 2" 101

1 103 1 1 248

2 1 102 2 990 495

We might notice that it is not possible to enterx in Derive as a decimal
but we can de ne it by means of the in nite series above. Thensimplifying
we get the above result.

9.4 Approximating In nite Series

We can determine the sum of a geometric series exactly but fmog;, conver-
gent in nite series this is impossible. If the series convges tos = LO ay,
then k'gy de nition s can be approximated arbitrarily closely by the partial
sums ., & for large enoug. In this section we investigate two methods
for approximating in nite series, with a given precision.
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The Ratio Test. In a convergent geometric seriesy, = axX, and hence
a1 = aX, i.e., the ratio of consecutive terms ix, wherejxj < 1. In this
section we consider positive serieay > 0) where the the ratio of consecutive
is approximately equato somex with 0 < x < 1. It will turn out that all
such series converge and that we can estimate their size byngarisons with
appropriate geometric series. This technique is called thatio test.

Theorem 1. Let a be positive.
P
(@ If limj; a&+1=a = < 1, then the series & converges.

(b) Suppose thaD < x < 1 and that for somen, a.;=g X foralli>n.

Then
b3 X
an+
(7) 0 & a T
i=1 i=1
Proof. If lim;; a&.1=a = < 1, then for any x satisfying < x < 1,

we know that the ratios will be less thanx for all large i. Thus, given x
there is ann for which a1 Xa; wheneveri > n. So a2 Xan+1 and
An+z  Xanso  X2ans1. Ingeneral,ansie . X*an.1 and hence for alim > n

x X
0 a; Q = an+1 T Ape2 t + anm

an+1 |
1 x

B (L+x+ X2+ )=

Thus, the partial sumsf s, g are bounded and the series is convergent. More-
over, the inequality (7) follows by taking limits asm!1 . O

Example. Suppose we want to use Theorem 1 to prove that the series

ook 1 2
— =+ =+
1 1

+
k!
0

NI

k=l

converges and estimate its value with an error of at most 16. The rst
step is to show that limy; aw1=a < 1. We think of the terms as a
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function of k by authoring term(k):=2"k/k! . Now simplifying the ratio
term(k+1)/term(k) we see that

A+ _ 2 1
ay k+1 2

forall k > 2. Thus, limg;  ag+1=a =limy; 2=k+1) =0 < 1 so the series
converges and furthermore we can take=1=2 andn = 2 in Theorem 1(b).
Now we must determinen so that

an+1

1 X=2an+1<106:

We do this by authoring
VECTOR([n,2*term(n+1)],n,2,20)

approximating the result and then searching the entries (bgcrolling) until
we nd one smaller than 10°. It girns out n = 13 works. The last step is
to compute the partial sumsy;z = 1o, 2¢=k! giving 7:38906.

We might observe how fortunate we were thak turned out to be so small.
Recall some of our computations using the trapezoid method &impson's
rule where similar accuracy required thousands or even nulhs of computa-
tions (using the left endpoint method, for example). It is or of the funda-
mental properties of geometric series that they convergeryerapidly. Think
about it, 6{decimal place accuracy with just 15 computatios!

As it turns out this series is rather special since

hs ok
- e’ = 7:38905

k=0

This important fact will be explained in the next chapter. Fa now, try

authoring the above in nite series and haveDerive simplify the result.

What if the 2 is replaced with 3 orx?

Example . Now consider the harder problem of approximating

Xk
Kk

k=1
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with error again of at most 10 6. Proceeding as before we author the formula
term(k):=k!/k"k . Now by rst simplifying and then taking limits we see

that
Ak+1 . Kk 1 1

klillm a ||<I!r1n (k+1)k é< 2
sincee > 2. Thus, the limit is less than 1 so the series converges. Hoet-
more, we can takex = 1=2 in Theorem 1(b). But now we need to nd an
integer n so that a,.; =g, = kKk=(1+ k)* < 1=2 forallk > n.
This step is harder than before. If we graplfi (x) = ( x=(x+1))* it appears
to be decreasing for alk 0. See Figure 9.1.

Figure 9.1: Ratio test example

In order to prove that f (x) is a decreasing function we di erentiate and
show that f {x) < 0. Using Derive we get

X
f O(X) = 7()( T
XX 1
= WIn(x+1) In x T 1

[(x+DIn(x+1) (x+1)Inx 1]
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after some rearrangement (see the le F-RATIO.MTH for the stp-by-step
procedure). Sincex*=(x + 1)* is positive forx > 0, we need to show that
In(x +1) Inx 1=(x +1) is positive. At this point Derive can't help so
we need an idea from calculus. One quick way to solve this ptetn is to
use the Mean Value Theorem for the functiom(x) = In x. The Mean Value
Theorem says:g(b) g(a) = g¥{c)(b a) for somea<c<b. Fora= x and
b= x+1thisgivesIn(x+1) Inx=1=cforsomex<c<x +1. Thus

1 1 1

_ >0
X+1 c x+1

In(x+1) Inx

where we obtain the desired inequality since < x +1. Thus, f {x) < 0 for
all x> 0 and sof is decreasing.

Now that we have established that the ratios decrease we newdknow
when they are less than 1/2. Since

A+l _ Kk
a  (k+1)k

=f(k) f(Q)=

NI =

for all k 1, it follows that we may apply the theorem for anyn. Finally,
by (7), we must determinen so that

an+1
1
1 3

=2a,4 < 10 6

As before we author
VECTOR([n,2*term(n+1)],n,2,20)

approximate the result and then search the entries until wend one smaller
than 10 ©. It turns out in this case that k = 16. Computing the partial sum
S15 gives 187985. P
Now suppose that your series ay satis es limayg,;=ac =  but that
1. The case > 1 is pretty much like the case < 1 except that now
the series diverges. The idea is to pickdx < and observe that

1 = an+ agX + ax? 8y + Ansy + Anep + 00

for some largen since noway,;=a¢ x forall k n. Thecase =1is
much harder since, as we see in the next section, there aremydes in which
the series converges and examples where it diverges.
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The Integral Test Suppose thatf (x) is a decreasing positivg,valued func-
tion, for x 1. Let a, = f(n). We want to approximate i1:1 a and
determine whether the series is convergent or divergent.

In Section 6.4 we saw that, for a decreasing function like(x), the left
endpoint method of estimating a de nite integral off (x) always overesti-
mates the integral while the right endpoint method underestates it. This
is quite obvious by looking at Figure 9.2 on the facing page whe we use
f (x) = 1=x as our function and apply the box drawing function from Chap-
ter 6; see the le F-SERINT.MTH for a demonstration. Now, we bserve
that since the interval size is one, the area of the box with ight f (n) is just
a,. From this we pet that adding the area of boxes corresponds partials
sums of the series ay. Thus, forany 1 n m

9(+1 Z m Xn
(8) a f (x) dx &

i=n+1 n i=n

The sum on the left is the right endpoint estimate and the sumrothe right
is the left endpoint estimate, when we use x = 1 as the subinterval size.
From this inequality, we obtain the following theorem:

Theorem 2. Suppose thatf (x) is a continuous, nonnegative, decreasing
function for x 1. Put a, = f (n).

P R
(&) The sum i1=1 a converges if and only if the improper integrall1 f (x) dx
does.

(b) Moreover, the inequality

xXo x Z, X Xn Z,
(9) a a + f (x) dx 3 a + f (x) dx

i=1 i=1 n+l i=1 i=1 n
holds for alln=1;2;:::.

(c) The value of the series can be estimated using the following:

X X0 Z,
(10) 0 a; a + f (x) dx a,

i=1 i=1 n+l
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Figure 9.2: The geometric estimate used in the integral test

R
Proof. Suppose that the improper integral 11 f (x) dx is convergent so that
the total area under the curve is nite. From (8) it follows that

0(+1 Z m Z 1
& f (x) dx f(x)dx< 1

i=n+1 n n

and hence the partial sumg$ s;,,g areboundedthe rst n terms are irrelevant).
Thus, the series converges and the second inequality in (®Jléws from

X X X X 24
a= g+ & a+  f(x)dx:
i=1 i=1 i=n+1 i=1 n
A similar argument shows that the integral is convergent iflte series is and
that the rst inequality in (9) holds.

The rst inequality in (10) is an immediate consequence of, {Sand simi-
larly it follows that the middle expression in (10) is boundé by n”+1 f (x) dx.
But since f (x) is decreasing this integral is less than or equal tb(n) = a,
and the theorem is proved. O
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We note that (9) actually g;ves us two methods for approximang the
sum of a convergent series=  _, a. The rst technique looks more like
the one used in the ratio test:

% X0 Z 1
0 s s,= a; a; f (x) dx

i=1 i=1 n
and the second one is the more re ned estimate (10) which uske quantity

X 24
a + f (x) dx

i=1 n+l

to approximate s instead of the partial sums,. As we shall see in the
examples, this more re ned method has a dramatic computati@l advantage.

A curious formula. As our rst application of the integral test let us
prove that the series

X o9 1 1
=1+ 4+ o+
k2 2 3

1

k=

is convergent. First note that =1 in the ratio test so we cannot use that
approach. Next, we takef (x) = 1=x? and observe (say usinderive ) that

n n
d_ 1 11 as i
n
: : R; : :
and hence thei:;mproper integral ; dx=x2 is convergent. Now, by the integral
test the series  1=i? o1, that is the series is convergent. Actually, a similar
argument shows that 1=’ < 1 wheneverp > 1.
Now it is a remarkable fact that
X 11 2
(11) L =lr gttt T F
You have to wonder how the {term can possibly be involved in this compu-
tation. The proof of this fact is beyond the scope of this texbut Derive
can help usbelievethis result. One way to do this is to haveDerive simplify
the series and get 2=6 as the answer. It works, try it. A more independent
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approach would be to compute the partial sums,, for severaln and com-
pare with a decimal approximation to 2=6. In Figure 9.3 on the next page
we haveDerive make these comparisons wittm = 100, 1000, and 10,000.
We also observe thatDerive knows about (11) and simpli es the series
accordingly.

P
Figure 9.3: Summing the series 1=i?

Problem: Compute this series to m decimal places. We solve this
problem by using (10) which in this case says:

I
1o X111

2 2t 1 2"
+
i=1 ! i=1 ! n n

(12) 0

Thus, to solve our problem we need only ndnh so that right-hand side of
(12) is less than 10™, and then use
X 1 1 1 1 1
+ +

=1+ -+ =+ + =
n+1 4 9 nZ n+1

i2

i=1
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for our estimate. For example, withm = 6 we need to taken? > 10" or
n > 1000.

Something rather amazing occurred in this problem. In Fige 9.3 we
used the partial sumsfs,g to approximate the sums. This is the natural
thing to do sinces = lim s,. But the accuracy in Figure 9.3 is only 3 or 4
decimal places withn = 1000. This error is to expected since (8) yields

0 R 21 gx 1

S :T 7 T

i=n+l
and the right-hand side is just less than 1. On the other hand, adding
the term 1=(n + 1) (which is the integral in (10)) increases the accuracy to
1=n? = 10 5. This accuracy is1000 times betterthan the other estimate.
Put another way, suppose for example that both computationtake about
3 seconds withn = 1000 on your PC, the amount of computation time
needed to produce 6 decimal place accuracy using the lessiemt method is
almost an hour! See the le F-2-SER.MTH which contains a congsison of
these methods. This problem illustrates the potential vale of a innovative
approach to a computation compared to the conventional sdion.

The Harmonic Series  Let us apply the integral test to the harmonic
series namely,

We take f (x) = 1=x in the theorem and observe that

ZX
g:Inxll as x!11
.t

and hence the integral istivergent. Thus, the series is digent. Another
. . 1 1 — . .

way to express thisisthat ;_;, + =+ 1 orin other words, the partials sums

are eventually larger than any given number.

