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by 
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ABSTRACT: In this paper a characterization of breadth two 

modular lattices which can be generated by four elements is 

given. Those which are subdirectly irreducible are listed. 

An infinite list of coverings in the free modular lattice on 

four generators is obtained. If V is the variety of 

lattices generated by all breadth two modular lattices and if 

L is a lattice freely generated in V by four generators 

subject to finitely many relations, then the word problem for 

L is shown to be solvable. 
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1. INTRODUCTION 

In [3] Day, Hermann, and Wille give a list of 

subdirectly irreducible modular lattices which can be generated 

by four elements. Their list consists of projective planes 

and lattices of breadth two. They ask if their list is com-

plete. In this paper we show that it is complete insofar as 

it contains all the subdirectly irreducible breadth two four-

generated modular lattices. This is done by showing that any 

four-generated breadth two modular lattice is a homomorphic 

image of an explicit set of lattices. It is shown that 

corresponding to all but three of the subdirectly irreducible 

four-generated breadth two modular lattices there is a cover-

ing, u >- v, in the free modular lattice on four generators, 

FM(4), such that if ^ is the unique maximal congruence on 

FM(4) separating u from v, then FM(4)/^ is isomorphic 

to the subdirectly irreducible breadth two lattice. All of 

these lattices correspond!'ng to coverings in F M ( 4 ) are 

splitting modular lattices in the sense of McKenzie (defini-

tions given below). Let V be the variety (equational class) 

of lattices generated by all breadth two modular lattices and 

let FL(V,4) be the free V-lattice on four generators. Then 

every nontrivial quotient (interval) of FL(V,4) contains a 

covering. Finally it is shown that the word problem for four-

generated lattices in V is solvable. 
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Section 2 gives some basic definitions and gives 

the preliminary reductions. Section 3 gives the main result 

and Section 4 gives the subdirectly irreducibles. Section 5 

presents the coverings and other applications mentioned above. 
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2. PRELIMINARY REDUCTIONS 

Let a _> b in a lattice L. T h e s u b l a t t i c e 

{x e L | a _> x _> b} is denoted a/b and is called a quotient 

o r quotient sublattice or i nterva1. We say that a/b trans-

poses up to c/d and c/d transposes down to a/b if 

a v d = c and a A d = b. We denote this by a/b c/d and 

c/d \ a/b. Two quotients connected by a sequence of trans-

poses are called proj ecti ve. If a > b and there is no x 

such that a > x > b, then we say a covers b, and denote 

this a >- b. 

Recall that a lattice has breadth n if the join 

of any n + 1 elements is redundant and there is an irredun-

dant join of n element. 

LEMMA 1 : A modu 1 ar lattice has breadth n j_f and only if i t 

has a_ sublattice i somorph i c to the lattice of a 11 subsets of 

a n n element set but no sublattice i somorph i c to the lattice 

of a 11 subsets of a n n + 1 element set. 

PROOF : If the join of the elements x-j , ...» x n is ir redun-

dant, then the elements x\ = x-j v . .. v x^ v x^ +-j v ... v 

v x n , i = 1, ..., n generate a sublattice isomorphic to the 

lattice of subsets of an n element set. The lemma follows 

easily from this. 
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and b, which is denoted by \|> ( a ,"b ). Let 6(a,b) denote 

the smallest congruence of L identifying a and b. Then 

G(a ,b) A \p(a ,b) = 0. 

PROOF: It follows from Dilworth's basic result on congruences 

of lattices that e(a,b) >• 0 [2], [4], where 0 is the least 

congruence on L. The lemma follows. 

Suppose u >- v in a free modular lattice F. Let 

(u,v) be the largest congruence separating u from v and 

let K = F/\p(u,v). Now if L is a homomorphic image of F 

in which the images of u and v are different, then L is 

a subdirect product of K and a lattice L' which is a 

homomorphic image of L such that u and v are identified 

in L'. This is, of course, an immediate corollary to Lemma 

2. 

For the rest of the paper, L will denote a breadth 

two modular lattice generated by four distinct generators a, 

b, c, d and not by any three elements. 

LEMMA 3: Ei ther any three elements of the set {a,b,c,d} 

join to the greatest el ement of L, l = a v b v c v d , ojr 

L _i_s à subdi rect product of one or two, • two el ement 1 atti ces 

and a_ four-generated breadth, two modu 1 ar 1 atti ce i n wh i ch any 

three of the four generator join to the greatest element. 

PROOF : Suppose the first statement fails, say b v c v d < 1. 

Since L has breadth two, it follows that b v c v d is the 
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join of two of the generators, say c v d = b v c v d . Now 

1 = (a v b) v c v d implies that either c v d = 1 or 

a v b v c = l or a v b v d = 1. The first possibility 

contradicts b v c v d < 1. Suppose a v b v d = 1, and 

that a v b v c < 1. Since c v d = b v c v d , we have 

a v c v d = 1 . 

In the free modular lattice on four generators the 

join of any three generators is covered by the greatest 

element. Hence in L, 1 >- b v c v d and 1 >• a v b v c. 

Let Î I be the largest congruence on L separating 1 from 

b v c v d and ^ the largest congruence separating 1 from 

a v b v c. Let 0-j = 6(1, b v c v d) and 0 2 ~ e O > a v b v c 

and 8 = 9-j v Qg. Since the congruences of lattices distribute 

Lemma 2 implies 6 A A ^ = 0. Hence L is a subdirect 

product of L/Q, L/ip-j and L/ij^. Now L/^-j ^ L/ij^ ^ 2 the 

two element lattice. Furthermore, L/0 has the property that 

any three of its generators join to the greatest element. 

If a v b v c = 1 , then = 0 and 0 = 6-j . In 

this case L is a subdirect product of L/0 and L/iK ^ 2. 

As before, L/0 has the desired properties. The remaining 

cases are handled by symmetry. 

Now we impose the additional condition that any 

three of the four generators of L join to 1 and meet to 

0. Since L has breadth two this implies that any three 

element subset of {a,b,c,d} has a two element subset whose 
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elements join to the top. We shall show that all but at most 

two of the two element subsets of {a,b,c,d} join to 1. 

First we need a lemma. 

LEMMA 4: Let x and y b_e noncomparabl e el ements i n _a 

breadth two modular lattice. Then x v y/x and x v y/y 

are both chains. 

PROOF : Suppose x £ u, V £ X V Y a r e noncomparable elements. 

Then it is not hard to check that the elements u, v, 

y A (u v v) generate a lattice isomorphic to the lattice of 

subsets of a three element set. Now the lemma follows from 

Lemma 1. 

