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Free-lattice functors weakly preserve
epi-pullbacks

H. Peter Gumm and Ralph S. Freese

Abstract. Suppose p(x, y, z) and q(x, y, z) are terms. If there is a common
“ancestor” term s(z1, z2, z3, z4) specializing to p and q through identifying
some variables

p(x, y, z) ≈ s(x, y, z, z)

q(x, y, z) ≈ s(x, x, y, z),

then the equation

p(x, x, z) ≈ q(x, z, z)

is a trivial consequence. In this note we show that for lattice terms, and
more generally for terms of lattice-ordered algebras, a converse is true,
too. Given terms p, q, and an equation

p(u1, . . . , um) ≈ q(v1, . . . , vn) (∗)
where {u1, . . . , um} = {v1, . . . , vn}, there is always an “ancestor term”
s(z1, . . . , zr) such that p(x1, . . . , xm) and q(y1, . . . , yn) arise as substitu-
tion instances of s, whose unification results in the original equation (∗).
In category theoretic terms the above proposition, when restricted to lat-
tices, has a much more concise formulation:Free-lattice functors weakly
preserve pullbacks of epis. Finally, we show that weak preservation is all
that we can hope for. We prove that for an arbitrary idempotent variety
V the free-algebra functor FV will not preserve pullbacks of epis unless V
is trivial (satisfying x ≈ y) or V contains the “variety of sets” (where all
operations are implemented as projections).
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1. Introduction

The motivation of this study arose from coalgebra. When studying
F -coalgebras for a type functor F , the limit preservation properties of F are
known to exert a crucial influence on the structure theory of the class of all
F -coalgebras. In particular, weak preservation of pullbacks is a condition which
is assumed in numerous studies of coalgebras. In Rutten’s seminal paper [19],
theorems were flagged with an asterisk if they were proved under the assump-
tion that the type functor F weakly preserved pullbacks. Although many of
these asterisks could later be discarded (see [5,20]), for several important re-
sults such a condition on the type functor remains essential.

Fortunately, many familiar Set-endofunctors enjoy the mentioned prop-
erty, however, there are notable exceptions, such as e.g. the bounded finite
powerset functor or the neighborhood functor, which both are relevant for
describing certain transition systems. The first one of these preserves preim-
ages (pullbacks along injective maps) and the second one preserves kernel pairs
(pullbacks of two equal maps), but neither of both preserves all weak pullbacks.

It could later be shown [21,11], that in general these two simpler condi-
tions, (weak) preservation of preimages and weak preservation of kernel pairs,
combine to be equivalent to weak preservation of pullbacks. Finally, it was
also discovered that the second condition, weak preservation of kernel pairs, is
equivalent to weak preservation of pullbacks of epis (see [9]).

From a universal algebraic point of view it is of interest to study the
functors FV which, for a given variety of algebras V, send a set X to the
free algebra FV(X) and a map σ : X → Y to its homomorphic extension
σ̄ : FV(X) → FV(Y ). Note that for an arbitrary term p(x1, . . . , xn) we have
that

σ̄ p(x1, . . . , xn) = p(σx1, . . . , σxn), (1.1)

where on the left hand side of the equation p is understood to be evaluated in
FV(X) and on the right hand side in FV(Y ).

In this context, weak preservation of kernel pairs translates into an inter-
esting algebraic condition, asserting that given an equation

p(u1, . . . , um) ≈ q(v1, . . . , vn), (1.2)

where {u1, . . . , um} = {v1, . . . , vn}, then the terms p and q are in fact both
obtained from a common “ancestor” term s by identifying some of its variables,
so that the equality (1.2) trivially follows from this representation.

Example 1.1. Assume that FV weakly preserves kernel pairs, then for any V-
equation

p(x, x, y) ≈ q(x, y, y) (1.3)

there exists a quaternary term s such that

p(x, y, z) ≈ s(x, y, z, z)

q(x, y, z) ≈ s(x, x, y, z).
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This representation then trivially entails (1.3), since the most general unifier
of s(x, y, z, z) with s(x, x, y, z) is s(x, x, z, z), resulting in the original equation

p(x, x, z) ≈ s(x, x, z, z) ≈ q(x, z, z).

The “ancestor condition” in the previous example has been introduced
in [9]. Applying it to the description of n-permutable varieties given by Hage-
mann and Mitschke [12], we could show that for an n-permutable variety V,
the functor FV weakly preserves kernel pairs if and only if V is congruence per-
mutable, which in turn holds, according to Mal’tsev [15], if and only if there
exists a term m(x, y, z) such that the equations

m(x, y, y) ≈ x (1.4)

m(x, x, y) ≈ y (1.5)

are satisfied.
In this note we are going to show that for any variety L of lattices, or

more generally, of lattice-ordered universal algebras, the free algebra functor
FL weakly preserves kernel pairs. Therefore, any pair of terms p, q which com-
bine to a valid equation (1.2) are instances of a common ancestor term s, so
that the equation (1.2) trivially results from instantiations of s resulting in a
syntactically identical term.