Consider this: How many terms of the harmonic series are nesary
before the partial sums exceed 100? Is the answer 1000? 10007 16°?
Amazingly, none of these answers are even close to the actigdult. Suppose
that 100 < In n, then by (8)

Z n
ad X' 1
100< Inn = — -
.t ;|
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so that anyn > e1®  2:6 10® is certainly large enough. On the other
hand, using (8) again we have

Z
X X n 1
100 :II—' :II—' dt

=1+ 1+ — < 1+Inn
1 2 1 t

so that when combined with the above we see that the bestsatis es: €% <
n< elOOI

9.5 Laboratory Exercises

For these problems it is a good idea to have more digits of pision: choose
Declare/Algebraic State/Smpli cation and the Digits box to 10 or 12.

1. Formula (3) on page 132 shows the amount of money in an account
after n years if the interest rate isr, the original amount is A, and
the interest is compoundedk times a year. In Problem 1 on page 112
you showed that if interest is compoundedontinuously, the amount of
money would beAe™.

a. Show that the limitask!1 of compoundingk times a year is
the same as compounding continuously.

b. If you put $100Q00 into an account earning %% interest, how
much money will be in the account after one year if the interés
is compounded yearly? quarterly? daily? continuously?

c. Do the previous part only assume that the bank is paying 9%.

2. Suppose you get a 30 year mortgage loan for $2000 which is to be
repaid in 30 12 equal monthly payments, based on an annual interest
rate of 7:5%.

a. Find your monthly payment.

b. How much do you still owe after your rst payment? How much
of your rst year's payment went to interest and how much went
to paying o the principal?
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c. Formula (4) gives the amount you still owe afterk months. Re-
place thek with 12k in Formula (4) so that k now represents years,
approximate the resulting expression and then plot. (You'lneed
to adjust the range in such a way that the visiblex-axis contains
the range 0 to 30 and they{axis contains the range 0 to 200000.)
Notice that at the beginning the amount you owe changes slovl
but that near the end of the 30 years it changes quickly.

In some problems involving monthly payments or interest thenonthly
interest rate is computed by dividing the annual rate by 12. Bt some-
times the monthly rate m is not speci ed and instead thee ective
annual rater is given. This means that compounding the monthly rate
m 12 times gives the annual rate, i.e. (1+ m)¥ =1+ r. Consider
the previous problem but now suppose that the ective annual rate is
7:5%.

a. Calculate the monthly rate for this problem.
b. Find the monthly mortgage payments using this new rate.

The bank says that it will give you a car loan of $6,000 provideyou
make monthly payments of $135 for 5 years. What interest ratis the
bank charging? (Hint: You may need to be a little careful how qu
compute this.)

Consider the fraction 7.
a. Using Derive show that 1=7 appearsto have a repeating decimal
expansion. What is it?

b. Express this repeating decimal from pare as an in nite series,
see the example on page 135.

c. Have Derive simplify this series.
d. Identify the a and x terms from (2) and verify using that formula
that your in nite series simplies to 1=7.

_ P
Have Derive evaluate the sum *_, 1=n? (Make sure you use Exact

mode.) Evaluate the left and right sides of formula (9) in Therem 2
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on page 140 fom = 1000. You should approximate the sum rather
than Simplify, otherwise the computation time is fairly long. Usethese
to estimate giving upper and lower bounds.

P
7. For each of the following series Lo a nd =limj;1 a1 =a and

show that < 172. Now use Theorem 1 withx = 1=2 to nd n large
n

enough so that ,_, a, approximates the series with error at most
10 .

hs k3 s (k|)2

a. .
k
4 o (2K)!

k=0

8. Use Theorem 2(c) to evaluate each of the following series itan
error of at most 108. (The nite sum of Theorem 2(c) should be
Approximated but the improper integral should be evaluated>actly.)

X 1 . X 4
.., k(ink)? s
X 1

C. 1+ K2
k=1

9. Some of the following series converge and some diverge. Beavhich
do which and state the required Theorem needed to prove youorclu-

sion.
ps X
a 2K b kllk
k=0 k=2 n
X o1 X 24 %
C- g d. T
k=0 k=1 ( )'

P
10. Consider the series ., 1=K!.

a. Show that the series converges by the ratio test.
b. Have Derive simplify this series.
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c. Use these results to approximate the Euler constarg with an
accuracy of 10°

The following formula
s
(13) 1+2 e

is known to hold for allt > 0. The formula is derived from an im-
portant technique in the theory of Fourier transforms calld Poisson
summation. We will not attempt to prove this formula but instead try
to use it as a method of approximating more e ciently than in an
earlier problem. It has a number of other useful applicatitoo. We
will x the value of t = 2 for the rest of this problem.

a. Using the ratio test, show that both in nite series in (13) ae
convergent.

P
b. Use Theorem 1withx = e ® “andn =1toshgwthat _, e #°°
is less than 108. Thus, with an accuracy of 2 2 10 8 or roughly
7 dec%’nﬂ places we can take the right hand side of equation3{1

tobe 2 .
c. Using Theorem 1 again, show that
| |
P , X6 ,
0< 1+2 e K= 1+2 e K2
k=1 k=1
X 2
=2 e“?<10®
k=7
and hence I,
L 1+2><6 e~
2
k=1

d. Approximate the above expression usingi@plify/A pproximate
with the number of precision digits set to 10. Compare the alve
approximation of with Derive 's. What is the decimal place
accuracy?
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e. To achieve more decimal places you should increase the vabfe
t. Show that with t = 10, the analogous estimate in parb is

2 2
elOk <1o42

k=1

(This problem is essentially due to George Csordas.)
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Chapter 10

Taylor Polynomials

10.1 Polynomial Approximations

Suppose we want to approximate a functiom (x) by a polynomial

X0
f(X) Pa(X)= ap+ apx+ apx®>+  +a,x"=  axk
k=0

One natural way to to do this is to require thatf (0) = P,(0), f {0) = PY(0),

equations for then + 1 unknowns ap;:::;a,. If we dierentiate, say Ps(x),
several times these equations become quite clear:

(1) P3(X) = ap + aix + ax* + agx®
(2) PXx)=1 a;+2 ax+3 ax?
(3) PXx)=2 1 a;+3 2 agx

(4) PIX)=3 2 1 a;

Setting X = 0 in the rst of these equations givesay = f (0). Setting x =0

in the second of these equations gives 4, = f {0). Taking more derivatives
and settingx =0, we get2 1 a,=f%0),3 2 1 az= f°0). By thinking

about factorials, you can see the pattern evolving: the gers term (solving
for ay) is

£ ()
(5) ak:% for 0O k n
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P, (x) is what is known as then™ Taylor polynomial for f (x):

£ (k)
© P = O

k=0

The coe cient of x¥ in P,(x) is just f ®)(0)=k! (which is the same for alln
as long an k). This quantity is called the k"{Taylor coe cient for f (x).

As our rst application, notice that it follows from (5) that the graph of
y = P1(x) is just the tangent lineto the curvey = f (x) at the point (0;f (0)).
We studied this method of approximation extensively in Sewn 2.2. Thus,
since the tangent line yields the best degree-one approxitima to the func-
tion, near the point x = 0, it is reasonable that guess thatP,(x) is the best
n"{degree approximation, nearx = 0.

Notice that if m < n, then the terms of degreen or less in the polynomial
Pn(x) equal P, (x), i.e., we obtainP,(x) from Py, (x) by adding higher order
terms. Now, we de ne theTaylor seriesfor f (x), about the point x = 0, as
the correspondingin nite series:

R (k)(o) fO0)
ki r|1I!I;Ln ki

k=0 k=0

xK = I|m Pn(X)

(7)

provided this series converges. Naturally, when this sesieonverges we hope
that it converges tof (x) and hence the Taylor polynomials would converge
to the function. The conditions under which this occurs willbe explored
throughout this chapter. The use of graphics in speci c exapies will make
the success of this important approximation technique espially clear.

To have Derive compute a Taylor polynomial for a function rst select
the Calculus/T aylor menu, then enter the function in the form, enter some
integer n, sayn = 5, for the Degree and leave the &nt! value at its default
value of 0. This results in the expressiomAYLOR(f(x),x,0,5) . An alternate
approach after becoming familiar with its syntax is to simp} author this
expression. See Figure 10.1 on the next page for some of theib@xamples
and a comparison of the graph of (x) = 1=(1 x) and it's 5" degree
Taylor polynomial approximation. An interesting exercises to load the le
F-TAYO0.MTH which contains the expressions from Figure 10.And compare
graphically the various functions with their Taylor polynamials of di erent
degrees.

1For now we just take the Point value to be 0. Later, in Section 10.6 we discuss how
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Figure 10.1: Basic examples of Taylor polynomials

10.2 Examples

As we see from Figure 10.1, the formula for the geometric ==siin Chapter 9
looks to be very closely related to the Taylor polynomials fothe function
f(xX)=1=(1 x):

xXn
=1+ x+x2+x3+ = lim xK:
1 X n'l k=0

(8)

P
This suggests that the partial sums above, |_, x¥, are then™ Taylor poly-

nomials. To verify this we must use (5) to compute the Taylor @e cients.
We will need to showf W(0) = k!. Using Derive we can make a table of
derivatives by authoring

VECTOR([k, DIF((1-x)™-1,x,K)], k, O, 4)

to use this variable.
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and then simplifying. The answers seem to follow the patterk!=(1  x)k*!
which can be veri ed by havingDerive check that:

DIF((1-x)"(-k-1) KI,x) = (1-X)"(-k-2) (k+1)!

(Try this for yourself).

Note that in Figure 10.1 the 3" degree Taylor polynomial approximation
gives a very good approximation on the interval [:5;:5]. As we mentioned
earlier, you should load the le F-TAYO.MTH and experiment with higher
degree approximations to see how the interval size improvdsut we must
bear in mind that the in nite series is only valid for 1 < x < 1 (even
though the function appears well behaved neat= 1).

Three other important examples are the series fo#, sinx, and co.
If we look carefully at Figure 10.1 we might guess the patterfor the ex-
ponential function because the denominators 1, 1, 2, 6, 242Q are justk!
ask varies from 0 k 5. On the other hand, equation (5) gives the re-
quired formula easily since all derivativeg X (x) = € and so are 1 atx = 0.

hus, in this casef K)(0)=k! = 1=k! so then™ Taylor polynomial is simply
hoo XK=kl = 1+ x+ x2=2I+  + x"=nl. Now, if we could take the limit as
in the case of the geometric series, then

@) = Zog+x+l o+ =iim L.

We encountered this series earlier on page 136 with= 2 and also in Prob-
lem 10 on page 147 witlx = 1. In fact, the series above does converge, for all
values ofx, to the exponential function. Moreover, it is this series tat forms
the basis for numerical calculations of the exponential fwtion on computers
and calculators. Section 10.5 will give a complete explanan of this matter.
We can proceed in a like manner to compute the Taylor polynomiis
for the sine and cosine functions. The only problem is that # pattern
for the successive derivatives is a little trickier. Let usidcuss the function
f (x) = sin x since the analysis of the cosine function is similar. If we rka a
vector off W (x) with0 k4 we get [sirx; cosx; sinx; cosx;sinx] and
it is clear that the pattern will repeat in groups of 4 with f “¥)(x) = sin x.
Substituting x = 0 gives the pattern [0 1;0; 1] and hence evergvenpower
of x, i.e., x% x?; x4 :::, will have a zero coe cient; whereas, the odd power
x%*1 will have the coe cient ( 1)*=(2k + 1)! by (5). See Figure 10.2 on
the next page for several Taylor polynomials of the sine fution. The only
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Figure 10.2: Taylor polynomials for sinc

unfortunate part about making these computations inDerive is that the
factorials are expanded to their integer values which makes di cult to
recognize the patterns. On the other hand, it's easy to see Wdfast the
factorials in the denominator grow which means that the adadkterms are
quite small in magnitude. At any rate, the Taylor polynomiak form the
partial sums of an in nite series representation of sim which is convergent
forall 1 <x< 1. This series and the one for cosare given below:

x3 x5 X x2n+1
10 inx = —t+t =+ = N
(10) SINX= X 317 B n:O( Y an )
x2 x4 R x2n
11 =1 —+—+ = 1)"
(11) coSX 21" al n:O( ) an

Next we want to graph several of these Taylor polynomials ancbmpare
them with the graph of sinx. This is done in Figure 10.3. Another instructive
exercise is to plot 3 or more Taylor polynomials all at once byaking a vector
of the functions and then plotting the vector. As each succsiwely higher
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Figure 10.3: Approximating sinx with its Taylor polynomials

degree polynomial is plotted, the range of close approximah gets larger
and larger. Curiously, one sees from Figure 10.3 that the amgximation
is good up to a point and then is very bad thereafter. The basilea in
approximating is simply to take more terms; i.e., use a highalegree Taylor
polynomial, to obtain more accuracy. An example of a more prese question
we shall be interested in is: What degrer is needed for approximating the
sine function on the interval [Q = 2] to within 6 decimal places?

