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FOREWORD

These Proceedings contain papers based on lectures given at the
Fourth International Conference on Universal Algebra and Lattice Theory
held January 11-22, 1982 in Puebla, Mexico. This volume offers the
reader a good sample of the recent advances and current trends in this
active field.

We would like to thank the authors for contributing very high
quality papers and the referees for their careful job on each paper.
We would also like to acknowledge the support of the Instituto de
Mathemidticas de la Universidad Nacional Autdénoma de Mexico and the
Instituto de Ciencias de la Universidad Autdénoma de Puebla. We wish
to thank the organizing committee: Bernhard Banachewski, Octavio C.
Garcia, Ralph McKenzie, George McNulty, Don Pigozzi, and Walter Taylor,
and the local organizing committee: Raymundo Bautista, Humberto
Cardenas, Octavio C. Garcia, Emilio Lluis, and Jose Antonio de la Pena.
We would especially like to thank Ms. Lourdes Arceo for her continuous

help and Springer-Verlag for its help in publishing these Proceedings.

Ralph Freese Octavio C. Garcia

Honolulu Mexico, D.F.
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THE AMALGAMATION CLASS OF A DISCRIMINATOR VARIETY

IS FINITELY AXIOMATIZABLE

Clifford Bergman

Discriminator varieties have been extensively studied since
their introduction by Pixley in 1970. Among their attributes,
discriminator varieties exhibit a strong relationship between the
quantifier-free formulas and certain terms in the language of the
variety., This paper exploits that relationship in order to prove
that some important classes of algebras, generally defined using
algebraic properties, can be described by a finite set of first-order
sentences.

If K 1is a class of algebras, define Ps(K) to be the class
of all algebras isomorphic to a subdirect product of members of K.
An algebra A of K is an amalgamation base of K 1if, for every
BO,B1 ¢ K and Ugs0y embedding A into B and B respectively,

0 1

there is an algebra ¢ of K and embeddings BO of BO into C

and 81 of B1 into C such that 81 o} al = BO [} ao. The collection
of all amalgamation bases is called the amalgamation class, AMAL(K).

Let V be a finitely generated discriminator variety of finite
type. In this paper, the following classes will be shown to be
finitely axiomatizable:

(i) Ps(S), where S 1is a set of simple algebras of V

(ii) AMAL (V).

These results are taken from the author's doctoral thesis written
under Ralph McKenzie. The author is greatly indebted to him for his
guidance and suggestion of this problem.

Notation. For a class K of algebras, KSI denotes the class
of subdirectly irreducible algebras of K. Terms in the language of
K will be denoted by lower case Greek letters. If o 1is a term and
A € K then aA denotes the term function of A corresponding to

a. For convenience, the sequence of letters XO’Xl""’Xn—l will



often be abbreviated x.

The lattice of congruences of an algebra A 1is denoted by
Con(A) and has smallest element A and largest element V. If B
is a subalgebra of A and 0O € Con(A), then O|B denotes the
congruence 0 N B2 of B. For definitions and basic facts not

explained here, the reader can consult [2] or [3].

DEFINITION 1. A variety V dis a discriminator variety 1if there
is a term O0(x,¥,z) in the language of V (called the discriminator
term) such that an algebra A € V 1is subdirectly irreducible or

trivial if and only if A|= (0(x,%x,2) ~xz ANx#y > o0(x,y,2) X x).

In [6] Pixley showed that a finitely generated variety is a
discriminator variety if and only if it is arithmetical and every
subalgebra of a subdirectly irreducible algebra is either simple or
trivial.

Suppose (Ai : 1 € I) 4dis a family of algebras and D 1is an
ultrafitler on the set I, Then D induces a congruence (also
denoted D) on H(Ai : 1 € I) by: a = b(D) 1if and only if
{i €1 : a; = bi} € D.

To build a set of sentences describing Ps(S), we first need
sentences to insure that the discriminator term has the desired

properties. These were discovered by R. McKenzie [5].

THEOREM 2. Let L be a first-order language with no non-logical
relation symbols and with funetion symbols {fi : 1<k}, k a
eardinal. Suppose 0(x,y,z) 18 a term of L and let I be the

set consisting of the following identities:

(e0) 0(x,%x,¥) V¥
(el) o(x,y,x) » x
(e2) o(x,¥,y) =z
(e3) 0(x,0(x,¥5,2),y) ¥
(ed) 0(x,y,fi(v0,vl,-..,v

X

ni_l)) ~ O(X;y’fi[O(X’Y;VO);°'-;

0(x,y,vni_1)])
for i < k, where fi 18 n;-ary.
(1) The variety V determined by the equations I 1is a diseriminator
variety with disceriminator term o.
(2) Every finite algebra of V 1is a direct product of simple
algebras.
(3) For every A €V and a,b € A, the binary relation



2

0(a,b) = {(x,y) € A% : o®(a,b,x) = o®(a,b,y)}

18 the smallest congruence of A containing (a,b).

(4) For every quantifier free formula ¢ of L there are terms

o and_ B of L _such thqﬁ for every B € VSI and bO”"’bm—l € B,
B = ¢(b) < (3y)a(b,y) % 8(b,y).

COROLLARY 3. Let V be a diseriminator variety with discriminator
term O©. Then the equations of I hold in V. Let ¢, o and B
be as in theorem £(4). For any A € V and agseeesdp € A, the
following are equivalent:

(1) there exists a coatom Y of Con(A) such that
A/Y | d(ay/¥seeosay /Y)

(i1) A (3y)a(ao,...,am_l,y) ba B(ao,...,am_l,y).

Proof, Let A € V and suppose (i) holds. Take B = A/Y and

b, = ai/W for 1 < m. Then B |= ¢(b0,...,bm_l) implies by theorem 2

. B B
that there is =z € B with «o (bO,...,bm_l,z) # B (bO,...,bm_l,z).

Choose y € A with y/¥Y = z. Since aA(E,y)/W = aB(E,z) # BB(E,Z) =
O‘B(E,y)/‘i’ we conclude (ii).

Conversely, if o and B disagree for some y € A, then they
are separated by a completely meet-irreducible congruence Y. By
semi-simplicity, B = A/Y 1is simple, and we reverse the implication

above to derive (i).

For the remainder of this paper, suppose V is a finitely
generated discriminator of finite type, that is the language of V
has only finitely many basic operation and constant symbols. If B
is a finite structure of this language, then there is a quantifier-free
formula DgB(xO,...,xn_l) (the "diagram of B") such that, for every
o1 €A, Al= Dg,(a) if and only if

{ao,...,an_l} is the universe of a subalgebra of A 1isomorphic to

structure A and a.,...a
0 n

B. Applying the corollary to this formula, we obtain terms o and 8
such that there are elements aO,...,an_l,b of A with

O‘A(E,b) # BA(E,b) if and only if, for some coatom ¥ of Con(Aa),

A/Y contains a copy of B as a subalgebra. What is more surprising,
we can strengthen the inequation in such a way that A/Y will be

isomorphic to B.

THEOREM 4. Let V be a finitely generated discriminator variety of
finite type. Let SEiVSI' Then Ps(S) is a finitely axiomatizable class.



Proof. Since V is finitely generated, we may assume that S

is a finite set of finite algebras, S = {LO,...,L }. Since the

language is of finite type, the set I of theoremm21is finite.
Informally, we need to add to I a sentence saying that for any pair
of distinct elements ¢ and d, there is a completely meet-
irreducible congruence Y separating ¢ and d so that the quotient
algebra modulo ¥ 1is isomorphic to one of the Lj's.