As remarked above, there is a two element subset of 

{a,b,c} joining to 1; say a v b = 1. Also, there is a 

two element subset of {a,c,d} joining to 1. If c v d = 1, 

then we have two complementary pairs, both of which join to 

1. Suppose a v c = 1. Now consider {b,c,d}. If either 

b v d - 1 or c v d = 1 , then there exists two complementary 

pairs, both joining to 1. If b v c = 1, then we have that 

all pairs not containing d join to 1. In conclusion, 

either there are two complementary pairs of generators both 

joining to 1, or there is a generator such that all pairs 

of generators not including that generator join to 1. 

Suppose a v b = 1 = c v d. If a and b were 

comparable, then one of them would equal 1, contradicting 
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our assumption that L is not generated by three elements. 

Hence by Lemma 4 1/a is a chain and thus a v c and a v d 

must be comparable. By symmetry we may assume a v c > a v d. 

Then a v c = a v c v d = l . Now 1/b and 1/d are chains 

by Lemma 4; hence, as above, either a v d = l or b v d = l 

and either b v c = 1 or b v d = l . Thus either b v d = 1 

or both b v c = 1 and a v d = 1. We conclude that if there 

are two complementary pairs of generators, each pair joining 

to 1, then at least five of the six pairs of generators join 

to 1, or four of the six join to 1 and the two pairs that 

do not join to 1 are complementary. 

Let Mg be the five element length two lattice. 

LEMMA 5: Let L t̂ e a_ breadth two modul a r lattice genera ted 

by a , b ,c ,d , jjl which any three of the generators join to 1 . 

Then one of the fol1owi ng must hold. 

(1) L has the property that at least four of the 

six pai rs of generators join to 1 , and if 

two pairs do not join to 1 , they are comple-

mentary, 

( 1 1 ) L i_s_ a_ subdi rect product of M^ and â  lattice 

havi ng the property descri bed i n (i ) , 

( i i i ) L i_s a_ subdirect product of Mg and £ three 

generated modular 1 attice. 

PROOF : By symmetry and the remarks preceding Lemma 5 we may 

assume that a v b = a v c = b v c = l . In order to apply 
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Lemma 2 we must find elements v ^ u in the free modular 

lattice on four generators, FM(4), such that if ip is the 

maximum congruence separating v from u, then FM(4)/^ ^ 

Mg. This can easily be done in FM(x,y,z), since it is 

finite. For example, x v (y A Z) -< x v (Z A (x v y)) will 

do. 

Let a,b,c,d be the generators of FM(4). Then 
^ 'Xi % 'V 

a x, b y , c z, and d x A y A z can be extended 
f\j f\j f\, 

to a homomorphi sm f from FM(4) onto FM(3). It is not 

difficult to see that if f(w) - x v (y A z) then 

w < a v [(b v d) A (c v d)] and if f(w) = x v (z A (x v y)) — a. % a» % Mj 

then w > a v (c A (a v b)). It follows that in FM(4) 
% *\j 'V 

a v t(b v d) A (c v d)]-* [a v ((b v d) A (c v d))] v 

a v (c A (a v b ) ) = a v ((b v d ) A (c v d ) ) v (c A (a v b ) ) fx, fx, r\j f\j I\j 'V 'b 'X/ % *\t f\j r\j 

and if ty is the largest congruence separating these elements 

then FM(4)/i/> ^ M g . 

Hence in L we have 

a v ((b v d) A ( c v d ) ) x a v ((b v d ) A (c v d ) ) v (c A (a v b ) ) . 

Now If we have equality in the above inequality, then 

a v (c A (a v b)) < a v ((b v d) A (c v d)) 

or 
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( a v e ) A (a v b) < a v ((b v d) A (c v d)). 

Since a v c = a v b = 1 in L the left hand side of this 

inequality is 1 and hence the right hand side is also. By 

Lemma 4 either a and (b v d) A (c v d) are comparable or 

b v d and c v d are comparable. If a > (b v d) A (c v d), 

then a = a v ((b v d ) A (C v d ) ) = 1. In this case, L is 

generated by b, c, and d contrary to our assumption on 

L. If (b v d) A (c v d) > a, then (b v d) A (c v d) = 1 

and in this case the conclusion of the lemma holds. 

If b v d > c v d, then b v d = b v c v d = l. 

By Lemma 4, a v d and c v d are comparable, and as above 

the larger one must be 1. Thus again the conclusion of the 

lemma holds. 

Now we consider the case 

a v ( ( b v d ) A (c v d)) 

•< a v ((b v d) A (c v d) v (c A (a v b)). 

Let 9 be the smallest congruence on L identifying these 

elements and IJJQ be the unique largest congruence separating 

these elements. By Lemma 2, L is a subdirect product of 

L/0 and L/^Q ^ Mg. Now arguments just as above show that 

the conclusions of the lemma hold. 
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3. MAIN THEOREM 

By Lemma 5 we may assume that a v c = a v d = 

b v c = b v d = l . By the dual of Lemma 5 we may assume four 

of the six pairs of generators meet to 0. We first consider 

the case a A c = a A d = b A c = b A d = 0 . Notice that 

this situation has a large amount of symmetry. If a relation 

holds in L, then the relations obtained from it under the 

permutations (ab), (cd), (ab)(cd), (ac)(bd), (ad)(be) also 

hold in L. The case when L can be generated by three 

elements is of course easy. For now we assume that L can-

not be generated by any three element. This implies that no 

two generators can be comparable. If a < c, for example, 

then a v c = 1 implies c = 1 contradicting the hypothesis 

that L is not generated by three elements. If a < b, 

then since c is a complement of both a and b, modularity 

implies a = b, again contradicting our assumption. The 

other cases are handled by symmetry. 

Let = a 0 - a, b^ = b° = b, c = c° = c, and 
o o o 

D = d° = d. Define inductively a. = a A (C. T V d. ,), 
o 1 1 - 1 1 - 1 

b. = b A (c._ 1 v d . ^ ) , c i = c A (a._ 1 v b^-j). d. = 

d A (a.. v b..^) and dually a 1 = a v ( c ^ 1 A b i = 

b v ( c 1 - 1 A d 1 " 1 ) , c 1 = c v (a1'"1 A b 1 " 1 ) , d 1 = d v ( a 1 ' 1 A 

b 1 " ^ ) . We now derive some formulae concerning these elements 

(1) a Q = a > a-j > a 2 ^ . . • a 0 = a < a 1 < a 2 < ... 

etc. 