10.3 Taylor's Theorem with Remainder

We are interested in how accurately a Taylor polynomial appximatesf (x)
and for what values ofx does the Taylor series converge tb(x). The basic
result is the following theorem:

Theorem 1. Suppose thaf (x) is (n + 1) {times continuously di erentiable
on the interval [0; . Let the n!" degree Taylor polynomial be denoted by
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Pn(X). Then, forany0 x bwe have

xj"tt jxjnt
(n+1)! (n +1)!

(12) [if () Pa(0j  maxit @ ()]

where we abbreviate the maximum By .

Furthermore, the theorem also holds when the de ning inteais [ b;0]
for some positiveb. The only change is that now b X 0 and the
maximum in (12) is taken over the intervalx t O.

Observe that the error estimate in (12) is similar to those webtained
for the approximate integral formulas (Trapezoid method, #pson's rule)
in that they depend on the maximum of a high order derivativeJook back
at the formulas on page 91. Also, notice that when = 0 then (12) follows
immediately from the Mean Value Theorem and in fact, you canhink of
(12) as ahigher orderMean Value Theorem.

The proof is based on a simple application of the integratioby parts for-
mula; namely, for any continuously di erentiable functiong(t) which satis es
g(0) =0, then

ZX m Z m+
(13) ORGSR g"(t)(x Hm

. m+ D dt m=0;1:::

Just put u = g(t) and v = (X t)m+1 =(m + 1)! and apply the integration by
parts formula. Notice that the integrated terms, i.e., theuvjy vanish because
g(0) = 0 at the left endpoint and (x  t)™*! is zero whent = x.

Proof. Put g(t) = f(t) P,(t) let M be the maximum ofjf "*Vj on the
interval [0; x]. By the de nition of the Taylor polynomial, observe that

g™(@©)=0 for m=0;1:::5;n and g™ (1) = V(1)

where the second fact follows since then @ 1) S{derivative of any degreen
polynomial is zero (look back at (1) on page 149). Now we get &pply (13)
to g% g%:::; g™ with the result that

Z Z «

dvdi=  fox nd= @S DV
0 Z 0 2
. x 1
n

X

= g(n+1) (t) dt

0
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and hence that
ZX
f(x) Pa()=g(x) 90)= glt)dt
z x RS (x_ b
= g (n+1)
. (t)——— - dt = . f (t)y——— - dt:
We take absolute values of the left and right-hand sides of ¢habove to get
Z,
100 Pl 10 % Lo
0

X t n n+1
M (X ) dt = Xi
0 n (n+1)!

which proves the theorem. O

10.4 Computing the Sine Function

First observe that we don't need to compute, for example, sit00 directly
since the sine function is 2 periodic. We just setx = 100 2k where
the integerk is chosen so 0 x < 2 . In Derive we simplify the function
MOD(100, 2) to get k = 15 and x = 5:75221 approximately. Now it's
an interesting exercise to use the properties of the sine fition to reduce
the computation to the interval [0; ]. For example, if < x < 2 then
sinx = sin(2  x) where now 0 2 X < . Similarly, you can use
the identity sin( X) = sin x to reduce the problem to the smaller interval
[0; =2]. It's even possible to reduce the interval to [0=4].

We can use formula (12) to estimate the error in using the Tagt poly-
nomial to estimate sinx. The computation of M = max jf "3 j might look
a little formidable at rst but we observe that any derivative is equal to ei-
ther sint or cost and in either caseM 1. Thus, we can takeM =1
and achieve 6 decimals of accuracy by determining the smallenteger n
satisfying

jxj*!

6
(n+21)! 10

(14)

For approximations on the interval [Q =2] we could just take the worst case
by setting x = =2 in the above.
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We now have reduced the problem to solving (14) for the smadkepossible
integer n. Unfortunately, the factorial expression means that we cénuse
simple algebra to solve this inequality. A simple numericahpproach would
be to make a table withn in the rst column and the above expression in the
second column. Examining the data will result in an answer pvided n is
reasonably small. We did this earlier on page 136 when we sied the ratio
test. If this fails, as with the 1=k? series, you might try testing various powers
of 10. Both of these techniques are easy to do using thector function. (In
the next section we present another way of ndingn.) In Figure 10.4, see
the le F-TAY3.MTH, we analyze sin 100 by reducing the compudtion to a
smaller value ofx (x = 0:530973), determining which yields an error of less
than 10 ® (n = 7) and then computing usingP7(0:530973). Observe that for
the sine functionPyn+1 (X) = P2n+2 (X) and so for the error computation (14)
we use the higher powerr2+ 3 instead 2n + 2 and hence

2k+1 ivi2n+3
: JX]

X
(15)  jsinx () @k+1) (2n+3)

k=0

for n=0;1;:::

Lastly, let us observe that the right hand side of (15) tendsa zero for
any x. After all, for x xed, the ratio of terms above is
Xj?* (2 +3) _ jxj? 1
(2n+5)l  jxj*3 ~ (2n+5)(2n+4) 2

for all large n. Thus, jxj2"**=2n+3)!  ¢,=2" (or for that matter jxj"=n!
c,=2") for some constantc, and the sequence tends to zero because1! 0.
By applying Theorem 1 we see that the Taylor series convergis all x and
we indeed have the representation

x3 x5 R x2n+1

H — — n
(16) sinx = X 3 + 5l + = n:o( 1) an+ ol

which is valid for all 1 <x < 1. In a similar manner we establish (11)
on page 153.
10.5 Computing the Exponential Function.

Now let's repeat the above procedure foe*. We use the partial sums of
(9) for approximating and (12) for determining the number otterms to use.
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Figure 10.4: Approximating sin 100 within 6 decimals

Let's assumex > 0. Sincef ("*V (x) = e is an increasing function, we can
take M = € or more conveniently we will replaces with the larger value 3.
Thus,

. x? X" Fxl
17 1+ x+ o X i<
(17) je (drxt o A ey

and so we need only ndn so that the right-hand side is su ciently small.

We would like to de ne a function in Derive to determine the number of
terms n necessary to achieve 6 decimals places, rather than lookatgables.
First of all, recall from the previous section that

X
am (n+1)!

for all values ofx. Hence we are guaranteed that there is a rsh for which
the above quantity is less than 10°. Moreover, this proves that the Taylor
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series converges for ak, by Theorem 1, toe*. Thus, as stated earlier

R gk 2 Xk
e = 14 x+ 2+ = gim X

- k! 2! n'1 <o k!

forall 1 <x< 1.
Now consider the functions
X K
1 N1(xK) = IF( 3k"(
2: N(X) := N1(x,1)

and consider what happens when youir8plify N (5). The N -function com-
putes the N 1-function with a starting value ofk = 1. The error expression
is compared to 10° and if successful therk 1 is the value ofN (5); oth-
erwise,k is increased by one and the process continues. Eventuallye get
to a large enoughk so that the comparison with 10 is successful and that
value ofk 1 is returned as the value of the function. The functiolN 1 is
called arecursive function because its de nition refers to itself. Care has
to exercised with such functions to make sure that they evemlly return a
value and don't continue computing forever (press th&scif this happens).
See Figure 10.5 and load the le F-TAY4.MTH where these funans are
used to de ne a new version of the exponential function (fax  0) which is
accurate to 6 decimal places. A comparison of this functionithr the built in
version obtained by approximating shows that the build in faction is faster
but the accuracy is the same for the rst 6 decimals using,s(x).

< 10 6, k-1, N1(x,k+1))

10.6 Taylor Expansions About x=c¢

Up to this point we have been approximating functions neax = 0. Suppose
instead we want to approximatef (x) near x = ¢. A simple approach is to
de ne g(x) = f (x + ¢) and approximate g(x) near x = 0 as before. Observe,
that for x ¢ we then have
X
f)=gx © Pux o= alx o
k=0

where P, is the Taylor polynomial for g(x) and hence

_g®) _ fM(c)
Tkl Kk

A
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Figure 10.5: Approximating €®> within 6 decimals

By the above observation it makes sense to de ne

X f®(g)
k!

Pa(x; ) = (x o

k=0

to be the n"{Taylor polynomial of f (x), expanded about the point = c. In
Derive we just enter TAYLOR(f(x),x,c,n) or put the Point variable equal
to c if we use the menu method.

Similarly, the Taylor series expansion about the point is

X f (g
k!

f(x)= (x o

k=0

provided this series converges tb(x). To discuss convergence of the above
we use Theorem 1 applied to the functiog(x) = f (x + ¢). We do the same
thing when we are computing withDerive . The advantage of this method
for Derive is that if the fth Taylor polynomial of f (x) around c is say
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ﬁzo a(x o)X, Derive will expand the powers ofx ¢ so you get an
expression likesx® + hyx* + byx® + bx2 + bx + ky, and you won't be able to
see what theay's are. Thus,

If you want a Taylor polynomial of f (x) expanded about the
point ¢, it is best to nd the Taylor polynomial of f (x + C)
expanded about O.

Figure 10.6: Taylor expansion of the logarithm function

A nice illustration of this technique is to examine Figure 1® where
f (x) = In x is plotted along with P5(x; 1). Since In0 is not even de ned it
would be foolish to think about its Taylor expansion aboutx = 0, however,
expanding aboutx = 1 is a reasonable alternative. Notice thafTAYLOR(In
X,x,1,5) produces a messy result in which the'6term is hard to guess but
that there is a clear pattern inTAYLOR(In (x+1),x,0,5) . In fact, it can be
shown that
2 3 k+1
(18)  In(1+x)= x e X =>4 ) x; 1<x 1
2 3 o1 k
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although the proof that the series converges to k on the interval 0 <

x  1=2 is straightforward, see Exercise 4, is quite a bit harder #m our
earlier examples to get the full interval 0< x 1. You can load the le F-
LOG.MTH and try approximating In x with higher degree Taylor polynomials
to see if you can conrm the above representation. The full ewergence
problem for the logarithm function will be studied in the nex chapter.

10.7 Interval of Convergence

The Taylor series forf (x) = sin X, cosx, or € converges tof (x) for all
values ofx. This means that, by taking the degree large enough, the Tay
polynomials of these functions will approximaté (x) accurately on arbitrarily
large intervals. However, the geometric series (8) only carged forjxj < 1
and so the Taylor polynomial will approximate 1 x) only on this interval.
Of course, H1 x) is not continuous atx = 1 and hence it is not surprising
that the Taylor polynomials will not converge atx = 1. Surprisingly, this
divergence atx = 1 turns out to in uence the convergence of the series for
negative values ok! It is an important basic theorem about the convergence
of Taylor series that if the series converges at a point; 6 0, then it also
converges atall jxj < jxij. Thus, any Taylor series which diverges ax = 1

cannot converge at anyx < 1. Why? If it did converge say atx; = 2,
then it would also converge atx = 1. But it diverges for x = 1 so it cannot
possibly converge atk; = 2 (or any jxj > 1). This fact also leads to the

observation that the set of pointsx where the Taylor series converges must
be an interval which is centered about the origin. Actuallythere are four
possibilities for the interval of convergence: (r;+r), ( r,+r], [ r;+r) or
[ r;+r] for some O r +1 .2 This number r is called the radius of
convergence

Now consider the function £(1 + x?). We can obtain the Taylor series
for this function by substituting  x? for x in (8):

1

— 4
1+ x2

X6 + — ( 1)kx2k

k=0
As before we can us®erive to plot several of the Taylor polynomials for
this function; see Figure 10.7.