Fix j < m. Let L = Lj and r = card(L). By corollary 3, there
are terms o and B such that for every A|= I and

aO,...,ar_l,c,d € A:
Al (3y)a(3,y,c,d) 2 B(F,y,c,d)
if and only if there is a coatom Y of Con(A) such that:
AlY = /Y ¢ a/¥ A DgL(aO/W,...,ar_l/W).
Now define the formula SepL(u,v) to be:
(3x0,...,xr_l)(3y)(Vz)[a(§,y,u,v) %t B(X,y,u,v) A

\/(O(Xiﬁz5a(§9}'5u5v)) z O(Xi,z,B(i,y,u,v)))].
i<r
The key claim is that for any A F ! and c¢,d € A, A[= SepL(c,d)

if and only if there is a coatom ¥ of Con(A) such that c/¥Y # d/Y¥
and A/Y = L. Once this is established, the members of L together
with the sentence:

(Vu) (V) (u ¢ v > V sep. (u,W)
5 .

<m j
will axiomatize Ps(S).
Suppose first that for c¢,d € A, there is V¥ € Con(A) such that
c/¥ # d/¥Y and A/Y = L. Then A/Y satisfies DgL for some elements

Choosing a, in A to represent 84 modulo VY, there

SN S
_ A, A, _

is a b € A such that o (a,b,c,d) # B (3@,b,c,d). Now let e be

any element of A. Since A/Y = {gO""’gr-l}’ there is i < r such

that e = ai(modW). For this 1 we clearly have

A A,_ A A Lo, .
0" (a;,e,a (a,b,c,d)) # o (ai,e,B (#,b,c,d)) since they are incongruent
modulo Y. Thus A satisfies SepL(c,d).

Conversely, let A |= SepL(c,d). Let b be elements

agseeesd 15
that witness the existential quantifiers. Denote the elements
aA(E,b,c,d) and BA(E,b,c,d) by o and B respectively. Write A
as a subdirect product of subdirectly irreducible algebras,

A = H(At : t € T), and let Ot be the kernel of the projection

A> AL . Set U= {t €T : a % B(mod Ot)} and for every x € A,

v, = {t ¢ T : for some i < r, a; = x(mod@t)}.



Claim. There is an ultrafilter D on T such that U € D and

for every x € A, VX € D.

Observe that once the claim is established the theorem will
follow easily. For, take VY = D[A. Y dis a coatom of Con(A) since
A/Y can be embedded in the ultraproduct (HAt)/D which is simple
(V dis finitely generated). Since U € D, o # B(modY¥), hence by the
construction of o and B, c¢/Y # d/¥ and {ao/W,...,ar_l/W} forms
a subalgebra of A/Y isomorphic to L. But for every x € A,

VX € D dimplies that x = ai(mod ¥) some 1 < r., Therefore
L = {aO/W,...,ar_l/W} = A/Y and the theorem follows.

To verify the claim, it suffices to show that the family
U U {VX : x € A} has the finite intersection property. For this
choose s+ oes Xy from A for some natural number k and let E
be the subalgebra of A generated by all the elements
ao,...,ar_l,b,xo,...,xk,a and B. This is a finite set so, since V
is finitely generated, E is finite. Therefore by theorem 2(2), E

s a direct product of simple algebras, in fact

i
E = ]'[(Et 1t € TO) where T is a finite subset of T and
E

0
¢ = E/(0_|E).
Now suppose U N ﬂ(VX : j = k) = ¢p. Then for every t € U,
i
there is an integer t* = k with t ¢ VX . Since E 1is a direct
t*
product, there is an element e € E such that for every t € TO nu,
e = xt*(mod Ot). Recall that A 1is assumed to satisfy SepL(c,d)
with aO""’ar—l’b as witnesses. Since e € A, this insures that
for some 1 < r, o (ai,e,a) # OA(ai,e,B). Since every a;, e, a

and B 1is a member of E this can be computed in E as well, thus:

E E
o (ai,e,a) # 0 (ai,e,B). However terms of E are computed

coordinatewise, so for any i < r: 1if t € Ty N U then

e = Xy F3 ai(mod Ot) (since t ¢ th*), and for t ¢ TO - U,

o = R(mod Ot). Therefore the elements OE(ai,e,a) and oE(ai,e,B)
agree in every coordinate of E, so must be equal. This is a

contradiction and concludes the proof,

Let us now turn to the amalgamation class. AMAL (V) has proved
to be a difficult class to characterize, even for very well-behaved
varieties. The aim of this paper is to show that, at least for
discriminator varieties, the class has a very satisfactory description,
namely by a finite set of first order sentences. [1] is an in-depth

study of the subject and contains the characterization of AMAL(V)



that will serve as the starting point here.

DEFINITION 5. Let V ©be a variety, A € V:

(1) VASI = AMAL(V) N VSI
(2) &% = I(a/¥ : ¥ € con(a) and A/Y¥ € V, )
(3) N is the canonical homomorphism from A to A$.

Werner proved [7, theorem 2.2(11)] that every discriminator
variety is filtral, hence has the congruence extension property. A
maximal simple algebra of V is a simple algebra of V with no

proper, simple extensions in V.

THEOREM 6 [1, 3.5 and 4.10]: Let V be a finitely generated
diseriminator variety.
(1) For A € VSI: A € VASI if and only if for every pailr of maximal
simple algebras BysBy extending A, there is an isomorphism of B,
with B, which is the identity on A.
(2) For A € V: A € AMAL(V) <f and only if for every maximal simple
algebra M and homomorphism X : A - M there 18 a homomorphism

X : A% + M such that T o My = A

COROLLARY 7. Let V be a finitely generated discriminator
variety, A € V. Then A € AMAL(V) <f and only if:
(1) My 18 one-to~one and
(ii) For every maximal simple M, every © € Con(A) and n
embedding A/© into M, there exists O € Con(A$) and 7 embedding
a¥/8 into M such that 0la =0 and Mo (u/0) = n. (Here

w6 : A/O - A$/6 takes a/O® to u(a)/o.)

Proof. The following diagram should suggest the proof with
® = ker A.

AS
\ A%/8

HA Y/ ﬁ
u/®

A— % Alg— M

n



Suppose V is of finite type, K, L are simple algebras of V

00kl

By an argument almost identical to the one preceding theorem 4, there

and v is an embedding of K into L. Write K = {k

are terms Y and § so that the formula FacK(xO,...,xr_l,u,V)

given by

(3y) (Vz) [Y(}?,y,u,v) 3z d(;9y’u9v) A V(O[Xibz9Y(§9Y9u9V)] 3z O[xi,z,d(§,y,u,v)])]
i<r

is such that

Al= FacK(E,c,d) if and only if there is a coatom ¥ of Con(A)
such that ¢ = d(mod ¥) and {aO/W,...,ar_l/W} =~ K with aj/W
is mapped to kj for j < r.

Similarly, there is a formula ExtL v K(?,?,u,v) such that
L] 14

A |= Ext (3a,b,c,d) 1if and only if there is a coatom V¥ of

L,V,K
COD.(A) such that c = d(\Y), A/‘Y = {30/\¥9"'Qar_l/\i’,bo/\y3"'9bs_l/\i’}
and there is an isomorphism of A/Y with L which carries aj/W

to v(kj) for j < r.

THEOREM 8. Let V be a finitely generated discriminator variety
of finite type. Then AMAL(V) <s finitely axiomatizable.

Proof. Begin with the set I' axiomatizing Ps(V ) produced

AST

by theorem 5., Then A|= r' 1if and only if is one-to-one. To

U
apply corollary 7, let M be maximal simple, AO € Ccon(A) and n
an embedding of A/O into M. Since V has the congruence extension
property, K = A/O 1is simple. We need a sentence equivalent to the
existence (in the presence of I') of TM and 0 as in 7(ii).

Since V is finitely generated, there are only finitely many
pairs (up to isomorphism) (Li,vi) such that: (i) Ly € VASI’
(ii) vi is an embedding of K 1into Li and (iii) there exists

T Li + M such that T o0 vi =1n, Let 1 = 0,...,m-1 enumerate
those pairs and let PK n be the sentence:
Ed
m-1
(V¥X) \/(Vu,v)[FacK(i,u,v) - (3y)Ext (X,7,u,v)].

