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Congruence Lattices of Finitely Generated Modular Lattices

Ralph Freese*

R. P. Dilworth [1] has shown that every finite distributive lattice is iso-
morphic to the congruence lattice of some finite lattice. E. T. Schmidt has shown
that every finite distributive lattice is isomorphic to the congruence lattice of a
modular lattice L. L cannot, in general, be taken to be finite, becausé the con-
gruence lattice of a finite modular lattice is a Boolean algebra. However, we are
able t§ prove the following theorem.

THEOREM. Every finite distributive lattice D is isomorphic to the con-
gruence lattice of a finitely gemerated modular lattice.

First we require some lemmas. The notation a> b means that a covers b
in a lattice, i.e., a/b 1is a prime quotient. The congruence lattice of a lattice
L is denoted O(L). In the case of L = MB’ the following lemma was obtained by
E. T. Schmidt [5]; see also [4]. Moreover, the first part of this lemma was proved
independently by E. T. Schmidt [7]. X

LEMMA 1. Let a> b 1in a modular lattice L and let D be a distributive
lattice with 0 and 1. Then L is isomorphic to‘é sublattice of a modular
lattice L* (in the variety generated by L) such that the quotient sublattice
a/b in L* is isomorphic to- D. Moreover, 0(a,b)/0 in O(L*) is isomofphic
to O(D). If L dis simple, then O(L*) = 0(D).

et D be a (0,1)-sublattice of 25,' for some set S. For any function
f defined on S, we let ﬂf be the partition on S assoclated with £; that is,

2

e = {(s,6) € 87:£(s) = £(£)}. Let U= {(s,t) € s%: £(s) < £(t) for all f € D}.

bet %= Ig & ZS: gla) = glt)  for all (s.t) € U and ﬁg z-ﬂd iy for
] 1 n

*This research was supported in part by NSF Grant Nos. GP-37772 and MPS 73-08589 AO2.



63

some d .,dnED, n € w},

12

LEMMA 2. D' = D.

Proof. Clearly DS D' and D' is a sublattice of 2S. Suppose g € D' - D

and et T > q eee My o Flxing d_...:.d for the remainder of the proof, let
g dl dn 1 n ?
SpseeesSy be a set of distinct representatives of the blocks of 7,6 A ...Aﬂd i1 Let
1 n
S k

$ ga2 = 25  be the pfojection onto the Sl""’sk coordinates. Let E' = {f € p':

Te 2 My oo Ty } and let E = E' (1 D.. Notics that. 0,1 € E :and (¢ 'is éne to
1 n

one on E'. Fix a coordinate among sl,...,sk; say 8- Let a = (al""’ak) be
the meet of the elements of d € ¢(E) such that d(sl) =1. Let b = (bl,...,bk)
be the join of the elements d € ¢(E) such that d(sl) = 0. Hence a; = 1 and
Bl=0. FE for some. 1, 2. €1 <k, g = then bj =1 also. For if b, =0,
then, since s, and s, are from different blocks, there is a dj among
dl,...,dn such that either dj(sl) =0 and dj(si) =1 or dj(sl) =1 and
dj(si) = 0. The former case gives a contradiction to the definition of b, the
latter case, to a. Consequently, the elements a and aA b agree on the
coordinates 2,...,k but are unequal on the first coordinate. This shows that the
embedding of ¢(E) in Zk 1s an irredundant subdirect representation. It is not
hard to see that this shows that the length of ¢(E) equals the length of Zk,
which is, of course, k.

Notice that our element g is in EY - E. Since ¢ 4is one to one on B
¢(g) ¢ $(E). There is a least element of ¢(E) whiﬁh is above ¢(g). Let g+
be the unique in-verse image of this element in E. Define g dually. We may
assume that g is chosen in E' - E such that the dimension of ¢(g+)/¢(g') is
minimal. Since this dimension must exceed one, there is an f € E such that

B4 i T Re e Erow: SHe ok wki i e S e Blat ) /Bleiin) that

fvg€E. Consequently f v g = g+. Simllarly, f/ng =g . If h . ds snother
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element of E such that g < h < g+, then, as above, gv h = g+ and ga h =g,
Distributivity implies that f = h. Hence the dimension of ¢(g+)/¢(g_) is two,
and ¢(f) and ¢(g) differ in exactly two coordinates, say 1 and 2. Thus we may
assume that f(sl) =0 = g(sz) and f(sz) =1 = g(sl). since. o €[, (51’52) B I
Hence there is an element de{dl,...,dn} such that d(sl) =1 and d(sz) = 0. TFrom
this it follows that g = (d,A\g+) Vg € E; contradicting g € D' - D.