( 2 ) a . = a.. _ i A ( c . ^ - J V d ^ ^ , a 1 = a 1 " 1 v 

( c 1 " 1 A d 1'" 1) 
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(3) a A d 1 = a A c 1 = a A b 1 " 1 

(4) a v d i = a v c i = a v b i _ - j 

i > 1 

i > 1 

(5) a i 
v d . = a- v c . = b. v c . = b. v d . = 

i i i i l i i 

(a i -1 v V l 5 A ( c i - l v d i - l } -

example > (4) can be proved with the aid of (2) and induction: 

d. = a 
i 

v ( d i - 1 A ( a i _ 1 v b i _ 1 ) ) 

= a v ( d
i -

•j A [(a A ( c i - 2 v d i - 2 ) ) V (b A (c-_ 2 V d , ^ ) ) ] ) 

= a v [ d i - 1 A ( c i - 2 v A v ( b A ^ C i - 2 V d i _ 2 ) ) ) ] 

= a v [ d i - 1 A (a v (b A ( c i - 2 v d . _ 2 ) ) ) ] 

= (a v d. _ ̂ A [a v (b A (c.__2 v d.. _ 2 ) ) ] 

= (a V b i - 2 ) A (a v b . _ 1 ) 

= a V b1-l 
• 

Note that art = a > a, > a 0 > 
o 1 i is a descending 

1 2 

c h a i n in a/0 and 0 = a A d < a A d < a A d < . . . is an 

ascending chain in a/0. By Lemma 4 , a/0 is a chain, and 

thus each a A d J must be comparable with each a... Let n 

be the smallest integer such that a A b > a n + ^ , if such an 

integer exists. Joining both sides of a n + ^ < a A b with c n 

we obtain 

(a A b) v c > [a„ A (c v d )] v c„ = (a„ v c ) A (c v d j . 
n n n n n n n n n ' 

However, (5) tells us a n v c n = ( a n - 1 v b n - 1 ) A ( c n - 1 v dn_-j) 
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Thus 

(a A b) v c n > ( a n . 1 v b ^ ) A (c n v d n ) 

Hence 

a A b = (a A b) v Ce A b) = [(a A b) v c n ] A b > 

b A (c n v d n ) A ( a n - 1 v b n - 1 ) = b n + 1 A ( A N _ 1 v b n - 1 ) = b n + 1 . 

Thus a A b > b It follows that n is the smallest 

integer such that a A b > b . Now observe 

a , = a A (c v d ) < a A b A ( c v d ) = a , T A B , i 
n + 1 v n n' v n n' n + 1 n+1 

Hence a n + 1 = b n + 1 . Thus 

cn + 2 = c A K + l v b n + l> = c A a n + l = 

LEMMA 6: Let L be_ breadth two modul ar lattice generated 

by four noncomparab1e generators a,b,c,d satisfying 

a v c = a v d = b v c = b v d = l and a A C = a A d = b A C = 

b A d = 0. J_f a p > a A b > a n + ^ , then b n > a A b > b n + -j 

â M a n + 3 = b n + 3 = c n + 2 = d n + 2 = Furthermore, 

c m > c A d > c m + i and > c A d > dm+-j where m i_s either 

n - 1 , n , or n + 1 . 
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PROOF: If a > a A b > a then c ^ o = 0 s as shown 
n n+1 n + d 

above. Thus m < n + 1. Similarly, n < m + 1. The rest of 

the lemma follows easily from the remarks above. 

We shall require a few additional observations. 

(6) (a A b1' ) v d = (a A d 1 + 1 ) v d = d i + 1 . 

If a - + i > a A b then 

(7) a i / a . + 1 ^ v b i / a i + 1 v b ^ d i + 1 / d i + 2 . 

If d . + -j -
 c A d then 

(B) d . / d i + 1 ^ d . v c i / d i + 1 v c. a i + 1 / a i + 2 . 

(6) easily follows from (3). To see (7), note that 

since a. > a A b 9 b. > a A b by Lemma 6. From this it 

follows that a-j/a-j+•] ̂  a-j v b-i/ai + i v b-j * Repeatedly using 

(4) with the poles of a and d interchanged we obtain 

d i + l v a i + l v b i = 'A ( a i v b i ^ v a i + l v b i 

= (d v a 1 + 1 v b i ) A (a i v b i ) 

= ( d v c . _ 1 ) A ( a . v b i ) 

= ( d v a . v b . ) A ( a . v b.) 

= a . v b . 
l l 

and 

d i + 1 A (a i + 1 v b ̂  ) = d A ( a . v b..) A (a. 

= d A ( a . + 1 v b.) 

i+1 v b i } 

= d A [(a A (c i v d^ ) ) v (b A ( c ^ v d-j^-j) 
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d i + l A ( a i + l v b i ' = d A ( c i - l v d i - l ) A ( b v a i + l ) 

= [ ( d A c ^ - j ) V d ^ - j ] A ( b V d . + 2 ) 

= d i + 2 v [b A (d^-j v (d A c i _ 1 ) ) 3 

= d i + 2 

LEMMA 7: Let L sati sf.y the hypotheses of Lemma 6. S u p p o s e , 

also that 

Then 

(9) a n > a A b > a n + 1 and. d p + 1 > c A d > d n + 2 > 

(10) a i > a A b n - i + 1 > a A b""1' > a i + 1 

i = n(mod 2 ) , i < n 

( 1 1 ) d k > d A C
n " k + 1

 > d A C
n
' -

k > . d k + 1 

k s n + 1(mod 2 ) , k < n. 

Furthermore , the images of a A b n " 1 + 1 and a A b under 

the p r o j e c t i VIty (7) are d A C " - 1 and d A C " " 1 " 1 . The 

n — k +1 n—k 
images of d A c and d A c under the projectivity 

(8) a_re a A b n"" k and. a A b n " k " 1 . 

PROOF: First we show that 

(12) a. > a A b > a A b 

i = n(mod 2), i 5 n 

and 

/ n \ a ^ a A ^n-k+1 ^ , a n-k 

(13) dj, > d A c > d A c 

k 2 n + 1(mod 2 ) , k 5 n. 