120 Lyv;K
We verify that if A F Z' U {PK,n} then © and n exist with
the desired properties. The converse is left to the reader. Choose
a sequence aO’al""’ar—l of coset representatives for A by O.
Since A/O = X, for any (c,d) € © we have A [ FacK(E,c,d).

Therefore, by assumption, there is an i < m such that



Al= (:—iy)ExtL_,\)i

{¥ € con(a) : AJY ¢ VASI} and consider the family
U U {v(e,d) : (c,d) € O} where:

’K(E,?,c,d), whenever (c,d) € O.

Let T

U= {Y¥ € T : there is an isomorphism of A/Y with L, taking
a, /¥y ¢ v, (k, 11 j < r}.
3 o 1( J) a 3 r

V(e,d) = {¥Y € T : (c,d) € V}.

This family of subsets of T 1is contained in an ultrafilter over T.
To show this, it suffices to check the finite intersection property.
So, let p < w and (cO,dO),...,(cp,dp) be pairs from ©O. 1In a
discriminator variety, every compact congruence is principal (see
[7,2.2.(8)]) so there exists c,d € A such that for every V¥ € Con(A),
(c,d) € ¥y if and only if (c.,dj) €Y all j < p. In particular,

(c,d) € © so Ak (IV)Ext

L.,V K(E,?,C,d). By the very construction
i’ i,

of the formula Ext there is a congruence Y contained in

,s V., K?
Ll, 1’

U N V(e,d) and hence in each V(cj,dj), j <= p. Since p as well
as the (cj,dj)'s were arbitrary, the family has the finite

intersection property.

AS
Y - &
A A$/@ =~ Li
r
1 u/® | Vi
A——>A/o = K——]0>— M



Thus there is an ultrafilter D over T containing these sets.

Set 0 =D as a congruence on A$. Since every V(ec,d) € D, GIA 2 0.
Since U € D we get the opposite inclusion as well as an isomorphism
£ of A$/6 with Li whose composition with u/0o equals vy

Setting n to be T 0 £ (the map associated with (Li,vi)) one
verifies that n o (U/Q) = n (see diagram).

Finally the proof can be completed by observing that there are
only finitely many pairs (K,n) (up to isomorphism) such that n
is an embedding of K into a maximal simple algebra. Define P to
be the formula: /\PK,n’ the conjunction over all such pairs. Then
the set I' U {P} axiomatizes AMAL(V).

Remark. A careful examination of the sentences involved will
reveal that the characterizations in theorems 5 and 8 are V3V
in complexity. It is not hard to show that for any variety v,
AMAL(V) 1is closed under unions of chains (take an ultraproduct).
Thus, by the "Chang-Yos-Susko theorem", there is an axiomatization
which is V3 1in complexity. This can be achieved by omitting the
subformulas "(Vz)\/[o(x,z,a) 4 o(x,z,B)]" from Fac, Ext and Sep.
Since the proofs are more complicated, we have not taken that tack.

Is a similar reduction possible for Ps(S)?
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FREE SPECTRA OF 3-ELEMENT ALGEBRAS

Joel Berman

If A is an algebraic system, then the free spectrum of A is the sequence
s(n) of cardinalities of the free algebras on n free generators in the equational
class generated by A. This paper is a catalog of such free spectra for several
hundred different 3-element algebraic systems. The catalog is organized

lexicographically by the sequences <s(0), s(1), s(2),...>.

1. USES OF FREE SPECTRA. Several points of view are possible in describing free
spectra. In universal algebra the value s(n) is the number of distinct n-ary
polynomials on an algebra A. If the algebra A 1is finite of size k, then a result
of Birkhoff states that s(n) < k%%(k%%n). (Here, and elsewhere in this paper,

r**s means r rasied to the power s. Also, C(n,i) denotes the binomial
coefficient n choose 1i.) Standard sources on universal algebra and free spectra
include Birkhoff(1967) and Gratzer(1979).

Another place where the sequence s(n) occurs is in logic, especially
many-valued logic. Given a system of propositional logic, s(n) counts the number of
possible distinct truth tables that can be constructed in this system using the given
connectives of the system. For classical logic this is of course 2#¥%(2%%n). For
the nonclassical 3-valued systems of Post, Heyting, or Lukasiewicz the number of such
truth tables is given by the entries #2354, #187#, or #201l# respectively, in the
catalog. In the logic literature the set of operation tables for the fundamental
connectives is often called a matrix. Note that in computing the values.of s(n)
the so called designated elements of the matrix play no role. Another way of
describing the free spectra in this setting is that the value s(n) is the

cardinality of the Lindenbaum-Tarski algebra of n variable formulas in the given
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logical system. Rescher(1969) contains a very extensive presentation of the various
many-valued logics and also has a detailed bibliography. Wolf(1977) contains an
updating of this bibliography.

The theory of switching functions provides another place where free spectra
occur. Here the numbers s(n) can be interpreted as the number of inequivalent
circuits that can be built using a specified family of components and n input
signals. In the case where there are two possible choices for each input this
corresponds to the usual Boolean valued switching theory. If instead the signals
have three possible values, then the s(n) sequences that arise correspond in a
natural way to the free spectra of 3-element algebras. The Proceedings of the
International Symposia on Multiple-valued Logic for the last ten years contain
numerous papers on the theory of such switching functions. The book Moisil(1969) is
devoted to this many-valued switching theory and the books Carvallo(1968) and
Thielliez(1973) are devoted solely to the three-valued case. The paper
Rosenberg(1977) has an extensive bibliography.

In Berman(1980) I considered the free spectra of 2-element algebras. In the
2-element case all the possible distinct equational classes that can be generated
have been described by Post(1941). They form a countably infinite well-behaved
family. Indeed, in my paper a description of all these equational classes, a list of
their free spectra, and a tabulation of some other properties they possess all fit
nicely onto one page.

The 3-element case is much more complicated. Firstly, there are an uncountable
number of inequivalent equational classes that can be generated by 3-element
algebras. Simple proofs of this are given in Janov and Mucnik (1959) and Hulanicki
and Swierczkowski(1960). In fact, the equational classes they give have pairwise
different free spectra. Also, many algebraic properties that hold for equational
classes generated by 2-element algebras fail for the 3-element case. Berman(1980)
contains about a half-dozen of such properties. The cause of this is not known
except of course that 3 1is bigger than 2. My motivation for writing this paper is

in part an attempt to understand this.



Another motivation for this paper is that there appears to be a strong
connection between the free spectrum, especially its rate of growth, and some
important algebraic properties the equational class may possess. In Berman(1980) and
Berman(1982) I investigated this and I felt that many more examples of free spectra
would be needed in order to pursue this idea. So this catalog is a large collection
of experimental results to be used, I hope, in suggesting theorems about algebras and
their equational classes; theorems involving numerical conditions on the free
spectrum.

Yet another motivation for compiling this list of free spectra is that the
spectrum of an algebra is an important invariant for the algebra, and the first few
terms of this invariant are easily computed (on a computer). This catalog is thus a
bestiary of many known 3-element algebras, indexed by their free spectra. My

experience with the extremely useful book, A Handbook of Integer Sequences by N.

Sloane led me to compile the smaller, more specialized catalog given in this paper.
As it turned out, the intersection of the sequences in Sloane's book and the free

spectra listed below is a very small set.

2. THE CATALOG. The free spectra are arranged in lexicographic order. The
values of s(n) are obtained by the computer program described in Berman and
Wolk(1980). Given the operation tables of an algebra A and an integer n, this
program explicitly constructs the free algebra on n free generators for the
equational class generated by A. That is, it produces a list of the distinct n-ary
polynomials that can be built by composition from the fundamental operations of the
algebra A. A detailed discussion of this program and an exact FORTRAN listing of it
may be found in that paper.