From the mentioned paper [9] it follows that for no congruence modular
variety V the functor FV preserves preimages. Hence the functor FL studied in
this note will not preserve preimages, which shows that the variable condition
{u1, . . . , um} = {v1, . . . , vn} cannot be dropped.

2. Preliminaries

We need only elementary category theoretic notions as can be found in the
first chapters of any introductory text, such as e.g. [14] or [1]. Most of the time
we shall remain in the category Set of sets and mappings. In particular, unless
otherwise said, all functors we consider will be Set-endofunctors. Even the free-
algebra functors FV , which are in the focus of this paper, will be considered
as Set-endofunctors; in this case we refrain from explicitly mentioning the
forgetful functor U taking an algebra to its underlying set.

Most of the time we shall omit parentheses when applying unary functions
to arguments, and we assume that application associates to the right, so we
write fx for f(x) and fgx for f(g(x)).

For a map f : X → Y we denote the image of f by f(X) or by im f and
its preimage by f−1(Y ). The kernel of f is

ker f := {(x1, x2) ∈ X × X | fx1 = fx2}.

Lemma 2.1. Given a surjective map f : X � Y and an arbitrary map g : X →
Z, then there exists a (necessarily unique) map h : Y → Z with h ◦ f = g if
and only if ker f ⊆ ker g.
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X
f �� ��

g
���

��
��

��
� Y

h
���
�
�

Z

Every surjective map f : X � Y is right invertible, i.e. has a right inverse
which we shall denote by f− and which obeys the equation f ◦f− = idY . This
general statement is equivalent to the axiom of choice, however we shall need
it here only for finite sets X and Y.

3. Weak preservation of pullbacks

Recall that for morphisms α : X → Z and β : Y → Z in a category, the
pullback of α and β is a triple (P, π1, π2) consisting of an object P together
with morphisms π1 : P → X and π2 : P → Y such that

• α ◦ π1 = β ◦ π2, and
• for every “competitor”, i.e. for every other object Q with morphisms

η1 : Q → X, η2 : Q → Y also satisfying α ◦ η1 = β ◦ η2, there is a unique
d : Q → P such that η1 = π1 ◦ d and η2 = π2 ◦ d.

X
α �� Z

P
π2 ��

π1

��

Y

β

��

Q η2

��
η1

��

d

��

By dropping the uniqueness requirement, one obtains the definition of a weak
pullback.

In the category Set of sets and mappings, the pullback of two maps α
and β is, up to isomorphism, given by the set

pb(α, β) = {(x, y) ∈ X × Y | αx = βy}
and the coordinate projections π1 and π2.

• If α = β then pb(α, β) is just kerα, the kernel of α, and (ker α, π1, π2) is
called a kernel pair.

• If β is injective, then pb(α, β) ∼= α−1(β(Y )), hence such a pullback is
called a preimage.

Weak pullbacks in Set are always of the shape (Q, η1, η2) where d : Q →
pb(α, β) is right invertible and ηi = πi ◦ d for i = 1, 2.

We say that a functor F weakly preserves pullbacks if applying F to a
pullback diagram results in a weak pullback diagram. F is said to preserve
weak pullbacks, if F transforms weak pullback diagrams into weak pullback
diagrams.
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Fortunately, it is easy to see that a Set-functor preserves weak pullbacks
if and only if it weakly preserves pullbacks, see e.g. [6], and that it preserves
preimages if and only if it weakly preserves preimages.

For Set-endofunctors F , weak preservation of pullbacks can be checked
elementwise:

Proposition 3.1. A Set-functor F weakly preserves the pullback of α : X → Z
and β : Y → Z iff for any p ∈ F (X) and q ∈ F (Y ) with r := (Fα)p = (Fβ)q
there exists some s ∈ F (pb(α, β)) such that (Fπ1)s = p and (Fπ2)s = q.

p ∈ F (X) Fα �� F (Z) � r

s ∈ F (pb(α, β))
Fπ2

��

Fπ1

��

F (Y )

Fβ

��

� q

Since we are only concerned with finitary operations, the free-algebra
functors FV happen to be finitary. This means that given a set X and p ∈
F (X), there is some finite subset X0 ⊆ X such that p ∈ F (X0). The following
easy lemma allows us to restrict our consideration to finite sets and maps
between them:

Lemma 3.2. If F is finitary, and F weakly preserves pullbacks of maps between
finite sets, then it weakly preserves all pullbacks.

Weak preservation of pullbacks can be decomposed into two simpler
preservation conditions. We recall from [11]:

Lemma 3.3. A functor F weakly preserves pullbacks iff F weakly preserves
kernel pairs and preimages.

