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In the 1930's and 1940's lattice theory was often broken into three subdivisions: 
distributive lattice theory, modular lattice theory, and the theory of all lattices. A 
question about lattices could usually be formulated for each of these subdivisions. Of 
the three resulting questions, the one about modular lattices almost always proved 
to be the most difficult. The problem of embedding a lattice into a complemented 
lattice was an example of such a problem. It is trivial to see that every lattice can 
be embedded into a complemented lattice, and Birkhoff's representation theorem [1] 
shows that every distributive lattice can be embedded in a complemented distribu-
tive lattice. However the problem of embedding modular lattices into complemented 
modular lattices remained open for some time. R. P. Dilworth and Marshall Hall 
addressed this problem in their 1944 paper [23], showing, in fact, that there are 
finite modular lattices which cannot be embedded into a complemented modular 
lattice. 

This paper used a construction that has become known as Hall-Dilworth gluing, 
but is now being called Dilworth gluing since it actually originated in an earlier paper 
of Dilworth, see below. With this construction Dilworth and Hall produced three 
examples of modular lattices, none of which can be embedded into a complemented 
modular lattice. Although other papers of Dilworth (and also Hall) contain deeper 
results, this paper has proved extremely important in the subsequent development 
of modular lattice theory. The examples themselves have proved useful in refuting 
various conjectures. The gluing technique used in constructing these lattices has 
turned out to be useful in settling some of the deeper questions of modular lattice 
theory. This gluing technique was the origin of more general gluing, which in turn 
has proved to be especially fruitful in solving some of the most stubborn problems 
of modular lattice theory. 
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The Dilworth gluing is simply this: if a nonempty filter F of a lattice Lo is 
isomorphic to an ideal I of a lattice L1 , let L be the union of Lo and Ll with the 
elements of F and I identified via the isomorphism. L can be ordered with the 
transitive closure of the union of the orders on Lo and L1 . It is easy to see that 
under this order L is a lattice. A schematic representation of this situation is given 
in Figure 2 of the Background for this chapter. 

It is more difficult to see that the lattice L is modular if both Lo and Ll 
are. This was established by Dilworth in [12]. Since this paper preceded the Hall-
Dilworth paper, we now use the term Dilworth gluing for this construction. The 
Dilworth gluing does not preserve equations in general. (However the distributive 
law is preserved.) Jonsson's Arguesian law (discussed below) is an example of an 
equation which is not preserved. 

The examples and complemented modular lattices. The Hall-Dilworth paper 
used gluing to construct three types of examples of modular lattices which cannot be 
embedded into complemented modular lattices. The basic idea behind all of them 
is that a projective plane can be embedded into a projective geometry of higher 
dimension if and only if it satisfies Desargues' theorem. Now the subspaces of a 
projective geometry form a complemented modular lattice and this lattice deter-
mines the geoemetry, see Chapter 13 of [2] and [35]. Since a projective geometry 
is determined by its lattice of subspaces, we identify a projective geometry with 
its lattice of subspaces. The first example is constructed by gluing the lattice of 
subspaces of a projective geometry which fails Desargues' theorem and M3 (the five 
element modular, nondistributive lattice) over the two element lattice. A schematic 
representation of this lattice is given in Figure 3 of the Background. By an argument 
similar to the proof that non-Desarguesian projective planes cannot be embedded 
into a higher dimensional projective geometry, Hall and Dilworth showed that this 
lattice could not be embedded into a complemented modular lattice. 

The second example was formed by gluing the lattices of subspaces of two finite 
Desarguesian projective planes over the two element lattice. These planes were 
coordinatized by fields with different characteristics. 

The third example, which was somewhat more subtle, was constructed by gluing 
two isomorphic copies of a Desarguesian projective plane over a two dimensional 
interval. The two dimensional intervals in a projective plane are all isomorphic 
to M n , where n is the number of points on a line in the plane. There are n! 
automorphisms of M n , and hence that many ways of gluing the two planes together 
over a two dimensional quotient (some of which will be isomorphic as lattices). With 
the aid of classical coordinatization techniques it can be shown that only some of 
these lattices can be embedded into complemented modular lattices. The ones that 
cannot are the third type of Hall-Dilworth example. 