In the catalog the values s(0), s(1l),...,s(4) are explicitly listed.
Following these first few values of the s(n) is an explicit formula for s(n) if
such a formula is known. In some cases this formula for s(n) only applies to n >
0. In a few cases such a formula is followed by a question mark; this indicates a

conjectured closed form for evaluating s(n). If fewer than five values of the s(n)
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are given, and if no general formula for s(n) is presented, then the missing values
are not known. The value for s(0) is defined to be the number of constant
functions that are generated by the program when computing the free algebra on 1
free generator. Note that s(0) can be positive even if there are no constants in
the given similarity type of A.

The line following the values of s(n) in the catalog is the set of functions
of the algebra, unary operations written first. The algebra, A say, always has the
same underlying set: {0,1,2}. Then a unary operation g(x) is written as the
3-tuple (g(0) g(l) g(2)). Binary operations are written as 9-tuples, read across
rows. Constants are treated as unary operations and appear as (ccc) for some c =
0,1, or 2. This catalog includes only algebras that have unary or binary operations.

The next lines for a given spectrum are a description of the algebra, logical
system, set of switching functions, or clone or whatever. Most of the algebras etc.
considered are taken from the literature. References are given whenever possible.

An asterisk following a bibliographic item indicates that the article explicitly
deals with the free algebras or the free spectra of the algebra A. Many of the
closed forms for s(n) presented here do not appear in the literature. Most, but
not all, of these formulas are easy to derive. A paper describing general techniques
for finding closed forms for free spectra is in preparation.

Two equational classes are called polynomially equivalent if there is a weak

isomorphism between their countably generated free algebras that preserves free
generators. See Goetz(1966) and Tavlor(1973) for more details. In the catalog,
algebras that have the same free spectra and generate polynomially inequivalent
equational classes are distinguished by adding a suffix "1" or "2" etc. to the
appropriate headings. The following procedure was used in deciding polynomial
equivalence for algebras giving the same initial values for their free spectra.
First the list of polynomials in the free algebra on two free generators was scanned
to see if it contained the operations (or some isomorph) of the other system. This
is relatively easy using the computer text editor. If this turns up nothing, then
another computer program generates the principal congruences in the free algebra on

one or two generators for each of the two algebras. Examination of this output
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usually provided conclusive proof of polynomial inequivalence, or else suggested the
desired weak isomorphism.

In the description of the algebra the following terminology is used. Unary
operations are frequently described by a phrase describing their diagram as a
directed graph. Thus the unary function (100) 1is a 2-cycle with tail. The names
for the other nonisomorphic unary functions are given in the index under 'unary
algebra'. An algebra whose set of fundamental operations consists of a single binary
operation is called a groupoid. A groupoid is a semigroup if the binary operation is
associative. An algebra A is idempotent if f(x,...,x)=x for all of its
operations f and all x in A. Note that if A 1is idempotent, then s(0)=0 and
s(1)=1. A zero of a groupoid is an element 2z for which 2zx = xz = z for all x.

A groupoid element 2z is a unit if zx = xz = x for all x.

To adjoin a constant to an algebra A means to add a particular constant
function to the similarity type of A. If an algebra A has free spectrum s(n),
and if an algebra A' is obtained from A by adjoining a constant to A, the the
free spectrum s'(n) of A' satisfies the inequality

s(n) < s'(n) £ s(n+l)
The adjoined constant is called generic if the equality s'(n) = s(n+l) holds for
all n. TFor example, the middle element in a 3-element distributive lattice is
generic, the two other elements are not.

Given an algebra A there several ways to adjoin a new element z to A in
order to create a new algebra B of the same similarity type as A. The element 2

is called an absorbing element if for any operation f of B, f restricted to A

behaves as f does on A, otherwise f evaluates to z. In this case, B is
obtained from A by adjoining an absorbing element to A. Absorbing elements come up
in the study of regular equations. See Lakser & Padmanabhan & Platt(1972), Jonsson &
Nelson(1974), or John(1976) for some results on this. The element 2z is said to be
analogous to the element a of A if for any operation f of B, f restricted
to A behaves as f does on A, otherwise for arguments of f that involve =z,
replace z by a, and evaluate as in A. 1In such a case the algebra B is said to

be analog of the algebra A. (See Smiley(1962) or some of the 'weak variants" in



Rescher(1969).) For example, the algebra in sequence #038# in the catalog is the
3-element analog of the 2-element distributive lattice: here 2z 1is 1 and a 1is
0. Finally, the element =z is called invisible if there is some element a in A
such that for any operation f of B, f restricted to A behaves as f does on
A, otherwise f evaluates to a. The algebra in #049# is obtained by adjoining an
invisible element to the 2-element distributive lattice.

Many of the entries in the catalog are derived from 3-valued propositional
logics. Typically there are the binary operations of conjunction, disjunction,
implicatijon, and equivalence; the unary negation operation; and perhaps some logical
constants. Of course frequently some of these operations can be defined in terms of
the others. The reader is cautioned that there is no consistent pattern for which of
the values 0,1, or 2 correspond to True or False in the logical system. A
fragment of a logical system is a system in which only a subset of these connectives
is allowed. For example if only implication is used, then the system is called an
implicational fragment. If the point of view of universal algebra is used, then a
fragment corresponds to a reduct of the algebra. In proving the independence of a
set of axioms for a logical system, various ad hoc matrices are presented which
satisfy some but not all of the given axioms. Some of the more interesting examples
of such are also found in the catalog. TFor example, an algebra producing sequence
#129# 1is a groupoid used in Sheffer(1913) to show the independence of his axioms for
what is now called the Sheffer stroke. The groupoid has appeared sporadically in the

literature since then.

3. THE INDICES. There are four indices following the catalog. The first is an
index of all the binary operations that appear. If the 19683 possible binary
operations on the set {0,1,2} are partitioned into classes of isomorphic or
anti-isomorphic operations, then each class has at most 12 members. If an
operation appears in the catalog, then the operation in its class having least value
as a base 3 number when written as a 9-tuple is the representative chosen for the
index. These representatives are then listed in increasing lexicographic

(=numerical) order.
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Next is an index of the number of essentially n-ary operations for each of the
235 free spectra listed. The number of essentially n-ary operations in an
equational class is usually denoted by the sequence p(n) for n=0,1,2,.... For a
given locally finite equational class the sequences s(n) and p(n) are related by
n n n-i
s(n) = T C(n,i)p(i) p(n) = T (-1) C(n,i)s(i)
i=0 i=0
Gratzer(1970) contains a survey of results on p(n) sequences. The papers by
Marczewski, Plonka, and Urbanik in the bibliography also contain work on these
sequences.
The last two indices are more traditional. One is just an alphabetized list of
words used in the description of the algebras and the equational classes of the
catalog. The other is the bibliography, which is an index, since at the end of each

item is a list of those sequences that cite it.
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to an early draft of this paper; especially helpful were B. Csakany, J. Demetrovics,
R. Mckenzie, M Mukaidono, and W. Taylor. Computing was done at the Computer Center

of the University of Illinois at Chicago.
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CATALOG OF FREE ALGEBRAS IN EQUATIONAI, CLASSES
GENERATED BY 3-ELEMENT ALGEBRAS

line s: sequence of cardinalities of free algebras on 0,1,2,3,4 free generators,
followed by general form if known. x*y means x times y; Xx¥**y means x
raised to power y. C(n,i) is the binomial coefficient n choose 1i.

line f: the fundamental operations for the 3-element algebra. Parentheses enclose
each operation of the algebra, binary functions are read across rows of
Cayley table.

line d: description of the algebra, common name, properties etc.

line r: references, if any, to this variety or algebra. if reference contains
information on free algebra, then this is indicated by a *

lines f,d,r are repeated for polynomially equivalent algebras

lines fl,rl, etc. algebras with the same free spectra polynomially inequivalent to
the previous ones

#001#s 0,1,2,3,4 n

#001#f  (012)

#001##d l-unary: identity function
#001#£f (000 111 222)

