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CHAPTER 1

Tensor products

1. Basic definition

Last semester, we quickly defined and constructed the tensor product of modules two modules
M and N over a commutative ring R, defining it as the universal target M ⊗R N of the universal
R-bilinear form. Here, we’ll begin by considering the more general setup where R is allowed to be
non-commutative. We first introduce the generalization of a bilinear map to this setting: a ‘balanced’
map.

Let R be a (possibly non-commutative, but always unital) ring. In this section, M will be a right
R-module and N will be a left R-module, unless otherwise indicated.

Definition 1.1. Let A be an abelian group (written additively). A function ψ : M ×N → A is
called R-balanced (or middle R-linear) if for all m1,m2,m ∈M,n1, n2, n ∈ N , and r ∈ R,

(i) ψ(m1 +m2, n) = ψ(m1, n) + ψ(m2, n),
(ii) ψ(m,n1 + n2) = ψ(m,n1) + ψ(m,n2),

(iii) ψ(mr, n) = ψ(m, rn).

Let R-BalanM,N (A) denote the set of R-balanced A-valued functions ψ : M ×N → A.

We may now define the tensor product M ⊗R N by a universal property as we did in the case of
commutative R. For simplicity, we will eschew the language of natural transformations.

Definition 1.2. The tensor product of M and N over R is the abelian group M⊗RN (if it exists)
equipped with anR-balanced map ψuniv : M×N →M⊗RN defined by the following universal property.
For every abelian group A and every ψ ∈ R-BalanM,N (A), there is a unique group homomorphism
ϕ : M ⊗R N → A such that

M ×N
ψuniv //

ψ
&&MM

MMM
MMM

MMM
M ⊗R N

∃!ϕ
��
A

commutes.

Theorem 1.3. The tensor product M ⊗R N exists.

Proof. The proof is basically the same as the commutative case, but let’s go through it again.
First, we’ll define the abelian group M ⊗R N and ψuniv, then we’ll show it satisfies the universal
property. Let F = Free(M ×N) be the free abelian group (i.e. the free Z-module) on M ×N , i.e. the
abelian group whose elements are formal finite linear combinations∑

(m,n)∈M×N

a(m,n) · (m,n)

with a(m,n) ∈ Z. There is a natural group homomorphism M × N → F sending (m,n) to 1 · (m,n).
Let J ⊂ F be the subgroup generated by all elements of one of the following forms, as m1,m2,m varies
over all elements of M , n1, n2, n varies over all elements of N , r varies over all elements of R:

(i) (m1 +m2, n)− (m1, n)− (m2, n),
(ii) (m,n1 + n2)− (m,n1)− (m,n2),

(iii) (mr, n)− (m, rn).
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6 1. TENSOR PRODUCTS

Let M ⊗R N := F/J . Let ψuniv : M × N → M ⊗R N be the composition of the quotient map
F →M ⊗R N with the natural injection M ×N → F . By the definition of J , ψuniv is R-balanced.

Let’s now show that this constructed ψuniv : M ×N → M ⊗R N satisfies the universal property.
Let A be an abelian group and let ψ : M ×N → A be an R-balanced map. By the universal property
of free Z-modules, there is a unique homomorphism ϕ̃ : F → A such that ϕ̃((m,n)) = ψ(m,n) for
all (m,n) ∈ M × N . Since ψ is R-balanced, ϕ̃(J) = 0, i.e. J ⊆ ker(ϕ̃). By the universal property of
quotients, there is a unique homomorphism ϕ : M ⊗RN → A such that ϕ((m,n) mod J) = ϕ̃((m,n)).
We thus have the commutative diagram

M ×N

ψuniv

**

ψ
##G

GG
GG

GG
GG

// F //

∃!ϕ̃
��

M ⊗R N

∃!ϕ
zz

A

yielding the desired universal property. �

The image of (m,n) in M ⊗R N is denoted m ⊗ n as is called a pure tensor or a simple tensor.
Note that it denotes an equivalence class and hence may be equal to some other expression m′ ⊗ n′.
A general element of M ⊗R N is a linear combination (with Z coefficients) of pure tensors.

As you may have noticed, unlike the case where R is commutative, the tensor product may not be
an R-module. In order to get that extra structure, we can proceed as follows.

Definition 1.4. Let R and S be two rings. An abelian group M is called an (R,S)-bimodule if
it is a left R-module, a right S-module, and

r(ms) = (rm)s

for all r ∈ R, s ∈ S,m ∈M .

A simple, and important, example is the case where R is commutative and M is a left (or right)
R-module. In this case, you can define a right (or left) R-module structure on M by m · r := r ·m.
This makes M into a (R,R)-bimodule called the standard bimodule structure on M .

Proposition 1.5. Let R and S be rings. Let M be an (R,S)-bimodule and let N be a left S-module.
Then, M ⊗S N is a left R-module with scalar multiplication defined by

r ·

(
k∑
i=1

mi ⊗ ni

)
:=

k∑
i=1

(r ·mi)⊗ ni.

