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CHAPTER 1

Tensor products

1. Basic definition

Last semester, we quickly defined and constructed the tensor product of modules two modules
M and N over a commutative ring R, defining it as the universal target M ®pr N of the universal
R-bilinear form. Here, we’ll begin by considering the more general setup where R is allowed to be
non-commutative. We first introduce the generalization of a bilinear map to this setting: a ‘balanced’
map.

Let R be a (possibly non-commutative, but always unital) ring. In this section, M will be a right
R-module and N will be a left R-module, unless otherwise indicated.

DEFINITION 1.1. Let A be an abelian group (written additively). A function ¢ : M x N — A is
called R-balanced (or middle R-linear) if for all my, ma,m € M,n1,n9,n € N, and r € R,
(i) ¥(m1 +ma,n) =p(mi,n) + (ma,n),
(i) ¥(m,n1 +n2) = (m,n1) +p(m, n2),
(iil) w(mr,n) = Y(m,rn).
Let R-Balany; n(A) denote the set of R-balanced A-valued functions ¢ : M x N — A.

We may now define the tensor product M ®pz N by a universal property as we did in the case of
commutative R. For simplicity, we will eschew the language of natural transformations.

DEFINITION 1.2. The tensor product of M and N over R is the abelian group M ® g N (if it exists)
equipped with an R-balanced map Yuniy : M XN — M®pgN defined by the following universal property.
For every abelian group A and every ¢ € R-Balanp; n(A), there is a unique group homomorphism
p:M®r N — A such that

M x N -2 M @p N

Ell
x\ , 4

A
commutes.

THEOREM 1.3. The tensor product M ®@r N exists.

PROOF. The proof is basically the same as the commutative case, but let’s go through it again.
First, we’ll define the abelian group M ®g N and ¥univ, then we’ll show it satisfies the universal
property. Let F = Free(M x N) be the free abelian group (i.e. the free Z-module) on M x N, i.e. the
abelian group whose elements are formal finite linear combinations

Z A(m,n) * (ma ’I’L)

(m,n)eMxN
With @(y ) € Z. There is a natural group homomorphism M x N — F sending (m,n) to 1- (m,n).
Let J C F be the subgroup generated by all elements of one of the following forms, as my, mo, m varies
over all elements of M, ni,no, n varies over all elements of N, r varies over all elements of R:
(i) (my +mag,n) — (m1,n) — (ma,n),
(ii) (m,n1 4+ n2) — (m,n1) — (M, na),
(iii) (mr,n) — (m,rn).
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Let M @g N := F/J. Let ¥univ : M X N — M ®r N be the composition of the quotient map
F — M ®pr N with the natural injection M x N — F. By the definition of J, ¥,y is R-balanced.

Let’s now show that this constructed ¥yniy : M X N — M ®pg N satisfies the universal property.
Let A be an abelian group and let ¥ : M x N — A be an R-balanced map. By the universal property
of free Z-modules, there is a unique homomorphism ¢ : F — A such that ¢((m,n)) = ¢(m,n) for
all (m,n) € M x N. Since ¢ is R-balanced, ¢(J) = 0, i.e. J C ker(p). By the universal property of
quotients, there is a unique homomorphism ¢ : M @ g N — A such that ¢((m,n) mod J) = @((m,n)).
We thus have the commutative diagram

Yuniv
— A
MxN—sF——M®®rN

%a!a
\ M e Jle

A
yielding the desired universal property. O

The image of (m,n) in M @ N is denoted m ® n as is called a pure tensor or a simple tensor.
Note that it denotes an equivalence class and hence may be equal to some other expression m’ ® n'.
A general element of M ®g N is a linear combination (with Z coefficients) of pure tensors.

As you may have noticed, unlike the case where R is commutative, the tensor product may not be
an R-module. In order to get that extra structure, we can proceed as follows.

DEFINITION 1.4. Let R and S be two rings. An abelian group M is called an (R, S)-bimodule if
it is a left R-module, a right S-module, and

r(ms) = (rm)s
forallT € R,se S;me M.
A simple, and important, example is the case where R is commutative and M is a left (or right)

R-module. In this case, you can define a right (or left) R-module structure on M by m - r := r - m.
This makes M into a (R, R)-bimodule called the standard bimodule structure on M.