#001#d semigroup xy=x

#002#s 0,1,3;7,15  2%%n-1
#0024(f (000 010 002)
#002#d semilattice

#002#f (000 011 012)
#0027/d semilattice: chain

#003#s  0,1,3,9,27 3% (n-1)

#003#f (021 210 102)

##003#f/d groupoid: Steiner quasigroup, idempotent, 2x+2y (mod 3)
#003#r Urbanik (1965), Gratzer & Padmanabhan(1971)*

#003#r Baldwin & Lachlan(1973), Quackenbush(1976), Csakany(1980)

#004#s 0,1,3,15,531487 sum i=1 to n (C(n,i)*
#0044f (010 112 022)

#004#d upper bound algebra; minimal binary clone; quasitrivial groupoid
#004#r Kaiser(1975), Park(1976), Winker & Berman (1979)%

#004#fr Demetrovics & Hannak & Marchenkov(1980), Kepka(198la), Csakany(1982)

i (3 (1-1)-2%%{41))

#005#s 0,1,4,12,32 n#2%E (n-1)

##005#f (000 010 222)

#005/#fd semigroup: idempotent, xyz=xzy, nearly quasitrivial
#005#r Plonka(l971)*, Gerhard(1971)*, Jezek & Kepka(1978)
#005#f (000 011 022)

#005#d semigroup: idempotent, has zero, quasitrivial
#005#r Plonka(1971)*, Gerhard(1971)*, Kepka(1981la)

#005#f1 (000 211 122)

#005##d1 groupoid: idempotent, (xy)y=x, quandle, kei

##005#ir1 Takasaki(1943), Plonka(1971)%, Pierce(1978), Winker(1981)
#005#£2 (000 211 222)

#005#d2 groupoid: idempotent, (xy)y=xy, nearly quasitrivial
#005#r2 Plonka(1971)*, Day(1973)%, Jezek & Kepka(1978)

#006#ts  0,1,4,15,64 sum i=0 to n (C(n,i)*(i factorial))

#006#f (000 012 222)

#006##d semigroup: idempotent, left distributive; minimal binary clone
#006#r Gerhard(1971)*, Taylor(1976), Kepka(1981), Csakany(1982)



#007#s 0,1,4,18,140

#007#£f (000 011 222)

#0074#d groupoid: quasitrivial, left distributive; minimal binary clone
#007#r Kepka(1981), Kepka(l98la), Csakany(1982)

#008#s 0,1,4,18,166,7579,7828352,2414682040996

#008#f (000 011 012) (012 112 222)

#0084fd distributive lattice

#008#r Birkhoff(1967),p.63%, Church(1965)*, Berman & Kohler(1976)*

#0094#s 0,1,4,30

#009#f (000 110 202)

#009##d groupoid; minimal binary clone
##009#r Csakany(1982)

#010#s 0,1,4,36

#010#£f (000 112 212)

#0104/d groupoid: quasitrivial, left distributive
#010#r Kepka(1981), Kepka(l98la)

#01l#s 0,1,4,54

#011#£f (000 011 212)

#011##d groupoid: quasitrivial; minimal binary clone
#011l#r Kepka(198la), Csakany(1982)

#012#s 0,1,4,162,88219206 #008#¥% 3% (3%% (n=-1)=-2%*n+1)
#012#f (002 011 212) (010 112 022)

#012#d tournament: triangle

#012#r Quackenbush(1972), Fried & Gratzer(1973)%*

#013#s 0,1,5,28
#013#f (000 010 012)
#0137f/d groupoid: has zero

#01l4#s 0,1,5,96

#014#f (012 110 202)

#014#d groupoid: idempotent, has unit

#0144r Rose(1961), Marczewski(1964), Robinson(1971), Leigh(1972)

#015#s 0,1,6,33,266 sum i=1 to n (C(n,1i)*#008#)
#015#f (000 011 012) (000 012 022)

#015#d distributive bisemilattice, distributive quasilattice
#015#d Bochvar fragment: disjunction, conjunction

#0154r Plonka(1967), Padmanabhan(1971)*, Plonka(1971la)*

#016#s 0,1,6,39,316

#016#f (000 111 102)

#016##d groupoid: left distributive
#016#r Kepka(1981)

#017#s 0,1,6,60,2367

#017#f (000 011 012) (012 111 212)

#017#d bisemilattice: bichain with one distributive law
#017#r Padmanabhan(1971)*%, Romanowska(1980)%, see #018#

#018#s 0,1,6,60

#018#f (000 011 012) (000 010 002)

#018#d Dbisemilattice: satisfies no distributive laws
#018#r Dudek & Romanowska(1981)%*, see #017#

#019¢#s 0,1,6,89
#019#f (001 011 112)
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#01944d groupoid: idempotent and commutative
#019#r Keir(1964), Gutierrez & Moraga(1974)

#0204s 0,1,6,100

#020#f (000 011 012) (022 212 222)

#020#d bisemilattice

#020#r Bielecka-Holda(1980), Dudek & Romanowska(1981)%*

#021#s 0,1,6,183

#021#£ (000 012 212)

#021#d groupoid: quasitrivial
#021#r Kepka(198la)

#022#s  0,1,6,213

#022#f (000 011 012) (010 111 012)

##022#fd bisemilattice: bichain satisfies no distributive law
#022#r Dudek & Romanowska(1981)%*

#023#s 0,1,7,505
#023#f (012 110 212)
#023##d groupoid: idempotent, has unit

#024#s 0,1,8,285

#024#f (010 011 012) (012 012 222)

#024#d system used for independence of lattice axioms
#024#r Croisot(1951)

#025#s 0,1,8,331

#025#f (001 012 122) (011 111 112)

#025#d fragment of Hanson ternary threshold logic
##025#r Hanson(1963)

#026#s  0,1,9,129

#0264#f (011 111 112) (000 011 012) (012 112 222)

#026#d distributive lattice with third semilattice operation
#026#r Arnold(1951)

#027#s 0,1,9,489

#027#£f (000 011 012) (012 112 222) (000 012 022)
#0274#d lattice ordered semigroup

#027#r Gabovich(1976), Saito(1977)

#028#s 0,1,9,6561 3%%((3**n-3)/3)

#028#f (010 112 022) (021 210 102)

#0284fd clone of self dual functions preserving 0; quasiprimal

#028#r Demetrovics & Hannak & Marchenkov(1980), Csakany & Gavalcova(l982)

#029#s 0,1,10,411

#029#f (010 011 102)

#0294/d groupoid: not entropic, preserves sums of subgroupoids
#029#r Evans(1962)

#030#s 0,1,14

#030#f (000 011 102)

##030##/d groupoid: nonassociative, but satisfies the inclusion property
#030#r Salomaa(1959), p.138

#031#s  0,1,15

#031#f (001 010 102)

#0314#d groupoid: idempotent, commutative
#031#r Keir(1964)
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#032#ts 0,1,16
#032#£f (000 010 002) (011 111 112)
#032#d bisemilattice

#033#s 0,1,27,531441 3% ((3%*n=-3)/2)
#033#f (021 110 202)

#033##d groupoid; quasiprimal

#033#fr Takasaki(1943), Csakany & Gavalcova(1982)

#034#s  0,1,729,282429536481 F¥i (3 -3)
#034#f (012 112 222) (021 210 102)

#034#d all idempotent functions; quasiprimal
#034#r Quackenbush(1974)*

#035#s  0,2,4,6,8 2n

#035#f (002)

#035#d l-unary: 2-chain with fixed point, f(f(x))=f(x)

#035#f (000 000 222)

#035#fd semigroup: Xy=xz

#035#£f1 (021)

#0354td1 l-unary: 2-cycle with fixed point, involution, f(£f(x))=x

#036#s 0,2,5,10,19 n+2%%n -1

#036#f (000 000 002)

#036#fd semigroup: has zero, analog of semilattice

#0364#f (000 011 011)

#036#d semigroup: has zero, analog of semilattice

#036#ir Bernstein(1921), Smiley(1962), Rescher(1969) p.336, Moraga(1975)

#037#s 0,2,6,18,68 n + #0064

#037#f (000 111 010)

#037/#fd groupoid: not entropic, preserves sums of subgroupoids
#037#r Evans(1962)

#038#s 0,2,6,21,170 n+#008#

##038#f (000 000 002) (002 002 222)

#038#d analog of distributive lattice

#038#d mutually distributive associative disjunction and conjunction
#038#r P. Dienes(1949), Rescher(1969) p.336

#0394s 0,2,7,19,47 (n+2)*2%%(n-1)-1

#0394#f (000 000 012)

#039#d semigroup: has zero; implication

#039#fr Reichenbach(1944), Goddard & Routley(1973) p.351, Baker(1981)*

#040#s 0,2,7,22,69 n+35edn - 29k
#040#f (000 000 022)
#0404#d groupoid: has zero

#041#fs  0,2,7,25,181 10084 + 2%%n -1 (?)

