BREADTH TWO MODULAR LATTICES

by

RALPH FREESE

Abstract

In this paper a characterization of breadth two modular lattices which can be generated by four elements is given. Those which are subdirectly irreducible are listed. An infinite list of coverings in the free modular lattice on four generators is obtained. If V is the variety of lattices generated by all breadth two modular lattices and if L is a lattice freely generated in V by four generators subject to finitely many relations, then the word problem for L is shown to be solvable.

AMS 1970 subject classifications: Primary 06A30; Secondary 06A20, 08A10, 08A15. Key words and phrases: breadth two modular lattice, coverings, splitting modular lattice.

1. INTRODUCTION

In [3] Day, Hermann, and Wille give a list of subdirectly irreducible modular lattices which can be generated by four elements. Their list consists of projective planes and lattices of breadth two. They ask if their list is complete. In this paper we show that it is complete insofar as it contains all the subdirectly irreducible breadth two fourgenerated modular lattices. This is done by showing that any four-generated breadth two modular lattice is a homomorphic image of an explicit set of lattices. It is shown that corresponding to all but three of the subdirectly irreducible four-generated breadth two modular lattices there is a covering, $u>v$, in the free modular lattice on four generators, FM(4), such that if ψ is the unique maximal congruence on $F M(4)$ separating u from v, then $F M(4) / \psi$ is isomorphic to the subdirectly irreducible breadth two lattice. All of these lattices corresponding to coverings in $F M(4)$ are splitting modular lattices in the sense of McKenzie (definitions given below). Let V be the variety (equational class) of lattices generated by all breadth two modular lattices and let $F L(V, 4)$ be the free $V-l a t t i c e$ on four generators. Then every nontrivial quotient (interval) of $F L(V, 4)$ contains a covering. Finally it is shown that the word problem for fourgenerated lattices in V is solvable.

Section 2 gives some basic definitions and gives the preliminary reductions. Section 3 gives the main result and Section 4 gives the subdirectly irreducibles. Section 5 presents the coverings and other applications mentioned above.

2. PRELIMINARY REDUCTIONS

Let $a \geq b$ in a lattice L. The sublattice
$\{x \in L \mid a \geq x \geq b\}$ is denoted a / b and is called a quotient or quotient sublattice or interval. We say that a/b transposes up to c / d and c / d transposes down to a / b if $a v d=c$ and $a \wedge d=b$. We denote this by $a / b \nearrow c / d$ and $c / d \searrow a / b$. Two quotients connected by a sequence of transposes are called projective. If $a>b$ and there is no x such that $a>x>b$, then we say a covers b, and denote this $a>b$.

Recall that a lattice has breadth n if the join of any $n+1$ elements is redundant and there is an irredundant join of n element.

LEMMA 1: A modular lattice has breadth n if and only if it has a sublattice isomorphic to the lattice of all subsets of an n element set but no sublattice isomorphic to the lattice of all subsets of an $n+1$ element set.

PROOF: If the join of the elements x_{1}, \ldots, x_{n} is irredundant, then the elements $\bar{x}_{i}=x_{1} \vee \ldots v x_{i-1} \vee x_{i+1} \vee \ldots v$ $v x_{n}, i=1, \ldots, n$ generate a sublattice isomorphic to the lattice of subsets of an n element set. The lemma follows easily from this.

LEMMA 2: Let b cover $a, a<b$, in modular lattice L. Then there exists a unique largest congruence separating a
and b, which is denoted by $\psi(a, b)$. Let $\theta(a, b)$ denote the smallest congruence of L identifying a and b. Then $\theta(a, b) \wedge \psi(a, b)=0$.

PROOF: It follows from Dilworth's basic result on congruences of lattices that $\theta(a, b)>0$ [2], [4], where 0 is the least congruence on L. The lemma follows.

Suppose $u>v$ in a free modular lattice F. Let $\psi(u, v)$ be the largest congruence separating u from v and let $K=F / \psi(u, v)$. Now if L is a homomorphic image of F in which the images of u and v are different, then L is a subdirect product of K and a lattice L which is a homomorphic image of L such that u and v are identified in L'. This is, of course, an immediate corollary to Lemma 2.

For the rest of the paper, L will denote a breadth two modular lattice generated by four distinct generators a, b, c, d and not by any three elements.

LEMMA 3: Either any three elements of the set $\{a, b, c, d\}$ join to the greatest element of $L, 1=a \vee b \vee c \vee d$, or L is a subdirect product of one or two, two element lattices and a four-generated breadth two modular lattice in which any three of the four generator join to the greatest element.

PROOF: Suppose the first statement fails, say b $\vee \mathrm{c} v \mathrm{~d}<1$. Since L has breadth two, it follows that $b v c \vee d$ is the
join of two of the generators, say $c \vee d=b \vee c \vee d$. Now $1=(a \vee b) \vee c \vee d$ implies that either $c \vee d=1$ or $a \vee b \vee c=1$ or $a \vee b \vee d=1$. The first possibility contradicts $b \vee c \vee d<1$. Suppose $a \vee b \vee d=1$, and that $a \vee b \vee c<1$. Since $c \vee d=b \vee c \vee d$, we have $a \vee c \vee d=1$.

In the free modular lattice on four generators the join of any three generators is covered by the greatest element. Hence in $L, 1 \succ b \vee c \vee d$ and $1 \succ a \vee b \vee c$. Let ψ_{1} be the largest congruence on L separating 1 from $b \vee c \vee d$ and ψ_{2} the largest congruence separating 1 from $a \vee b \vee c$. Let $\theta_{1}=\theta(1, b \vee c \vee d)$ and $\theta_{2}=\theta(1, a \vee b \vee c)$ and $\theta=\theta_{1} \vee \theta_{2}$. Since the congruences of lattices distribute, Lemma 2 implies $\theta \wedge \psi_{1} \wedge \psi_{2}=0$. Hence L is a subdirect product of $L / \theta, L / \psi_{1}$ and L / ψ_{2}. Now $L / \psi_{1} \cong L / \psi_{2} \cong 2$ the two element lattice. Furthermore, L / θ has the property that any three of its generators join to the greatest element. If $a \vee b \vee c=1$, then $\theta_{2}=0$ and $\theta=\theta_{1}$. In this case L is a subdirect product of L / θ and $L / \psi_{1} \cong 2$. As before, L / θ has the desired properties. The remaining cases are handled by symmetry.

Now we impose the additional condition that any
three of the four generators of L join to 1 and meet to 0. Since L has breadth two this implies that any three element subset of $\{a, b, c, d\}$ has a two element subset whose
elements join to the top. We shall show that all but at most two of the two element subsets of $\{a, b, c, d\}$ join to 1 . First we need a lemma.

LEMMA 4: Let x and y be noncomparable elements in a breadth two modular lattice. Then $x \vee y / x$ and $x \vee y / y$ are both chains.

PROOF: Suppose $x \leq u, v \leq x v y$ are noncomparable elements. Then it is not hard to check that the elements u, v, $y \wedge(u \vee v)$ generate a lattice isomorphic to the lattice of subsets of a three element set. Now the lemma follows from Lemma 1.

As remarked above, there is a two element subset of $\{a, b, c\}$ joining to 1 ; say $a v b=1$. Also, there is a two element subset of $\{a, c, d\}$ joining to 1 . If $c \vee d=1$, then we have two complementary pairs, both of which join to 1. Suppose $a \vee c=1$. Now consider $\{b, c, d\}$. If either $b \vee d=1$ or $c \vee d=1$, then there exists two complementary pairs, both joining to 1. If $b \vee c=1$, then we have that all pairs not containing d join to 1 . In conclusion, either there are two complementary pairs of generators both joining to 1, or there is a generator such that all pairs of generators not including that generator join to 1 .

Suppose $a \vee b=1=c \vee d$. If a and b were comparable, then one of them would equal 1 , contradicting
our assumption that L is not generated by three elements. Hence by Lemma $41 / a$ is a chain and thus $a v c$ and $a v d$ must be comparable. By symmetry we may assume $a v c \geq a v d$. Then $a v c=a \vee c \vee d=1$. Now $1 / b$ and $1 / d$ are chains by Lemma 4; hence, as above, either a $v d=1$ or $b v d=1$ and either $b \vee c=1$ or $b \vee d=1$. Thus either $b v d=1$ or both $b \vee c=1$ and $a v d=1$. We conclude that if there are two complementary pairs of generators, each pair joining to 1, then at least five of the six pairs of generators join to 1, or four of the six join to 1 and the two pairs that do not join to 1 are complementary.

Let M_{5} be the five element length two latice.

LEMMA 5: Let L be a breadth two modular lattice generated by a, b, c, d, in which any three of the generators join to 1 . Then one of the following must hold.
(i) L has the property that at least four of the six pairs of generators join to 1, and if two pairs do not join to 1 , they are complementary,
(ii) L is a subdirect product of M_{5} and a lattice having the property described in (i),
(iii) L is a subdirect product of M_{5} and a three generated modular lattice.