To prove Lemma 1, let S and U be as above and define L* = {f € LS:
f(s) < f(t) for all (s,t) € U and e z_wdl 540 ﬁdn for some dl,. .,drlé D
and some n € w}. Clearly L* is a sublattice of LS, and L 1is embedded into
L*¥ by ‘x = fX where fx(s) =x for all s € S. It follows from lemma 2 that
a/b in L* is isomorphic to D. ‘

Let 6 €6(D). If x>y in a lattice, we define x - =0 if x=9 and
o=y wndesif by p 9l SIEMIL, 853¢ LS are such that f£(s) k_g(s) for all s € 8§,
then £ - g 1is the element of ZS given by (f ~ g)(s) = f(s) ~ g(s). We let g*

be the set of all ordered pairs (f,g) &€ (L*)2 such that there exists a finite

sequence fo = fAg, fl,...,f = fvg with fi(s) L

: (s); all” s & 5.

i+3
1i=a0 . 3ns. a1 and fi+1 - fi % By hi for some <gi’hi) it aae T s Tl ESR

% is a congruence on L*¥. Let a »b in L. 7Then, if we identify D with the
sublattice a/b, 0% N (a/b)2 = 0. To see this, suppose that h > k are elements
of a/b in L* such that h -k < f - g for some (f.8) €9, 1f, for some

s €S, £f(s) = k(s) =b then the condition h - k <f~-g implies h(s) = b also.
It follows that fv k= fVh. Dually, gA k = g A h. From this it follows that
h/k is projective to (h A £f) v gf(k A £) v g which is contained in f/g. Hence
(h. kysEibl

In order to establish the isomorphism between ©O(D) and the sublattice

6(a,b) /0 1in O(L*), we define a:0(D) + 0(a,b) /0 by a(8) = 6%p 68(a,b) and
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B:8(a,b)/0 » (D) by B =y N (a,b)z. Clearly both o and B are monotone.
Since 0% U (a,b)2 =0, P oa is the identity map on O(D). Now let < Dla.b)
in O(L*) and let (f',g') € ¢ . There exists a finite chain between f'A g'

and f'wv g' such that the quotient formed by any two comnsecutive elements of

the chain is projective to a subquotient of a/b. Let £/g be such a quotient.
Thus £/g 1is projective to h/k € a/b. Consequently, (h,k) € Y N (a,b)z, and,
since f/g is projective to h/k, f - g=h - k. Hence, (f,g) € [V N (a,b)z]*
It Follows shat «(£Y,2"')s € [P0 (a,b)z]*,q 8(a,b). Thus a 0 B is the identity on
8(a,b)/0. This completes the proof of Lemma 1.

Remarks. 1. The lattice L* of Lemma 1 has the property that all prime
quotients of L become D din L*, 1In some situations we want a/b to become D
while certain other prime quotients remain prime. Let a/b and c/d be prime
quotients of L which are not projective to each other. Then (c,d) € ¥ = Y(a,b)
where y(a,b) is the unique largest congruence separating a from b. Since L
is modular, Y(a,b) ~ 6(a,b) = 0. Hence L 1is a subdirect product of L/y and
L/6, where 6 = 6(a,b). We apply Lemma 1 to L/Y, obtaining a lattice (L/y)*
in which a/b 1is isomorphic to D. Now L/Yy is embedded in (L/y)* by the diagonal
embedding, which we denote x/Y - (x/Y)*. L can be embedded in (L/Y)* % L/0 by
x + ((x/Y)*, x/6). Under this embedding, a/b gets mapped to ((afP)*, a/@)/((b/y)*,
b/8) which is isomorphic to D since (a/Y)*/(b/Y)* = D and a/f = b/8. On the
other hand, c/d gets mapped to ((c/Y)*, c/8)/((d/Y)*, d/6) which is isomorphic
to 2 as c/Y =d/Y and c/6 > d/6. We obtain the desired lattice by taking the
sublattice of this direct product generated by L and a/b.

2. The congruence lattice of the lattice constructed in the first remark is
the lattice obtained from O(L) by replacing the prime quotients of the form

6(a,b) v o/o, where o < Y(a,b), by 0O(D).
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Proof of the Theorem. Let KO be the two element lattice, Let Kl be the

lattice diagramed in Figure 1 (see [2]). Notice that Kl is four-generated and any

two prime quotients in K1 are projective. If 8 is the congruence relation

generated by collapsing these prime quotients, then Kl/G is the six element lattice
of length two. Hence the congruence lattice of K1 is the three element chain.

We apply the comnstruction of Lemma 1 to Kl using for D a chain of length
n. Let Kn denote the resulting lattice. In Kh’ the quotient d/e 1is isomorphic
to a chain of length n, d = d0 > dy } .o ) dn-l > d =e. It follows from Lemma 1
or from direct inspection, that the congruence lattice of Kn dgon - 27 element
Boolean algebra with a new greatest element adjoined.

