Notes on tensor products

Robert Harron

Department of Mathematics, Keller Hall, University of Hawai‘i at Mānoa, HonOlULU, HI 96822, USA

E-mail address: rharron@math.hawaii.edu

Abstract. Graduate algebra

Contents

Chapter 1. Tensor products 5

1. Basic definition 5
Bibliography 9

CHAPTER 1

Tensor products

1. Basic definition

Last semester, we quickly defined and constructed the tensor product of modules two modules M and N over a commutative ring R, defining it as the universal target $M \otimes_{R} N$ of the universal R-bilinear form. Here, we'll begin by considering the more general setup where R is allowed to be non-commutative. We first introduce the generalization of a bilinear map to this setting: a 'balanced' map.

Let R be a (possibly non-commutative, but always unital) ring. In this section, M will be a right R-module and N will be a left R-module, unless otherwise indicated.

Definition 1.1. Let A be an abelian group (written additively). A function $\psi: M \times N \rightarrow A$ is called R-balanced (or middle R-linear) if for all $m_{1}, m_{2}, m \in M, n_{1}, n_{2}, n \in N$, and $r \in R$,
(i) $\psi\left(m_{1}+m_{2}, n\right)=\psi\left(m_{1}, n\right)+\psi\left(m_{2}, n\right)$,
(ii) $\psi\left(m, n_{1}+n_{2}\right)=\psi\left(m, n_{1}\right)+\psi\left(m, n_{2}\right)$,
(iii) $\psi(m r, n)=\psi(m, r n)$.

Let R - $\operatorname{Balan}_{M, N}(A)$ denote the set of R-balanced A-valued functions $\psi: M \times N \rightarrow A$.
We may now define the tensor product $M \otimes_{R} N$ by a universal property as we did in the case of commutative R. For simplicity, we will eschew the language of natural transformations.

Definition 1.2. The tensor product of M and N over R is the abelian group $M \otimes_{R} N$ (if it exists) equipped with an R-balanced map $\psi_{\text {univ }}: M \times N \rightarrow M \otimes_{R} N$ defined by the following universal property. For every abelian group A and every $\psi \in R-\operatorname{Balan}_{M, N}(A)$, there is a unique group homomorphism $\varphi: M \otimes_{R} N \rightarrow A$ such that

commutes.
Theorem 1.3. The tensor product $M \otimes_{R} N$ exists.
Proof. The proof is basically the same as the commutative case, but let's go through it again. First, we'll define the abelian group $M \otimes_{R} N$ and $\psi_{\text {univ }}$, then we'll show it satisfies the universal property. Let $F=\operatorname{Free}(M \times N)$ be the free abelian group (i.e. the free Z-module) on $M \times N$, i.e. the abelian group whose elements are formal finite linear combinations

$$
\sum_{(m, n) \in M \times N} a_{(m, n)} \cdot(m, n)
$$

with $a_{(m, n)} \in \mathbf{Z}$. There is a natural group homomorphism $M \times N \rightarrow F$ sending (m, n) to $1 \cdot(m, n)$. Let $J \subset F$ be the subgroup generated by all elements of one of the following forms, as m_{1}, m_{2}, m varies over all elements of M, n_{1}, n_{2}, n varies over all elements of N, r varies over all elements of R :
(i) $\left(m_{1}+m_{2}, n\right)-\left(m_{1}, n\right)-\left(m_{2}, n\right)$,
(ii) $\left(m, n_{1}+n_{2}\right)-\left(m, n_{1}\right)-\left(m, n_{2}\right)$,
(iii) $(m r, n)-(m, r n)$.

Let $M \otimes_{R} N:=F / J$. Let $\psi_{\text {univ }}: M \times N \rightarrow M \otimes_{R} N$ be the composition of the quotient map $F \rightarrow M \otimes_{R} N$ with the natural injection $M \times N \rightarrow F$. By the definition of $J, \psi_{\text {univ }}$ is R-balanced.