In this note, we shall consider pullbacks of maps α, β where imα = imβ.
Therefore, the following result is relevant:

Lemma 3.4. For a Set-functor F the following are equivalent:
(1) F weakly preserves kernel pairs
(2) F weakly preserves pullbacks of epis
(3) F weakly preserves the pullback of maps α and β for which imα = imβ.

The equivalence of 1. and 2. is due to the first author with his student
Ch. Henkel, see [13,9]. The equivalence of 2. and 3. is easily seen by epi-mono-
factorization of α and of β. We obtain α = m ◦ α′ and β = m ◦ β′ where m is
mono and α′ and β′ are epi. Then pb(α, β) = pb(α′, β′).

4. The free-algebra functor

For any nontrivial variety V of algebras of fixed signature τ, and for a set X
of variables, we denote by FV(X) the V-algebra freely generated by the set X.
Its defining property is:
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Proposition 4.1. Given any algebra A of type τ and given any set map ϕ : X →
A, there is a unique homomorphism ϕ̃ : FV(X) → A such that ϕ̃◦ιX = ϕ where
ιX denotes the inclusion of variables X in FV(X).

FV(X)
ϕ̃ �� A

X
��

ιX

��

ϕ

�����������

In particular, starting with a map f : X → Y, and extending it with ιY
we obtain a map f̄ : FV(X) → FV(Y ) as homomorphic extension of ιY ◦ f.

FV(X)
f̄ �� FV(Y )

X
��

ιX

��

f �� Y
��

ιY

��

It is easy to check that idX = idFV(X) and g ◦ f = ḡ ◦ f̄ for a map g : Y → Z,

hence FV with object map X �→ FV(X) and morphism map f �→ f̄ is a functor.
We shall consider FV(X) as a set and f̄ as a set map when considering FV as
a set functor.

If f in the above picture is surjective, then so is f̄ . This is in fact so
for any Set-functor F. Namely, if f : X → Y is surjective it has a right-
inverse f− such that f ◦ f− = idY , from which the functor properties yield
F (f) ◦ F (f−) = idF (Y ), demonstrating that F (f−) is a right inverse to Ff ,
which therefore is surjective.

It is interesting to observe, even though it will not be needed for the
proof of our main result, that for a free-lattice functor FL, with L a variety of
lattices (without further operations), the converse is almost true:

Proposition 4.2. If L is a (quasi-)variety of lattices and ϕ : FL(X) � FL(Y )
is a surjective homomorphism, then there is a subset X0 � X and a surjective
map f : X0 � Y such that ϕ restricted to FL(X0) is f̄ .

FL(X)
ϕ �� �� FL(Y )

FL(X0)
��

ι

��

f̄

		 		���������

Proof. Each element y ∈ Y must have a ϕ-preimage in X, since the free gener-
ators in any lattice free in L are both ∨- and ∧-irreducible, see [3]. Collecting
these preimages of Y into a subset X0 of X, let f be the restriction of ϕ
to X0. By construction, f : X0 → Y is surjective, and ϕ agrees with f̄ on
FV(X0). �

Here we are interested in FL where L is any (quasi-)variety of lattices,
but we allow additional operations in the signature, as long as the axioms of L
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force those operations to be monotonic with respect to the lattice ordering. In
short: we assume that L is a quasi-variety of lattice-ordered universal algebras.

If a, b ∈ A for such a lattice-ordered algebra, we denote by [a, b] the
interval

[a, b] := {x ∈ A | a ≤ x ≤ b},

which is, of course, nonempty iff a ≤ b. With FL(X) we continue to denote
the free lattice-ordered algebra in L generated by X.

For the rest of this section, assume that g : X � Y is a surjective map
such that for each y ∈ Y the fibre g−1({y}) is finite, and let ḡ : FL(X) →
FL(Y ) be the homomorphic extension of g.

Lemma 4.3. There are homomorphisms ǧ, ĝ : FL(Y ) → FL(X) such that

(1) ḡ ◦ ǧ = id = ḡ ◦ ĝ,
(2) (ĝ ◦ ḡ)p ≤ p ≤ (ǧ ◦ ḡ)p for each p ∈ FL(X).

Proof. Let ĝ, ǧ : FL(Y ) → FL(X) be the unique homomorphisms which for all
y ∈ Y are defined by

ĝ(y) :=
∧

{x ∈ X | gx = y}
and dually by

ǧ(y) :=
∨

{x ∈ X | gx = y}.

(1) Given y ∈ Y then

ḡĝy = ḡ
(∧

{x | x ∈ X, gx = y}
)

=
∧

{ḡx | x ∈ X, gx = y}
=

∧
{gx | x ∈ X, gx = y}

=
∧

{y}
= y,

hence ḡ ◦ ĝ (and similarly ḡ ◦ ǧ) is the identity.
(2) For each variable x ∈ X we have gx ∈ Y , hence

(ĝ ◦ ḡ)x = ĝ(gx) =
∧

{x′ ∈ X | gx′ = gx} ≤ x.