Proof. We’ll take advantage of the universal property. For each r ∈ R, you can check that the
map ψr : (m,n) 7→ (rm)⊗ n is S-balanced; indeed, checking condition (iii),

ψr(ms, n) = r(ms)⊗ n
= (rm)s⊗ n
= (rm)⊗ (sn)

= ψr(m, sn).

By the universal property of tensor products, there is a unique homormophism

ϕr : M ⊗S N →M ⊗S N

such that

ϕr(m⊗ n) = ψr(m,n) = (rm)⊗ n.
The existence of ϕr shows that the definition of the scalar multiplication in the statement of the
proposition is well-defined (independent of the way of representing the input as a sum of pure tensors)
and shows that it gives a left R-module structure. �
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In particular, if R is a commutative ring, M and N are two left R-modules, and we view M with
its standard bimodule structure, then M ⊗R N is a left R-module and this left R-module structure is
the same we defined near the end of last semester (i.e. the one that satisfies the universal property of
being the target of the universal R-bilinear form).

Lemma 1.6. In any tensor product M ⊗RN , the pure tensors m⊗0 and 0⊗n are 0 for all m ∈M
and all n ∈ N .

Proof. For m ∈M ,

m⊗ 0 = m⊗ (0 + 0)

= m⊗ 0 +m⊗ 0,

so canceling one m⊗ 0 on each side gives the desired result. Similarly, for 0⊗ n = 0. �

Lemma 1.7. For m,n ∈ Z≥1,

Z/mZ⊗Z Z/nZ ∼= Z/ gcd(m,n)Z.

Proof. First, note that Z/mZ⊗Z Z/nZ is a cyclic abelian group generated by 1⊗ 1; indeed,

a⊗ b = a⊗ (b · 1) = (ab)⊗ 1 = ((ab) · 1)⊗ 1 = ab(1⊗ 1),

so every tensor is a multiple of (1⊗ 1).
Let g := gcd(m,n). By Bézout’s identity, there are integers u, v ∈ Z such that g = mu+nv. Thus,

g(1⊗ 1) = (mu+ nv)(1⊗ 1)

= mu(1⊗ 1) + nv(1⊗ 1)

= (mu · 1)⊗ 1 + 1⊗ (nv · 1)

= 0⊗ 1 + 1⊗ 0

= 0,

and so Z/mZ⊗ZZ/nZ is cyclic of order dividing g. To show its order is at least g, we’ll take advantage
of the universal property of tensor products. Consider the map

ψ : Z/mZ× Z/nZ → Z/gZ
(a, b) 7→ ab (mod g)

,

which is well-defined because g divides both m and n. It is straightforward to check that ψ is Z-bilinear
and so, by the universal property, there is a Z-module homomorphism ϕ : Z/mZ ⊗Z Z/nZ → Z/gZ.
Since ϕ ‘agrees with’ ψ, ϕ(1 ⊗ 1) = 1. But 1 ∈ Z/gZ has order g, so 1 ⊗ 1 must have order at least
g. �

Lemma 1.8. Suppose R is commutative and M and N are two left R-modules with their standard
bimodule structures. If M is a free R-module with basis B = {mi : i ∈ I} and N is a free R-module with
basis C = {nj : j ∈ J}, then M ⊗R N is a free R-module with basis B ⊗C := {mi ⊗ nj : i ∈ I, j ∈ J},
so that rkR(M ⊗R N) = rkR(M) · rkR(N).

Proof. B ⊗ C spans: we know that M ⊗R N is generated by pure tensors m⊗ n. Furthermore,
a given m is a finite linear combination

m =
∑
i∈I

aimi

and similarly

n =
∑
j∈J

bjnj .

Thus,

m⊗ n =
∑

i∈I,j∈J
aibj(mi ⊗ nj),

and so B ⊗ C is a generating set.
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B ⊗ C is linearly independent: suppose∑
i∈I,j∈J

αi,j(mi ⊗ nj) = 0

(where only finitely many αi,j are non-zero). We want to show that all αi,j are zero. To do this,
we will ‘extract’ this coefficient. This is done by constructing, for each pair (i, j), a linear functional
fi,j : M ⊗R N → R that takes the value 1 on mi ⊗ nj and 0 on mi′ ⊗ nj′ for i′ 6= i and j′ 6= j. If we
have such linear functionals, then, applying each one independently to the above relation gives

0 = fi,j(0) = fi,j

 ∑
i∈I,j∈J

αi,j(mi ⊗ nj)

 = αi,j .

So, how do you construct a linear function M⊗RN → R? By the universal property of tensor products,
you just have to define a bilinear form ψi,j : M × N → R. Given what we want from this bilinear
form, we define it as follows. For i0 ∈ I, j0 ∈ J , and

m =
∑
i∈I

aimi and n =
∑
j∈J

bjnj ,

define
ψi0,j0(m,n) = ai0bj0 .

This gives an R-valued bilinear form and a linear functional on M⊗RN with the desired property. �
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