Some of these ideas were clarified by the introduction of the Arguesian law 
by Bjarni Jonsson. This is a lattice equation which reflects Desargues' Theorem of 
projective geometry. In particular, the lattice of subspaces of a projective geometry 
satisfies this equation if and only if the projective geometry satisfies Desargues' 
Theorem. It can be shown that a subdirectly irreducible modular lattice of length 
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at least four which can be embedded into a complemented modular lattice satisfies 
the Arguesian equation, see Chapter 13 of [2]. The first and the third Hall-Dilworth 
examples are non-Arguesian and so not embeddable into a complemented modular 
lattice. In fact, since Arguesian lattices are defined by an equation, it follows that the 
first and third examples are not even in the variety K generated by all complemented 
modular lattices. (It is conceivable that K equals the class of lattices embeddable 
into a complemented modular lattice. In fact this is a good unsolved problem: Is 
the class of lattices embeddable into a complemented modular lattice closed under 
the formation of homomorphic images?) 

One might wonder to what extent the nonembeddability of modular lattices 
into complemented modular lattices is dependent on the failure of the Arguesian 
law. Indeed the modular law is satisfied by most of the lattices associated with 
classical algebraic systems. In fact these lattices satisfy stronger equations: Freese 
and Jonsson [16] have shown that if all the algebras in a variety of algebras have 
modular congruence lattices, these lattices satisfy the Arguesian equation. Thus 
the first and the third Hall-Dilworth examples can never lie in such a modular 
congruence variety. In [15] it is shown that the second Hall-Dilworth example also 
cannot lie in any modular congruence variety. 

Is it true that in some restricted class of modular lattices, closer to the class of 
lattices associated with classical algebraic systems, embedding into complemented 
lattices might be possible? This was shown not to be the case by Herrmann and 
Huhn in [28]. They showed that the lattice of subgroups of (Zj4Z)3 cannot be 
embedded into any complemented modular lattice. 

Some applications of the examples. The Hall-Dilworth examples have been 
used often in producing counter-examples. In this section we present a few of the 
important examples. C. Herrmann and W. Poguntke [29] used the second kind of 
example to show that the class of all lattices embeddable into the lattice of normal 
subgroups of a group cannot be defined by finitely many first order axioms. The 
idea is to let Lp be the lattice obtained by gluing (the lattice of subspaces of) a 
projective plane of characteristic p to a projective plane of characteristic p+ (the 
next prime after p) over a 1-dimensional quotient. Lp is not embeddable into the 
lattice of normal subgroups of a group In fact it lies in no variety generated by 
the congruences lattices of a variety of algebras with modular congruence lattices, 
see [15]. On the other hand it is not hard to see that a nonprincipal ultraproduct of 
the Lp's is also one of the Hall-Dilworth examples of the second kind, but the two 
projective planes have characteristic o. From this it follows that the whole lattice 
can be embedded into the lattice of subspaces of a vector space over the rationals. 
Hence it can be embedded into the lattice of subgroups of an Abelian group. This 
result also proves that many other classes of modular lattices cannot be defined 
by finitely many axioms. For example the class of all lattices embeddable into the 
lattice of subgroups of an Abelian group. Also it shows that the variety generated 
either of the above two classes cannot be finitely defined. 

In [31] Jonsson made a careful investigation of the third type of Hall-Dilworth 
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example. He found necessary and sufficient conditions for this type to be non-
Arguesian. These conditions coincided with the Hall-Dilworth conditions for nonem-
beddability into complemented modular lattices and were equivalent to the lattice 
not having a representation as a lattice of permuting equivalence relations. This re-
inforced the idea that the Arguesian equation reflected Desargues' law in geometry. 

M. Haiman [20] examined Jonsson's result and, using the correct skewfield, 
showed that the Arguesian equation required all of its six variables. Let H be the 
skewfield of all real quaternions and Lo = Ll = L(H3). Now H has a natural 
antiautomorphism, quaternion conjugation, that is R-linear. Using this antiauto-
morphism, Haiman constructed a Dilworth gluing of Lo and Ll over a 2-dimensional 
interval that failed to be Arguesian by Jonsson's result which would require that 
the map be an automorphism. Moreover this lattice has the property that all 5-
generated sublattices are Arguesian. 