We prove these inequalities by induction on n - i and n - k 

First note that the second inequality in both (12) and (13) 
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follows immediately from the monotome nature of the b^': 

and cJ" ' s . Now we show that a n > a A b^ . Using (3) we 

have that 

a A [(c A d ) v ( b A a"')] = a A [ ( d A a"') v ( b A a^)] 

= a A a"' A ( d v ( b A a ' ' ) ) 

= a A ( d v ( b A a ^ ) ) 

= a A ( d v ( b A d 2 ) ) 

o 

= a A ( d v b ) A d 

= a A d 2 

= a A b 1 

Now, since a^ = a v (c A d) < a v d n + -j , we have 

1 1 
a -A b = a A [ ( c A d ) v ( b A a ) ] 

— à a [ d n + 1 v (b A (a v d n + 1 ) ) ] 

= a A [ d n + 1 v (a A (b v d n + 1 ) ) ] 

= (a A D N + 1 ) v [a A (b v D N + ] ) ] 

= a A (b v d n + 1 ) 

= a A (b v a n ) 

= ( a A b) v a n 

= a n 

i 

Thus , a A b 5 A N . 

Now suppose we have shown that a. > a A 

We shall show that d._.| > d A c n " 1 + 2 . Observe that 
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d A [ ( a A b n " i + 1 ) V ( c A d n " i + 2 ) ] 

^ d A [ ( a A d ) v ( C A d ) J 

, , n - i + 2 r ! 
= d A d A La v (c v d )J 

= d A [a v ( c A a n ~ 1 + ° ) ] 

• , % n - i + 3 
= d A ( a v c ] A a 

= d A A N - I + 3 

= d A C n " i + 2 . 

Hence, since d n " 1 + 2 = d v (a A b n ~ 1 + 1 ) < d v a., 

, n-i+2 , A r/ A , n - i + "k , ,n-i+2 N 1 d A c = d A L ( a A b ) v ( c A d ) ] 

< d A [a^ v ( c A (d v a.. ) ) ] 

= d A [a i v (d A (c v a i ) ) ] 

= (d A a. ) v [d A (c v a . ) ] 

= d A ( c v a. ) 

= d A ( c v d . __ -j ) 

= ( c A d ) v d . _ -J 

= d i - r 

Thus d A c
n ~ 1 + 2 < d . 

T h u s i f j i s e i t h e r n - i + 1 or n - i then 

a. > a A b J and > d A C ^ " 1 . By way of induction suppose 

that d . + 1 > d A c J _ 1 > d i + 2 for j as above. Then the image 

of a A b J under the projectivity (7) is 

d i + 1 A [(a A b J ) v a . + 1 v b.] = d i + 1 A [(a A (b J v a i + 1 ) ) v b.] 

= d i + 1 A (a v b.) A ( a i + 1 v b J ) 
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d i + 1 A [(a A b J ) v a i + 1 v b ^ = d i + 1 A v b J ) 

= d
1 + 1

 A ( a j + ] v b v b J ) 

= d i + 1 A ( d i + 2 V b J ) 

= d . + 2 v ( d . + 1 A d A b j ) 

= d i + 2 v ( d . + 1 A d A c J " ) 

= d i + 2 v ( d A c j _ 1 ) 

= d A C J " 1 

This shows that a. > a A b J > a. + -J , which completes the 

proof of the lemma. 

Arguments similar to these prove the following lemma. 

LEMMA 8: Let L s a t i s fy the hypotheses of Lemma 6. Suppose 

also that 

(14) a„ > a A b > a n + .j and d n > c A d > + ̂  

Then 

(15) a. > a A b 0 " 1 > a . + 1 

(16) d . > d A c"" 1 > d . + 1 

Furthermore, the i mage of a A b n _ 1 under the p r o j e c t iv i ty 

( 7 ) 1JL d A c " " 1 " 1 . The image of d A c n ~ u n d e r the 

pro j ecti vi ty (8) a A b n " 1 ~ ̂  . 

Let L n be the modular lattice freely generated by 

a s b s c , d subject to the relations a v c = a v d = b v c = 

b v d = 1, a A C = a A d = b A C = b A d = 0 , a „ > a A b > a 
n + 1 » 

and d^ > c A d > d -J . By the above lemma 

(17) a > a A b n > a n > a A b" ' > 

n n+1 n+2 
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( 1 8 ) d > d A c" > D 1 î d A c 1 1" 1 > . . . 

2 d n > c a d > d n + 1 > d n + 2 = 0. 

For notâti o n a 1 convenience define 

(19) e Q = 0, â i = e 2 n + 3-2i 0 ~ 1 " n + 1 

a A b 3 = E2j + 2 0 < j < n.-

Then the chain (17) becomes 

( 2 0 ) e 2 n + 3 2 e 2 n + 2 " • • 2 e 1 " e o = 0 " 

Similarly, using (18) we define h.. , i = 0 , 2n+3. 

Moreover, we define f. to be the element obtained from e^ 

by interchanging a and b , and- g^ to be the element 

obtained from h^ by interchanging c and d. Let U be 

the following subset of L n : 

U = {e 1 v f . | 2 < i,j < 2n + 3} U {g. v,h . | 2 < i , j < 2n + 3} 

U {e. v h, | 0 < i,j < 2n+3 and |i-j| < 2} 
• vJ 

We shall show that U is closed under joins and meets and 

hence U = L n . In addition, we shal1 evaluate all joins and 

meets of elements of U thereby describing the lattice L n > 

First we require a lemma. 

LEMMA 9: The following formulae hold in L„. i — n 

(21) 3 i v a. v c j + 1 = 3 i v i < j 

(22) (a A b 1 ) v (b A a j ) = (a A b 1 ) v (c A d J'" ]) 

= (a A b 1 ) v (d A c ^ " 1 ) 

n > i > j 
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(23) a . v (b A a J ) = a i v (c A d J _ 1 ) 

= a. v (d A c-3""1) 

i < n - j , j s n 

(24) (a A b 1 ) v bj = (a A b 1 ) v c j + 1 

= (a A b 1 ) v 

i > n + 1 - j 

The second equa 1 i t.y i n (21) also holds for i < j + 2 and 

the second equa1i ty i n (23) also holds for i $ n + 1 - j , 

j < n + 1 . 

PROOF : We prove (21) using (4) and induction on i. Thus 

assume (21) holds when the subscript of a is less than 

and assume also that the correspond!' ng formula obtained by 

interchanging a and d, and b and c holds when the 

subscript of d is less than i. 

a i A b . = [a A ( o i _ v c L ^ ) ] v b . 

= [a A (b i v d i _ 1 ) ] v b. 

= (a v b.) A ( b . v d^-j ) 

= U v d . + 1 ) A (a^ v d i _ 1 ) 

= a i v [ d i _ 1 A (a v d . + 1 )] 

= a i v d j + 1 

To prove (22) note that since i,j < n we have 

(a A b 1 ) v (b A a J ) = aJ' A b 1 . Since b 1 > b J > d A b J = 

d A a J
 , 
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(a A b 1 ) v (d A c j " ] ) = (a A b 1 ) v (d A a J ) 

= b 1
 A [a V (d A a j ) ] 

= b 1
 A a . 