PRO0F: By symmetry and the remarks preceding Lemma 5 we may assume that $a \vee b=a v c=b \vee c=1$. In order to apply

Lemma 2 we must find elements $v \prec u$ in the free modular lattice on four generators, $F M(4)$, such that if ψ is the maximum congruence separating v from u, then $F M(4) / \psi \cong$ M_{5}. This can easily be done in $F M(x, y, z)$, since it is finite. For example, $x \vee(y \wedge z) \prec x \vee(z \wedge(x \vee y))$ will do.

Let $\underset{\sim}{a}, \underset{\sim}{b}, \underset{\sim}{c}, \underset{\sim}{d}$ be the generators of $F M(4)$. Then $\underset{\sim}{a} \rightarrow x, \underset{\sim}{b} \rightarrow y, \underset{\sim}{c} \rightarrow z$, and $\underset{\sim}{d} \rightarrow x \wedge y \wedge z$ can be extended to a homomorphism f from $F M(4)$ onto $F M(3)$. It is not difficult to see that if $f(w)=x \vee(y \wedge z)$ then $w \leq \underset{\sim}{a} \vee[(\underset{\sim}{b} \vee \underset{\sim}{d}) \wedge(\underset{\sim}{c} \vee \underset{\sim}{d})]$ and if $f(w)=x \vee(z \wedge(x \vee y))$ then $w \geq \underset{\sim}{a} \vee(\underset{\sim}{c} \wedge(\underset{\sim}{a} \vee \underset{\sim}{b}))$. It follows that in $F M(4)$ $\underset{\sim}{a} \vee[(\underset{\sim}{b} \vee \underset{\sim}{d}) \wedge(\underset{\sim}{c} \vee \underset{\sim}{d})] \prec[\underset{\sim}{a} \vee((\underset{\sim}{b} \vee \underset{\sim}{d}) \wedge(\underset{\sim}{c} \vee \underset{\sim}{d}))] \vee$ $\underset{\sim}{a} \vee(\underset{\sim}{c} \wedge(\underset{\sim}{a} \vee \underset{\sim}{b}))=\underset{\sim}{a} \vee((\underset{\sim}{b} \vee \underset{\sim}{d}) \wedge(\underset{\sim}{c} \vee \underset{\sim}{d})) \vee(\underset{\sim}{c} \wedge(\underset{\sim}{a} \vee \underset{\sim}{b}))$ and if ψ is the largest congruence separating these elements then $F M(4) / \psi \simeq M_{5}$.

$$
\text { Hence in } L \text { we have }
$$

$a \vee((b \vee d) \wedge(c \vee d)) \leq a \vee((b \vee d) \wedge(c \vee d)) \vee(c \wedge(a \vee b))$.

Now if we have equality in the above inequality, then

$$
a \vee(c \wedge(a \vee b)) \leq a \vee((b \vee d) \wedge(c \vee d))
$$

or

$$
(a \vee c) \wedge(a \vee b) \leq a \vee((b \vee d) \wedge(c \vee d))
$$

Since $a v c=a v b=1$ in L the left hand side of this inequality is 1 and hence the right hand side is also. By Lemma 4 either a and $(b \vee d) \wedge(c \vee d)$ are comparable or $b \vee d$ and $c \vee d$ are comparable. If $a \geq(b \vee d) \wedge(c \vee d)$, then $a=a \vee((b \vee d) \wedge(c \vee d))=1$. In this case, L is generated by b, c, and d contrary to our assumption on L. If $(b \vee d) \wedge(c \vee d) \geq a$, then $(b \vee d) \wedge(c \vee d)=1$ and in this case the conclusion of the lemma holds.

$$
\text { If } b \vee d \geq c \vee d, \text { then } b \vee d=b \vee c \vee d=1
$$

By Lemma 4, a $v d$ and $c \vee d$ are comparable, and as above the larger one must be 1 . Thus again the conclusion of the lemma holds.

Now we consider the case

$$
\begin{gathered}
a \vee((b \vee d) \wedge(c \vee d)) \\
<a \vee((b \vee d) \wedge(c \vee d) \vee(c \wedge(a \vee b)) .
\end{gathered}
$$

Let θ be the smallest congruence on L identifying these elements and ψ_{0} be the unique largest congruence separating these elements. By Lemma 2, L is a subdirect product of L / θ and $L / \psi_{0} \cong M_{5}$. Now arguments just as above show that the conclusions of the lemma hold.

3. MAIN THEOREM

By Lemma 5 we may assume that $a v c=a \vee d=$ $b \vee c=b v d=1$. By the dual of Lemma 5 we may assume four of the six pairs of generators meet to 0 . We first consider the case $a \wedge c=a \wedge d=b \wedge c=b \wedge d=0$. Notice that this situation has a large amount of symmetry. If a relation holds in L, then the relations obtained from it under the permutations $(a b),(c d),(a b)(c d),(a c)(b d),(a d)(b c)$ also hold in L. The case when L can be generated by three elements is of course easy. For now we assume that L cannot be generated by any three element. This implies that no two generators can be comparable. If $a \leq c$, for example, then $a v c=1$ implies $c=1$ contradicting the hypothesis that L is not generated by three elements. If $a \leq b$, then since c is a complement of both a and b, modularity implies $a=b$, again contradicting our assumption. The other cases are handled by symmetry.

Let $a_{0}=a^{0}=a, b_{0}=b^{0}=b, c_{0}=c^{0}=c$, and $d_{0}=d^{0}=d$. Define inductively $a_{i}=a \wedge\left(c_{j-1} \vee d_{i-1}\right)$, $b_{i}=b \wedge\left(c_{i-1} \vee d_{i-1}\right), \quad c_{i}=c \wedge\left(a_{i-1} \vee b_{i-1}\right), d_{i}=$ $d \wedge\left(a_{i-1} \vee b_{j-1}\right)$ and dually $a^{i}=a \vee\left(c^{i-1} \wedge d^{i-1}\right), b^{i}=$ $b \vee\left(c^{i-1} \wedge d^{i-1}\right), \quad c^{i}=c \vee\left(a^{i-1} \wedge b^{i-1}\right), \quad d^{i}=d \vee\left(a^{i-1} \wedge\right.$ $\left.b^{i-1}\right)$. We now derive some formulae concerning these elements
(1) $a_{0}=a \geq a_{1} \geq a_{2} \geq \ldots \quad a^{0}=a \leq a^{1} \leq a^{2} \leq \ldots$ etc.
(2) $\quad a_{i}=a_{i-1} \wedge\left(c_{i-1} \vee d_{i-1}\right), \quad a^{i}=a^{i-1} \vee$ $\left(c^{i-1} \wedge d^{i-1}\right)$
(3) $a \wedge d^{i}=a \wedge c^{i}=a \wedge b^{i-1} \quad i \geq 1$
(4) $a \vee d_{i}=a \vee c_{i}=a \vee b_{i-1} \quad i \geq 1$
(5) $a_{i} \vee d_{i}=a_{i} \vee c_{i}=b_{i} \vee c_{i}=b_{i} \vee d_{i}=$ $\left(a_{i-1} \vee b_{i-1}\right) \wedge\left(c_{i-1} \vee d_{i-1}\right)$.
For example, (4) can be proved with the aid of (2) and induction:

$$
\begin{aligned}
a \vee d_{i} & =a \vee\left(d_{i-1} \wedge\left(a_{i-1} \vee b_{i-1}\right)\right) \\
& =a \vee\left(d_{i-1} \wedge\left[\left(a \wedge\left(c_{i-2} \vee d_{i-2}\right)\right) \vee\left(b \wedge\left(c_{i-2} \vee d_{i-2}\right)\right)\right]\right) \\
& =a \vee\left[d_{i-1} \wedge\left(c_{i-2} \vee d_{i-2}\right) \wedge\left(a \vee\left(b \wedge\left(c_{i-2} \vee d_{i-2}\right)\right)\right)\right] \\
& =a \vee\left[d_{i-1} \wedge\left(a \vee\left(b \wedge\left(c_{i-2} \vee d_{i-2}\right)\right)\right)\right] \\
& =\left(a \vee d_{i-1}\right) \wedge\left[a \vee\left(b \wedge\left(c_{i-2} \vee d_{i-2}\right)\right)\right] \\
& =\left(a \vee b_{i-2}\right) \wedge\left(a \vee b_{i-1}\right) \\
& =a \vee b_{i-1} .
\end{aligned}
$$

Note that $a_{0}=a \geq a_{1} \geq a_{2} \geq \ldots$ is a descending chain in $a / 0$ and $0=a \wedge d \leq a \wedge d^{1} \leq a \wedge d^{2} \leq \ldots$ is an ascending chain in $a / 0$. By Lemma $4, a / 0$ is a chain, and thus each $a \wedge d^{j}$ must be comparable with each a_{i}. Let n be the smallest integer such that $a \wedge b \geq a_{n+1}$, if such an integer exists. Joining both sides of $a_{n+1} \leq a \wedge b$ with c_{n} we obtain
$(a \wedge b) \vee c_{n} \geq\left[a_{n} \wedge\left(c_{n} \vee d_{n}\right)\right] \vee c_{n}=\left(a_{n} \vee c_{n}\right) \wedge\left(c_{n} \vee d_{n}\right)$.