Freese used a modification of the third type of Hall-Dilworth example to settle 
some of the important previously unsolved problems of modular lattice theory. Let p 
and q be distinct prime numbers and let F and K be countably infinite fields with 
characteristics p and q, respectively. Let Lo be the lattice of subspaces of a 4-
dimensional vector space over F and let Ll be the lattice of subspaces of a 4-
dimensional vector space over K. Every 2-dimensional interval in each of these 
lattices is isomorphic to Mw. Let L be the lattice obtained by gluing these lattices 
over such an interval. Then L is not in the variety generated by the finite modular 
lattices [13]. In particular the variety of modular lattices is not generated by its 
finite members. The basic idea of the proof is this. If F and K were finite fields 
then IFI = pn and 1](1 = qm for some n > 0 and m > O. Since pn f:. qm, it is 
impossible to construct L as above using finite fields. Of course to actually carry 
out the proof one needs to bring much of L into the free modular lattice. 

Using a similar example, Freese [14] was able to show that the equational theory 
of modular lattices is undecidable, i.e., there is no algorithm to determine if two 
lattice terms are equal in all modular lattices. A. Macintyre [34] constructed a 
skew field interpreting a finitely presented group with unsolvable word problem. If 
we construct L as above, but with Macintyre's field for F, we can interpret this 
group with unsolvable word problem in FM(5), showing that its word problem is 
unsolvable. Herrmann, with the aid of his more general gluing construction, has 
shown that FM( 4) has an unsolvable word problem, see below. 

The lattice L constructed above can also be used to show that there are two 
lattice terms v < u in five variables such that interval sublattice [v, u] of FM(X) is 
distributive for every X which contains the variables of u and v. From this it follows 
that every free distributive lattice can be embedded into a free modular lattice. A 
related open problem is this: Is the class of distributive sublattices of free modular 
lattices equal to the class of sublattices of free distributive lattices? 

Generalized gluing. In [25], Herrmann significantly generalized the notion of glu-
ing. Herrmann's idea was to consider maximal complemented subintervals of a 
modular lattice of finite height. These "blocks" can be ordered by means of their 
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least (or equivalently greatest) elements. With respect to this order, this system 
of blocks, called the prime skeleton, forms a lattice. Now if two blocks, B = alb 
and C = cld, are comparable in this order, say with B ú = C and B n C -::f. 0 
(equivalently b ú =d ú =a ú =c) then B U C is a sublattice which is isomorphic to the 
Dilworth gluing of Band C over the interval [b, c] considered as an ideal in B and 
a filter in C. Thus the original modular lattice is then decomposed into a lattice 
of complemented modular blocks together with a system of Dilworth gluings be-
tween intersecting, comparable blocks. An example of this kind of decomposition is 
presented below. 

For L a modular lattice of finite length, Herrmann defined two mappings, x I-t 
XU and x I-t x1!', of L into L by 00' = 0 and 11!' = 1 and 

XU = A {y E L : y -< x} x1!'=V{yEL:y>-x}. 

These mappings are isotone and form a Galois pair in that XU ú = Y if and only 
if x ú = y1!'. Consequently, LU, the range of x I-t xu, is a join subsemilattice of L, 
and L1!' is a meet subsemilattice of L, and they are isomorphic. Thus both LO' and L'II" 
are lattices, though not necessarily sublattices of L. More precisely, (LO', +,1\) and 
(L1!', V,·) are lattices, where V and 1\ are the operations of L, and 

x . y = (x 1\ y)O' x+y=(xVyt· 

A fundamental fact discovered by Herrmann was that the maximal comple-
mented subintervals of L are precisely those of the form x1!' lx, for x E LO', or 
equivalently ylyO' for y E L'II". We choose the first format and define the prime 
skeleton of L to be S(L) = LO' and for each x E S(L), we let L(x) = X 'II" Ix. The 
intervals L(x) will be referred to as the blocks of L. 