(19) X2+ X

2\We need to allow the notationr = + 1 so that the set of all real numbers can be
represented as the interval ( r;r).
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Figure 10.7: Graphically nding the radius of convergence

Notice that although the higher degree polynomials do a bedt job of
approximating the function for jxj < 1, none of them work outside of this
region. This strongly suggests that the radius of convergea of (1 + x?)
i§ r = 1. This can be proved by observing the following: if the sesss =

Ll a, converges then the termsy ! 0. This is because, = s, Sy 1!
s s=0. Now, in our casejaj = jxj* 11  wheneverjxj > 1. So even
though the function 1=(1 + x?) is de ned and di erentiable to all orders on
the whole real line, the radius of convergence of its powernigs isr = 1. It
is therefore impossible to deduce the radius of convergerioe a function by
looking at its graph.

In the case of our example (1 + x?), an interesting explanation as to
why r = 1 can be based on the fact thatx? + 1 has a complexroot at the
point X = i, which a distance one from the origin. We will not pursue this
approach here but let us say that this application of complerumbers turned
out to be one the the great triumphs for this man-made inventin.
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10.8 Laboratory Exercises

1. Start by declaring f (x) to be a function, i.e., Author F(x):= . Use the
Calculus/T aylor series menu to produce the expressidiAYLOR( F(x),
X, 0, 5) and then edit this expression by replacing the 5 witim (note
that the Taylor menu requires integer values for the degreeWith this
last expression highlighted, use the &culus/V ector menu twice, with
the Variable set ton, Sart value 4, End value 10 and $p size 1 to
produce the two expressions:

VECTOR(TAYLOR( F(x), x, 0, n), n, 4, 10, 1)
VECTOR([n, TAYLOR( F(x), X, O, n)], n, 4, 10, 1)

For each of the functions below do the following:

(i) De ne f (x) to be the given function.

(i) Simplify the rst vector function above to make a 7{vector which
has the degreen Taylor polynomial, expanded aboutx = 0, for

(i) Graph this vector to plot each of these Taylor polynomal in suc-
cession. Then, plot the function, say in the color red, and oapare
the graphs using an appropriate scale.

(iv) Simplify the secondvector function to make a 7 2{table that
has the degrees in the rst column and P,(x) in the second
column.

(v) Use your table to guess what the in nite Taylor series exansion
is.

(vi) Prove that in each case, the Taylor series expansion carges to
the function and determine the interval ofx's for which it is valid.
Use the series techniques of the previous chapter to do th{#lint:
Try using (2) on page 130.)

8 2
au@=%+ +%+x

1
b. £(x) = 5
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1 . " .
c. f(x)= 212 (Hint: For the pattern recognition you will need

to change the output mode to Ritional. Use the Declare/Algebra
state menu to access the @put menu.)

2. Letf(x)=In X for 1<x< 1.

X

a. Do parts (i){(iv) of Problem 1 using f (x). Show that your analysis
suggests that

X 2k+1
+
200 In 1tX -7 X for  l<x< 1

1 x 2k+1
k=0

b. Plot g(x) = X and show thaty = g(x) is a strictly increasing

1 x
functionon 1<x< 1withrangeO<y< 1.

c. Solve X =3 for x. Let X5 be your answer.

d. Assuming that (20) above is indeed valid, we get an in nite sees
for In3 by substituting x = X3 into (20). Use the ratio test on
page 136 to prove that the series converges.

e. Compare the numerical values oP,(x3) for various n with the
approximate value of In 3.

3. If we take x = 1=3 in (20) above we get

fra_ %2
ot T (kD)3

In Chapter 6 we studied numerical integration techniques faapproxi-
mating the above integral with the most e cient method being Simp-
son's rule. One the other hand, using the ratio test on page @3ve
approximated the in nite series similar to the above.

a. Using the error in Simpson's rule, formula (5) on page 91, dat
mine approximately how many subdivisions (and hence how mgan
computations) are needed to obtain 8 decimal place accuracy

b. For completeness, also do part (a) using the left endpoint rtfed
and the trapezoid method.
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c. Show that the ratio of terms in the above series is less thaFd

d. Using formula (7) of Theorem 1 on page 136 witk = 1=9, deter-
mine how many terms are needed to approximate In 2 to 8 decimal
places.

e. Now compare all four approximation techniques. Which metrab
is the most e cient?

4. Let f(x) = In(1 x). We want to determine the Taylor series for
f (x) and prove that it converges tof (x) using Theorem 1 on page 154.

a. Compute the rst several derivative off (x) and guess at a general
formula for f M (x) forall n=0;1;2;:::.

b. Use parta to establish the Taylor series of (x) and hence if the
Taylor series converges tb (x) we would have:

1 Rk x2  x3
21 I = — =X+ -+ =+
@) "Tx k7273

c. Use Theorem 1 to show that the (1) holds forany 1 x 1=2.
(Hint: Carefully compute the right-hand side of (12) on pagd55.
Then, show that the error estimate tends to zeroas ! 1 only
for 1 x 1=2)

d. Show that taking x = 1 in (21) leads to another series represen-
tation of In2. Analyze how quickly the partial sums of this saes
converge to In 2 by making tables of numerical computationgdow
e cient is this approach compared with the previous problen?

e. It turns out that (21) actually holds forall 1 x < 1 and the
radius of convergence is = 1. By computing P,(x) for several
n and comparing their graphs withf (x), show that the Taylor
polynomials seemto converge tof (x) on the full interval 1
x<1

5. For each of the functions below do the following:

(i) Do parts (i){(iv) of Problem 1 using these functions.
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(i) By comparing the graph of the function with several Taybr poly-
nomials make a guess at the interval af's for which the Taylor
expansion is valid, see Section 10.7.

(iif) Give further support for your answer in (ii) by picking some nonzero
X1 (where the Taylor representation is valid) and numericallfcom-
paring the function's value atx; with that of several of its Taylor
polynomials. Recall that tan ! x is entered asatan x in Derive .

1
a. — b. tan !

(x+1)2 X

c. e*

6. Load the le F-TAY3.MTH and following the methods of Section D.4
compute sin 7. Which degree Taylor polynomial should you ugde get
an error of less than 10°?

7. In this problem we approximatee® using the methods in Section 10.5.

a. Expresse® using the Taylor series representation of the exponen-
tial function.

b. Compare the numerical value of® using approximate with the
value of the rst several Taylor polynomials. How many terms
appear to needed for 6 decimal place accuracy?

c. We now want to use Theorem 1 on page 154 to obtain a precise
estimate ofe® within 10 6. Compute an upper bound on the error
estimate on the right-hand side of (12) for several. Do this by
rst giving an upper estimate for M and then making a list of
several error estimates until the value becomes less than £0

d. What is your estimate fore®> and how many terms do you need?

8. The functionsf (x) = sin x has only odd powers in its Taylor series ex-
pansion. This property can be explained by the fact that (x) satis es
the equationf ( x) = f(x) as do all odd powers ok. It is because of
this that we call any suchf (x) an odd function Similarly, a function is
an even function iff ( x) = f (x) holds for all x, as do all even powers
of x.
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a. Prove that f @?¥(0) = 0 for k = 0;1;::: and any odd function
f ().
b. Prove that f @k*1)(0) = 0 for k = 0;1;::: and any even function

f ().

We discussed complex number in Section 5.4. Find thé"6Taylor
polynomial for the function €*. (Recall that i is entered in DfW using
the symbol bar and with Alt-i in Derive for DOS )}Now nd the 6™
Taylor polynomial for cosx and for sinx. Multiply the one for sinx by i
and add it to the one for cox. Compare the result with the polynomial
for €. What relation betweene*, cosx, and sinx does this suggest?

In this problem we use the Taylor polynomials for the arc tangnt
functiontan !x toestimate . Recallthattan !x is entered asatan x.

a. UseDerive to verify the formula
via 4tan (1=5) tan '(1=239)
b. Compute the eighth degree Taylor polynomiaPg(x) for tan *x.

c. UsePg(x) to approximate on the right side of the above formula
and use your answer to estimate.

d. Let M be the maximum value of the & derivative oftan (x) on
the interval [0; 1=5]. Use the error estimate (12) on page 155 to
give an upper bound for the error in your estimate of in terms
of M. For example, give an answer liké1 10 2.

e. Use graphical techniques to give an upper bound avi.

f. Combine the last two parts to give an estimate on the number
of decimal places your estimate to valid for. How does this
compare with Derive approximation to ?

g. UseDerive to show that the absolute maximunvalue forjf © (x)j,
wheref (x) =tan 1(x), is achieved atx = 0.
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Chapter 11

Approximating Integrals with
Taylor Polynomials

11.1 Introduction

In Chapter sze developed several techniques for approxintag a de nite
integral | = f (x) dx by applying the trapezoid method or Simpson's rule.
In the last chapter we saw that many of the important functiors in Calculus
can be represented by a Taylor series and hence can be apprated by
their Taylor polynomials. This suggest@anotherapproach to approximatingl ;
namely, approximate the integrandf (x) by its Taylor polynomials and then
use

Z, Z, Z iy N
f (x) dx P, (x) dx = axkdx=  a
0 0 0 k=0 k=0

et
k+1

wherea, = f 0(0)=k! to obtain the desired estimate.

The advantage to this approach was strongly suggested by Riem 3
on page 165. In that problem it was shown that approximatingn3 using
Taylor series techniques gave 8{decimal place accuracy Wwepproximately 8
computations. Whereas the standard approach using Simpssmule require
approximately 100 computations.

171
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11.2 The Basic Error Estimate

Recall from (12) of Chapter 10 on page 155 thatll? oo XX is then™ Taylor
polynomial for f (x), then an upper bound for the error made in estimating
f (x) with this Taylor polynomial is given by

jxj"*t

X k
(1) f (x) aX (n+1)

k=0

where M is the maximum of jf ("*V (t)j on the interval connecting 0 tox.
This can be written as
jxj*d X jxjmd

CE RS hoka (n+1)!

(2)

If we integrate this from 0 to b, we get
2 C

X‘l sLen+
(n+2)! f(x) dx L - :
. 0

o k+1 (n +2)!

3)

Writing this with absolute values:
yA b
4) f (x) dx

0 ke

e jhn?
0k+1bk M +2)

This techgjque works for integrals going from 0 tdd. If you want to
. b . _
approximate _'f (x) dx, you can make the substitutionu = x a so the

integral becomes ,’ *f (u) du.

11.3 The Logarithm Series

: . . 1 . .
Consider the logarithm functionf (x) = In T x where we shift the variable

so thatx = 0 yields In1 = 0. First of all, we have the integral represerdtion:

Z
1 X dt
= d— for 1 <x< 1:
1 x 0 t

In

which can be easily checked usinQerive .
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Now, the idea is to approximate the integrand by its Taylor sees but in
this case we recognize the connection with the geometric iss; namely,

X 1
t“=_—_  for 1<x< 1:
1t
k=0
We'll actually use the following more re ned estimate from 8ction 9.2:
1 x )4' tn+l
(5) tk - tk - tn+1 + tn+2 + =
t 1t
k=0 k=n+1

wheneverjtj < 1. Now we integrate this equation from O tox, where we
assume that 1 x< 1, to get

1 xn xk+1 Zx dt Zx)Q”'
- el t  dt
X k+1 o 1 t 0 oo
~ =

X tn+1

o 1 t

(6) In 1

dt:

(7)

Taking absolute values of the above we need to evaluate thadgral in (7).
Since this looks complicated, we instead try to obtain an upmy bound. For
positive x, we uses the inequality 6 :&; 1. to obtain that

z X tk+1 Z X tn+1 Xn+2

N mvi il Ca T

(8)

On the other hand, for negativex, we instead use & ﬁ 1 to get a similar
bound:
Z 0 YA 0

el e XM
1 tdt xth dt n+2)

tk+1

(9)

Hence, we have the desired approximation result because

n+2
li

m{n T M2 =0 whenever 0 x<1

and

o jxjnr2
nl;{n (n+2)

=0 whenever 1 x O
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One small point, the polynomial approximations in (6) look dittle di er-
ent from the standard Taylor polynomials because the poweese expressed
with the index k + 1. This is just an arti cial di erence since

Pni1(X) = A X + S e

1 = — = - =

n . 2 n+1 K+1
J:l k=0

and hence we ultimately obtain that

8 Xn+1
1 2T gm0 X<
(20) In Pn(X) o
1 X 3 X"t L x o
(D)

which tendsto zeroas ! 1 . This leads to the Taylor series representation

(11) In = — for 1 x< 1:

11.4 An Integral Approximation
Suppose we wanted to estimate the de nite integral

Lsinx
o X

dx:

At rst glance there appears to be a problem atx = 0 because we are
dividing by zero. However, L'Hospital rule shows that lim, osinx=x = 1.
An interesting alternative way of proving this fact is use tle Taylor series
representation for the sirx, i.e.