However, (5) tells us $a_{n} \vee c_{n}=\left(a_{n-1} \vee b_{n-1}\right) \wedge\left(c_{n-1} \vee d_{n-1}\right)$.

Thus

$$
(a \wedge b) \vee c_{n} \geq\left(a_{n-1} \vee b_{n-1}\right) \wedge\left(c_{n} \vee d_{n}\right)
$$

Hence

$$
\begin{gathered}
a \wedge b=(a \wedge b) \vee\left(c_{n} \wedge b\right)=\left[(a \wedge b) \vee c_{n}\right] \wedge b \geq \\
b \wedge\left(c_{n} \vee d_{n}\right) \wedge\left(a_{n-1} \vee b_{n-1}\right)=b_{n+1} \wedge\left(a_{n-1} \vee b_{n-1}\right)=b_{n+1} .
\end{gathered}
$$

Thus $a \wedge b \geq b_{n+1}$. It follows that n is the smallest integer such that $a \wedge b \geq b_{n+1}$. Now observe

$$
a_{n+1}=a \wedge\left(c_{n} \vee d_{n}\right) \leq a \wedge b \wedge\left(c_{n} \vee d_{n}\right)=a_{n+1} \wedge b_{n+1}
$$

Hence $a_{n+1}=b_{n+1}$. Thus

$$
c_{n+2}=c \wedge\left(a_{n+1} \vee b_{n+1}\right)=c \wedge a_{n+1}=0 .
$$

LEMMA 6: Let L be a breadth two modular lattice generated by four noncomparable generators a, b, c, d satisfying $a \vee c=a \vee d=b \vee c=b \vee d=1$ and $a \wedge c=a \wedge d=b \wedge c=$ $b \wedge d=0$. If $a_{n}>a \wedge b \geq a_{n+1}$, then $b_{n}>a \wedge b \geq b_{n+1}$ and $a_{n+3}=b_{n+3}=c_{n+2}=d_{n+2}=0$. Furthermore, $c_{m}>c \wedge d \geq c_{m+1}$ and $d_{m}>c \wedge d \geq d_{m+1}$ where m is either $n-1, n$, or $n+1$.

PROOF: If $a_{n}>a \wedge b \geq a_{n+1}$ then $c_{n+2}=0$, as shown above. Thus $m \leq n+1$. Similarly, $n \leq m+1$. The rest of the lemma follows easily from the remarks above.

We shall require a few additional observations.
(6) $\left(a \wedge b^{i}\right) \vee d=\left(a \wedge d^{i+1}\right) \vee d=d^{i+1}$.

If $a_{i+1} \geq a \wedge b$ then
(7) $\quad a_{i} / a_{i+1}>a_{i} \vee b_{i} / a_{i+1} \vee b_{i}>d_{i+1} / d_{i+2}$.

If $d_{i+1} \geq c \wedge d$ then
(8) $\quad d_{i} / d_{i+1}>d_{i} \vee c_{i} / d_{i+1} \vee c_{i} \quad a_{i+1} / a_{i+2}$.
(6) easily follows from (3). To see (7), note that since $a_{i} \geq a \wedge b, b_{i} \geq a \wedge b$ by Lemma 6. From this it follows that $a_{i} / a_{i+1}>a_{i} \vee b_{i} / a_{i+1} \vee b_{i}$. Repeatedly using (4) with the poles of a and d interchanged we obtain

$$
\begin{aligned}
d_{i+1} \vee a_{i+1} \vee b_{i} & =\left[d \wedge\left(a_{i} \vee b_{i}\right)\right] \vee a_{i+1} \vee b_{i} \\
& =\left(d \vee a_{i+1} \vee b_{i}\right) \wedge\left(a_{i} \vee b_{i}\right) \\
& =\left(d \vee c_{i-1}\right) \wedge\left(a_{i} \vee b_{i}\right) \\
& =\left(d \vee a_{i} \vee b_{i}\right) \wedge\left(a_{i} \vee b_{i}\right) \\
& =a_{i} \vee b_{i}
\end{aligned}
$$

and

$$
\begin{aligned}
d_{i+1} \wedge\left(a_{i+1} \vee b_{i}\right) & =d \wedge\left(a_{i} \vee b_{i}\right) \wedge\left(a_{i+1} \vee b_{i}\right) \\
& =d \wedge\left(a_{i+1} \vee b_{i}\right) \\
& =d \wedge\left[\left(a \wedge\left(c_{i} \vee d_{i}\right)\right) \vee\left(b \wedge\left(c_{i-1} \vee d_{i-1}\right)\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
d_{i+1} \wedge\left(a_{i+1} \vee b_{i}\right) & =d \wedge\left(c_{i-1} \vee d_{i-1}\right) \wedge\left(b \vee a_{i+1}\right) \\
& =\left[\left(d \wedge c_{i-1}\right) \vee d_{i-1}\right] \wedge\left(b \vee d_{i+2}\right) \\
& =d_{i+2} \vee\left[b \wedge\left(d_{i-1} \vee\left(d \wedge c_{i-1}\right)\right)\right] \\
& =d_{i+2}
\end{aligned}
$$

LEMMA 7: Let L satisfy the hypotheses of Lemma 6. Suppose, also that
(9) $a_{n}>a \wedge b \geq a_{n+1}$ and $d_{n+1}>c \wedge d \geq d_{n+2}$.

Then
(10) $a_{i} \geq a \wedge b^{n-i+1} \geq a \wedge b^{n-i} \geq a_{i+1}$

$$
i \equiv n(\bmod 2), \quad i \leq n
$$

(11) $d_{k} \geq d \wedge c^{n-k+1} \geq d \wedge c^{n-k} \geq d_{k+1}$

$$
k \equiv n+1(\bmod 2), k \leq n .
$$

Furthermore, the images of $a \wedge b^{n-i+1}$ and $a \wedge b^{n-i}$ under the projectivity (7) are $d \wedge c^{n-i}$ and $d \wedge c^{n-i-1}$. The images of $d \wedge c^{n-k+1}$ and $d \wedge c^{n-k}$ under the projectivity (8) are $a \wedge b^{n-k}$ and $a \wedge b^{n-k-1}$.

PROOF: First we show that
(12) $a_{i} \geq a \wedge b^{n-i+1} \geq a \wedge b^{n-i}$

$$
i \equiv n(\bmod 2), i \leq n
$$

and

$$
\text { (13) } \begin{aligned}
d_{k} & \geq d \wedge c^{n-k+1} \geq d \wedge c^{n-k} \\
k & \equiv n+1(\bmod 2), k \leq n .
\end{aligned}
$$

We prove these inequalities by induction on $n-i$ and $n-k$. First note that the second inequality in both (12) and (13)
follows immediately from the monotome nature of the o^{j} 's and c^{j} 's. Now we show that $a_{n} \geq a \wedge b^{l}$. Using (3) we have that

$$
\begin{aligned}
a \wedge\left[(c \wedge d) \vee\left(b \wedge a^{l}\right)\right] & =a \wedge\left[\left(d \wedge a^{l}\right) \vee\left(b \wedge a^{l}\right)\right] \\
& =a \wedge a^{l} \wedge\left(d \vee\left(b \wedge a^{l}\right)\right) \\
& =a \wedge\left(d \vee\left(b \wedge a^{l}\right)\right) \\
& =a \wedge\left(d \vee\left(b \wedge d^{2}\right)\right) \\
& =a \wedge(d \vee b) \wedge d^{2} \\
& =a \wedge d^{2} \\
& =a \wedge b^{l}
\end{aligned}
$$

Now, since $a^{l}=a v(c \wedge d) \leq a \vee d_{n+1}$, we have

$$
\begin{aligned}
a \wedge b^{l} & =a \wedge\left[(c \wedge d) \vee\left(b \wedge a^{1}\right)\right] \\
& \leq a \wedge\left[d_{n+1} \vee\left(b \wedge\left(a \vee d_{n+1}\right)\right)\right] \\
& =a \wedge\left[d_{n+1} \vee\left(a \wedge\left(b \vee d_{n+1}\right)\right)\right] \\
& =\left(a \wedge d_{n+1}\right) \vee\left[a \wedge\left(b \vee d_{n+1}\right)\right] \\
& =a \wedge\left(b \vee d_{n+1}\right) \\
& =a \wedge\left(b \vee a_{n}\right) \\
& =(a \wedge b) \vee a_{n} \\
& =a_{n}
\end{aligned}
$$

Thus, $a \wedge b^{1} \leq a_{n}$.
Now suppose we have shown that $a_{i} \geq a \wedge b^{n-i+1}$.
We shall show that $d_{i-1} \geq d \wedge c^{n-i+2}$. Observe that
$d \wedge\left[\left(a \wedge b^{n-i+1}\right) \vee\left(c \wedge d^{n-i+2}\right)\right]=$

$$
\begin{aligned}
& =d \wedge\left[\left(a \wedge d^{n-i+2}\right) \vee\left(c \wedge d^{n-i+2}\right)\right] \\
& =d \wedge d^{n-i+2} \wedge\left[a \vee\left(c \vee d^{n-i+2}\right)\right] \\
& =d \wedge\left[a \vee\left(c \wedge a^{n-i+3}\right)\right] \\
& =d \wedge(a \vee c) \wedge a^{n-i+3} \\
& =d \wedge a^{n-i+3} \\
& =d \wedge c^{n-i+2} .
\end{aligned}
$$