Now if x ú =yin S(L) and x ú =y ú =x'll", then L(x) n L(y) = [y,x'll"] = M. The 
identity map on M can be viewed as a bijection 'Pxy from a principal filter of L( x ) 
to a principal ideal of L(y). In the case x 1:: y or i E ú F =n L(y) = 0, we let 'Pxy = 0. 
These maps satisfy certain natural compatibility constraints, namely 

(1) 'Pxx is the identity map on L( x). 
(2) If 'Pxy -::f. 0, then it is an isomorphism of a filter of L( x) onto an ideal 

of L(y). 
(3) If x -< y in S, then <Pxy -::f. 0. 
(4) If x ú =z ú =yin S, them <Pxy = <Pxz 0 'Pzy. 
(5) 1m 'Px,xVy n 1m <Py,xVy = 1m 'Pxl\y,xVy' 
(6) Dom 'PXl\y,x n Dom 'Pxl\y,y = Dom <Pxl\y,xvy. 

Herrmann's gluing construction [25] (see also [26]) is essentially a converse of 
the above situation: 

Let Sand L( x), xES be lattices of finite length and for x ú =y in S let 
'Pxy : L( x) --+ L(y) be partial bijections satisfying the above conditions. 
Let L be the disjoint union of the L( x) 's with elements identified under 
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Figure 1 

the C(Jxy'S (i.e., a and b are identified if C(Jxz(a) = C(Jyz(b)). Then L is a 
lattice. If each L(x) is modular then Lis. 
Herrmann's gluing can be generalized in several ways. The finite length as-

sumptions on Sand L( s) can be relaxed. Moreover the blocks can be loosely glued 
rather than tightly glued. (If F is a filter of Lo which is isomorphic to an ideal I 
of Ll, we form a lattice on the disjoint union of Lo and Ll whose order relation is 
the transitive closure of the order relations of Lo and Ll and the relation x ::; y 
if x is mapped to y under the isomorphism of F to I. Notice that this construction 
can be obtained by gluing Lo, F X 2, and Ll using the ordinary Dilworth gluing.) 
A related type of gluing was developed by in Graczynska [17] and Gracyznska and 
Gratzer [18]. Further generalizations of these gluings and of Herrmann's gluing are 
developed in Day and Herrmann [5]. That paper gives various applications including 
applications to Maltsev products. Particular applications of this generalized gluing 
occur in Gratzer and Kelly [19] and Harrison [24]. 

Applications of generalized gluing. The following example, which is an unpub-
lished result of Jonsson, illustrates how Herrmann's gluing can be used to produce 
some subtle examples. Let S = {O,a,b, I} ú =22 and Lo, La, Lb, and Ll be four 
copies of an Arguesian projective plane of order n, L = L(F3 ), the lattice of sub-
spaces of the 3-dimensional vector space over the field with n elements. We can 
picture these lattices in the lattice, L(Fs). Let F S have as a basis {Ul,"" us} and 
consider the following length 3 intervals in L(Fs), 

Lo = [0, FUI + FU2 + FU3] 
La = [FUl,Ful + FU2 + FU3 + FU4] 
Lb = [FU3, Ful + FU2 + FU3 + Fus] 
Ll = [FUI + FU2 + FU3, FS] 

It is easy to see that the union of these intervals is a sublattice of L(F5 ). A 
sublattice of this lattice is given in Figure 1. 
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Figure 2 

The situation with the blocks pulled apart is represented in Figure 2. 
Of course the identification maps for these blocks are the identity maps. Assume 

that F has a nontrivial automorphism. What Jonsson did was to modify the map 
which connects Lo and La to be the map induced by the automorphism of F. The 
resulting lattice fails the Arguesian law but the sublattice consisting of the union 
of Lo and La is Arguesian. In fact every proper sublattice of this lattice is Arguesian. 
Herrmann [unpublished] has shown that all non-Arguesian lattices with S ú =22 are 
produced in this way. 