For arbitrary terms p = p(x1, . . . , xn) ∈ FL(X) where xi ∈ X, we conclude

(ĝ ◦ ḡ)p = (ĝ ◦ ḡ)p(x1, . . . , xn)

= p(ĝḡx1, . . . , ĝḡxn)

≤ p(x1, . . . , xn)
= p,

and dually (ǧ ◦ ḡ)p ≥ p. �
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Recall that a pair of order preserving maps φ : P → Q and ψ : Q → P
between posets P and Q are said to form a monotone Galois connection, if for
all p ∈ P and q ∈ Q we have φ(p) ≤ q ⇐⇒ p ≤ ψ(q). In this case, (φ, ψ) is
called an adjoint pair with φ left adjoint to ψ and ψ right adjoint to φ. With
g, ḡ, ĝ, ǧ as before, the previous lemma easily yields:

Lemma 4.4. ḡ has both a left adjoint ĝ and a right adjoint ǧ with respect to a
monotone Galois connection.

Proof. What we claim is that q ≤ ḡ(p) ⇐⇒ ĝ(q) ≤ p and ḡ(p) ≤ q ⇐⇒
p ≤ ǧ(q) for arbitrary p ∈ FL(X), q ∈ FL(Y ) and ĝ, ǧ as defined before.
This follows immediately from monotony of ḡ and of ĝ and claims 1. and 2. of
the previous lemma. We need only check the first equivalence, the second one
follows by duality:

ĝq ≤ p =⇒ ḡĝq ≤ ḡp

=⇒ q ≤ ḡp

=⇒ ĝq ≤ ĝḡp ≤ p. �

For our weak pullback preservation property we need to consider joint
preimages of two points p and q with respect to two homomorphisms ḡ1 and ḡ2.
We show now that they must constitute intervals whose borders are delineated
using ĝi and ǧi. We state this in a slightly more general fashion, where {p}
and {q} are generalized to intervals [p1, p2] and [q1, q2]:

Lemma 4.5. Let g1 : X � Y and g2 : X � Z be surjective maps with finite
fibres and let ḡ1 : FL(X) → FL(Y ), ḡ2 : FL(X) → FL(Z) their homomorphic
extensions. For p1, p2 ∈ FL(Y ), q1, q2 ∈ FL(Z) we have

ḡ−1
1 [p1, p2] ∩ ḡ−1

2 [q1, q2] = [ĝ1p1 ∨ ĝ2q1, ǧ1p2 ∧ ǧ2q2].

Proof. For any p1, p2 ∈ FL(Y ), the equivalence resulting from the previous
lemma,

p1 ≤ ḡs ≤ p2 ⇐⇒ ĝp1 ≤ s ≤ ǧp2,

can be read as

ḡ−1[p1, p2] = [ĝp1, ǧp2].

Therefore

ḡ−1
1 [p1, p2] ∩ ḡ−1

2 [q1, q2] = [ĝ1p1, ǧ1p2] ∩ [ĝ2q1, ǧ2q2]

= [ĝ1p1 ∨ ĝ2q1, ǧ1p2 ∧ ǧ2q2]. �

Specializing to the case p1 = p2 =: p and q1 = q2 =: q we obtain

ḡ−1
1 {p} ∩ ḡ−1

2 {q} = [ĝ1p ∨ ĝ2q , ǧ1p ∧ ǧ2q].

Lemma 4.6. Given surjective maps with finite fibres g1 : X � Y and g2 : X �
Z and given elements p ∈ FL(Y ), q ∈ FL(Z), then the following equivalent
conditions state that p and q share a common preimage under ḡ1 and ḡ2 in
FL(X) :
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(1) ḡ−1
1 {p} ∩ ḡ−1

2 {q} �= ∅,
(2) ĝ1p ≤ ǧ2q and ĝ2q ≤ ǧ1p
(3) ḡ1ĝ2q ≤ p and ḡ2ĝ1p ≤ q.

Proof. Using Lemma 4.5 and Lemma 4.3

g−1
1 {p} ∩ g−1

2 {q} �= ∅ ⇐⇒ ĝ1p ∨ ĝ2q ≤ ǧ1p ∧ ǧ2q

⇐⇒ ĝ1p ≤ ǧ2q and ĝ2q ≤ ǧ1p

⇐⇒ ḡ2ĝ1p ≤ ḡ2ǧ2q = q and ḡ1ĝ2q ≤ ḡ1ǧ1p = p. �

5. Weak preservation of kernel pairs

It is well known that the complete lattice of congruence relations of any lattice,
hence of any lattice-ordered algebra, is distributive, so in particular, L is con-
gruence modular. As a corollary to a result from [9] it therefore follows, that
FL will not preserve preimages, hence will not weakly preserve all pullbacks.
Fortunately, though, this does not preclude FL from preserving kernel pairs,
or equivalently, pullbacks of maps whose images agree. This is in fact what we
will prove now. Our main result is:

Theorem 5.1. For any variety L of lattice-ordered algebras the functor FL
weakly preserves pullbacks of epis.