. x3 x5 XD
sinx = o+ 2 = X =7
X=X 317 5 . @k+1)

forall 1 <x< +1 . Now forx 6 0 we can divide both sides byx to get

sinx _ 1 X2 N x4
X 3! 5l
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Formally then, the right-hand side above approaches 1 as! 0 because all
the x"{terms tend to zero. Of course, there is always the problem afaking
estimates forin nite series, as opposed to nite sums, which can be di cult.

One way around this di culty is use the approach we adopted fo ap-
proximating sinx in Section 10.4. There we used Taylor's Theorem with
remainder to show that

_ X3 X5 ( 1)nX2n+1 jX2n+3j
12 —+ —
(12) S X 31t 5 @n + 1) 2n +3)!
forall n =0;1;:::. For example, even takingn = 0 in the above yields a

. . L .SinX .
nice result; namely,jsinx  Xj j Xj=6. Hence,JT 1 x?=6! 0as
sinx

x ! 0 and thus limy, o =1.
Similarly, if we take a larger value oin, sayn = 3, we get
3 5 7 v 9i
X2, XX X7

(13) sinx X TR o

and so dividing by x and integrating from 0 to 1 yields

Z, .
L sinx dx S 1
o X o 2n+1)(2n +1)!
l .
sinx 1 1 1
= - 1 +
, x X 33 55 77
zZ, . ! Z,. .
T sinx Xy dx 1JX—18dx 1
o o x__ (2n+1) o 9! 9 9r

Finally, since =9 9!) 3:0619 10 ’ we get 6 decimal place accuracy by
approximating the integral using 4 terms from the series.

In Figure 11.1 on the following page we havBerive approximate our
integral using 20 digit precision. This computation, whichuses Simpson's
rule, is actually quite slow, Load the le F-SININT.MTH and try this your-
self. On the other hand, we enter the partial sums of the sesesolution and
make a table comparing the rst several sums with the answerdm Derive .
Notice that the theoretical error that we calculated aboved practically the
same as the actual error whem = 3.
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Figure 11.1: Using Taylor series to approximate integrals

11.5 Laboratory Exercises

1. Use (11) to prove that

1+ x R g2kl
In =2 for 1<x< 1

1 x 2k+1
k=0

Look back at Problems 2 and 3 on page 165 to verify that the ses
representation in those problems is valid.

2. Use the formula Z, dt
tan *x = —
o 1+12
and the techniques of this chapter to prove that the Taylor rpresenta-
tion
)4 1 k X3 X5
tan 1x = ( )x2k+1:x —+ = i for 1 x 1

O2k+1 3 5
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holds. Look back at Problem 8 on page 168 and also Problerh.5
What are the implications of this problem to the earlier one3

3. In this problem you are to estimate

Z

sz
e " dx
0

using the method outlined in the text.

a. De ne and simplify P(x):= the 8"{degree Taylor polynomial for
el.

b. Author P(p x) and integrate the result from 0 to 2. Simplify this
integral and then express the answer as a decimal.

c. Compute theprpaximum value of the ninth derivative ofe* on the
interval 0 to ~ 2. Denote this maximum byM . (Note: This is the
M value associated with the Taylor polynomiaﬂp(_x) in (12) on
page 155_corresponding to the interval 0 x 2. The regson
we us%iz ang not 2 is that iflj)e?‘ (X)j cfor0 x 2,
thenje * p( x)j cfor0 X 2,ie.,for0 x 2)

d. In a manner similar to what was done in Section 11.4, nd the
error in the approximation you obtained in partb.

. P . :
e. Have Derive evaluate 02e *dx and then approximate it and
compare the answer with what you obtained in parb.

4. Do parts a. to e. but this time for
YA 1
e ¥ dx:
0

Instead of starting with the Taylor polynomial for €, start with the
Taylor polynomial of e *.
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Chapter 12

Harmonic Motion and
Di erential Equations

12.1 Introduction

In this chapter we consider di erential equations of the fam
(1) y*%* by’+ cy=0

These aresecond orderdi erential equations because of they®Let's rst
look at the special casdéo=0 and c=1:

(2) y®=y
If we try y = €' then y°°= r2¢" so fory to satisfy (1) we needr? = 1.
While there is no real numberr satisfyingr? = 1, the complex numberi

does. And so does i. (Recall in Derive you input i by using the symbol
bar or typing #i . This is displayed with1. Try inputing i2. It should simplify
to 1. Thus bothy = €' ande " are solutions.
What is the function €'? If we author this expression and then ask for
the 6" Taylor approximation we get
t* ot t? A > 3

— + — +1+71 —
720 24 2 120 6

If we nd the 61 Taylor polynomial for cosi) and sin(x) we get t6=720 +
t4=24 t2=2+1 andt°=120 t3=6+ t. This suggests that

(3) e' = cos(t) + i sin(t)

179
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We can check this by havingDerive simplify €' (cos() + i sin(t)). Equa-
tion (3) breaks the functione! into it real and imaginary parts. Each one is
a solution of (2) as you can easily check. We will use this tkdo solve (1),
rst nding the solution as a complex function and then taking the real and
imaginary parts to get the “real' solutions.

So now let's tryy = €' in (1). We get

r2e' + pre' + cd' = (r2+ br+ €' =0

SO we want to solve

(4) r>+br+c=0

This equation is called thecharacteristic equation Its roots are
b+ PB Zc b PF

(5) r{= > and r, = >

and so bothy = €' andy = €' are solutions to (1). Ift> 4ac 0 then
these are real solutions. It 4ac < 0 then both ry and [ are complex
numbers. We can writer; = +i where = b=2and = 4c I’ (since
¥ 4ac<0,4ac ?> 0). Noter, = i which is known as thecomplex
conjugateof r;.

To nd the real solutions corresponding toel *' )t we calculate

+i

e’ =etd! =e' cos(t)+isin(t)

This suggests thate! cos(t ) and e! sin(t ) are both solutions and we can
easily check that they are. (Just substitutee! cos(t ) for y in (1) and show
the left side simplies to 0.)

When? 4ac=0, r; = r,. In this case bothe':! and te:! are solutions;
see Exercise 1 on page 189. Finally notice that if boti(t) and z(t) are
solutions to (1), then Cyy(t) + C,z(t) is a solution for any constantsC,
and C,.

Summarizing, withrq, r,, ,and as above, the solutions of (1) are

(6) y= C et + Ce?t if ¥ 4c>0
(7) y = C et + Cyte't! if ¥ 4c=0

(8) y= Cie' cos(t)+ Cet sin(t) ifb? 4c<0
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Notice that all of these solutions have two arbitrary constats C; and C..
These will be determined by the initial value ofy, denotedyy, at to, and
the initial velocity vy at this time. Of course by velocity we meardy=dt
Assuming you have loaded the ADD-HEAD.MTH le, you can solve(1)
subject to these initial conditions by authoring

DE2(b, c, t, t0, yO, vO)

12.2 Applications

Springs and Hooke's Law. Suppose we have a masa attached to the
end of a spring hanging from the ceiling. If we pull the mass dm a little it
will bounce (oscillate) up and down. We image it moving alonthe y{axis
with y = 0 denoting the rest position. Newton's law say$- = ma whereF
is the force on the mass ana = y%is the acceleration. A reasonably good
approximation of the force is given byHooke's Lawwhich states

F= Kky

where k is a positive constant. SinceF = my®this gives the following
di erential equation.

k
00, —
9) y™+ —y=0

As an example suppose we pull the mass dowarunits and let go. Then
Yo = aandvy =0 so we can nd the motion by authoring DE2(0, k/m,
t, 0, -a, 0) . Derive gives an answer in terms of two exponential func-
tions because it does not know thak and m are positive but if you use the
Declare/Variable Domain to tell Derive that k is positive and do the same

for m, the answer simpli es to

p_ !

k
acos p—=t
m

Figure 12.1 on the next page shows the graph of this functionhen k = 2
and m = 1 and a varies between 2 and 2 in increments of 6. Notice all
of the graphs cross thex{axis at the same place; that is, at the same time.
So it doesn't matter how far the spring is pulled down it will ke the same
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q_
amount of time to return to its original position. If we let! = %then time

to return to the original position is 2=! independent ofa. This is called the
period of oscillation. ! is called theangular frequencywhile the reciprocal of
the period,!=2 is the frequency In Exercise 2 on page 189 you investigate
what happens if we start withyy, = 0 but vary the velocity.

Figure 12.1: Spring motion starting at di erent positions

Damped oscillation. The frictional force due to air resistance is propor-
tional to the velocity of the mass. If we take this into accounour di erential
equation (9) becomes

k
oo, 20, K,
(10) yoE Yy 0

wherea is a positive constant. The characteristic equation for tls equation
is

a K
r’+ —r+ —=0
m m
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It roots are p
a a®  4km
2m

The solutions to (10) are given in (6){(8). The sign OP a2 4km deter-
mines which equation applies. 1& > 4km we say the spring isover damped
In this case the solutions of (10) have the form of (6) withr; and r, the
solutions to the characteristic equation given above. Nate that sincea, Kk,
and m are all positive, bothr,; and r, are negative. So the general solution
is the sum of two decaying exponentials.

If a> = 4km the spring is critically damped The solutions are given
by (7). Again ry is negative.

If a> 4km the spring isunder damped The solutions are given by (8).
As an illustration we take a=m=1 and k=m =4 in (9). To solve (9) with
initial conditions tg = 0, yo = 2, and v = 0 we author DE2(1, 4, t, O, 2,

0). Simplifying this gives

P— P— Y

- 15 2 15 15
e ¥2 2cos t) + sin t
0t g5 sint=%Y

We use the eclare/Algebra State/Smpli cation menu to set Trigonometry
to Collect and simplify again we get

il_% =2 gjn p_l_st) + 2 arctan p—1_5
15 2 >

2:0655@ =2sin(1:9364% + 1:31811)

P
Figure 12.2 on the next page graphs this function as well as>-22e =2,

Pendulums. Suppose we have a mass at the end of a pendulum of
length |. It swings along a circular arc. When the pendulum is at restt i
hangs straight down and has velocity 0. Les(t) denote the arc length from
this rest position as a function of time. Let (t) be the angle the pendulum
makes from the vertical position. Thens = | and so the acceleration is
d?s=dt = Id? =dt2. The force on the mass due to gravity is downward and
has magnitudemg, whereg is the gravitational constant. This force can be
broken into the part in the same direction as the pendulum ro@nd a part
part tangent to the arc traced out by the mass; see Figure 12dh page 183.
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Figure 12.2: Under Damped Oscillations

The component of the force in the direction of the pendulum is can-
celled out by the rod. The force along the arc is gmsin . Newton's law,

F = ma saysmd?s=df = gmsin . In terms of we get the di erential
equation:

d? g .
11 — = =SIn
(11) dt? I
This is not a linear equation because of the sin But the Taylor series is
sin = 36+ ,soif issmall we can approximate sin with . Using
this (11) becomes

d? g
12 —+ = =
(12) dtz | 0

If we start by pulling the pendulum back by an angle o and letting go
we can solve the equation by authorinddE2(0, g/L, t, O, 0, 0) . This
gives the solution r

—lQ]

0 COS
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Figure 12.3: The pendulum

Notice that the period depends orl but not on 4. This is why old clocks
often use pendulums. As the spring runs down the pendulum Wiontinue to
swing with the same frequency (until it stops completely ofaurse). You can
adjust the speed by making a small change in the length of theepdulum.