Hence, since $d^{n-i+2}=d \vee\left(a \wedge b^{n-i+1}\right) \leq d \vee a_{i}$,

$$
\begin{aligned}
d \wedge c^{n-i+2} & =d \wedge\left[\left(a \wedge b^{n-i+1}\right) \vee\left(c \wedge d^{n-i+2}\right)\right] \\
& \leq d \wedge\left[a_{i} \vee\left(c \wedge\left(d \vee a_{i}\right)\right)\right] \\
& =d \wedge\left[a_{i} \vee\left(d \wedge\left(c \vee a_{i}\right)\right)\right] \\
& =\left(d \wedge a_{i}\right) \vee\left[d \wedge\left(c \vee a_{i}\right)\right] \\
& =d \wedge\left(c \vee a_{i}\right) \\
& =d \wedge\left(c \vee d_{i-1}\right) \\
& =(c \wedge d) \vee d_{i-1} \\
& =d_{i-1} .
\end{aligned}
$$

Thus $d \wedge c^{n-i+2} \leq d_{i-1}$.
Thus if j is either $n-i+1$ or $n-i$ then $a_{i} \geq a \wedge b^{j}$ and $d_{i+1} \geq d \wedge c^{j-1}$. By way of induction suppose that $d_{i+1} \geq d \wedge c^{j-1} \geq d_{j+2}$ for j as above. Then the image of $a \wedge b^{j}$ under the projectivity (7) is

$$
\begin{aligned}
d_{i+1} \wedge\left[\left(a \wedge b^{j}\right) \vee a_{i+1} \vee b_{i}\right] & =d_{i+1} \wedge\left[\left(a \wedge\left(b^{j} \vee a_{i+1}\right)\right) \vee b_{i}\right] \\
& =d_{i+1} \wedge\left(a \vee b_{i}\right) \wedge\left(a_{i+1} \vee b^{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
d_{i+1} \wedge\left[\left(a \wedge b^{j}\right) \vee a_{i+1} \vee b_{i}\right] & =d_{i+1} \wedge\left(a_{i+1} \vee b^{j}\right) \\
& =d_{i+1} \wedge\left(a_{i+1} \vee b \vee b^{j}\right) \\
& =d_{i+1} \wedge\left(d_{i+2} \vee b^{j}\right) \\
& =d_{i+2} \vee\left(d_{i+1} \wedge d \wedge b^{j}\right) \\
& =d_{i+2} \vee\left(d_{i+1} \wedge d \wedge c^{j-1}\right) \\
& =d_{i+2} \vee\left(d \wedge c^{j-1}\right) \\
& =d \wedge c^{j-1}
\end{aligned}
$$

This shows that $a_{i} \geq a \wedge b^{j} \geq a_{i+1}$, which completes the proof of the lemma.

Arguments similar to these prove the following lemma.

LEMMA 8: Let L satisfy the hypotheses of Lemma 6. Suppose also that
(14) $a_{n}>a \wedge b \geq a_{n+1}$ and $d_{n}>c \wedge d \geq d_{n+1}$

Then
(15) $\quad a_{i} \geq a \wedge b^{n-i} \geq a_{i+1}$
(16) $\quad d_{i} \geq d \wedge c^{n-i} \geq d_{i+1}$

Furthermore, the image of $a \wedge b^{n-i}$ under the projectivity (7) is $d \wedge c^{n-i-1}$. The image of $d \wedge c^{n-i}$ under the projectivity (8) is a $\wedge b^{n-i-1}$.

Let L_{n} be the modular lattice freely generated by a, b, c, d subject to the relations $a v c=a v d=b v c=$ $b \vee d=1, a \wedge c=a \wedge d=b \wedge c=b \wedge d=0, \quad a_{n} \geq a \wedge b \geq a_{n+1}$, and $d_{n} \geq c \wedge d \geq d_{n+1}$. By the above lemma
(17) $a \geq a \wedge b^{n} \geq a_{1} \geq a \wedge b^{n-1} \geq \ldots$

$$
\geq a_{n} \geq a \wedge \underset{426}{ } \geq a_{n+1} \geq a_{n+2}=0
$$

(18) $d \geq d \wedge c^{n} \geq d_{1} \geq d \wedge c^{n-1} \geq \ldots$

$$
\geq d_{n} \geq c \wedge d \geq d_{n+1} \geq d_{n+2}=0
$$

For notational convenience define

$$
\begin{align*}
e_{0}=0, a_{i} & =e_{2 n+3-2 i} & & 0 \leq i \leq n+1 \tag{19}\\
a \wedge b^{j} & =e_{2 j+2} & & 0 \leq j \leq n .
\end{align*}
$$

Then the chain (17) becomes

$$
\text { (20) } e_{2 n+3} \geq e_{2 n+2} \geq \ldots \geq e_{1} \geq e_{0}=0 \text {. }
$$

Similarly, using (18) we define $h_{i}, i=0, \ldots, 2 n+3$.
Moreover, we define f_{i} to be the element obtained from e_{i} by interchanging a and b, and g_{i} to be the element obtained from h_{i} by interchanging c and d. Let U be the following subset of L_{n} :

$$
\begin{gathered}
U=\left\{e_{i} \vee f_{j} \mid 2 \leq i, j \leq 2 n+3\right\} \cup\left\{g_{i} \vee h_{j} \mid 2 \leq i, j \leq 2 n+3\right\} \\
\cup\left\{e_{i} \vee h_{j} \mid 0 \leq i, j \leq 2 n+3 \text { and }|i-j| \leq 2\right\}
\end{gathered}
$$

We shall show that U is closed under joins and meets and hence $U=L_{n}$. In addition, we shall evaluate all joins and meets of elements of U thereby describing the lattice L_{n}. First we require a lemma.

LEMMA 9: The following formulae hold in L_{n}.
(21) $a_{i} \vee b_{j}=a_{i} \vee c_{j+1}=a_{i} \vee d_{j+1} \quad i \leq j$
(22) $\left(a \wedge b^{i}\right) \vee\left(b \wedge a^{j}\right)=\left(a \wedge b^{i}\right) \vee\left(c \wedge d^{j-1}\right)$ $=\left(a \wedge b^{i}\right) \vee\left(d \wedge c^{j-1}\right)$

$$
n \geq i \geq j
$$

$$
\begin{align*}
& a_{i} \vee\left(b \wedge a^{j}\right)=a_{i} \vee\left(c \wedge d^{j-1}\right) \tag{23}\\
&=a_{i} \vee\left(d \wedge c^{j-1}\right) \\
& i \leq n-j, j \leq n \\
&\left(a \wedge b^{i}\right) \vee b_{j}=\left(a \wedge b^{i}\right) \vee c_{j+1} \tag{24}\\
&=\left(a \wedge b^{i}\right) \vee d_{j+1} \\
& i \geq n+1-j
\end{align*}
$$

The second equality in (21) also holds for $i \leq j+2$ and the second equality in (23) also holds for $i \leq n+1-j$, $j \leq n+1$.

PROOF: We prove (21) using (4) and induction on i. Thus assume (21) holds when the subscript of a is less than i and assume also that the corresponding formula obtained by interchanging a and d, and b and c holds when the subscript of d is less than i.

$$
\begin{aligned}
a_{i} \wedge b_{j} & =\left[a \wedge\left(c_{i-1} \vee d_{i-1}\right)\right] \vee b_{j} \\
& =\left[a \wedge\left(b_{i} \vee d_{i-1}\right)\right] \vee b_{j} \\
& =\left(a \vee b_{j}\right) \wedge\left(b_{i} \vee d_{i-1}\right) \\
& =\left(a \vee d_{j+1}\right) \wedge\left(a_{i} \vee d_{i-1}\right) \\
& =a_{i} \vee\left[d_{i-1} \wedge\left(a \vee d_{j+1}\right)\right] \\
& =a_{i} \vee d_{j+1}
\end{aligned}
$$

To prove (22) note that since $i, j \leq n$ we have $\left(a \wedge b^{i}\right) \vee\left(b \wedge a^{j}\right)=a^{j} \wedge b^{i}$. Since $b^{i} \geq b^{j} \geq d \wedge b^{j}=$ $d \wedge a^{j}$,

$$
\begin{aligned}
\left(a \wedge b^{i}\right) \vee\left(d \wedge c^{j-1}\right) & =\left(a \wedge b^{i}\right) \vee\left(d \wedge a^{j}\right) \\
& =b^{i} \wedge\left[a \vee\left(d \wedge a^{j}\right)\right] \\
& =b^{i} \wedge a^{j} .
\end{aligned}
$$

To prove (23) note that $i \leq n-j$ and $j \leq n$ imply that $b_{i} \geq b \wedge a^{j}$ and $a^{j} \leq a \vee b$. Thus

$$
\begin{aligned}
a_{i} \vee\left(b \wedge a^{j}\right) & =\left[a \wedge\left(c_{i-1} \vee d_{i-1}\right)\right] \vee\left(b \wedge a^{j}\right) \\
& =\left[a \wedge\left(b_{i} \vee d_{i-1}\right)\right] \vee\left(b \wedge a^{j}\right) \\
& =\left(b b_{i} \vee d_{i-1}\right) \wedge\left[a \vee\left(b \wedge a^{j}\right)\right] \\
& =\left(b_{i} \vee d_{i-1}\right) \wedge a^{j} \\
& =\left(c_{i-1} \vee d_{i-1}\right) \wedge\left[a \vee\left(d \wedge a^{j}\right)\right] \\
& =\left(c_{i-1} \vee d_{i-1}\right) \wedge\left[a \vee\left(d \wedge c^{j-1}\right)\right] \\
& =a_{i} \vee\left(d \wedge c^{j-1}\right) \\
\text { Since } i & >n+1-j, b^{i} \geq d \wedge b^{n+l-j}=d \wedge c^{n-j} \geq
\end{aligned}
$$

d_{j+1}. Thus

$$
\begin{aligned}
\left(a \wedge b^{i}\right) \vee b_{j} & =\left(a \vee b_{j}\right) \wedge b^{i} \\
& =\left(a \vee d_{j+1}\right) \wedge b^{i} \\
& =\left(a \wedge b^{i}\right) \vee d_{j+1} .
\end{aligned}
$$

The proof of the last statement of the lemma is similar to above proofs.