From now on, whenever we denote terms p, q, and s as p(x1, . . . , xm),
q(y1, . . . , yn), s(z1, . . . , zr) then we are implying that their variables are mu-
tually different, i.e. xi ��= xj , yi ��= yj , zi ��= zj unless i = j. An equation

p(u1, . . . , um) ≈ q(v1, . . . , vn)

arises from substituting variables ui, vj for xi and yj . For that purpose we
are allowed to have ui = uj or vi = vj even when i �= j. We denote the
corresponding substitutions by u, resp. v, hence

ui = u(xi) and vj = v(yj),

so p(u1, . . . , um) = p(uxi, . . . , uxm) = ū p(x1, . . . , xm) and q(v1, . . . , vm) =
v̄ q(y1, . . . , yn).

An equation p(u1, . . . , um) ≈ q(v1, . . . , vn) is called balanced, if the same
variables occur on both sides, i.e. {u1, . . . , um} = {v1, . . . , vn}. With these
conventions and with the help of Proposition 3.1, we can equivalently express
Theorem 5.1 in purely universal algebraic terms as follows:

Theorem 5.2. Let L be a (quasi-)variety of lattice-ordered algebras, and let
p(x1, . . . , xm) and q(y1, . . . , yn) be terms satisfying a balanced equation

p(u1, . . . , um) ≈ q(v1, . . . , vn). (5.1)

Then there is a term s(z1, . . . , zk) with k ≤ mn, and variable substitutions
σ : {z1, . . . , zk} → {x1, . . . , xm}, and τ : {z1, . . . , zk} → {y1, . . . , yn} so that

p(x1, . . . , xm) ≈ s(σz1, . . . , σzk) (5.2)

q(y1, . . . , ym) ≈ s(τz1, . . . , τzk). (5.3)
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and

u ◦ σ = v ◦ τ. (5.4)

The following figure illustrates the situation. Given terms p(x1, . . . , xm),
q(y1, . . . , ym) and a balanced equation p(u1, . . . , um) ≈ q(v1, . . . , vn), we find a
common ancestor term s(z1, . . . , zr) so that both p(x1, . . . , xm) and
q(y1, . . . , yn) are instances modulo the equations of V, of s by means of variable
substitutions σ, resp. τ. Applying the substitutions u, resp. v, which defined
the original equation p(u1, . . . , um) ≈ q(v1, . . . , vn), we obtain γ := u◦σ = v◦τ ,
and thus a common substitution instance of s from which the original equation
follows trivially by p(u1, . . . , um) ≈ s(γz1, . . . , γzr) ≈ q(v1, . . . , vn) :

s(z1, . . . , zr)
�

τ



��
���

���
���

�
σ

��			
			

			
		 


γ

��

p(x1, . . . , xm)

u

��

≈ σ s(z1, . . . , zr)

u

��

◦

τ s(z1, . . . , zr)

◦



v

��

≈ q(y1, . . . , yn)

v

��
p(u1, . . . , um) ≈ ūσ̄ s(z1, . . . , zr) = γ̄s(z1, . . . , zr) = v̄τ̄ s(z1, . . . , zr) ≈ q(v1, . . . , vn)

Formally:

p(u1, . . . , um) = p(ux1, . . . , uxm) (def. of u)

= ū p(x1, . . . , xm) (by 1.1)

≈ ū s(σz1, . . . , σzk) (by 5.2)

= ū σ̄ s(z1, . . . , zk) (by 1.1)

= u ◦ σ s(z1, . . . , zk) (functor property)

= v ◦ τ s(z1, . . . , zk) (by 5.4)

≈ · · · (same arguments in reverse)

= q(v1, . . . , vn).

We now come to the proof of Theorem 5.1.

Proof. Let X := {x1, . . . , xm}, Y := {y1, . . . , yn}, U := {u1, . . . , um} and
V := {v1, . . . , vn} be sets of variables with U = V, |X| = m and |Y | = n.
Define u(xi) := ui and v(yi) := vi.

Let pb(u, v) = {(x, y) ∈ X × Y | ux = vy} be the pullback of u and v.
The assumption U = V =: W means that im u = im v = W, so

∀x ∈ X.∃y ∈ Y. ux = vy, (5.5)

and symmetrically

∀y ∈ Y.∃x ∈ X.ux = vy. (5.6)
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These statements are equivalent to saying that the projections π1 and π2 from
the pullback pb(u, v) to the components X and Y are surjective.