To prove (23) note that i < n - j and j < n imply that 

b. > b A a J and a J < a v b. Thus 

a . v ( b A a J ) = [ a A ( C 1 _ 1 V D ^ - J ) ] v ( b A a J ) 

= [a A (b. v d^-j )] v (b A a J ) 

= (b i v d ) A [a v (b A a J ) ] 

= (b . v d._-| ) A a J 

=
 ( C I _ I

 v D I - I ) A [a v (d A a J ) ] 

= ( c i _ 1 v d . ^ ) A [a v (d A c* 3" 1)] 

= a. v (d A c 3'" 1) 

Since i > n + 1 - j , b 1 > d A b n + 1 _ J* = d A c n" J' 

Thus 

(a A b 1 ) v b . « (a v b.) A b 1 

j j 

= (a v d j + 1 ) A b 1 

= (a A b 1 ) v d j + 1 . 

The proof of the last statement of the lemma is 

similar to above proofs. 

The previous lemma can be put into a more compact 

form. 

> 
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COROLLARY: The following holds in L . a. n 

(25) e i v fj = e i v 9 j _ z = e i v h j _ 2 i 2 j 

The joins in U are given by the following. 

(26) ( e i v f j ) v (e k v f 4 ) - e p v f g 

p = max{i,k}, q = max{j,£} 

( 9 i v h d ) v (g k V h A ) - g p v h q 

( e i v V v ( e k v V = e p v h q 

If i > j and £ > k and 2 < i , j , k , £ < 2 n + 3 and 

r = m a x { £ + 2 , j } s . s = m a x { i + 2 s k } then 

e i v h^ if |i- £| < 2 

(27) ( e i v f ) v (g k v h,) = ' e i v f if i > £ + 2 

9 s v h £ l f 1 ~ 1 + 2 

If j > i and £ > k then (e^ v "f" j ) v (g k v.h^) is as 

above except the roles of e and f are interchanged. The 

cases j > i and k > £, and i > j and k > £ are 

handled similarly. 

If i > j then 

( e v h , if | p-q 1 | < 2 
(28) e. v f . v e. v h = p q 

3 • 1 e p v V + 2 i f P " + 2 

where p = max{i,k} and q' = max{j-2,£}. All other joins 

in U are similar. 

The meet operation is given by 

(29) ( e i v V A (e k v f,) = e r v f s 

r = min{i,k}> s = min{i,£} 

(9i V H J ) A (g k V ht) = g r V H S 

(e. v hj) A (e k v h £ ) - e r v h $ 
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and 

(30) (e. v f.) A (g k v h £ ) = (e p v f q ) v ( g r v h $ ) 

where p = m i n { i , k - 2 , l - 2 } , q = min{j , k-2 , i - 2 } 

r = min{k , i-2 , j - 2 } , and s = {£,i-2,j-2}. 

If \k-l\ < 2 then 

(31) (e. v f.) A (e k v h £ ) = (e , v f ,) v ( g r , v h g , ) 

where p' = m i n { i , k } , q
l
 = m i n { j , k } s r

1
 = s' = mi n H , i-2 , j-.2} . 

THEOREM 1 : The set U together wi th the join and meet g i yen 

i_n (26) - (31) is the lattice L . 

PROOF : (26) follows from m o d u l a r i t y . The other equations 

follow easily from the C o r o l l a r y . 

(FIGURE 1) 

The lattices L q 5 L-J , are diagrammed in 

Figure 1. If we let L^ be the modular lattice generated by 

a,b,c,d with a v c = a v d = b v c = b v d = l , 

a A c = a A d = b A C = b A d = 0 , a n > a A b > a n + -j , and 

d n + I > c A d > d n + 2 then an analysis similar to that of I_n 

can be carried out. The lattices L ^ , L-j, L^ are 

diagrammed in Figure 2. 

(FI.GURE 2) 

Now let l œ be the modular lattice generated by 

a,b,c,d with a v c = a v d = b v c = b v d = l , 

a A c = a A d = b A C = b A d = 0 , a i > a A b , i = 0 , 1 , 2 
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It follows that a. > a A b
J
 and d.. > d A C

j
 for all 

i .j 2: 0. 

It remains to consider the case when L is 

generated by a , b s c , d with a v c = a v d = b v c = b v d = 

and all pairs of generators meeting to 0 except for two 

complementary pairs. By symmetry we may assume a A b = 

a A C = b A d = C A d = 0 . Call this lattice L'. We define oo 

a., b.. , c., d.. as before. However we now define 

a 1 = a v ( b 1 " 1 A c 1"" 1), b 1 = b v ( a 1 - 1 A d 1 " 1 ) , 

c 1 = c v ( a 1 " 1 A d 1 " 1 ) , d 1 = d v (b1'"1 A C 1 " 1 ) . We shall 

show that for all i and j 

(32) a. > a A dJ' , c. > c A bJ' 

We need two e q u a t i o n s . The proofs of these are left to the 

reader. 

(33) a.j = a A (d v c . _-j ) 

(34) c A b 1 = c A d 1 + l 

To prove (32) it is sufficient to prove that 

a. > a A d 1 and c. > c A b 1 for all i. This is obvious 

for i = 0. Assume the equations hold for i = 1, n. 

Then 

a n + l = ^ A (d v c n ) 

> a A (d v (c A b n ) ) 

= a A (d v (c A d n + 1 ) ) 

= a A d 
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n + 1 

The last step uses that fact that d < d v c 3 which is 

easily proved by induction. Hence the following chain of 

elements 1i es below a. 

2 1 
a > A | > a2 I ... Ï a A d > a A d > a A d > 0 

With this information an analysis similar to that for L 

can be carried out. 

Combining the above information we obtain the 

following theorem. 

THEOREM 2: rf L j_s_ a_ breadth two four-generated modul ar 

lattice then L i_s_ _a homomorph i c image of a_ subdirect 

product of four copies of 2, two copies of M,- and either 

A three-generated modular lattice or l_n o_r L^ for some 

n, 0 < n < oo. 

Not all four-generated subdirect products of l_n 

or L^ with four copies of 2 and two copies of M^ are 

breadth two. However, it is possible to make a list of 

lattices such that L is a breadth two four-generated modular 

lattice if and only if L is a homomorphic image of a lattice 

from this list. This shall not be done here. In Figure 3 

we give an example of a breadth two four-generated modular 

lattice which is maximal in the sense that it is not a 
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homomorphic image of a properly larger breadth two, four-

generated modular lattice. 