#041#f (000 000 002) (002 012 222)

#041##d mutually distributive conjunction and disjunction
#041#r P. Dienes(1949)

#042#s  0,2,8,24 .64 n¥ 2%
#042##f (000 022 011)

#042#fd groupoid: has zero, adjoin absorbing element to negation
#0427fr Plonka(1971a)¥*, Baker(1981)=

n

#043#s  0,2,8,26,80 3##n-1
#043#f (000 001 012)
#043#d semigroup: has zero, xx=xxx; reduct of Chang MV algebra
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#043#r Chang(1958)

#043#£1 (000 012 021)

#043#d1 semigroup: has zero, x=xxx

#043#d]l equivalential fragment of Bochvar and Kleene system
##043#rl Rescher(1969), Chajda(1980)

#043#£1 (002 012 220)

#043#fd]1 semigroup: xX=xxx

#0444ks  0,2,8,35,212
#044#f (000 002 022)
#044#d  groupoid: has zero

#0454#s 0,2,8,59
#0454#f (001 011 111)
#04544d groupoid
#0454fr Moraga(1975)

#046#s  0,2,10,62,1138 sum i=1 to n (C(n,i)*#095#)

#0464#f (000 011 021)

#0467t(d groupoid: has zero, adjoin absorbing element to implicatio:
##046#d Bochvar fragment: implication

#046#r Plonka(1971a)*, Kalman(1980)*

#0474#s 0,2,11,52,247
#0474#f (011 122 222)

#0474#d groupoid

#047#r Kabat & Wojick(1981)

#0484s  0,2,11,64,523
#048#f (000 001 022)
#048#f/d groupoid: has zero, not finitely based
#048#r Murskii(1965)

#0494#ts  0,2,11,492
#049#f (010 110 000) (000 010 000)
#049#d adjoin invisible element to distributive lattices

#050#s 0,2,12,114

#0504##f (000 011 012) (012 111 211)

#050#d system used to show independence of lattice axioms
#0504fr Sobocinski(1972)

#051#s  0,2,12,120

#051#f  (112) (000 012 022) (012 112 222)
#051#d Conway's Kleene algebras

#051#r Conway(1971)

#052#s 0,2,12,158,33336 sum i=1 to n (C(n,i)*(2%*(2%*i~1)))
#052#f (000 012 021) (000 012 022)

#052##d adjoin zero to Boolean ring

#052##d Bochvar fragment: implication and equivalence

#053#s 0,2,12,174

#053#f (012 002 022)
#053##d regular implication
#053#ir Cleave(1980)

#054#s  0,2,13,147

#054#f (000 011 012) (012 112 222) (111 111 112)
#054#d lattice ordered semigroup

#054ffr  Gabovich(1976), Saito(1977)
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#055#s  0,2,13,174

#055#f (000 011 022) (012 122 222)

#055##d system used to show independence of lattice axioms
#055#r Sobocinski(1972)

#056#s  0,2,13,673
#056#f (012 101 212)
#0564td groupoid: has unit

#057#s  0,2,14,272

#057#f (000 001 012) (012 112 222)

#057#d system used to show independence of lattice axioms
#057#r Croisot(1951)

#0584#s 0,2,16,659

#058#f (012 000 222)

#058#d implication; left distributive groupoid

#058#r McCarthy(1963), Bandler & Kohout(1979), Cleave(1980), Kepka(1981)

#059#s 0,2,18,1119

#059#f (000 110 210)

#059#d Kleene fragment: implication
##059#r Z.P. Dienes(1949), Church(1953)

#0604#s 0,2,20,822
#060#f (012 121 221)
ff060#td groupoid: has unit, adjoin unit to complementation

#061#s 0,2,22
#061#£f (012 111 210) (012 112 222)
#061#d Kleene fragment: equivalence, conjunction

#062#s 0,2,25
#0624f (000 011 012) (012 111 210)
#062##d Kleene fragment: equivalence, disjunction

#063#s 0,2,28

#063#f (012 100 202)

#063#d groupoid: has unit, x(xx) and (xx)x need not be equal

#063#£f1 (012 111 221)

#063#d1l groupoid: has unit, x(xx)=(xx)x=x, adjoin unit to implication

#064#ts  0,2,60

#0644f (022 012 000)

#064#d  implication

#0647tr  Sugihara(l955), Sobocinski(1952), Rose(1953), Dunn(1970)
#064#r Tokharz(1975)*, Biela(1975), Mortensen(1978)

#065#s 0,2,648,49589822592 2% (2% =] )% 3%k (3¥kn-2%%n=1)
#065#f (011 002 202) (011 002 222) (012 112 222) (000 011 012)
#065#d quasiprimal

#065#r Csakany & Gavalcova(1982)

#066#s 0,3,6,9,12 3n

#066#f (100)

#066#d l-unary: 2-cycle with tail, pseudocomplementation
#066#f (002) (220)

#066#fd 2-unary: 2-chain with fixed point, 2-cycle with tail
#066#£f1 (120)

##0664#d1 l-unary: 3-cycle, Post negation

#066#rl Post(1921)

#066#£2 (002) (022)
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#066#d2 2-unary: two 2-chains with fixed points
#0667fr2 Belkin(1971), Gorbunov(1977)

#066#£3 (002) (112)

#066#d3 2-unary: two 2-chains with fixed points

#067#s  0,3,8,17,34 2%%(n#l) + 0 - 2
#067#f (000 010 000) (222 212 222)
#067#d two analogs of semilattice

#068#%#s 0,3,9,27,81 3¥n

#068#f (102 021 210)

#068#d groupoid: quasigroup, 2x+2y+1 (mod 3)
#068#r Clark & Krauss(1976)

J##069#s 0,3,11,39,154 n + sum i=1 to n (C(n,i)*Bell number(i+l))
#069#f (000 010 001)
#069#d groupoid: has zero

#070#s 0,3,13,75
#070#£f (000 010 011)
#070#d groupoid: has zero

#071#s  0,3,24
#071#f (000 010 021)
#071#d groupoid: has zero

#072#s  0,3,27,19683 3+ (3% (n-1))

#072#£f (122 020 110)

#072#d groupoid: satifies Martin's t-closing condition

#072#r TFoxley(1962)

#0724 (120) (002 011 212)

#072#d upper bound algebra with 3-cycle adjoined

#072#d maximal clone of self dual functions; quasiprimal

#072#r Jablonskii(1958)%, Kaiser(1975), McKenzie(1982)%,

#0724fr Demetrovics & Hannak & Ronyai(1982)%, Csakany & Gavalcova(1982)

#073#s 0,3,46

#073#f (012 122 222) (000 001 012)

#073#d reduct of Chang MV algebra S(2)

#073#d system used for independence of axioms for Kleene algebra
#073#r Chang(1958), Mukaidono(1981)