The previous lemma can be put into a more compact form.

COROLLARY: The following holds in L_{n}.

$$
\begin{equation*}
e_{i} \vee f_{j}=e_{i} \vee g_{j-2}=e_{i} \vee h_{j-2} \quad i \geq j \tag{25}
\end{equation*}
$$

The joins in U are given by the following.
$\left(e_{i} \vee f_{j}\right) \vee\left(e_{k} \vee f_{\ell}\right)=e_{p} \vee f_{g}$

$$
\begin{equation*}
p=\max \{i, k\}, \quad q=\max \{j, l\} \tag{26}
\end{equation*}
$$

$$
\left(g_{i} \vee h_{j}\right) \vee\left(g_{k} \vee h_{l}\right)=g_{p} \vee h_{q}
$$

$$
\left(e_{i} \vee h_{j}\right) \vee\left(e_{k} \vee h_{\ell}\right)=e_{p} \vee h_{q}
$$

If $i \geq j$ and $\ell \geq k$ and $2 \leq i, j, k, \ell \leq 2 n+3$ and $r=\max \{\ell+2, j\}, s=\max \{i+2, k\}$ then
(27) $\left(e_{i} \vee f_{j}\right) \vee\left(g_{k} \vee h_{\ell}\right)=\left\{\begin{array}{lll}e_{i} \vee h_{\ell} & \text { if }|i-\ell| \leq 2 \\ e_{i} \vee f_{r} & \text { if } \quad i \geq \ell+2 \\ g_{s} \vee h_{\ell} & \text { if } \ell \geq i+2\end{array}\right.$ If $j \geq i$ and $l \geq k$ then $\left(e_{i} \vee f_{j}\right) \vee\left(g_{k} \vee . h_{l}\right)$ is as above except the roles of e and f are interchanged. The cases $j \geq i$ and $k \geq \ell$, and $i \geq j$ and $k \geq \ell$ are handled similarly.

If $\mathbf{i} \geq j$ then
(28) $e_{i} \vee f_{j} \vee e_{k} \vee h_{\ell}=\left\{\begin{array}{l}e_{p} \vee h_{q^{\prime}} \text { if }\left|p-q^{\prime}\right| \leq 2 \\ e_{p} \vee f_{q^{\prime}+2} \text { if } p \geq q^{\prime}+2\end{array}\right.$
where $p=\max \{i, k\}$ and $q^{\prime}=\max \{j-2, \ell\}$. All other joins in U are similar.

The meet operation is given by

$$
\begin{align*}
& \left(e_{i} \vee f_{i}\right) \wedge\left(e_{k} \vee f_{\ell}\right)=e_{r} \vee f_{s} \tag{29}\\
& r=\min \{i, k\}, s=\min \{i, \ell\} \\
& \left(g_{i} \vee h_{j}\right) \wedge\left(g_{k} \vee h_{\ell}\right)=g_{r} \vee h_{s} \\
& \left(e_{i} \vee h_{j}\right) \wedge\left(e_{k} \vee h_{\ell}\right)=e_{r} \vee h_{s}
\end{align*}
$$

and
(30) $\left(e_{i} \vee f_{j}\right) \wedge\left(g_{k} \vee h_{\ell}\right)=\left(e_{p} \vee f_{q}\right) \vee\left(g_{r} \vee h_{s}\right)$
where $p=\min \{i, k-2, \ell-2\}, \quad q=\min \{j, k-2, \ell-2\}$
$r=\min \{k, i-2, j-2\}$, and $s=\{\ell, i-2, j-2\}$.
If $|k-\ell| \leq 2$ then
(31) $\left(e_{j} \vee f_{j}\right) \wedge\left(e_{k} \vee h_{\ell}\right)=\left(e_{p}, \vee f_{q^{\prime}}\right) \vee\left(g_{r^{\prime}} \vee h_{s^{\prime}}\right)$
where $p^{\prime}=\min \{i, k\}, \quad q^{\prime}=\min \{j, k\}, \quad r^{\prime}=s^{\prime}=\min \{\ell, i-2, j-2\}$.

THEOREM 1: The set U together with the join and meet given in (26) - (31) is the lattice L_{n}.

PROOF: (26) follows from modularity. The other equations follow easily from the Corollary.
(FIGURE 1.)

The lattices L_{0}, L_{1}, L_{2} are diagrammed in Figure 1. If we let L_{n}^{\prime} be the modular lattice generated by a, b, c, d with $a \vee c=a \vee d=b \vee c=b \vee d=1$, $a \wedge c=a \wedge d=b \wedge c=b \wedge d=0, \quad a_{n} \geq a \wedge b \geq a_{n+1}$, and $d_{n+1} \geq c \wedge d \geq d_{n+2}$ then an analysis similar to that of L_{n} can be carried out. The lattices $L_{0}^{\prime}, L_{j}^{\prime}, L_{2}^{\prime}$ are diagrammed in Figure 2.

(FIGURE 2)

Now let L_{∞} be the modular lattice generated by a, b, c, d with $a \vee c=a \vee d=b \vee c=b \vee d=1$, $a \wedge c=a \wedge d=b \wedge c=b \wedge d=0, \quad a_{i} \geq a \wedge b, i=0,1,2, \ldots$

It follows that $a_{i} \geq a \wedge b^{j}$ and $d_{i} \geq d \wedge c^{j}$ for all $i, j \geq 0$.

It remains to consider the case when L is
generated by a, b, c, d with $a v c=a v d=b \vee c=b \vee d=1$ and all pairs of generators meeting to 0 except for two complementary pairs. By symmetry we may assume a $\wedge b=$ $a \wedge c=b \wedge d=c \wedge d=0$. Call this lattice L_{∞}^{\prime}. We define $a_{i}, b_{i}, c_{i}, d_{i}$ as before. However we now define
$a^{i}=a \vee\left(b^{i-1} \wedge c^{i-1}\right), b^{i}=b \vee\left(a^{i-1} \wedge d^{i-1}\right)$, $c^{i}=c \vee\left(a^{i-1} \wedge d^{i-1}\right), d^{i}=d \vee\left(b^{i-1} \wedge c^{i-1}\right)$. We shall show that for all i and j
(32) $a_{i} \geq a \wedge d^{j}, \quad c_{i} \geq c \wedge b^{j}$

We need two equations. The proofs of these are left to the reader.
(33) $a_{i}=a \wedge\left(d \vee c_{i-1}\right)$
$c \wedge b^{i}=c \wedge d^{i+1}$
To prove (32) it is sufficient to prove that $a_{i} \geq a \wedge d^{i}$ and $c_{i} \geq c \wedge b^{i}$ for all i. This is obvious for $i=0$. Assume the equations hold for $i=1, \ldots, n$. Then

$$
\begin{aligned}
a_{n+1} & =a \wedge\left(d \vee c_{n}\right) \\
\geq & a \wedge\left(d \vee\left(c \wedge b^{n}\right)\right) \\
= & a \wedge\left(d \vee\left(c \wedge d^{n+1}\right)\right) \\
= & a \wedge d^{n+1} . \\
& 432
\end{aligned}
$$

The last step uses that fact that $d^{n+1} \leq d v c$, which is easily proved by induction. Hence the following chain of elements lies below a.

$$
a \geq a_{1} \geq a_{2} \geq \ldots \geq a \wedge d^{2} \geq a \wedge d^{7} \geq a \wedge d \geq 0
$$

With this information an analysis similar to that for L_{n} can be carried out.

Combining the above information we obtain the following theorem.

THEOREM 2: If L is a breadth two four-generated modular lattice then L is a homomorphic image of a subdirect product of four copies of ${\underset{\sim}{2}}_{2}$, two copies of M_{5} and either a three-generated modular lattice or L_{n} or L_{n}^{i} for some $n, \quad 0 \leq n \leq \infty$.