(FIGURE 3) 
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4. SUBDIRECTLV IRREDUCIBLES 

The utility of Theorem 2 is that the lattices in 

that theorem have only finitely many homomorphic images. With 

the aid of this fact we shall now characterize all subdirectly 

irreducible, four-generated breadth two modular lattices by 

actually listing them. Let L be such a lattice. Then it 

follows from Theorem 2 and the dis tributivity of congruence 

lattices of lattices that L is either 2 , M c , or a homo-
% s 

morphic image of L n or L^ for some n, 0 < n < «>. The 

following lemma shows each and L', 1 < n < 00 is the 3 n n » 

subdirect product of four subdirectly irreducible lattices. 

LEMMA 10: lf_ u/v i_s_ a_ prime quotient JJ1 L^ £r L^, 

1 5 n < <», then u/v is_ pro j ecti ve to a_ subquoti ent of a / a 2 

PROOF : Since L„ and L' are finite dimensional lattices 
n n 

every prime quotient is projective with a subquotient of 

either a/0 or of 1/a. Hence it suffices to show that every 

prime quotient of a/0 and of 1/a is projective to a sub-

quotient of a / a 2 . Suppose u/v is a subquotient for 

a,/a i + 1 with i < n. By (7) and (8) a-j/ ai+i 1 s projective 

t o a i - 2 k / / a i - 2 k + l • ^ = 1» •...» Hence the lemma holds 

in this case. If u/v is a subquotient of a/0 but not of 

a i ^ a i + l f o r a 1 1 1 - n t l i e n u = a n + l a n d v = I n t h l s 

case, since n > 1, 

u/v ^ c n v d n / c n \ d n / C A d ^ a
n _ i

 v b
n - i /

b
n - i

 v ( C A d ) ^ a
n . - | /

a A b l 
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Si nee a
 n _ / a A b ̂  is a subquotient of a n -j / a n , u/v is 

projective to a subquotient of a / a 2 by the above remarks. 

By the dual argument every prime subquotient of 1/a is 

2 
projective to a subquotient of a /a. Now if n > 2 then 

2 
the duals of (7) and (8) tell us that a /a is projective 

3 1 3 1 2 
to d /d which transposes down to aAd /aAd = aAb /aAb. 

Now we may argue as above. The case n = 1 has to be 

argued separately and is left to the reader. Arguments 

similar to the above prove the lemma for L^. 

Lemma 10 has the corollary that L n and L^ are 

each subdirect products of four subdirectly irreducible 

lattices, i < n < «>. More specifically, let L ^ = 

L n / 0 ( a , a A b
n ~ ^ ) , L p 2 = L n / 0 ( a , a ] ) v e ( a A b

n , a 2 ) , 

L n 3 = L
n /

e ( a , a A b n ) v 0 ( a 1 , a 2 ) , L n 4 = L J è ( a , a A b n " 1 ) . Since 

L n is the modular lattice freely generated by a,b,c,d 

satisfying the relations a v c = a v d = b v c = b v d = l , 

A A C = A A D = B A C = B A D = 0 , a^ > a A b > a ,, , n n+1 

d^ > c A d > d n + ^ , L -j is the modular lattice freely 

generated by a,b,c,d satisfying the above relations and 

also satisfying a = a A b n = a -j = a A b n ~ ^ . Similarly, 

L n 2 is the modular lattice freely generated by a,b,c,d 

subject to the relations of L n and to the additional 

relations a = a A b n = a 1 , a A b n _ 1 = a 2 , L n 3 to the 

additional relations a = a A b n , a-j = a A b n ~ ^ = a 2 , L n 4 

to the additional relations a A b n = a-j = a A b n~^ = a 2 . 
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Since the permutation (ad)(bc) generates an automorphism 

of L n and since a A b n ~ V a 2 1 S Projective to dAcn/a-j we 

have that Ln-j is isomorphic to L ^ . Similarly L ^ and 

L ^ are isomorphic. Furthermore, L ^ is isomorphic to 

L J_1 T . To see this, one shows that L 0 satisfies the 
n + 1 ,1 n2 

defining relations of + ^ -j and vice versa. This can be 

done with the use of Lemma 8 , and is left to the reader. 

Similar arguments give that L^ is a subdirect product of 

L n l ,
 L

n + 2 j > a n d t w o c°P i e s of L n + 1 j . 

It follows from (17) that L n has length 4n + 6. 

Using Lemma 8 it follows that L ^ has length n + 1 and 

L n 2 has length n + 2. Let S 1 = 2 S 2 '= and S n + 1 = L n l 

n > 2. 

2 1 
In L^ a > a > a > a-j > a 2 and by (7) and (8) 

and their duals every prime quotient of L^ is projective to 

? 
a nontrivial subquotient of a /a or a / a

2 - If we identify 

2 

a with a and a-j with a 2 then we get the modular 

lattice freely generated by a,b,c,d subject to these 

relations and the relations of L . These relations are 
oo 

equivalent to a v b = a v c = a v d = b v c = b v d = l, 

a A b = a A c = a A d = b A C = b A d = C A d = 0 . This is 

the lattice studied in [3]. We denote it by S w . Examining 

the other congruences on L^ yield that L^ is a subdirect 

product of two copies of S œ and two copies of S d , its 

dual. The same statement holds for L'. These facts 
oo together imply that L n and L^, 0 < n < «>, are each a 
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subdireet product of four subdirectly irreducibles chosen 

from {S„ 1 < n < <»} v It follows from the distribu-
n 1 oo 

tivity of lattice congruences that any subdirectly irreducible, 

breadth two, four-generated modular lattice is a homomorphic 

image of one of the or S . For n<°°, S is finite 3 n » n 

and hence simple. Thus S n , n < » has no nontrivial homo-

morphic images. S^ and S^ have only one nontrivial homo-

morphic image: the six element length two lattice, Mg 

[3]. Consequently 

THEOREM 3: The subdirectly i rreduci ble , breadth two , four-

generated modular lattices are precisely the set 

{S n | 1 5 n < » } v { S d , M 6 } . 

In [3] the word problem for S^ is solved. If 

one takes the sublattice K n of S œ generated by 

a v d n > b v d n > c v a n , d v a n if n is even and by 

a v d n _ i , b v d n -j , c v + 1 , d v a n + 1 if n is odd, 

then using the above mentioned solution to the word problem 

in S œ , one can show that K n satisfies the relations 

defining S^. Since S n is simple it follows that K n is 

isomorphic to S n . This shows that the lattices of Theorem 3 

are precisely the breadth two lattices considered in [3]. 