X
u �� �� W

pb(u, v)
π2

�� ��

π1

����

Y

v

����

In applying the free-algebra functor FL to this pullback-diagram, we shall
have to consider the elements of pb(u, v) as variables. To emphasize this, we
set Z := pb(u, v) and write the elements of Z as follows:

Z = {zx,y | ux = vy} = {z1, . . . , zk}, (5.7)

so we retain the identities
π1zx,y = x (5.8)

and
π2zx,y = y. (5.9)

In order to show that FL weakly preserves this pullback, we must ver-
ify the conditions spelled out in Proposition 3.1. Thus given terms p :=
p(x1, . . . , xm) ∈ FL(X) and q := q(y1, . . . , yn) ∈ FL(Y ) and an L-equation
p(u1, . . . , um) ≈ q(v1, . . . , vn), we have ū p(x1, . . . , xm) = v̄ q(y1, . . . , yn) =: r
and must find some term s(z1, . . . , zk) such that

π̄1s(z1, . . . , zk) ≈ p(x1, . . . , xm) (5.10)

and likewise
π̄2s(z1, . . . , zk) ≈ q(y1, . . . , yn). (5.11)

Thus we are looking for a joint preimage s(z1, . . . , zk) of p(x1, . . . , xm) under
π̄1 and of q(y1, . . . , yn) under π̄2.

This is where Lemma 4.6 comes into play. We shall establish the last of
its 3 equivalent conditions, which means that we will prove that π̄1π̂2q ≤ p
and π̄2π̂1p ≤ q. By symmetry, it suffices to consider the first inequality, that
is we need to check

π̄1π̂2q(y1, . . . , yn) ≤ p(x1, . . . , xm).

Hence the following lemma will complete the proof: �

Lemma 5.3. For 1 ≤ i ≤ m and 1 ≤ j ≤ n we have q(π̄1π̂2y1, . . . , π̄1π̂2yn) ≤
p(x1, . . . , xm).

Proof. Let g := π̄1 ◦ π̂2 then for any fixed y ∈ Y we have:

g(y) = π̄1

∧ {zx,y | ux = v y}
=

∧ {π̄1zx,y | ux = v y}
=

∧ {x | ux = v y}.

(5.12)
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Let v− be a right inverse to v, which exists, as v is surjective. Observe
that ker v ⊆ ker g, so by Lemma 2.1 there exists a map h : W → FL(X) with
h ◦ v = g.

FL(X) X�
��� u �� �� W

v−

��

h





Y

v

����

g

��

It follows that

h = h ◦ v ◦ v− = g ◦ v−.

We now calculate, recalling from Proposition 4.1 that h̃ : FL(W ) → FL(X)
denotes the homomorphic extension of h:

q(π̄1π̂2y1, . . . , π̄1π̂2yn) = q(gy1, . . . , gyn)

= q(hvy1, . . . , hvyn)

= h̃ q(vy1, . . . , vyn)

= h̃ q(v1, . . . , vn)

≈ h̃ p(u1, . . . , um)

= h̃ p(ux1, . . . , uxm)

= p(hux1, . . . , huxm)

= p(gv−ux1, . . . , gv−uxm)

≤ p(x1, . . . , xm),

where in the last step we invoked the observation that according to (5.12):

gv−uxi =
∧{x | ux = vv−uxi}

=
∧{x | ux = uxi}

≤ xi

together with the fact that all terms, in particular p(x1, . . . , xm), are monotonic
in each argument. �

So according to Theorem 5.2 one can always find an ancestor term
s(z1, . . . , zk) ∈ FL(Z) to p and q for any balanced equation p(u1, . . . , um) ≈
q(v1, . . . , vn). By Lemma 4.5 we conclude:

Theorem 5.4. The set of all ancestor terms of p(x1, . . . , xm) and q(y1, . . . , yn)
with respect to the balanced equation p(u1, . . . , um) ≈ q(v1, . . . , vn) is the
nonempty interval [s0, s1] in FL(Z) whose bounds are given by

s0(z1, . . . , zk) = p(π̂1x1, . . . , π̂1xm) ∨ q(π̂2y1, . . . , π̂2yn) (5.13)

and
s1(z1, . . . , zk) = p(π̌1x1, . . . , π̌1xm) ∧ q(π̌2y1, . . . , π̌2yn). (5.14)



Free-lattice functors weakly preserve epi-pullbacks Page 13 of 18    20 

Here {z1, . . . , zk} = {zxi,yj
| ui = vj}, with π̂1xi =

∧{zxi,yj
| ui = vj} and

π̌1xi =
∨{zxi,yj

| ui = vj}, and similarly π̂2yj =
∧{zxi,yj

| ui = vj} and
π̌2yj =

∨{zxi,yj
| ui = vj}.