Let's now show that this constructed $\psi_{\text {univ }}: M \times N \rightarrow M \otimes_{R} N$ satisfies the universal property. Let A be an abelian group and let $\psi: M \times N \rightarrow A$ be an R-balanced map. By the universal property of free Z-modules, there is a unique homomorphism $\widetilde{\varphi}: F \rightarrow A$ such that $\widetilde{\varphi}((m, n))=\psi(m, n)$ for all $(m, n) \in M \times N$. Since ψ is R-balanced, $\widetilde{\varphi}(J)=0$, i.e. $J \subseteq \operatorname{ker}(\widetilde{\varphi})$. By the universal property of quotients, there is a unique homomorphism $\varphi: M \otimes_{R} N \rightarrow A$ such that $\varphi((m, n) \bmod J)=\widetilde{\varphi}((m, n))$. We thus have the commutative diagram

yielding the desired universal property.
The image of (m, n) in $M \otimes_{R} N$ is denoted $m \otimes n$ as is called a pure tensor or a simple tensor. Note that it denotes an equivalence class and hence may be equal to some other expression $m^{\prime} \otimes n^{\prime}$. A general element of $M \otimes_{R} N$ is a linear combination (with \mathbf{Z} coefficients) of pure tensors.

As you may have noticed, unlike the case where R is commutative, the tensor product may not be an R-module. In order to get that extra structure, we can proceed as follows.

Definition 1.4. Let R and S be two rings. An abelian group M is called an (R, S)-bimodule if it is a left R-module, a right S-module, and

$$
r(m s)=(r m) s
$$

for all $r \in R, s \in S, m \in M$.
A simple, and important, example is the case where R is commutative and M is a left (or right) R-module. In this case, you can define a right (or left) R-module structure on M by $m \cdot r:=r \cdot m$. This makes M into a (R, R)-bimodule called the standard bimodule structure on M.

Proposition 1.5. Let R and S be rings. Let M be an (R, S)-bimodule and let N be a left S-module. Then, $M \otimes_{S} N$ is a left R-module with scalar multiplication defined by

$$
r \cdot\left(\sum_{i=1}^{k} m_{i} \otimes n_{i}\right):=\sum_{i=1}^{k}\left(r \cdot m_{i}\right) \otimes n_{i}
$$

Proof. We'll take advantage of the universal property. For each $r \in R$, you can check that the $\operatorname{map} \psi_{r}:(m, n) \mapsto(r m) \otimes n$ is S-balanced; indeed, checking condition (iii),

$$
\begin{aligned}
\psi_{r}(m s, n) & =r(m s) \otimes n \\
& =(r m) s \otimes n \\
& =(r m) \otimes(s n) \\
& =\psi_{r}(m, s n)
\end{aligned}
$$

By the universal property of tensor products, there is a unique homormophism

$$
\varphi_{r}: M \otimes_{S} N \rightarrow M \otimes_{S} N
$$

such that

$$
\varphi_{r}(m \otimes n)=\psi_{r}(m, n)=(r m) \otimes n
$$

The existence of φ_{r} shows that the definition of the scalar multiplication in the statement of the proposition is well-defined (independent of the way of representing the input as a sum of pure tensors) and shows that it gives a left R-module structure.

In particular, if R is a commutative ring, M and N are two left R-modules, and we view M with its standard bimodule structure, then $M \otimes_{R} N$ is a left R-module and this left R-module structure is the same we defined near the end of last semester (i.e. the one that satisfies the universal property of being the target of the universal R-bilinear form).

Lemma 1.6. In any tensor product $M \otimes_{R} N$, the pure tensors $m \otimes 0$ and $0 \otimes n$ are 0 for all $m \in M$ and all $n \in N$.

Proof. For $m \in M$,

$$
\begin{aligned}
m \otimes 0 & =m \otimes(0+0) \\
& =m \otimes 0+m \otimes 0
\end{aligned}
$$

so canceling one $m \otimes 0$ on each side gives the desired result. Similarly, for $0 \otimes n=0$.
Lemma 1.7. For $m, n \in \mathbf{Z}_{\geq 1}$,

$$
\mathbf{Z} / m \mathbf{Z} \otimes_{\mathbf{Z}} \mathbf{Z} / n \mathbf{Z} \cong \mathbf{Z} / \operatorname{gcd}(m, n) \mathbf{Z}
$$