#0744s  0,3,68

#074#f (000 010 000) (012 012 102)

#0744fd system used for independence of field axioms
#074#r Bernstein(1921)

#075#s  0,3,90

#075#f (000 110 120)

#075#d Rescher's version of Post implication
#075#r Rescher(1969) p.53

#076#s  0,3,138

#076#f (001 011 120)

#0767#d groupoid: wunknown if finitely based (due to Grzegorczyk)
#076#ir Karnofsky(1968)

#0774#s  0,3,168
#077#f (012 110 201)
#0774#/d groupoid: has unit



#078#s
#0784tf
#0784#d
##0784tr

#0794%s
#0794#f
#0794d
#0794r

#0804#s
#080F#f
#0804#d

#081#s
#0814f
#0814#d
#0814r

#0824s
#0824#f
{##0824td
#0824tr
#0824 f
#0824d
#0824#r

#083¢#s
#0834 1L
##0834#d
#0834#r

7#0844ts
#0847
#0844
#0844
#0844
#0084
#0844d
#0844

#£0854ts
{H0854f
##0854#d
#085#f
#0854#d
#0854t

#086its
#086#f
#0864d
#0864 r

#0874s
#0874#f
#08744d
#0874
#0874#f1
#087#d1
#0874#f1
#0874#d1
#087#f2
#0874#d2
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0,3,432

(001 012 122) (012 111 210)
saturation arithmetic
Motil(1974)

0,3,2187  3#%(3%¥n-2)

(011) (012 112 222) (021 210 102)
quasiprimal

Csakany & Gavalcova(1982)

0,4,8,12,16 4n
(002) (102)
2-unary: 2-chain with fixed point, 2-cycle with fixed point

0,4,16,52,160 2(3%vp-1)
(021) (000 021 012)

adjoin zero to complemented Boolean group; Bochvar fragment: equivalence
Rescher(1969) p.29

0,4,24,316,66672 sum i=1 to n (C(n,1)%*2%*(2%%*1i)))

(000 021 011)

groupoid: has zero, adjoin absorbing element to Sheffer stroke

Plonka(1969), Tamthai & Chaiyakul(1980)

(210) (010 111 012)

Bochvar system of logic: negation and conjuction as primitive

Bochvar(1939), Church(1953), Rescher(1969) p.29, Goddard & Routley(1974) p.261

0,4,56

(102) (000 012 222) (012 111 222)

logical system: modification of Kleene system
McCarthy(1963), Zaslavskii(1979)

0,4,82,43916,160297985274

(210) (000 011 012) (012 112 222)

Kleene algebra, fuzzy switching functions, Lukasiewicz fragment

Kleene(1952) p.332, Balbes & Dwinger(1974)

Preparata & Yeh(1972)*, Mukaidono(1982)%*, Berman & Mukaidono(1982)%

(222 211 210)

Sheffer function for Kleene algebra

Monteiro & Pico(1963), Sestakov(1964), Meredith(1969), Mouftah & Jordan(1974)

0,4,264

(012 121 211)

groupoid: adjoin unit to Sheffer stroke

(210) (022 012 000)

Sobocinski system; Fragment Sugihara system; deontic logic

Sugihara(1955), Sobocinski(1952), Fisher(1961), Dunn(1970), Tokharz(1975)*

0,4,1296,99179645184 2% (27 )3k (3 =27~ 1)

(210) (000 011 012) (022 012 000)

Sugihara system; quasiprimal

Sugihara(1955), Dunn(1970), Tokharz(1975)%, Csakany & Gavalcova(1982)

0,5,10,15,20 5n

(002) (200)

2-unary: 2-chain with fixed point, 2-cycle with tail
Gratzer(1979) pp. 213-214.

(002) (221)

2-unary: 2-chain with fixed point, 2-cycle with tail
(100) (200)

2 unary: two 2-cycle with tail

(100) (101)

2-unary: two 2-cycle with tail



#0884ts
#0884 f
##088#d
#088#f
#0884fd
#088#f1
#088#d1
#088#£f2
#0884d2
#0884#f2
#0884£d2

#0894s
#0894#f
#0894d
#0894#f
#0894t

{##0904ts
#0907 £
{#0904#d
#0904#£1
#0904#d1

#0914s
#0917£
#0914#d
#0914r

#0924s
#092#f
#09244d
#0924r

#0934#s
#093#f
#09344d
#093#f
#0934#d

##0944ts
#0944 1
#0944k
#0944t r

#0954ts
#0954f
#0954d
##0954fr

#096its
#0964 £
#0964d
#0964fr

#0974s
#0974#1
#0974#d

##0984s
##098# £
#09844d
##098%r
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0,6,12,18,24 6n

(002) (210)

2-unary: 2-chain with fixed point, 2-cycle with tail
(021) (121)

2-unary: 2-cycle with fixed point, 2-cycle with tail
(021) (100)

2-unary: 2-cycle with fixed point, 2-cycle with tail
(021) (102)

2-unary: two 2-cycle with fixed point

(021) (120)

2-unary: 2-cycle with fixed point, 3-cycle

1,2,3,4,5 n+1

(000)

l-unary: constant function
(000 000 000)

semigroup: has zero, xy=uv

1,2,4,8,16 2%

(000) (000 011 012)
semilattice with constant zero
(222) (000 011 012)
semilattice with constant unit

1,2,5,13,33 14+n*2%%*(n-1)
(000 000 010)

groupoid: has zero

Wronski(1979)

1,2,5,16,55 2+4n+3%%n-2%%(n+1)
(000 001 020)

groupoid: has zero

Baker(1981)*

1,2,5,19,167 1 + #008#

(000) (000 011 012) (012 112 222)

distributive lattice with constant minimal element
(222) (000 011 012) (012 112 222)

distributive lattice with constant maximal element

1,2,6,19,57 1+n2%¥(n-1)+C(n,2)2%%(n-2)
(000 001 010)

groupoid: has zero

Baker(1981)%

1,2,6,38,942 sum i=0 to n ((-1)*%(i-1)%C(n,i)*2%* (2%*(n-1)))

(012 002 010)

implication algebra; BCK algebra; equivalent to 2-valued implication
Mitschke(1971), Iseki(1966)

1,2,6,52

(012 100 200)

groupoid: has unit; pseudosum
Raca(1969)

1,2,7,34,267 l+sum i=1 to n (C(n,i)*#0084#)
(000) (000 011 012)
distributive quasilattices with 0 as constant

1,2,7,46 nF(2%% (2%*(n-1)))-(n-1) (?7)

(012 000 000)

implication

Brady(1971), Goddard & Routley(1973) p.324, Hardegree(1981), Cleave(1980)



#099¢s
#0994 £
#0994#d
#0994fx
#099#f
#£0994#d
#0994d
#0994

#100%#s
#100#f
#1004#d
#100#r

#101i#ts
#101#£
#1014d
#1014r
#101#r

#102#s
#102#f
#10244d

#1034ts
#103#f
#1034#d
#103#r
#103#1£
#1034#d
#1034
#1034#1£
#1034d
#103#r

#104#s
#104#1F
#1044#d
#1044

#£1054s
##1054#1£
#1054d
#105#1f
#1054#d
#1054#r

#£1064#s
#106#1f
#106#d
#106#d
#1064
#106#1f
#106#d
#1064
#106#1£
#106#d

#1074#s
#107#£
#1074#d
#107#1£

26

1,2,9,640

(012 102 220)

groupoid: has unit, Heyting fragment: equivalence
Kabzinski & Wronski(1975)%

(012 101 210)

groupoid: has unit, Lukasiewicz fragment: equivalence
distance function for Chang MV algebra

Chang(1958), Kabzinski(1979), Byrd(1979)

1 s 2 N 12 2-.‘:-.‘¢n'.’:3:'r-.‘r( (3"“"""1‘1‘2""‘2“"’”"1‘1""1 ) /2) (? )