See Figures 4 and 5. 

(FIGURE 4) 

(FIGURE 5) 
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5. COVERINGS IN FM(4) 

It is apparent from Lemma 2 that coverings in free 

modular lattices have important consequences in the study of 

the structure of modular lattices. Moreover, McKenzie has 

investigated the connections of coverings in a free lattice 

to the theory of lattice varieties. In view of these 

applications we give some examples of coverings in FM(4). 

In particular, we give an infinite list of covering in FM(4), 

u i > v.. inequivalent in the strong sense that if ^ ( u ^ , v..) 

is the unique maximal congruence separating u^ from v. 

then the FM(4)/\|>(u • » v ̂  ) 1 s are pairwise noni somorphi c . In 

fact, there is a covering correspond!" ng to each S , 

1 < n < oo. 

Let f map FM(n) homomorphically onto L. 

Then" f is called upper bounded if for each x e L there is 

an element u e FM(4) such that f(u) = x and f(v) = x 

implies v < u. If the dual property holds then f is 

lower bounded. If f is both upper and lower bounded then 

f is bounded. If u is as above we call u the maximal 

inverse image of x. The minimal inverse image is defined 

dually. Note that if f : FM(n) L is bounded and y >• x 

in L, and if u is the maximum inverse image of x and v 

is the minimal inverse image of y , then u v v >~ u and 

u A v •< v in FM(n). These concepts were defined and 

studied by R. McKenzie [6]. When L is finite McKenzie gives 

the following process for deciding if f is bounded. For 
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each x e L define M(x) to be the family of two elements 

subsets (y, z} of L such that x > y A Z, X £ y , x £ z 

and if y « £'y » Z - and x > y ̂  A z ̂  then y = y 
^ o o o o o J o 

and = z. Choose a : L + FM(n) such that a is mono-
o o o 

tine and f(a (x)) = x for all x e L, and such that 
o 

a < a r tf(a) for each generator of FM(n). Now define f\j 0 r\, 

(35) a. ( x ) = a. ,(x) v V (a. Ay) A a. ^ z 
1 1 - 1 (x, y } e M(x) 1 - 1 1 - 1 

Now if f(u) = x then u < a..(x) for some i [6]. Thus f 

is upper bounded if and only if a.. = a. + -j for some i. 

Let FM(4) be freely generated by a,b,c,d. Let 
OJ <\j Of 

S 2 n + 1 = L 2 n 1 b e t h e ^ a t t l * c e defined above. Let the generators 

of S £ n + -j be a ,b ,c,d . Let f : FM( 4) S 2 n + 1 be the unique 

extension of the map f(a) = a, f(b) = b , f(c) = c , f(d) = d . 
% % i» 

Note that since the maximal inverse image function, when it 

exists, preserves meets and S 2 n + 1 h a s breadth two we may re-

strict our attention to the meet irreducibles in S 2 n + 1 ^ n c a 1 " 

culating the a.'s. The meet irreducibles of S 0 t , consist of 

a < a 1 - a 2 < a 3 - a 4 < ... < a 2 n " 3 - a 2 n " 2 <. a v b 

b < b 1 - b 2 5 b 3 = b 4 < ... < b 2 n ~ 3 = b 2 n " 2 < a v b 

c - c 1 < c 2 = c 3 < ... < c 2 n - 2 - c 2 " ' 1 

d « d 1 < d 2 - d 3 < ... < d 2 n " 2 - d 2 " " 1 

Now M ( a ) = {{b, c ' }, {b , d'}}, M ( a 2 i ) = {{b 

lb , d }, ic , d }}, i = 1 , ..., n-1. 

2i 2i + 1 
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M(a v b) - H e 2 " " 1 , d 2 " " 1 } ) , M ( c 2 i + 1 ) - { { d 2 i + 1 , a 2 i + 2 } , 

{ d 2 i + \ b 2 i + 2 } , ( a 2 1 , b 2 1 } } , i - 0 , n - 2 , 

M ( c 2 n " ] ) = {{a v b , d 2 n - 1 } } . The definition of M ( b 2 1 ) is 

similar to M ( a 2 1 ) and M ( d 2 i + 1J to M ( c 2 1 + 1 ) . 

With these definitions one can choose an appropriate 

definition of a Q and compute a k by (35). For large enough 

k s a k = . We shall only give this final function. In 

FM(4) with generators a,b,c,d let 
% <\j f\j r\j 

(36) a 1 = a v ( c 1 ' 1
 A d 1 " 1 ) b 1 » b v ( c 1 " 1 v d 1 " 1 ) 

% % 

c 1
 = c V ( a 1 " 1

 v b i _ 1 ) d 1 = d V ( a 1 " 1 v b 1 " 1 ) 

Define g : S ^ n + -j + FM(4) inductively as follows 

g(a v b ) = a v b v ( c 2 " " 1 A d 2 " ' 1 ) 

g C c 2 " " 1 ) = c ^ - ' v t d ^ ^ A t a v b ) ) g C d 2 " " 1 ) = d 2 " " 1 v f c 2 " ' 1 A(avb) ) 

g ( a 2 1 ) - A(b21Ag{c21+1)r g ( b 2 1 ) = b 2 i v ( a 2 i A g ( c ^ + 1 ) ) 

g ( c 2 1 + l ) = c 2 i + l v ( d 2 1 + l A g ( a 2 i + 2 ) ) g(d 2 i + 1) = d 2 i + 1 v ( c 2 i + 1 A g ( a 2 i + 2 

To see that g is the final function we must show 

that if we let a Q = g in (35) then a 1 = g. The following 

identities in FM(4) may be proved by induction, starting 

with i » n - 1 and working down. 

g ( A 2 1 ) = A 2 I v ( b 2 1 A g ( c 2 i + 1 ) ) = a 2 1 v ( b 2 1 A g ( d 2 i + 1 ) ) 

g t c 2 1 " 1 ) = c 2 1 " 1 v V 1 ' 1 A g ( a 2 1 ) ) - c 2 1 ' ^ ( d 2 1 " 1 A g ( b 2 1 ) ) 

Let a Q = g we have 
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a l ( a
2 i ) = a 2 i v ( b 2 i A 9 ( c