Not all four-generated subdirect products of L_{n} or L_{n}^{\prime} with four copies of ${\underset{\sim}{2}}_{2}$ and two copies of M_{5} are breadth two. However, it is possible to make a list of lattices such that L is a breadth two four-generated modular lattice if and only if L is a homomorphic image of a lattice from this list. This shall not be done here. In figure 3 we give an example of a breadth two four-generated modular lattice which is maximal in the sense that it is not a
homomorphic image of a properly larger breadth two, fourgenerated modular lattice.
(FIGURE 3)

4. SUBDIRECTLY IRREDUCIBLES

The utility of Theorem 2 is that the lattices in that theorem have only finitely many homomorphic images. With the aid of this fact we shall now characterize all subdirectly irreducible, four-generated breadth two modular lattices by actually listing them. Let L be such a lattice. Then it follows from Theorem 2 and the distributivity of congruence lattices of lattices that L is either ${\underset{\sim}{2}}_{2}, M_{5}$, or a homomorphic image of L_{n} or L_{n}^{\prime} for some $n, 0 \leq n \leq \infty$. The following lemma shows each L_{n} and $L_{n}^{\prime}, 1 \leq n<\infty$ is the subdirect product of four subdirectly irreducible lattices.

LEMMA 10: If u / v is a prime quotient in L_{n} or L_{n}^{\prime}, $1 \leq n<\infty$, then u / v is projective to a subquotient of a / a_{2}.

PROOF: Since L_{n} and L_{n}^{\prime} are finite dimensional lattices every prime quotient is projective with a subquotient of either $a / 0$ or of $1 / a$. Hence it suffices to show that every prime quotient of $a / 0$ and of $1 / a$ is projective to a subquotient of a / a_{2}. Suppose u / v is a subquotient for a_{i} / a_{i+1} with $i \leq n$. By (7) and (8) a_{i} / a_{i+1} is projective to $a_{i-2 k} / a_{i-2 k+1}, i=0,1, \ldots, \frac{[i]}{2}$. Hence the lemma holds in this case. If u / v is a subquotient of $a / 0$ but not of a_{i} / a_{i+1} for all $i \leq n$ then $u=a_{n+1}$ and $v=0$. In this case, since $n \geq 1$,
$u / v \mu c_{n} v d_{n} / c_{n}>d_{n} / c \wedge d \nsim a_{n-1} v b_{n-1} / b_{n-1} v(c \wedge d)>a_{n-1} / a \wedge b^{1}$

Since $a_{n-l} / a \wedge b^{1}$ is a subquotient of $a_{n-1} / a_{n}, u / v$ is projective to a subquotient of a / a_{2} by the above remarks. By the dual argument every prime subquotient of $1 / a$ is projective to a subquotient of a^{2} / a. Now if $n \geq 2$ then the duals of (7) and (8) tell us that a^{2} / a is projective to d^{3} / d^{7} which transposes down to $a \wedge d^{3} / a \wedge d^{7}=a \wedge b^{2} / a \wedge b$. Now we may argue as above. The case $n=1$ has to be argued separately and is left to the reader. Arguments similar to the above prove the lemma for L_{n}^{\prime}.

Lemma 10 has the corollary that L_{n} and L_{n}^{\prime} are each subdirect products of four subdirectly irreducible lattices, $i \leq n<\infty$. More specifically, let $L_{n l}=$ $L_{n} / \theta\left(a, a \wedge b^{n-1}\right), L_{n 2}=L_{n} / \theta\left(a, a_{1}\right) \vee \theta\left(a \wedge b^{n}, a_{2}\right)$, $L_{n 3}=L_{n} / \theta\left(a, a \wedge b^{n}\right) v \theta\left(a_{1}, a_{2}\right), L_{n 4}=L_{n} / \theta\left(a, a \wedge b^{n-1}\right)$. since L_{n} is the modular lattice freely generated by a, b, c, d satisfying the relations $a v c=a \vee d=b \vee c=b \vee d=1$, $a \wedge c=a \wedge d=b \wedge c=b \wedge d=0, \quad a_{n} \geq a \wedge b \geq a_{n+1}$, $d_{n} \geq c \wedge d \geq d_{n+1}, L_{n l}$ is the modular lattice freely generated by a, b, c, d satisfying the above relations and also satisfying $a=a \wedge b^{n}=a_{1}=a \wedge b^{n-1}$. Similarly, $L_{n 2}$ is the modular lattice freely generated by a, b, c, d subject to the relations of L_{n} and to the additional relations $a=a \wedge b^{n}=a_{1}, a \wedge b^{n-1}=a_{2}, L_{n 3}$ to the additional relations $a=a \wedge b^{n}, a_{1}=a \wedge b^{n-1}=a_{2}$, $L_{n 4}$ to the additional relations $a \wedge b^{n}=a_{1}=a \wedge b^{n-1}=a_{2}$.

Since the permutation (ad)(bc) generates an automorphism of L_{n} and since $a \wedge b^{n-1} / a_{2}$ is projective to $d \wedge c^{n} / a_{1}$ we have that $L_{n 1}$ is isomorphic to $L_{n 3}$. Similarly $L_{n 2}$ and $L_{n 4}$ are isomorphic. Furthermore, $L_{n 2}$ is isomorphic to $L_{n+1,1}$. To see this, one shows that $L_{n 2}$ satisfies the defining relations of $L_{n+1,1}$ and vice versa. This can be done with the use of Lemma 8, and is left to the reader. similar arguments give that L_{n}^{\prime} is a subdirect product of $L_{n 1}, L_{n+2,1}$, and two copies of $L_{n+1,1}$.

It follows from (17) that L_{n} has length $4 n+6$. Using Lemma 8 it follows that $L_{n 1}$ has length $n+1$ and $L_{n 2}$ has length $n+2$. Let $S_{1}={\underset{\sim}{2}}^{2} S_{2}=M_{5}$ and $S_{n+1}=L_{n 1}$ $n \geq 2$.

$$
\text { In } L_{\infty} a^{2} \geq a^{1} \geq a \geq a_{1} \geq a_{2} \text { and by (7) and (8) }
$$ and their duals every prime quotient of L_{∞} is projective to a nontrivial subquotient of a^{2} / a or a / a_{2}. If we identify a^{2} with a and a_{1} with a_{2} then we get the modular lattice freely generated by a, b, c, d subject to these relations and the relations of L_{∞}. These relations are equivalent to $a \vee b=a \vee c=a \vee d=b \vee c=b \vee d=1$, $a \wedge b=a \wedge c=a \wedge d=b \wedge c=b \wedge d=c \wedge d=0$. This is the lattice studied in [3]. We denote it by S_{∞}. Examining the other congruences on L_{∞} yield that L_{∞} is a subdirect product of two copies of S_{∞} and two copies of S_{∞}^{d}, its dual. The same statement holds for L_{∞}^{\prime}. These facts together imply that L_{n} and $L_{n}^{\prime}, 0 \leq n \leq \infty$, are each a

subdirect product of four subdirectly irreducibles chosen from $\left\{S_{n} \mid 1 \leq n \leq \infty\right\} \vee\left\{S_{\infty}^{d}\right\}$. It follows from the distributivity of lattice congruences that any subdirectly irreducible, breadth two, four-generated modular lattice is a homomorphic image of one of the S_{n} or S_{∞}^{d}. For $n<\infty, S_{n}$ is finite and hence simple. Thus $S_{n}, n<\infty$ has no nontrivial homomorphic images. S_{∞} and S_{∞}^{d} have only one nontrivial homomorphic image: the six element length two lattice, M_{6} [3]. Consequently

THEOREM 3: The subdirectly irreducible, breadth two, fourgenerated modular lattices are precisely the set $\left\{S_{n} \mid 1 \leq n \leq \infty\right\} \vee\left\{S_{\infty}^{d}, M_{6}\right\}$.

In [3] the word problem for S_{∞} is solved. If one takes the sublattice k_{n} of S_{∞} generated by $a \vee d_{n}, b \vee d_{n}, c \vee a_{n}, d \vee a_{n}$ if n is even and by $a \vee d_{n-1}, b \vee d_{n-1}, \quad c \vee a_{n+1}, d \vee a_{n+1}$ if n is odd, then using the above mentioned solution to the word problem in S_{∞}, one can show that K_{n} satisfies the relations defining S_{n}. Since S_{n} is simple it follows that K_{n} is isomorphic to S_{n}. This shows that the lattices of Theorem 3 are precisely the breadth two lattices considered in [3]. See Figures 4 and 5.
5. COVERINGS IN FM(4)

It is apparent from Lemma 2 that coverings in free modular lattices have important consequences in the study of the structure of modular lattices. Moreover, McKenzie has investigated the connections of coverings in a free lattice to the theory of lattice varieties. In view of these applications we give some examples of coverings in $F M(4)$. In particular, we give an infinite list of covering in $F M(4)$, $u_{i}>v_{i}$ inequivalent in the strong sense that if $\psi\left(u_{i}, v_{i}\right)$ is the unique maximal congruence separating u_{i} from v_{i} then the $F M(4) / \psi\left(u_{i}, v_{i}\right)$'s are pairwise nonisomorphic. In fact, there is a covering corresponding to each S_{n}, $1 \leq n<\infty$.