As an exercise, the reader is invited to verify that the equation

p(x, x, y) ≈ q(x, y, y) (5.15)

discussed in the introductory Example 1.1, yields the common ancestor term

s0(z1, z2, z3, z4) = p(z1, z2, z3 ∧ z4) ∨ q(z1 ∧ z2, z3, z4).

From this we can obtain p and q by identification of variables

p(x, y, z) = s(x, y, z, z)

q(x, y, z) = s(x, x, y, z)

so that the original equation (5.15) trivially results from a further common
identification:

p(x, x, y) = s(x, x, y, y) = q(x, y, y).

6. Extending the scope

Looking beyond lattices and lattice-ordered algebras, we find that a theorem
analogous to Theorem 5.1 is also true for arbitrary congruence permutable
varieties, often called Maltsev varieties, such as groups, rings, quasigroups,
etc.. These varieties are also termed 2-permutable in order to emphasize that
they belong to the more general class of n-permutable varieties. From [9] we
quote:

Proposition 6.1. (1) If V is a 2-permutable variety then FV weakly preserves
kernel pairs

(2) If V is n-permutable and FV weakly preserves kernel pairs, then V is
2-permutable.

This proposition also serves to document that there are indeed varieties
V for which FV fails to preserve weak pullbacks: The variety of implication
algebras is 3-permutable, but not permutable, see [17], hence:

Corollary 6.2. If V is the variety of implication algebras, the free-algebra func-
tor FV does not weakly preserve epi-pullbacks.

Recall that by Mal’tsev’s theorem [15,16] a variety V is permutable iff
there exists a ternary term m(x, y, z) satisfying the equations (1.4) and (1.5).

To a permutable variety V we can by Prop. 1 add arbitrary function sym-
bols, yet FV continues to weakly preserve pullbacks. We cannot guarantee this
behavior in the case of lattice varieties, unless the operations added are mono-
tonic. In that case we know that weak preservation of pullbacks is maintained.
This may suggest that an extensional classification of all varieties V for which
FV weakly preserves pullbacks could be difficult.

One might try to extend the scope from varieties and free-algebra functors
to a larger class of functors. One attempt would be to look at monads, as is done
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in [2] and in [8]. Every free-algebra functor is part of a monad M = (FV , ι, μ)
where ιX : X → FV(X) and μX : FV(FV(X)) → FV(X) are obvious natural
transformations.

A different perspective can be taken by considering FV(−) as a copower
functor. Given an object A in a concrete category C (with forgetful functor
U) and a set X, let AC [X] be the X-fold direct sum in C of A with itself, i.e.

AC [X] := U

(
∐

x∈X

A

)
.

If V is a variety and A ∈ V, then
∐

x∈X A exists in V, as was shown by Sikorski
[22], and it is in fact the same as the X-fold free product of A with itself, see
[4], pp 184 ff.. As a special case, the free algebra with variables from X is the
X-fold sum in V of FV(1), i.e.

FV(X) ∼=
∐

x∈X

FV(1),

so the free-algebra functor turns out to be a special instance of a copower
functor.

Monoids M for which the functor MC [−] weakly preserves preimages or
pullbacks of epis have been characterized with C being the variety M of all
monoids [10], the variety Mc of all commutative monoids or the variety S of
all semigroups, see [7]. The relevance of MMc[−], for instance, arises from the
fact that one can argue that this functor models multisets (bags) where the
multiplicities of elements are counted by M.

For lattices such an immediate Computer Science application is not yet
known, nevertheless would it be interesting to consider LL[−] where L is the
variety of lattices and L an arbitrary lattice.

7. Uniqueness and pullback preservation

In category theoretical terms, uniqueness of the ancestor term would amount
to the free-algebra functor preserving pullbacks of epis (not just weakly). How-
ever, in [2], the authors prove:

Proposition 7.1. If FV preserves pullbacks, then every binary commutative
term t(x, y) is a pseudo-constant, i.e. it satisfies t(x, y) ≈ t(z, z).

The term x ∧ y therefore witnesses that for every nontrivial variety L of
lattices, the free-lattice functor FL does not preserve pullbacks.

Below, we shall need a stronger version of this proposition which, however,
builds on the same proof idea. Given an equation t(u1, . . . , un) ≈ t(v1, . . . , vn),
we shall reuse our notation from the proof of Theorem 5.2 and introduce new
variables zui,ui

as well as zui,vi
for 1 ≤ i ≤ n.