Later in this chapter we will show how to nd approximate soldions
to (11).

12.3 Systems of Di erential Equations

Predator prey population growth. Suppose we have a population of
rabbits. Let R(t) be the population at time t and let R, = R(0) be the
initial population. In Chapter 7 we had two models forR(t). The rst was
R%= kR was the standard exponential growth model. The second waseth
Verhulst modi cation of this: R°= kR=(1 R=R;), whereR; is a constant
representing the ideal population. But suppose we also hagepopulation,
F (t), of foxes which prey on the rabbits. This gives us systemof di erential
equations forR(t) and F (t). Itis reasonable to assume that number of rabbits
eaten by foxes is proportional toR F. Then the population of rabbits and
foxes can be modeled by the equations

R°= kR(1 R=R;) CcRF

(13) FO= dRF eF
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wherek, ¢, d, and e are positive constants. IfR = 0 the second equation
becomes=°= eF. This means that if there are no rabbits the fox popula-
tion will dwindle because there is nothing to eat. I+ = 0 then the rabbit
population will follow the Verhulst model.

The Runge-Kutta method of approximation. A general system of two
rst order di erential equations has the form

0_ “yge
(14 AN
z°= s(t;y; 2)
These can be solved exactly if(t;y;z) has the formay + bz and s(t;y; z)
has a similar form. (Whenr and s have this form, the system of equations
(14) is calledlinear.) Since the examples we are interested are not linear, we
concentrate on nding approximate solution to (14).

In Chapter 7 we described Euler's method for nding an apprarmate
solution of a single rst order equationy® = f (t;y) subject to the initial
conditions y(tg) = Yo. We start with the point (to;Yyo). Since we know the
slope ofy at this point is f (to; yo) we draw a short line segment fromtg; yo)
to (t1;y1) = (to + h;yo + hf (to;yo)), where h is a small increment. The
(n + 1)t point is obtained the n™ by

(tn+1;Yn+1) = (ta + hyyn + hf (ta;yn))

Figure 12.4 on the next page gives the direction eld for theimple dif-
ferential equationy®= 4(t 1). Of course we can nd the solutions by
integration. If y(0) = O this givesy = 2t(2 t), which we have also graphed.
If we use Euler's method withh = 1=2 the rst three points are (0;0),
(1=2; 2), and (1 3). As the graph indicates these points are not very close to
the true solution.

If instead of using the slope att(,;y,) we average this slope with the slope
at the next point (t,+1; Yn+1 ) We obtain a much more accurate approximation
of the solution. This is known as thesecond order Runge-Kutta methadThe
precise formulae fot,; andy,.; are

the1 = thth=tg+(n+1)h
(15) h
Yn+1 = Yn t > f(th;yn) + f(th + h;yn + hf (th;y0))
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As we can see from Figure 12.4 this is much more accurate. If also take into
account the slope at the midpoint of the two points we obtainhe fourth order
Runge-Kutta method This is usually just called theRunge-Kutta method

Figure 12.4: Euler and the 2 Runge-Kutta methods

If we have a system of equations like (14) we calculate trigeof points
(th; ¥n; zn) instead of pairs, but the formula is essentially the same. he
Derive utility function RK which is included in ADD-HEAD.MTH, will
calculate approximate solutions to system of di erential quations using the
Runge-Kutta method! To approximately solve (14) with initial conditions
y(to) = Yo and z(tp) = zo, we author

RK([r(ty.2), s(ty.2)], [t, y, z], [tO, yO, 0], h, n)

whereh is the step size ana is the total number of steps you want. When we
approXimate this we get a matrix of triples. To graphy(t) we use the function

1RKis the same as the one irDerive 's utility le ODE-APPR so the description of it
in Derive 's Help applies.
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extract _2_columns(m,1,2) (wheremis the matrix we got). This gives a ma-
trix of pairs which we can plot. To plotz(t) we useextract _2_columns(m,1,3) .

Returning to the predator-prey problem let's look at the ralbits and foxes
problem with speci ¢ data for the constants in (13)?

k = :1 rabbit per month per rabbit

R, = 10000 rabbits
¢ = :005 rabbit per month per rabbit-fox
d = :0004 fox per month per rabbit-fox
e = :04 fox per month per fox

to = 0 months

Ro = 2000 rabbits

Fo = 10 foxes

To use the Runge-Kutta method to nd an approximation of the ®lution
we author:

RK([.1r(1 - r/10000) - .005rf, .00004rf - .04f], [tr.],
[0,2000,10], 0.5, 600)

We approximate this and then useextract _2_columns for columns 1 and 2
to seeR(t). The result is graphed in the upper right window of Figure 12 on
the next page. Extracting column 1 and 3 gives the fox populetn graphed
in the lower right. Notice both populations oscillate with he fox population
following the rabbit population. After the rabbits increase the foxes will then
increase but when the fox population gets large the rabbit gpalation will
decrease which in turn will cause the fox population to decase and so on.
The window in the lower left of Figure 12.5 on the facing pagehews
the results of extracting columns 2 and 3. The point near theragsshair in
that window is (200Q 10), the initial rabbit and fox populations. At the
beginning both the rabbit and fox populations increase. Whethey reach
the point furthest to the right the rabbit population starts to decrease while
the fox population continues to increase. As we continue alg the curve it
spirals inward indicating that the oscillation in the popuhtions get smaller.
In Exercise 4 on page 189 your nd the point to which the spirahpproaches.

2This example is taken from J. Callahan and K. Homan Calculus in Context,
W. H. Freeman, 1995.
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Figure 12.5: Rabbits and Foxes

The pendulum revisited. A second order di erential equation such as (11)
can be reduced to a system of two rst order equations. To do thwe intro-
duce a new variablen(t) = d =dt. Then (11) becomes

16
(16) wo= Igsin
As an example suppos@=Il = 25. Then to get an approximate solution

of (11) we author and then approximate the following.

(17) EXTRACI.COLUMNS(
RK(w,-25 SIN( )], It, W], [0, o,0], 0.05, 60), 1, 2)

Figure 12.6 on the following page shows the resulting grapfts = =8,
=4, =2, and 15=16. The graph of the solution of (11), namely, cos(8), is
also shown on each graph. Looking at these graphs we can seersé things.
First for o= =8 =22:5 the curves are almost identical showing that using
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(12) rather than (11) works well for small and even moderatengles. Even
for o= =4 =45, shown in the lower left, is fairly close to the true graph.

Since we are considering a pendulum without friction (undaped) we
expect that when we release it with an initial angle of it will swing to the
other side reaching the angle = and then return back to the original
position with = . Then of course it will just repeat this. This means
that the solution of (11) will be periodic. The linear approxmation (12) has
a shorter period than the true equation (11). This makes seassince the
magnitude of the force pushing the pendulum back towards itest position
( = 0) is proportional to sin for the true equation and to in the linear
approximation and sin for > 0.

The lower right frame of Figure 12.6 gives the graphs wher = 15 = 16.
This corresponds to starting the pendulum almost at the top.Notice that
not only is the true period much greater than the linear appimation but
that the shape of curve is di erent.

Figure 12.6: Pendulums
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12.4 Laboratory Exercises

1. Show that if the characteristic equation (4) has a double rdpthat is,
if ry = ry, then bothy = €1t andy = te"! satisfy (1) on page 177.

2. Hooke's Law is given by equation 9 on page 179.

a. Solve this with the initial conditions yo = 0 and vo = v. (You
should useDerive 's Declare/Variable Domain to tell Derive
that m and k are positive.)

b. Graph your solutions with with k = 2, m = 1, and v varying
between 2 and 2 in increments of (5.

3. A third order di erential equation of the form
Y% by o+ dy =0

has the characteristic equationr® + br? + cr + d = 0. The roots of
the characteristic equation determine the solutions of thdi erential
equation in the same way as for second order di erential eqtians. The
solutions of second order di erential equations involve tw arbitrary
constants but for third order there are three.

a. Find the solutions toy®® 2y% 9+ 2y =0,
b. Find the solutions toy%° 2y%+ y0 2y =0,
c. Find the solutions to y%%° 4y%+5y° 2y =0,

4. Suppose we want to nd solutions to (13) such that bothR(t) and
F (t) are constant. One (trivial) solution isR(t) = 0 = F(t) but we
would like something more interesting than this. If the poplations are
constant thenR{t) = 0 and F{t) = 0.

a. Solve (13) forR and F when RYt) = Fqt) = 0. Hint: Use the
second equation of (13) to ndR, substitute this into the rst
equation and then solve foiF.

b. The curve in the lower left window of Figure 12.5 on page 187
spirals inward. Use your answer from the previous part withhe
constants on page 186 to guess where it is heading.
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5. Suppose in our rabbits and foxes example instead of (13) weeuhe
simpler equations

R°= kR CcRF
F°= dRF eF

without the Verhulst modi cation.

a. In Figure 12.5 on page 187 we usd®Kand EXTRACZ_COLUMNS
make 3 graphs. Make the same 3 graphs but using these simpler
equations. Describe the di erences between your graphs atitbse
of Figure 12.5.

b. Find the solutions which are constant as in the previous praém.

6. We saw in the lower right frame of Figure 12.6 on page 188 on ma$j88
that for o =15 =16 the solution to (11) and to the linear approxima-
tion (12) were quite dierent. In this exercise we will compee the
solution to (11) with a cos function of the same amplitude angeriod.

a. Author the expression (17) with o = 15 =16 and then approxi-
mate it. Then graph the result.

b. Using this graph estimate the period® of this function
c. Graph £ cos&-t) using the P you found in the previous part.

d. Notice the graph you found in the rst part is pretty at at the
top and bottom compared to the cos curve. What is the solution
of (11) if o= (and wy = 0, of course)? You should be able to
just guess the solution.

7. In this problem we explore what happens to a pendulum with itial
position o =0 but with a nonzero value forwy. If the initial velocity
is not too large the pendulum will swing up to an angle and then
swing back. The motion will be the same as if we started withy =
and wp = 0 except that starting place for the graph will be di erent.
That is, the curves will be the same except one will be shifted the
right. However if wy is large enough, the pendulum will swing all the
way over the top.
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a. Author

EXTRACZ. COLUMNS(
RK(w,-25 SIN( )], [t,  ,wl], [0,0, wg], 0.05, 60), 1, 2)

Substitute wp = 9:5 and approximate and then graph the result.
Do the same forwp = 10 and wg = 10:5.

b. The behavior of the solutions of the previous part are quiteier-
ent depending on whethewv, is large enough to send the pendulum
over the top (so it keeps spinning around and around) or it dea't
make it to the top and so falls back. In this problem we look for
a value ofwg so that it never falls back but also never goes over
the top. We will try to choose wy so that it will have the exact
amount of energy to just get to the top. Since we are assumingro
pendulum is frictionless, there are two kinds of energy in owsys-
tem, kinetic and potential energy. Kinetic energy i%mv2 which
in our case issm(ds=df? = Zml(d =dt)2. Potential energy gained
as the pendulum swings above its rest position legh whereh is
the height above the rest position. So the potential energyt éhe
top is 2mgl. Use the law of conservation of energy to show that
if the kinetic energy at the bottom equals the potential enayy at
the top then r

wo= Y0)=2 |§

which is 10 wheng=l= 25.

c. While the solution to (11) on page 182 cannot be expressed in
terms ofpelementary functions, the solution when (0) = 0 and
q0)=2" ¥ can. Show that
P+
(t) = 4arctan(e 1)
is a solution of (11) and that Y0) = 2p 9. You will need set
the trigonometry mode to Expand under the [2clare/Algebra
StateSmpli cation menu. Also remember that Derive usesATAN
for the arctan function.

d. When g=I = 25, (t) = 4arctan(e) . Graph this function
and compare it with the graph you made in the rst part with
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wo = 10. Also graph

EXTRACZ COLUMNS(
RK(w,-25 SIN( )], [t,  ,w], [0,0,10], 0.01, 500), 1, 2)

e. Why do these graphs di er?