PROPOSITION 1.5. Let R and S be rings. Let M be an (R, S)-bimodule and let N be a left S-module.
Then, M ®g N is a left R-module with scalar multiplication defined by

k

k
T (Zmi ®ni> = Z(T'mi) @ 7.

i=1
Proor. We'll take advantage of the universal property. For each » € R, you can check that the
map ¥, : (m,n) — (rm) @ n is S-balanced; indeed, checking condition (iii),
Ur(ms,n) =r(ms)@n
= (rm)s®n
— (rm) ® (sn)
= (M, sn).
By the universal property of tensor products, there is a unique homormophism
or M ®Rs N —M®®sg N
such that
or(m@n)=1v.(m,n) = (rm) n.
The existence of ¢, shows that the definition of the scalar multiplication in the statement of the

proposition is well-defined (independent of the way of representing the input as a sum of pure tensors)
and shows that it gives a left R-module structure. g
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In particular, if R is a commutative ring, M and N are two left R-modules, and we view M with
its standard bimodule structure, then M ®g N is a left R-module and this left R-module structure is
the same we defined near the end of last semester (i.e. the one that satisfies the universal property of
being the target of the universal R-bilinear form).

LEMMA 1.6. In any tensor product M @gr N, the pure tensors m®0 and 0@n are 0 for allm € M
and alln € N.

PrROOF. For m € M,
m®0=m® (0+0)
=m®0+m®KO0,
so canceling one m ® 0 on each side gives the desired result. Similarly, for 0 ® n = 0. O
LEMMA 1.7. For m,n € Z>1,
Z/mZ ®z Z/nZ = Z/ ged(m,n)Z.
PROOF. First, note that Z/mZ ®z Z/nZ is a cyclic abelian group generated by 1 ® 1; indeed,
a®b=a®(-1)=(ab)®@1=((ab)-1)®1=0ab(l®1),
so every tensor is a multiple of (1 ® 1).
Let g := ged(m, n). By Bézout’s identity, there are integers u, v € Z such that ¢ = mu+nv. Thus,
9g(1®1)=(mu+nv)(1®1)
=mu(l®l)+nv(l®l)
=(mu-1)®1+1® (nv-1)
=0®14+1®0
=0,
and so Z/mZ ®zZ/nZ is cyclic of order dividing g. To show its order is at least g, we’ll take advantage
of the universal property of tensor products. Consider the map

v o Z/mZXZ/nl — Z/gZ
(a,b) — ab(mod g)’

which is well-defined because g divides both m and n. It is straightforward to check that v is Z-bilinear
and so, by the universal property, there is a Z-module homomorphism ¢ : Z/mZ ®z Z/nZ — Z/gZ.
Since ¢ ‘agrees with’ 1, (1 ® 1) = 1. But 1 € Z/¢Z has order g, so 1 ® 1 must have order at least
g. O

LEMMA 1.8. Suppose R is commutative and M and N are two left R-modules with their standard
bimodule structures. If M is a free R-module with basis B = {m; : i € I} and N is a free R-module with
basis C = {n; : j € J}, then M ®g N ‘is a free R-module with basis B& C :={m;®n;:ic€l,je J},
so that tke(M ®r N) = rkr(M) - rkg(N).

PROOF. B ® C spans: we know that M ®g N is generated by pure tensors m ® n. Furthermore,
a given m is a finite linear combination
m = Z a;my;

iel

n = ijnj.

jeJ

and similarly

Thus,
men = Z a;bj(m; ® ny),
iel,jeJ
and so B ® C is a generating set.
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B ® C is linearly independent: suppose
> aij(mi@n;) =0
iel,jeJ
(where only finitely many «; ; are non-zero). We want to show that all «; ; are zero. To do this,
we will ‘extract’ this coefficient. This is done by constructing, for each pair (7, j), a linear functional

fi.j : M ®r N — R that takes the value 1 on m; ® n; and 0 on my @ n; for ¢’ # ¢ and j' # j. If we
have such linear functionals, then, applying each one independently to the above relation gives

0=fi;(0)=fi; | Y, ijlmi@ny)|=ai;
iel,jeJ
So, how do you construct a linear function M ® g N — R? By the universal property of tensor products,
you just have to define a bilinear form ; ; : M x N — R. Given what we want from this bilinear
form, we define it as follows. For ig € I, jo € J, and

m = Zaimi and n= ijnj,
il jeJ
define
’l/)io,jo (mv n) = a’iobjo'
This gives an R-valued bilinear form and a linear functional on M ® p N with the desired property. [
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