Proposition 7.2. If FV preserves pullbacks of epis, then each term t satisfying
a balanced equation t(u1, . . . , un) ≈ t(v1, . . . , vn) also satisfies

t(zu1,u1 , . . . , zun,un
) ≈ t(zu1,v1 , . . . , zun,vn

).
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Proof. For U = {u1, . . . , un} = {v1, . . . , vn} consider the constant map α :
U → {x} then pb(α, α) = ker α = U × U and

ᾱ t(u1, . . . , un) = t(x, . . . , x) = ᾱ t(v1, . . . , vn).

If FV preserves the pullback of α with itself, there ought be precisely one term
s ∈ FV(pb(α, α)) with π̄1s = t(u1, . . . , un) and π̄2s = t(v1, . . . , vn). However,
we can present at least two candidates, namely s1 := t((u1, u1), . . . , (un, un))
as well as s2 := t((u1, v1), . . . , (un, vn)), since

π̄1s1 ≈ t(u1, . . . , un) ≈ π̄1s2,

and also

π̄2s1 ≈ t(u1, . . . , un) ≈ t(v1, . . . , vn) ≈ π̄2s2.

Hence

s1 = t((u1, u1), . . . , (un, un)) ≈ t((u1, v1), . . . , (un, vn)) = s2.

Recall that the elements (ui, vj) ∈ pb(f, g) act as variables in FV(pb(f, g)),
which we emphasize by writing zui,vj

for the variable (ui, vj) just like in the
proof of Theorem 5.2. Thus we infer the equation

t(zu1,u1 , . . . , zun,un
) ≈ t(zu1,v1 , . . . , zun,vn

). �

Full preservation of pullbacks seems to be an extremely strong condition
in the realm of free-algebra functors. We first demonstrate this for permutable
varieties. Given a Maltsev term m as in (1.4) and (1.5), then we can trivially
infer the equation

m(x, y, y) ≈ m(y, y, x).

Therefore, assuming that the free-algebra functor for a Maltsev variety V pre-
serves pullbacks Proposition 7.2 yields the equation

m(zx,x, zy,y, zy,y) ≈ m(zx,y, zy,y, zy,x),

which after renaming of variables can be written as

m(x, y, y) ≈ m(u, y, v),

thereby expressing the fact that m must be independent of its first and third in-
dex. With the help of either (1.4) or (1.5), this implies m(x, y, z) ≈ m(y, y, y) ≈
y, showing that m is a projection operation, which, unless V is trivial, contra-
dicts both (1.4) and (1.5). We conclude:

Corollary 7.3. For each nontrivial Maltsev variety V the free-algebra functor
FV does not preserve epi-pullbacks, even though it does preserve them weakly.

Finally, we test Proposition 7.2 on arbitrary idempotent varieties. Recall
that a variety V is called idempotent, when each fundamental operation f
satisfies f(x, . . . , x) ≈ x.

It has been shown in [8] that for idempotent varieties without constants
the free-algebra functor FV weakly preserves products and pullbacks of con-
stant maps. The following theorem shows that nontrivial idempotent varieties
will never (fully) preserve pullbacks:
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Theorem 7.4. If V is an idempotent variety for which FV preserves pullbacks
of epis, then V is either trivial (satisfying x ≈ y) or it contains the “variety of
sets” (where all operations are implemented as projections).

Proof. We employ a result of Oľsák [18] stating that any idempotent variety
satisfying at least one nontrivial equation (not satisfied in the variety of sets)
must have a six-ary term t satisfying the equations

t(x, y, y, y, x, x) ≈ t(y, x, y, x, y, x) ≈ t(y, y, x, x, x, y).

Applying Proposition 7.2, while renaming variables zx,x, zy,y, zx,y, zy,x as x, y,
z, u we obtain from the first equation the new

t(x, y, y, y, x, x) ≈ t(z, u, y, u, z, x). (7.1)

Hence also

t(y, y, x, x, x, y) ≈ t(z, u, y, u, z, x),

from which a second application of Proposition 7.2 with variables zy,z, zy,u, zx,u,
zx,z renamed as a, b, c, d yields the equation

t(y, y, x, x, x, y) ≈ t(a, b, z, c, d, u), (7.2)

which clearly shows that t is independent of any of its arguments, so t defines
a pseudo constant. Hence by idempotency

x ≈ t(x, x, x, x, x, x) ≈ t(y, y, y, y, y, y) ≈ y. �

8. Conclusion

We have shown that every balanced equation p(u1, . . . , um) ≈ q(v1, . . . , vn) in
free lattice-ordered algebras can be derived from the fact that p and q can be
obtained by variable identification from a common ancestor term s, and the
mentioned equation arises by further identifying variables until a syntactically
identical term is achieved. In category theoretical language this means that
the free algebra functor weakly preserves pullbacks of epis.

Finally, we demonstrated that weak preservation is all that we can hope
for. In fact, the free-algebra functor FV for any arbitrary idempotent variety
V will not preserve pullbacks of epis unless V is trivial or contains the “variety
of sets”.
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