Appendix A
Utility Files

This book de nes 19 Derive functions. All of these functions are de-
ned in the utility le ADD-UTIL.MTH. This le and its compan ion, ADD-
HEAD.MTH, can be downloaded from our web page

http://www.math.hawaii.edu/206L/

Listings of these les are given at the end of this appendix ithe (hopefully
unlikely) event you have trouble downloading them. Additimal information
on the use of the functions as well as examples are includedtbe web site
above.

How to use these les. When a student rst starts to work on a lab
assignment he should:

1. Enter (Author) his name and the lab number as a comment. (Com-
ments are entered using the double quotes,)

2. Do File/L oad/M ath add-head.
3. Begin working on his assignment.

The le ADD-HEAD.MTH has only four lines. Two of these are com
ments and one gives the variable syntax for the commands. Thher line
is LOAD("add-util") . This automatically silently loads ADD-UTIL.MTH. !
For this load command directory to work correctly, ADD-HEAD.MTH and
ADD-UTIL.MTH should both be in the current directory. It is b est to put
them in the default directory.

1This is only true for DfW version 4.08 or greater. If you have an earlier version you
can download the latest version from theDerive web site: http://www.derive.com . You
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Home use of these les. If you have Derive for your own computer you
can install ADD-HEAD.MTH and ADD-UTIL.MTH. When Derive starts
it has a default directory it looks for MTH les. If you haven't changed this it
is .. nDfWiMath That directory contains the utility les that come with the

system. You should add a new subdirectory, we use nDfWM2061. using
the Win95 le manager and then make that your default directoy using
the File/C hange Directory command in DfW. Next, you put both ADD-
UTIL.MTH and ADD-HEAD.MTH in this default directory and the above
directions should work ne. You can also add all the=-*.MTH les that are
used in the book's gures to this directory. All of these lesare available
from our web site.

A.1 The Functions

Table A.1 on page 197 and A.2 on page 198 list the functions ded in
ADD-UTIL.MTH. In each of the examples below it is assumed thathe
utility le ADD-UTIL.MTH has been loaded as described above Here are
some examples on their use.

Example 1. If you want to compute a tangent line for sayf (x) = x3=3 at
the point x = 1 you would Author and Smplify TANGENT(x"3/3, x, 1)
The result will bey = x  2=3. We describe the variables for this and the
other functions typically as TANGENT( u, X, a)where theu refers to any
expression in the variablex and a is a parameter in the function which in
this case it is the point we are interested in.

Example 2. Suppose that you want to nd the quadratic polynomialax? +
bx + c that passes through the three points (), (1;2), and (28). You
Author CURVEFIT( x, [[0,1], [1,2], [2,8]]) . After simplifying the re-
sult will be 2x2. Probably the best way to do this is to start by de ning
the 3 2 matrix of points using the matrix button UI and then plotting
the 3 points on a graph. Next you Aithor the CURVEFIT(x,part and then
right click and insert the matrix of data points. Smplify and plot to make
sure the answer function does indeed pass through the 3 dataiqts. The

can use earlier versions ofDerive but after loading ADD-HEAD you need to highlight

and then evaluate (by pressing the il button) the line ‘LOAD(\add—utiI") ‘ This
should evaluate to “true.'
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CURVEFIT function will nd the appropriate degree polynomial through
the data regardless of the number of points.

Example 3. Suppose that now that you want to nd the quadratic poly-
nomial ax? + bx+ c that passes through the two points: (0,0) and (1,2). In
addition, you want the derivative to be 1 whernx = 0. You A uthor CURVEFIT(
X, [[0,1], [1,2]], [[O,1]]) . In other words, you enter one matrix for
the points satis ed by the function and another matrix for the points satis ed
by the derivative. The degree of the answer polynomial is ahys one less
than the total number of equations for both the function and ts derivative.

Example 4. Let's solve the equationx?+ x 1 = 0 using Newton's method
of Chapter 5. We'll usex0 = 5 as our initial guess. We obtain our rst
approximation by Authoring NEWT(x"2+x-1, x, 5) and then Smplifying

to get 263263. We repeat this process using this new value as our sitay

point. After 4{5 iterations we obtain an approximation we gad to 6 decimal
places.

Example 5. More generally, to approximate the solution to the equation
u = 0, where u is an expression inx, using Newton's method with initial
guessa you author and approximateNEWT(u, x, a). Suppose instead that
you want the rst k approximates starting with x = a, then you approximate
NEWT(u, %, a, k). The 4" argument is optional. You get a nice picture
of the Newton method in action by approximatingDRAWEWT (u, X, a, k)
and then plotting the result. Notice that the starting point can be a complex
number in which case the approximates are also complex. Thenttion
DRAWOMPLEX(Wan be applied to the solution vector to get a matrix of
[X; y] points which can then be plotted in a 2D-plot window.

Example 6. Suppose that you want to approximate the integral which de-
nes the natural logarithm of 2, i.e.,

using say the trapezoid rule or Simpson's rule for numericahtegration.
We do this for n = 100 subdivisions by Authoring either the expression
TRAP(1/x, x, 100, 1, 2) or the expressionSIMP(1/x, x, 100, 1, 2)

Now since we are interested in a decimal approximation we ufiee il
button to simplify the expression. More generally, supposgu approximate
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the integral of the expressionu, in the variable x over the interval [a; b, using
Simpson's rule withn subdivisions. You Author SIMP(u,x,n,a,b) and press

l

Example 7. Suppose that you want to solve a Newton cooling type di er-
ential equation: y°= (y 2) with initial conditions y(0) = 4. You start by
manipulating the equation to the formy®+ py = q wherep =1 and q= 2.
The function DE(p,q,x,y,x0,y0)  solves this equation so we just substitute
in the right values which in this case means that we éthor DE(1,2,x,y,0,4)

and press il :

Example 8. Suppose that you want to look at the direction eld for the
equationy®= r wherer is an expression irx andy. You use the function

DF(r,x,x0,xm,m,y,y0,yn,n))

where the grid of points is determined by0 < x < xm with m subdivisions
and y0 <y < yn with n subdivsions. Doing this for the previous example
would mean_Authoring say DF(-(y-2),x,0,6,12,y,-2,4,12) and then ap-

proximating the expression by pressingil . You get a graph with a slope
line at every half integer in an appropriate range ot and y's by plotting the
result.
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Table A.1: Functions De ned in ADD-UTIL.MTH

SUBST(u; x; @)

Substitutes x = a in the expressionu.

SECANT(u; x; a; h)

Secant line ofu(x) through x = aand x =
a+ h.

TANGENT( u; x; a)

Tangent line ofu(x) at x = a.

CURVEFIT( x; data)
CURVEFIT( x; data; ddata)

Fits a polynomial in the variablex, though
the points data := [[x0;y0]; [x1;y1];::]
provided ddata is either omitted or []. Oth-
erwise, the graph of the derivative must
pass through the ddata points.

NEWT(u; x; x0)
NEWT( u; x; X0; k)

Newton algorithm for root of u(x) = 0 with

initial guess x0. If the optional k argu-
ment is used then a vector ok iterates is
returned.

DRAW _NEWT(u;x; x0; k)

Draws a picture of Newton method applied
to u(x) = 0 with initial guess x0 and k
iterates. Simplify expression and plot the
result.

DRAW _ COMPLEX( V)

Converts the vector of complex numbers
[XO + iy0;x1 + iy1;::] into a matrix of
points [[X0; yOJ; [x1; y1]; :::] which can then
be plotted in a 2D-plot window.

BISECT(u; x; V)
BISECT(u; x; v; k)

Bisection method for solvingu(x) = 0 with

interval v =[a; . The answer is either the
left or right half of the interval depending
on the root. If the optional k argument is
used then a vector ok iterates is returned.

LEFT(u;x;n;a;b)

Numerical approximation to the integral
of u(x) over [a;H using the left-endpoint
method with n rectangles.

MID( u; x; n; a; b)

Numerical approximation to the integral of
u(x) over [a; g using the midpoint method
with n rectangles.
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Table A.2: Functions De ned in ADD-UTIL.MTH (cont.)

RIGHT(u; x; n; a; b)

Numerical approximation to the integral
of u(x) over [a; 4 using the right-endpoint
method with n rectangles.

TRAP(u; x;n; a; b)

Numerical approximation to the integral of
u(x) over [a; g using the trapezoid method
with n trapezoids.

SIMP(u; x; n; a; b)

Numerical approximation to the integral
of u(x) over [a; g using Simpson's method
with n subdivisions.

DRAW _LEFT(u;x;n;a;b)

Draws graphic demonstration of the left-
endpoint method for numerically integrat-
ing u(x) over the interval [a; i usingn rect-
angles.

DRAW _RIGHT(u;x; n;a;b)

Same as above except for the right
endpoint method.

DRAW _TRAP(u;x;n;a;b)

Draws graphic demonstration of the trape-
zoid method for numerically integrating
u(x) over the interval [a; g using n trape-
zoids.

DE(p; g; x; ¥; X0; y0)

Solves the di erential equation (DE) y°+
p(x)y = a(x) with y(x0) = yO.

DF(r; x;x 0; xm; m;y; y0; yn;n)

The direction eld (DF) for the di erential
equation: y° = r(x;y) with a grid deter-
mined by x0 < x < xm with m subdivi-
sions andy0 <y < ym with n subdivi-
sions.

EULER(r; x;y; X 0; yO; xn; n)

This gives an approximate solution to:
y°= r(x;y) with y(x0) = y0. The answer
is a vector of points [kO;y0]; [x1; y1];::]
from which one makes a piecewise lineg
approximating function, i.e., connect the
points with straight line segments to get

i\

the approximating function's graph.
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A.2 Listings of the Utility Files

In the event you are unable to download these les, you can tgpthem in.
Probably the easiest way to do this is to starDerive and author each line.
Then save the rst asadd-head and the second asdd-util

A.2.1 The ADD-HEAD.MTH File

"The vector below declares all the utility functions in add- util.mth."
[SUBST(u,x,a):=,SECANT(u,x,a,h):=,TANGENT(u,x,a):=, CURVEFIT(x,data):=,SPLINE(~
x,data,m1):=,NEWT(u,x,x0,k):=,DRAW_NEWT(u,x,x0,k):=  ,DRAW_COMPLEX(v):=,BISECT(~
u,x,v0,k):=,LEFT(u,x,n,a,b):=,MID(u,x,n,a,b):=,RIGH T(u,x,n,a,b):=, TRAP(u,x,n,~
a,b):=,SIMP(u,x,n,a,b):=,DRAW_LEFT(u,x,n,a,b):=,DRA W_TRAP(u,x,n,a,b):=,DE(p,g~
X,Y,x0,y0):=,DF(r,x,x0,xm,m,y,y0,yn,n):=,EULER(r,x ,y,X0,y0,xn,n):=]

LOAD("add-util")

"Your file starts here:"

A.2.2 The ADD-UTIL.MTH File

"File add-util.mth, (c) 1997 Ralph Freese and David Stegeng a"
"See add-summary.mth for a summary of new functions defined below:"
"Substitute x=a into the expression u."

SUBST(u,x,a):=LIM(u,x,a)

"The secant line of u(x) through x = a and x = a + h."
SECANT(u,x,a,h):=y=(SUBST(u,x,a+h)-SUBST(u,x,a))/h*  (x-a)+SUBST(u,x,a)
"The tangent line of u(x) at x = a."
TANGENT(u,x,a):=y=SUBST(u,x,a)+SUBST(DIF(u,x),x,a)* (x-a)

"Helper functions for CURVEFIT."