Let f map $F M(n)$ homomorphically onto L. Then f is called upper bounded if for each $x \in L$ there is an element $u \in F M(4)$ such that $f(u)=x$ and $f(v)=x$ implies $v \leq u$. If the dual property holds then f is lower bounded. If f is both upper and lower bounded then f is bounded. If u is as above we call u the maximal inverse image of x. The minimal inverse image is defined dually. Note that if $f: F M(n) \rightarrow L$ is bounded and $y>x$ in L, and if u is the maximum inverse image of x and v is the minimal inverse image of y, then $u v v>u$ and $u \wedge v<v$ in $F M(n)$. These concepts were defined and studied by R. McKenzie [6]. When L is finite McKenzie gives the following process for deciding if f is bounded. For
each $x \in L$ define $M(x)$ to be the family of two elements subsets $\{y, z\}$ of L such that $x \geq y \wedge z, x \neq y, x \neq z$ and if $y_{0} \geq y, z_{0} \geq z_{0}$ and $x \geq y_{0} \wedge z_{0}$ then $y_{0}=y$ and $z_{0}=z$. Choose $\alpha_{0}: L \rightarrow F M(n)$ such that α_{0} is monotine and $f\left(\alpha_{0}(x)\right)=x$ for all $x \in L$, and such that $\underset{\sim}{a} \leq \alpha_{0} f(\underset{\sim}{a})$ for each generator of $F M(n)$. Now define
(35) $\alpha_{i}(x)=\alpha_{i-1}(x) \vee\{x, y\} \in M(x)\left(\alpha_{i-1}(y) \wedge \alpha_{i-1}(z)\right)$

Now if $f(u)=x$ then $u \leq \alpha_{i}(x)$ for some i [6]. Thus f is upper bounded if and only if $\alpha_{i}=\alpha_{i+1}$ for some i.

Let $F M(4)$ be freely generated by $\underset{\sim}{a}, \underset{\sim}{b}, \underset{\sim}{c}, \underset{\sim}{d}$. Let $S_{2 n+1}=L_{2 n, 1}$ be the lattice defined above. Let the generators of $S_{2 n+1}$ be a, b, c, d. Let $f: F M(4) \rightarrow S_{2 n+1}$ be the unique extension of the map $f(\underset{\sim}{a})=a, f(\underset{\sim}{b})=b, f(\underset{\sim}{c})=c, f(\underset{\sim}{d})=d$. Note that since the maximal inverse image function, when it exists, preserves meets and $S_{2 n+1}$ has breadth two we may restrict our attention to the meet irreducible in $S_{2 n+1}$ in calcurating the α_{i} 's. The meet irreducibles of $S_{2 n+1}$ consist of

$$
\begin{aligned}
a \leq a^{1} & =a^{2} \leq a^{3}=a^{4} \leq \ldots \leq a^{2 n-3}=a^{2 n-2} \leq a \vee b \\
b \leq b^{1} & =b^{2} \leq b^{3}=b^{4} \leq \ldots \leq b^{2 n-3}=b^{2 n-2} \leq a \vee b \\
c & =c^{1} \leq c^{2}=c^{3} \leq \ldots \leq c^{2 n-2}=c^{2 n-1} \\
d & =d^{1} \leq d^{2}=d^{3} \leq \ldots \leq d^{2 n-2}=d^{2 n-1}
\end{aligned}
$$

Now $M(a)=\left\{\left\{b, c^{1}\right\},\left\{b, d^{1}\right\}\right\}, M\left(a^{2 i}\right)=\left\{\left\{b^{2 i}, c^{2 i+1}\right\}\right.$, $\left.\left\{b^{2 i}, d^{2 i+1}\right\},\left\{c^{2 i-1}, d^{2 i-1}\right\}\right\}, i=1, \ldots, n-1$.
$M(a \vee b)=\left\{\left\{c^{2 n-1}, d^{2 n-1}\right\}\right\}, M\left(c^{2 i+1}\right)=\left\{\left\{d^{2 i+1}, a^{2 i+2}\right\}\right.$, $\left.\left\{d^{2 i+1}, b^{2 i+2}\right\},\left\{a^{2 i}, b^{2 i}\right\}\right\}, i=0, \ldots, n-2$, $M\left(c^{2 n-1}\right)=\left\{\left\{a \vee b, d^{2 n-1}\right\}\right\}$. The definition of $M\left(b^{2 i}\right)$ is similar to $M\left(a^{2 i}\right)$ and $M\left(d^{2 i+1}\right)$ to $M\left(c^{2 i+1}\right)$.

With these definitions one can choose an appropriate definition of α_{0} and compute α_{k} by (35). For large enough k, $\alpha_{k}=\alpha_{k+1}$. We shall only give this final function. In
FM(4) with generators $\underset{\sim}{a}, \underset{\sim}{b}, \underset{\sim}{c}, \underset{\sim}{d}$ let

Define $g: S_{2 n+1} \rightarrow F M(4)$ inductively as follows
$g(a \vee b)=\underset{\sim}{a} \vee \underset{\sim}{b} \vee\left({\underset{\sim}{c}}^{2 n-1} \wedge{\underset{\sim}{d}}^{2 n-1}\right)$
$g\left(c^{2 n-1}\right)={\underset{\sim}{c}}^{2 n-1} v\left(d^{2 n-1} \wedge(\underset{\sim}{a} \vee \underset{\sim}{b})\right) \quad g\left(d^{2 n-1}\right)={\underset{\sim}{d}}^{2 n-1} v\left({\underset{\sim}{c}}^{2 n-1} \wedge(\underset{\sim}{a} \vee \underset{\sim}{b})\right)$
$g\left(a^{2 i}\right)={\underset{\sim}{a}}^{2 i} \vee\left({\underset{\sim}{2 i}}^{2 i} \wedge g\left(c^{2 i+1}\right)\right) \quad g\left(b^{2 i}\right)={\underset{\sim}{b}}^{2 i} \vee\left(a^{2 i} \wedge g\left(c^{2 i+1}\right)\right)$
$g\left(c^{2 i+1}\right)={\underset{\sim}{c}}^{2 i+1} \vee\left({\underset{\sim}{d}}^{2 i+1} \wedge g\left(a^{2 i+2}\right)\right) g\left(d^{2 i+1}\right)={\underset{\sim}{d}}^{2 i+1} \vee\left({\underset{\sim}{c}}^{2 i+1} \wedge g\left(a^{2 i+2}\right)\right)$

To see that g is the final function we must show that if we let $\alpha_{0}=g$ in (35) then $\alpha_{1}=g$. The following identities in $F M(4)$ may be proved by induction, starting with $i=n-1$ and working down.

$$
\begin{aligned}
g\left(a^{2 i}\right) & ={\underset{\sim}{a}}^{2 i} \vee\left({\underset{\sim}{b}}^{2 i} \wedge g\left(c^{2 i+1}\right)\right)={\underset{\sim}{a}}^{2 i} \vee\left({\underset{\sim}{b}}^{2 i} \wedge g\left(d^{2 i+1}\right)\right) \\
g\left(c^{2 i-1}\right) & ={\underset{\sim}{c}}^{2 i-1} \vee\left({\underset{\sim}{c}}^{2 i-1} \wedge g\left(a^{2 i}\right)\right)={\underset{\sim}{c}}^{2 i-1} \vee\left({\underset{\sim}{d}}^{2 i-1} \wedge g\left(b^{2 i}\right)\right)
\end{aligned}
$$

Let $\alpha_{0}=g$ we have

$$
\begin{aligned}
& \alpha_{1}\left(a^{2 i}\right)={\underset{\sim}{a}}^{2 i} \vee\left({\underset{\sim}{b}}^{2 i} \wedge g\left(c^{2 i+1}\right)\right) \\
& \vee\left\{\left[{\underset{\sim}{r}}^{2 i} \vee\left({\underset{\sim}{a}}^{2 i} \wedge g\left(c^{2 i+1}\right)\right)\right] \wedge\left[{\underset{\sim}{c}}^{2 i+1} \vee\left(\sim^{2 i+1} \wedge g\left(a^{2 i+2}\right)\right)\right]\right\} \\
& \vee\left\{\left[{\underset{\sim}{r}}^{2 i} \vee\left({\underset{\sim}{a}}^{2 i} \wedge g\left(c^{2 i+1}\right)\right)\right] \wedge\left[{\underset{\sim}{d}}^{2 i+1} \vee\left({\underset{\sim}{c}}^{2 i+1} \wedge g\left(a^{2 i+2}\right)\right)\right]\right\} \\
& \vee\left\{\left[{\underset{\sim}{c}}^{2 i-1} \vee\left({\underset{\sim}{d}}^{2 i-1} \wedge g\left(a^{2 i}\right)\right)\right] \wedge\left[{\underset{\sim}{d}}^{2 i-1} \vee\left({\underset{\sim}{c}}^{2 i-1} \wedge g\left(a^{2 i}\right)\right)\right]\right\}
\end{aligned}
$$