Other interesting examples of minimal non-Arguesian lattices were produced 
by Day, Haiman, Herrmann, Jonsson, and Pickering. For each integer k, Picker-
ing [36] was able to construct a minimal non-Arguesian lattice oflength at least k. 
His construction used Herrmann's gluing with S = 23 . Using these lattices he was 
also able to show that there is a variety of modular, non-Arguesian lattices all of 
whose finite members were Arguesian. This guaranteed that obtaining a structural 
characterization of minimal non-Arguesian lattices would be difficult. Nevertheless 
some progress has been made. In a series of papers [6], [7], [8], [9], Day and Jonsson 
conducted a detailed analysis of the Arguesian law in an attempt to understand the 
structure of minimal non-Arguesian lattices. In analogy to the Desargues config-
uration, they define a certain lattice configuration which is projective in the class 
of modular lattices. Accordingly they are called projectivity configumtions. If the 
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lattice L fails the Arguesian equation, one of these configurations is non-Arguesian, 
and in the ideal lattice of L there will be a minimal, non-Arguesian projectivity con-
figuration. Associated with these minimal configurations are several intervals which 
are projective planes which are glued together in a certain manner. The subsequent 
analysis split naturally into two cases. For the first case, called Boolean, there was 
a complete classification of models: each was the gluing of projective planes over a 
skeleton of the form 2n for n = 0,1,2,3. Examples of these have been given above. 
The results for the second case were not nearly so descriptive and it is clear that 
this problem is much more intractable. 

Herrmann himself of course made frequent use of his gluing. One of his out-
standing results was that FMC 4) has an undecidable word problem, [26]. Although 
his proof used many ideas from [14], his construction was fundamentally different. 
He introduced the concept of a skew frame and with his gluing, modified the lattice 
of subgroups of a certain Abelian group producing a 4-generated modular lattice in 
which the group ring of a finitely presented group with unsolvable word problem 
could be interpreted. Using the fact that his skew frames are a projective configu-
ration, he could pull this situation back into FM( 4), proving his result. 

Another very important paper of Herrmann which uses gluing is [27]. Let Mo 
denote the variety of lattices generated by the subspace lattices of all vector spaces 
over the rationals. Then Herrmann's result states: 

Every variety ofmodular lattices which contains Mo either is not generated 
by its finite dimensional members or does not have a finite equational basis. 

This result has several important corollaries: 
The variety of Arguesian lattices is not generated by its finite dimensional 
members. Neither the variety generated by all finite modular lattices nor 
the variety generated by all finite dimensional modular lattices have a finite 
equational basis. 

As Jonsson noted in [31], lattices of permuting equivalence relations satisfy 
the Arguesian law. Moreover he showed in [33] that every complemented Argu-
sian lattice has such a representation. It was an open problem for many years 
whether complemented ness could be dropped from his result. In a beautiful result, 
M. Haiman [21], [22] used gluings to solve this problem in the negative. A crown is 
an ordered set of the form Cn = {ao, ... , an-d U {bo, . .. , bn-d with ai < bi , bi+1 

(indices computed modulo n). Let Sn be Cn with a least and greatest element 
added. A diagram of S4 is given in Figure 3. 

Let V be a 2n-dimensional vector space over a prime field. For each element 
in Sn Haiman found an interval in L(V). The union of these intervals is a sublattice 
of L(V) whose prime skeleton is Sn. By gluing these intervals back together over Sn, 
but slightly modifying one of the intersections maps, Haiman produced a lattice 
which is Arguesian but cannot be represented as a lattice of equivalence relations. 
Moreover his proof shows in fact that the class of lattices having a representation 
as a lattice of permuting equivalence relations cannot be defined by finitely many 
first order axioms, although this class can be defined by an infinite set of Horn 
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Figure 3 

sentences, see Jonsson [32]. A good open problem: Is the class of lattices having a 
representation as a lattice of permuting equivalence relations a variety? 

Conclusion. Certainly the results above show that the Hall-Dilworth paper was 
seminal. Dilworth's gluing and its generalizations together with the examples con-
structed by Dilworth and Hall are the basis of many of the most important results 
in modular lattice theory. Along with the papers of Dedekind [10], [11], and von 
Neumann on coordinatizing complemented modular lattices [35], the Hall-Dilworth 
paper is among the most influential in the field. 
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