POLY(x,a,n):=SUM(a SUB (i+1)*x"i,i,0,n)

DPOLY(x,a,n):=SUM(i*a SUB (i+1)*x"(i-1),i,1,n)

EQNS(data,ddata,a,n):=APPEND(VECTOR(POLY(data SUB i 8U1,a,n)=data
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SUB i SUB~

2,i,1,DIMENSION(data),1), VECTOR(DPOLY(ddata SUB i SUB Jla,n)=ddata

SUB i SUB~

2,i,1,DIMENSION(ddata), 1))

UNK(n):=RHS(VECTOR(SOLVE (upsilon=upsilon,upsilon),i ,1,n,1)° SUB 1)
ANS(x,data,ddata,a,n):=IF(DIMENSION(ans_:=SOLVE(EQN S(data,ddata,a,n),[a]))=0,~
[,POLY(x,(RHS(ans_)) SUB 1,n))

"Finds the polynomial of the right degree through the nx2-da ta matrix."
CURVEFIT1(x,data):=ANS(x,data,[], UNK(DIMENSION(data )),DIMENSION(data)-1)
CURVEFIT2(x,data,ddata):=ANS(x,data,ddata, UNK(DIMEN SION(data)+DIMENSION(ddata~
)),DIMENSION(data)+DIMENSION(ddata)-1)
CURVEFIT(x,data,ddata):=IF(DIMENSION(ddata)>0,CURVE FIT2(x,data,ddata), CURVEFI~
T1(x,data), CURVEFIT1(x,data))

"Quadratic spline function interpolating data points with initial
slope m1."

SPLINE_AUX(x,data,m):=SUM(CURVEFIT(x,[data SUB k,data SUB
(k+1)],[[data SUB k~

SUB 1,m SUB k SUB 2J])*CHI(data SUB k SUB 1,xdata SUB (k+1) RJ
1),k,1,DIME~

NSION(data)-1)

SLOPE(data,m1):=ITERATES([v SUB 1+1,2%(data SUB (v SUB 1% SUB
2-data SUB (v~

SUB 1) SUB 2)/(data SUB (v SUB 1+1) SUB 1-data SUB (v SUB 1) SUBv1
SUB 2]~

.v,[1,m1],DIMENSION(data)-1)

"Note that SLOPE returns the matrix [[1,m1], [2,m2], ...]."
SPLINE(x,data,m1):=SPLINE_AUX(x,data,SLOPE(data,m1) )

"Newton algorithm"

NEWT _ITERATES(u,x,x0,k):=ITERATES(x-u/DIF(u,x),x,x0 k)

NEWT (u,x,x0,k):=IF(k>0,NEWT_ITERATES(u,x,x0,k),?,SU  BST(x-u/DIF(u,x),x,x0))

"This produces a vector which when plotted demonstrates New ton's method."
DRAW_NEWT(u,x,x0,k):=VECTOR([[v,0],[v,SUBST(u,x,v)] ,[INEWT(u,x,v),0]],v,ITERAT~
ES(NEWT (u,x,w),w,x0,Kk))

DRAW_COMPLEX(v):=VECTOR([RE(2),IM(2)],Z,v)
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"Bisection method helper"

BIS_AUX(u,x,a,b):=IF(SUBST (u,x,a)*SUBST(u,x,(a+b)/2 )<0,[a,(a+b)/2],[(a+b)/2,b~
D

"Bisection method"

BISECT(u,x,v0,k):=IF(k>0,ITERATES(BIS_AUX(u,x,v SUB 1 ,v SUB

2),v,v0,k),?,BIS_~
AUX(u,x,vO0 SUB 1,v0 SUB 2))

"Formula for the left-endpoint method for integrating u(x) over [a,b]
with n ~

subdivisions."

LEFT(u,x,n,a,b):=(b-a)/n*SUM(SUBST (u,x,a+k*(b-a)/n) ,k,0,n-1)

"Formula for the midpoint method for integrating u(x) over [ a,b] with
n subdi~

visions."

MID(u,x,n,a,b):=(b-a)/n*SUM(SUBST (u,x,a+(k+0.5)*(b- a)/n),k,0,n-1)
"Formula for the right-endpoint method for integrating u(x ) over
[a,b] with n~

subdivisions."

RIGHT(u,x,n,a,b):=(b-a)/n*SUM(SUBST (u,x,a+k*(b-a)/n ),k,1,n)

"Formula for the trapezoid method for integrating u(x) over [a,b]

with n subd~

ivisions."

TRAP(u,x,n,a,b):=(b-a)/(2*n)*(SUBST(u,x,a)+SUBST(u, X,0)+2*SUM(SUBST (u,x,a+k*(~

b-a)/n),k,1,n-1))

"Formula for Simpson's rule for integrating u(x) over [a,b] with n

subdivisio~

ns."

SIMP(u,x,n,a,b):=(b-a)/(6*n)*(SUBST(u,x,a)+SUBST(u, X,0)+2*SUM(SUBST(u,x,a+k*(~
b-a)/n),k,1,n-1)+4*SUM(SUBST(u,x,a+(k+1/2)*(b-a)/n) ,k,0,n-1))

"The box and trapezoid drawing functions used in the graphic al

demonstrations~

of numerical integration techniques."

D_BOX(x1,y1,x2,y2):=[[x1,y1],[x2,y1],[x2,y2],[x1,y2 1.[x1,y1]]

D_TRAP(x1,y1,x2,y2,x3,y3,x4,y4):=[[x1,y1],[x2,y2],[ x3,y3],[x4,y4],[x1,y1]]

DRAW_LEFT(u,x,n,a,b):=VECTOR(D_BOX(t,0,t+(b-a)/n,SU BST(u,x,t)),t,a,b-(b-a)/n,~
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(b-a)/n)

DRAW_RIGHT(u,x,n,a,b):=VECTOR(D_BOX(t,0,t+(b-a)/n,S UBST(u,x,t+(b-a)/n)),t,a,b~
-(b-a)/n,(b-a)/n)

DRAW_TRAP(u,x,n,a,b):=VECTOR(D_TRAP(t,0,t+(b-a)/n,0 ,t+(b-a)/n,SUBST(u,x,t+(b-~

a)/n),t,SUBST(u,x,1)),t,a,b-(b-a)/n,(b-a)/n)

"The solution to the differential equation (DE) y'+p(x)y=q (x) with
y(x0)=y0."
DE(p,q,X,y,x0,y0):=y=(yO+INT(g*#e INT(p,X,Xx0,X),X,X 0,X))/#eMNT(p,x,x0,X)

"Direction field helper function."

SEG(rc,x,y,x,y):=IF(ABS(rc)>1 AND
y<ABS(rc)*x,[[x-y/rc,y-y],[x+y/rc,y+~
YILIX-X,y-re*x], [x+x,y+rc*x]])

"The direction field (DF) for the differential equation: y' =r(x,y)
with a de~
termined by x0<x<xm with m subdivisions and yO<y<ym with n su bdivisions."

DF(r,x,x0,xm,m,y,y0,yn,n):=VECTOR(VECTOR(SEG(LIM(r, [X,y],[xO+j*(xm-x0)/m,y0+k~

*(yn-y0)/n]),x0+j*(xm-x0)/m,y0+k*(yn-y0)/n,(xm-x0)/ (4*m),(yn-y0)/(4*n)),j,0,m~
).k,0,n)
"The EULER function gives an approximate solution to: y'=r( X,y) with

¥I(x0):y0~

EULER(r,x,y,x0,y0,xn,n):=ITERATES(v+(xn-x0)/n*[1,LI M(r,[x,y],V)],v,[x0,y0],n)



Appendix B

Instructors' Manual

This appendix, which obviously isn't complete, will contan general informa-
tion about using this book and for each chapter

a short description on what we hope to accomplish,
things to remind the students about,
possible class demos, and

advanced topics.

Chapter 5

This chapter primarily deals with solving equations using Bwton's method.
Even thoughDerive has built in method for numerically solving equations,
there are many reasons for choosing this topic. The methodsélf is a nice
application of both di erential calculus and the geometry kehind it. It intro-
duces the students to the idea of approximation. More intestingly it forms
a subtle introduction to dynamic systems and includes suclopics as xed
points, attractors, super attractors, cycles, chaos anddctals.

You should take some time to prove and explain Theorem 1 on pag1l to
your students. It is easy to prove and shows the importance ¢hderivative,
NGYx), of the Newton iterate. The discussion after it explains whwe get
convergence as long as N@) < 1 and why is is so fast if N&r) = 0.

205



206 APPENDIX B. INSTRUCTORS' MANUAL

Advanced topics.  There are several advanced topics in the text and the
exercises that you might want to cover. For an open ended pegjt for stu-
dents or for a more advanced demonstration you might considéihe function
x3 55 from Exercise 4 and 5 on page 83. This function has three rodis
and 5. By Theorem 1 on page 71 there are intervals around each oétle

such that ,

32 5
applied to any elements of these intervals moves closer toethroot. The

project would be to have the student investigate what happesto the segence
of Newton iterates,

NG(t) = NEWT( x®> 5x;x;t) =

(1) t, NG(t), NG(NG(1)), NG(NG(NG(1))), :::,

for an arbitrary real numbert.

The exercise shows that there is also a cycle of Barﬂh two, maly 1
and 1. And, of course, NGf) is unde ned whent = 5=3. TBis means
it will become unde ned if we start with t such that NGX(t) = = 5=3, for
somek. Examint'pg_the graph ofx® 5x we can see that there is exactly onig
with NG(t;) = = 5=3 and that there ispa uniquet, with NG(t,) = t,, etc.
Derive can nd t; by solving NG(t) = = 5=3 numerically. This will return
the vector[t = -1.04111] . We can make this into aDerive function which
just returns the number as follows:

INV(t) := RHS(SOLVE(2x"3/(3x"2-5) = t, X, -3, 3) SUB 1)

and then
ITERATES(INV(Y), t, (5/3)N1/2), 7)

will show tq;t,;:::;t;. These alternate in sign and their absolute values
converge to 1. Interestingly ifjty+1] < tp< jtxj then the sequence (1) of
Newton iterates will converge to 5 or 5, depending on the parity ofk.
Thus we get smaller a d_smalleb intervals near 1 (and1) whose elements
alternately converge to 5and = 5.

Chapter 7

This chapter covers di erential equation in more detail tha is usually done
in the rst year of calculus and, if the more advanced parts & covered,
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would be suitable for second year students. Neverthelessstill concentrates
primarily on tradition population growth and related problems.

The Derive function DE(p,q,x,y,x0,y0)  solves the general rst order
linear di erential equation

3) Yo+ p(X)y = a(X);  Y(Xo) = Yo

In order to use this the student needs to rewrite his di erentil equation into
this form so he can identifyp(x) and g(x).

For population problems, where the general solutions hasdtformy(t) =
yoek(t 1) the student is usually give some information which allowsiim to
nd yo, Kk, andty and then ask for the population at some other time. It may
be a good idea to do one such problem in class. Also note in Hi#l# and
doubling time problems it may not be necessary to solve fgp.

Advanced topics.  We consider the Verhulst population model:

dP P

9 e kP 1 o)
This makes a very nice demonstration of the methods of this apter. We
rst draw the direction eld for this equation; see Figure 73 on page 108.
This screen clearly shows that under this population modehe population
tends to P, whether it starts below or aboveP;. We then note that even
though (9) is not of the form of (3), the substitutionQ = 1=P transforms the
equation into a linear rst order equation. This is then soled and plotted.

We also introduce Euler's method of nding an approximate dation to
an equation of the formy®= f (x;y).
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Index

asymptote, 31
attractor, 71
super, 71

basin of attraction, 72
bisection method, 77{79

chaos, 73

character input mode, 53
complex numbers, 71
complex plane, 72
complex roots, 9

critical points, 30

de ning variables, 17

di erential equations, 56, 97{108
linear rst order, 98

direction eld, 102

dynamic system, 71

Euler's constant, 5
Euler's method, 105
exponential growth, 46

xed point, 81
attractive, 72

Gamma function, 42
half-life, 101

integral test, 126, 134{139
interest, 127

continuous, 139
e ective annual rate, 140

loan repayment, 127{128

Newton's Law of Cooling, 99{101
Newton's method, 65{75

Poisson summation, 142
population growth, 51, 97{99, 103{
105

radioactive decay, 101
ratio test, 126, 130{134
recursion, 19

right mouse button, 5

series
convergent, 125
divergent, 125
geometric, 125, 126
harmonic, 139
Simpson's rule
derivation, 92{93
error estimate, 87
slope eld, 102
solving equations, 8{9
numerically, 45
spline functions, 58
subscripts, 23
super attractor, 71

tangent line, 37
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trapezoid rule
error estimate, 87

vectors, 22

web page, xii
word input mode, 18
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