Observe that

$$
\begin{aligned}
& {\left[{\underset{\sim}{b}}^{2 i} \vee\left({\underset{\sim}{a}}^{2 i} \wedge g\left(c^{2 i+1}\right)\right)\right] \wedge\left[{\underset{\sim}{d}}^{2 i+1} \vee\left({\underset{\sim}{c}}^{2 i+1} \wedge g\left(a^{2 i+2}\right)\right)\right]} \\
& =\left[{\underset{\sim}{b}}^{2 i} \vee\left({\underset{\sim}{a}}^{2 i} \wedge g\left(d^{2 i+1}\right)\right)\right] \wedge\left[{\underset{\sim}{d}}^{2 i+1} \vee\left({\underset{\sim}{c}}^{2 i+1} \wedge g\left(a^{2 i+2}\right)\right)\right] \\
& =\left[{\underset{\sim}{b}}^{2 i} \vee\left({\underset{\sim}{a}}^{2 i} \wedge\left({\underset{\sim}{d}}^{2 i+1} \vee\left({\underset{\sim}{c}}^{2 i+1} \wedge g\left(a^{2 i+2}\right)\right)\right)\right)\right] \wedge\left[{\underset{\sim}{d}}^{2 i+1} \vee\left({\underset{\sim}{c}}^{2 i+1} \wedge g\left(a^{2 i+2}\right)\right)\right] \\
& =\left[a_{\sim}^{2 i} \wedge g\left(d^{2 i+1}\right)\right] \vee\left({\underset{\sim}{b}}^{2 i} \wedge\left[{\underset{\sim}{d}}^{2 i+1} \vee\left({\underset{\sim}{c}}^{2 i+1} \wedge g\left(a^{2 i+2}\right)\right)\right]\right) .
\end{aligned}
$$

With the use of this identity, the modular law and the fact that ${\underset{\sim}{c}}^{2 i-1} \wedge{\underset{\sim}{d}}^{2 i-1} \leq{\underset{\sim}{a}}^{2 i-1}$ it is easy to show that $\alpha_{1}\left(a^{2 i}\right)=g\left(a^{2 i}\right)$. Similar argument show that $\alpha_{1}=g$. If we extend g to all of $S_{2 n+1}$ by letting $g(x \wedge y)=g(x) \wedge g(y)$ then g is well-defined and is the maximum inverse image function. Since $S_{2 n+1}$ is isomorphic to its dual we can calculate the minimal inverse limit function h as well. Then since $a^{l}>a$ in $S_{2 n+1}$ we have the following covering in FM (4).

$$
g(a) \vee h(c \wedge d)=g(a) \vee h(a) \vee h(c \wedge d)=g(a) \vee h\left(a^{\top}\right)>g(a)
$$

Letting $\underset{\sim}{a} i$ and $\underset{\sim}{b} i$ be the elements dual to ${\underset{\sim}{a}}_{i}^{i}$ and $\underset{\sim}{b}$
in $F M(4)$, we have $h(c \wedge d)=\underset{\sim}{c} \wedge \underset{\sim}{d} \wedge(\underset{\sim}{a} \underset{\sim}{c}-1 \vee \underset{\sim 2 n-1}{b})$. Also, $g(a)=\underset{\sim}{a} \vee\left(\underset{\sim}{b} \wedge\left(\underset{\sim}{c}{ }^{1} \vee\left({\underset{\sim}{d}}^{1} \wedge(\underset{\sim}{a})^{2} \vee\left({\underset{\sim}{p}}^{2} \wedge \ldots\right.\right.\right.\right.$ $\left({\underset{\sim}{c}}^{2 n-1} \vee\left({\underset{\sim}{d}}^{2 n-1} \wedge(\underset{\sim}{a} \vee \underset{\sim}{b}) \ldots\right)\right.$. Thus we have proved the following theorem.

Theorem 4: For $n=1,2, \ldots$ we have the following coverings in $F M(4)$.

$$
\begin{aligned}
& {[\underset{\sim}{c} \wedge \underset{\sim}{d} \wedge(\underset{\sim}{a} 2 n-1 \vee \underset{\sim}{b} 2 n-1)] \vee \underset{\sim}{ } \vee\left(\underset { \sim } { b } \wedge \left({ \underset { \sim } { c } } ^ { 1 } \vee \left({ \underset { \sim } { d } } ^ { 1 } \ldots \left({\underset{\sim}{c}}^{2 n-1} \vee\left({\underset{\sim}{d}}^{2 n-1} \wedge(\underset{\sim}{a} \vee \underset{\sim}{b}) \ldots\right)\right.\right.\right.\right.} \\
& \underset{\sim}{a} \vee\left(\underset { \sim } { b } \wedge \left({ \underset { \sim } { c } } ^ { 1 } \vee \left(\underset { \sim } { d } { } ^ { 1 } \ldots \wedge \left({\underset{\sim}{c}}^{2 n-1} \vee\left({\underset{\sim}{d}}^{2 n-1} \wedge(\underset{\sim}{a} \vee \underset{\sim}{b}) \ldots\right)\right.\right.\right.\right.
\end{aligned}
$$

Furthermore, if ψ_{n} is the unique maximal congruence separating this covering then $F M(4) / \psi_{n} \cong S_{2 n+1}$.

Similarly one obtains coverings in $F M(4)$
corresponding to each of the $S_{2 n}$'s.
Following McKenzie, call a modular lattice L a splitting modular lattice if there exists an equation ε such that for any variety V of modular lattices either all members of V satisfy \in or $L \in V$. By the above, $S_{n}, \quad n=0,1,2, \ldots$ is a splitting modular lattice. COROLLARY: L is a breadth two, four-generated spiftting modular lattice if and only if L is isomorphic to S_{n} for some $n, \quad 1 \leq n<\infty$.

PROOF: It was shown in [3] that M_{6}, S_{∞}, and S_{∞}^{d} are not splitting modular lattices. The corollary follows from the
fact that a splitting modular lattice must be subdirectly irreducible.

Now let V be the variety of modular lattices generated by all breadth two modular lattices and let FL(V, 4) be the free V-lattice on four generators. A lattice L is called weakly atomic if for $x>y$ in L there exists $u, v \in L$ such that $x \geq u>v \geq y$.

COROLLARY: $F L(V, 4)$ is a unique irredundant subdirect product of 14 copies of $S_{1}, 14$ copies of S_{2}, and 6 copies of $S_{n}, n=3,4, \ldots$ Moreover, $\mathrm{FL}(V, 4)$ is weakly atomic.

PROOF: In [3] it is shown that V is generated by $\left\{S_{n} \mid 1 \leq n<\infty\right\}$. Hence $\operatorname{FL}(V, 4)$ is a subdirect product of $S_{n}, n=1,2, \ldots$ It is easy to check that there are 14 distinct congruence relations ψ on $\operatorname{FL}(V, 4)$ such that $F L(V, 4) / \psi \cong S_{1}, 14$ congruences giving S_{2}, and 6 congruences giving $S_{n}, n=3,4, \ldots$ With the aid of Lemma 2 and Theorem 4 it can be shown that none of these lattices can be removed from a subdirect representation of $\mathrm{FL}(\mathrm{V}, 4)$. If $x>y$ in $F L(V, 4)$ then by the above there exists a homomorphism f from $F L(V, 4)$ onto S_{n}, for some $n<\infty$, such that $f(x)>f(y)$. Since f is bounded there exists $u, v \in \operatorname{FL}(v, 4)$ with $u>v$ and $f(x) \geq f(u)>f(v) \geq$ $f(y)$. Now it is easy to see that u / v is projective to a
subquotient u^{\prime} / v^{\prime} of x / y in two or less steps. By modularity $x \geq u^{\prime}>v^{\prime} \geq y$, proving the corollary.

The above corollary implies that the word problem for $F L(V, 4)$ is solvable. However, by Jonsson's theorem [5] the four-generated subdirectly irreducible members of V are precisely the lattices listed in Theorem 3 (see also [1]). Hence we have the following corollary.

COROLLARY: If L is the V-lattice freely generated by four generators subject to finitely many relations, then the word problem for L is solvable.

With the aid of the results of this paper,
C. Herrmann has been able to list all subdirectly irreducible four-generated modular lattices in the class C of all lattices embeddable in a complemented modular lattice. From this it follows that the word problem for four-generated lattices in C is solvable. This contrasts the result of G. Hutchinson that the word problem for nine-generated lattices in C is not solvable. An easy modification of Hutchinson's argument yields that the word problem for seven-generated lattices in C is not solvable.

REFERENCES

[1] K. Baker, Equational axioms for classes of lattices, Bull. Amer. Math. Soc., 77(1971), 97-102.
[2] P. Crawley and R. P. Dilworth, The algebraic theory of lattices, to appear.
[3] A. Day, C. Herrmann, and R. Wille, On modular lattices with four generators, to appear.
[4] R. P. Dilworth, The structure of relatively complemented modular lattices, Ann. of Math., 51(1950), 348-359.
[5] B. Jonsson, Algebras whose congruence lattices are distributive, Math. Scand., 21(1967), 110-121.
[6] R. McKenzie, Equational bases and non-modular lattices varieties, to appear.

FIGURE 1

FIGURE 3

FIGURE 4

FIGURE 5