Proof. First, note that $\mathbf{Z} / m \mathbf{Z} \otimes_{\mathbf{Z}} \mathbf{Z} / n \mathbf{Z}$ is a cyclic abelian group generated by $1 \otimes 1$; indeed,

$$
a \otimes b=a \otimes(b \cdot 1)=(a b) \otimes 1=((a b) \cdot 1) \otimes 1=a b(1 \otimes 1)
$$

so every tensor is a multiple of $(1 \otimes 1)$.
Let $g:=\operatorname{gcd}(m, n)$. By Bézout's identity, there are integers $u, v \in \mathbf{Z}$ such that $g=m u+n v$. Thus,

$$
\begin{aligned}
g(1 \otimes 1) & =(m u+n v)(1 \otimes 1) \\
& =m u(1 \otimes 1)+n v(1 \otimes 1) \\
& =(m u \cdot 1) \otimes 1+1 \otimes(n v \cdot 1) \\
& =0 \otimes 1+1 \otimes 0 \\
& =0,
\end{aligned}
$$

and so $\mathbf{Z} / m \mathbf{Z} \otimes_{\mathbf{Z}} \mathbf{Z} / n \mathbf{Z}$ is cyclic of order dividing g. To show its order is at least g, we'll take advantage of the universal property of tensor products. Consider the map

$$
\begin{aligned}
\psi: \mathbf{Z} / m \mathbf{Z} \times \mathbf{Z} / n \mathbf{Z} & \rightarrow \mathbf{Z} / g \mathbf{Z} \\
(a, b) & \mapsto a b(\bmod g)
\end{aligned}
$$

which is well-defined because g divides both m and n. It is straightforward to check that ψ is \mathbf{Z}-bilinear and so, by the universal property, there is a \mathbf{Z}-module homomorphism $\varphi: \mathbf{Z} / m \mathbf{Z} \otimes_{\mathbf{Z}} \mathbf{Z} / n \mathbf{Z} \rightarrow \mathbf{Z} / g \mathbf{Z}$. Since φ 'agrees with' $\psi, \varphi(1 \otimes 1)=1$. But $1 \in \mathbf{Z} / g \mathbf{Z}$ has order g, so $1 \otimes 1$ must have order at least g.

Lemma 1.8. Suppose R is commutative and M and N are two left R-modules with their standard bimodule structures. If M is a free R-module with basis $B=\left\{m_{i}: i \in I\right\}$ and N is a free R-module with basis $C=\left\{n_{j}: j \in J\right\}$, then $M \otimes_{R} N$ is a free R-module with basis $B \otimes C:=\left\{m_{i} \otimes n_{j}: i \in I, j \in J\right\}$, so that $\operatorname{rk}_{R}\left(M \otimes_{R} N\right)=\operatorname{rk}_{R}(M) \cdot \operatorname{rk}_{R}(N)$.

Proof. $B \otimes C$ spans: we know that $M \otimes_{R} N$ is generated by pure tensors $m \otimes n$. Furthermore, a given m is a finite linear combination

$$
m=\sum_{i \in I} a_{i} m_{i}
$$

and similarly

$$
n=\sum_{j \in J} b_{j} n_{j}
$$

Thus,

$$
m \otimes n=\sum_{i \in I, j \in J} a_{i} b_{j}\left(m_{i} \otimes n_{j}\right)
$$

and so $B \otimes C$ is a generating set.
$B \otimes C$ is linearly independent: suppose

$$
\sum_{i \in I, j \in J} \alpha_{i, j}\left(m_{i} \otimes n_{j}\right)=0
$$

(where only finitely many $\alpha_{i, j}$ are non-zero). We want to show that all $\alpha_{i, j}$ are zero. To do this, we will 'extract' this coefficient. This is done by constructing, for each pair (i, j), a linear functional $f_{i, j}: M \otimes_{R} N \rightarrow R$ that takes the value 1 on $m_{i} \otimes n_{j}$ and 0 on $m_{i^{\prime}} \otimes n_{j^{\prime}}$ for $i^{\prime} \neq i$ and $j^{\prime} \neq j$. If we have such linear functionals, then, applying each one independently to the above relation gives

$$
0=f_{i, j}(0)=f_{i, j}\left(\sum_{i \in I, j \in J} \alpha_{i, j}\left(m_{i} \otimes n_{j}\right)\right)=\alpha_{i, j}
$$

So, how do you construct a linear function $M \otimes_{R} N \rightarrow R$? By the universal property of tensor products, you just have to define a bilinear form $\psi_{i, j}: M \times N \rightarrow R$. Given what we want from this bilinear form, we define it as follows. For $i_{0} \in I, j_{0} \in J$, and

$$
m=\sum_{i \in I} a_{i} m_{i} \quad \text { and } \quad n=\sum_{j \in J} b_{j} n_{j},
$$

define

$$
\psi_{i_{0}, j_{0}}(m, n)=a_{i_{0}} b_{j_{0}}
$$

This gives an R-valued bilinear form and a linear functional on $M \otimes_{R} N$ with the desired property.

Bibliography