2 l " + 1 ) ) 

v { [ b 2 i v ( a 2 i A g ( c 2 i + 1 ) ) ] A [ c 2 i + 1 v ( d 2 i + 1 A g ( a
2 i + 2 ) ) ] } 

v { [ b 2 i v ( a 2 1 A g ( c 2 i + 1 ) ) ] A [ d 2 i + 1 v ( c 2 i + 1 A g ( a 2 l ' + 2 ) ) ] } 

v { [ c 2 i - 1 v ( d 2 i - 1 A g ( a 2 l ' ) ) ] A [ d 2 l ' - 1 v ( c 2 i - 1 A g ( a 2 i ) ) ] } 

Observe that 

[ b
2 i

v ( a 2 i A g ( c
2 i + 1 ) ) ] A [ d 2 i + 1

V ( c 2 i + 1 A g ( a
2 i + 2

) ) ] 

- [ b 2 i v ( a 2 i A g ( d 2 l " + 1 ) ) ] A [ d 2 l " + 1 v ( c 2 i + 1 A g ( a 2 i + 2 ) ) ] 

- [ b 2 i v ( a 2 i A ( d 2 i + 1 v ( c 2 i + 1 A g ( a 2 ^ 2 ) ) ) ) ] A [ d 2 i + 1 v ( c 2 i + 1 A g ( a 2 i + 2 ) ) ] 

tXj f\j <\j *\t 1» 
r 2 i / , 2 i +1 v -, , ,2 i r ,2i + l , 21+1 , 2i+2 Nx-n = [a Ag(d )]v(b A [d v(c Ag(a ))]). 

With the use of this i d e n t i t y , the modular law and the fact 

that c2"1""1 A d 2 1 " 1 < a 2 1 " 1 it is easy to show that 
% a» a» 

ct-j ( a 2 1 ) = g ( a 2 1 ). Similar argument show that a-j = g. If we 

extend g to all of $2n + l by letting g(x A y) = g(x) A g(y) 

then g is w e l l - d e f i n e d and is the maximum inverse image 

f u n c t i o n . Since $2n + l is isomorphic to its dual we can 

calculate the minimal inverse limit function h as w e l l . 

Then since a^ > a in S 2 n + 1 w e ^ a v e the following covering 

in FM(4). 

g ( a ) v h(c A d) = g ( a ) v h ( a ) v h(c A d) = g (a) v h ( a
1
 ) >- g ( a ) 

Letting a. and b. be the elements dual to a
1
 and b

1 

i>» a»' a» % 
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in FM(4) , we have h(c A d) = c A d A ( A G N - L v b ^ - , ) . 

1 1 2 2 
Also, g(a) = a v (b A (c v (d A (a v (b A ... 'X» f\, f\j % <\j <\/ 

( c 2 " - 1 v ( d 2 n " ] A (a V b)...). Thus we have proved the 
r\j r\, % % 

following theorem. 

Theorem 4 : For n = 1, 2, ... w£ have the fol 1owi ng 

coverings i n FM(4). 

[ c A d A ( a 9 „ , vb9 r > , ) ] v a v ( b A ( c 1 v ( d 1 . . . ( c 2 n " 1 v ( d 2 n ~ 1 A ( a v b ) . . . ) 

a v f b A f c M d 1 . . . A ( c 2 n " 1 v ( d 2 n ' 1 A ( a v b ) . . . ) 
'\yrUrV;'V» % 'Xj 

Furthermore, JjF ij; j_s the unique maximal congruence 

separati ng this coveri ng then F M ( 4 ) / ^ n +1 " 

Similarly one obtains coverings in FM(4) 

corresponding to each of the ^ n ' 5 . 

Following McKenzie, call a modular lattice L a 

splitting modular 1attice if there exists an equation e 

such that for any variety V of modular lattices either 

all members of V satisfy e or L e V. By the above, 

S n , n = 0 , 1, 2 , ... is a splitting modular lattice. 

COROLLARY: L j_s a breadth two , four-generated spl i tti ng 

modular 1atti ce 1f and only i f L i i 1somorphi c to S n for 

some n , 1 < n < 

PROOF: It was shown in [3] that M c , S , and S d are not 
0 00 °° 

splitting modular lattices. The corollary follows from the 
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fact that a splitting modular lattice must be subdirectly 

irreducible. 

Now let V be the variety of modular lattices 

generated by all breadth two modular lattices and let 

FL(V, 4) be the free V-lattice on four generators. A 

lattice L is called weakly atomic if for x > y in L 

there exists u , v e L such that x > u >- v > y . 

COROLLARY: FL(V, 4) is a unique irredundant subdirect 

product of 14 copies of S-j , 14 copies of S 2 , and 6 

copies of S , n = 3, 4, .... Moreover, FL(V, 4) i s 

weakly atomi c. 

PROOF : In [3] it is shown that V is generated by 

{S n | 1 < n < «>}. Hence FL(V, 4) is a subdirect product 

of S , n = 1, 2, .... It is easy to check that there are 

14 distinct congruence relations \p on FL ( V, 4) such that 

FL(V, 4)/\p S-j , 14 congruences giving S 2 , and 6 congruences 

giving S , n = 3, 4 , .... With the aid of Lemma 2 and 

Theorem 4 it can be shown that none of these lattices can be 

removed from a subdirect representation of FL(V, 4). 

If x > y in FL(V, 4) then by the above there 

exists a homomorphism f from FL(V, 4) onto S , for some 

n < » , such that f(x) > f(y). Since f is bounded there 

exists u, v e FL(V, 4) with u >- v and f(x) > f(u) > f(v) 

f(y). Now it is easy to see that u/v is projective to a 
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subquotient u ' / V of x/y in two or less steps. By 

modularity x > u 1 v ' > y , proving the corollary. 

The above corollary implies that the word problem 

for FL(V, 4) is solvable. However, by Jtfnsson's theorem 

[5] the four-generated subdirectly irreducible members of V 

are precisely the lattices listed in Theorem 3 (see also [1]). 

Hence we have the following corollary. ^ 

COROLLARY: _I_f L i_s_ th_e V-latti ce freely generated by four 

gene rators subject to finitely many relati on s, then the word 

prob 1 em for L ij5_ sol vabl e . 

With the aid of the results of this paper, 

C. Herrmann has been able to list all subdirectly irreducible 

four-generated modular lattices in the class C of all lat-

tices embeddable in a complemented modular lattice. From this 

it foil ows that the word problem for four-generated lattices 

in C is solvable. This contrasts the result of G. Hutchinson 

that the word problem for nine-gene rated lattices in C is 

not solvable. An easy modification of Hutchinson's argument 

yields that the word problem for seven-generated lattices in 

C is not solvable. 
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