In order to prove the theorem, we prove a stronger result by induction: 1if
D is a finite distributive lattice, then D is isomorphie to the congruence lattice
of a finitely generated modular lattice L. Moreover, there exists a € L such that
u/a is a chain, where u 1is the greatest element of L, and every congruence on
L is determined by its restriction to u/a.

Let P be the partially ordered set of nonzero join irreducible elements of
D. We induct on the size of P. If P has only one element, then D is the two
element lattice and we may take L to be KO'
Now suppose IPI > 2. Choose a maximal element p € P and let p cover

Pys«-+sP in P. Let D' be the lattice of order ideals of P - p. By induction,

e

there exists a finitely generated modular lattice L' with O(L") DY b arida Tl

has an element a' satisfying the above conditions. Thus for each Py there exists

bi and ci, u z_bi > ci > a', such that B(bi,ci) corresponds to p; under the

isomorphism O(L') = D', Moreover, we can choose bi and ci such that b'/c' N

bﬁ/cj has at most one element for i # j.

We wish to construct a modular lattice Ai such that Ai contains a sublattice

isomorphic to the lattice diagramed in Figure 2, and such that, in A., v./s. A v.
‘ i T i
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FIGURE 1
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is isomorphic to ci/a', xi/vi is isomorphic o hi/ci, and r. v ui/ui is
isomorphic to u'/bi. This is done in three steps. First comstruct the sublattice
ui/Vi by applying Lemma 1 to M3 (the five element length two lattice) taking

P s 1) 1
the distributive lattice to be bi/ci‘ Construct r, v ui/xi and zi/si A v, by
taking the appropriate direct products. Now, using the Hall-Dilworth construction

[3], attach these three lattices at their common points to form Ai.

sif\ Vi

FIGURE 2

Nowﬁapply Lemma 1 repeatedly to Kn’ in such a way that in the resulting

lattice, K&, di_l/di is isomorphic to bi/ci, o Tou s asiimb i e tha lattice

obtained by taking the direct product of u'/a' and du/0 = e/0 (in K&). A

schematic diagram of B 1is given in Figure 3.
(u',e)
B (LI',O) (a',e)

(a0}

FIGURE 3
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The lattice L is formed by repeated use of the Hall-Dilworth comstruction
as follows. First form the lattice L0 from L' and B by identifying u'/a'
and : (u's0)./ila’,0). L1 is formed from L, and A by identifying (u',e)/(a',e)
and ri/Si/\ v, Ln is formed from Ln—-l and Al by identifying r, V uzlsz
and rl/sl/\ vy In Ln the quotient sublattice r, v ullu' is isomorphic to d/0
in Kl_'1 L 1is the lattice obtained by identifying these quotients. The sublattice
d/a' in L 1is schematically diagramed in Figure 4. Notice that L 1is generated

by L' and the four generators of Kn and Vi» i =1, miandiig, & Thuse Liosds

finitely generated.

FIGURE 4

Every congruence of L 1is determined by its restriction to 1/a. To see
this let x/y be a quotient of L. Then O(x,y) =6(xvy d, yv d) Vv 8((xnd)vu',

(yn d)vu’) v Blxn uly, 3.0 al)e Now , s dbe dS 1/d € 1/a. Sinece d/u' is
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projective to 1/d and (xAnd) vu'/(FAd)V u' Sd/u'", O((xad vu',
(y £ d) v u') 1is determined by its restriction to: 1/d. The last quotient lies

in L' and hence is determined by its restriction to wu'/a' which projects d/a.

The quotients di—lldi in K; are independent in the sense that eK’(di—l’
n
restricted to dj—l/dj is the identity relation for i # j. From these facts it

follows that every congruence of L' has an extension to L (whose restriction

to L' is the original congruence). Moreover, every congruence on L 1is an

extension of a congruence on L' except 6(1,d). In particular every congruence

of L is a join of join irreducible congruences. Hence to show that O(L) = D we
need only show that the partially ordered set of join irreducible elements of ©(L)
is isomorphic to P. Each q € P - p is associated with a join irreducible 6'

of O(L'). We now associate q with the extension of 6' to L. With p we
associate 6(1,d). Notice that if © is the extension of a join irreducible
congruence 8' of L', then, by the construction of L, § < 6(1,d) if and only
Gf -0 E-G(bi,ci) in O(L'). Finally 60(1,d) # ;g;e{bi,ci) since 6(1,d) > ;?;

S(di_l,d ) dia Kﬁ. This establishes the isomorphism,
i
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