(012 101 220)

groupoid: endomorphisms compose, but not "Abelian"
Lukasiewicz(1939), Klukovits(1973)

1,2,14

(222 022 012)

Heyting fragment: implication; Hilbert algebra; BCK algebra
Jaskowski(1936), Skolem(1952)%*, Henkin(1950), Horn(1962), Diego(1965)*,
Rielak(1974)%*, Urquhart(1974)%*, Iseki(1966)

1,2,16
(012 112 222) (222 022 012)
Heyting fragment: disjunction, implication

1,2,18,39366 product i=0 to n-1 ((2%%(2%¥i-1) + 1)**C(n,1i))

(000 011 012) (222 022 012)

Heyting fragment: conjunction, implication, implicative semilattice
Nemitz & Whaley(1971), Balbes(1973)*, Landholt & Whaley(1974)%*

(222) (000 011 012) (222 022 012)

Brouwerian semilattice

Kohler(1973)*, Kohler(1975)*, Davey(1976)%*

(222) (000 011 012) (012 112 222) (222 022 012)

relative Stone algebra

Hecht & Katrinak(1972), Balbes & Dwinger(1974) pp. 166,176

1,2,24,93312 2% (2% =1 ) w3 (3R -2%2%*n+1)/2)
(022 212 222) (000 111 012) (210 021 012)
quasiprimal

Csakany & Gavalcova(1982)

1,2,40

(012 001 000)

Lukasiewicz fragment: implication; BCK algebra
(012 001 010)

example of failure of p¥(q*r)=(p¥*q)*(p*r)
Diego(1965) p.10, Iseki(1966), Byrd(1979)

1,2,72,68024448 2% (2¥n-1)%
(012 001 000) (012 112 222)
complemented semigroup; quasiprimal algebra
Lukasiewicz fragment: implication, disjunction
Bosbach(1969), Csakany & Gavalcova(1982)

(012 001 000) (012 101 210)

Lukasiewicz fragment: implication, equivalence
Lukasiewicz(1920)

(012 101 210) (012 112 222)

Lukasiewicz fragment: equivalence, conjunction

feie (3Rkn=2%2%wn+1)

1,3,5,7,9 2n+1
(001)

l-unary: 3-chain

(000) (001)



#1074#d

#1074£1
#1074#d1
#1074f1
#1074kd1
#1074#£2
#1074kd2

#108its
#1084#f
#1084td
#1084#d
#1084t

#1094s
#1094
#1094#d
#1094
#1094#£
#1094d
#1094

#1104s
#110#£
#1104#d

#111#s
#1114f
#111#d
#1114

#1124s
#11241
#11244d
#1124

#1134#s
#113#f
#1134d
#1134#r

#1144s
#1144
#1144d
#1144tr
#1144f
#11444d
#114fr
#1144HE1
#1144d1
#1144t£1
#1144d1
#11l44rl
#1144£1
#1144kd1

#1154s
#1154
#115#d
#1154tr
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2-unary: constant function, 3-chain

(000) (002)

2-unary: constant function, 2-chain with fixed point
(000) (011)

2-unary: constant function, 2-chain with fixed point
(000) (021)

2-unary: constant function, 2-cycle with fixed point

1,3,6,10,15 C(n+2,2)

(000 000 001)

semigroup: has zero, xyz=rst

variety does not have definable principal congruence relations
Evans(1971) p. 31, Moraga(1975), Harrop(1976), Taylor(1977)

1,3,6,11,20 n+2%%n

(011 100 100)

semigroup: analog of Boolean group; equivalence operation
Salomaa(1959), p.136, Wesselkamper(1974)

(002 002 220)

semigroup: analog of Boolean group

Rescher(1969) p.336

1,3,7,15,31 2%*(n+l) - 1
(111) (000 011 012)
semilattice with generic constant

1,3,8,20,48 1 + #0393

(000 000 111)

groupoid: has 0

Gutierrez & Moraga(l974), also see #0394#r

1,3,8,41,946 n + #0954

(000 000 220)

groupoid: analog of implication

Reichenbach(1944), Salomaa(1959), Rescher(1969) p.336, Bandler & Kohout(1979)

1,3,9,26,72 (n¥#2+3n+8)2%% (n=-3)
(000 001 011)

groupoid: has zero

Klein-Barmen(1953), Moraga(1975)

1,3,9,27,81 3%

(000 020 001)

groupoid: has zero

Baker(1981)*

(021) (000 010 002)

involutory semigroup; fragment of Hanson threshold logic
Hanson(1963), Fajtlowicz(1972)

(012 120 201)

group: Z3

(021 102 210)

groupoid: quasigroup, x + 2y (mod 3)
Bernstein(1924), Clark & Krauss(1980)
(000 000 000) (012 120 201)

ring: trivial multiplication

1,3,10,32,96 (n¥2+n+4 )% 2% % (n=-2)
(000 001 111)

leader threshold function
Gutierrez & Moraga(1974)



#1164#s
#1641
#1164#d

#1174s
#1174f
#1174#d
#1174#x

#118#s
#118#f
#1184#d

#1194s
#1194f
#1194d

#120#s
#1204f
#1204#d
#120#r

#1214s
#1214f
#1214d
#1214#r

#1224s
#1224f
#122#d

#123its
#1234f
#1234d
#1234fr

#1244%s
#1244#1f
#1244d

#1254ts
#1254f
#12544d

#1264#s
#1264f
#1264d

#1274s
#1274f
#1274d
#1274#r

#1284s
#1284f
#128#d

#1294s
#1294f
#1294d
#1294r
#129#1F
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1,3,10,41,282 sum i=1 to n (C(n,1)*#093#)
(111) (000 011 012)
distributive quasilattices with non zero constant adjoined

1,3,10,131,32772 n + 2%%(2%*n-1)
(000 000 002) (002 002 220)

analog of Boolean ring

Rescher(1969) p.336

1,3,12,59,354
(000 000 100)
groupoid

1,3,13,68,420
(001 000 100)
groupoid: commutative

1,3,13,159 sum i=0 to n (C(m,i)*2%%(2%%i-1)) (2)
(000 012 021) (100 011 011)

two commutative semigroups

Wesselkamper(1974)

1,3,15,273

(111) (000 012 020) (012 111 212)
Conway's Kleene algebras
Conway(1971)

1,3,15,531487 (nt+l)st term #0044
(000) (002 011 212)
adjoin generic constant to upper bound algebra

1,3,16

(000 000 200)

groupoid

Gutierrez & Moraga(1974), Anderson & Belnap(1975) p. 85

1,3,19,1120 1 + #059%
(000) (000 110 210)
Kleene fragment: implication with T as constant

1,3,23 1 + #061#
(000) (012 111 210) (012 112 222)
Kleene fragment: equivalence, conjunction, T as constant

1,3,26 1 + #0624
(000) (000 011 012) (012 111 210)
Kleene fragment: equivalence, disjunction, T as constant

1,3,28,796

(001 000 000) (012 012 102)

system used to show independence of field axioms
Bernstein(1921)

1,3,42
(012 102 221)
groupoid: has unit

1,3,81,1594323 3% ((3%*n-1)/2)

(012 220 101)

groupoid: used in independence proof of axioms for Sheffer stroke
Sheffer(1912)

(210) (001 012 122)
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#129#d fragment of Hanson threshold logic

#129#r Hanson(1963)

#129#f (120 201 012) (200 121 222)

##1294#d complemented semigroup; quasiprimal algebra
#129#r Bosbach(1969), Csakany & Gavalcova(l982)

#130#s 1,3,81,2539107 one-half of #1874#s
#1304#f (000 011 012) (000 021 012) (012 100 200)
#130#d maximal subclone of #1874

#130#fr Raca(l1969)

#131#s 1,4,7,10,13 3n+1

#131#£f (001) (002)

#131#4d 2-unary: 3-chain, 2-chain with fixed point
#1314£1 (001) (010)

#131#4d1 2-unary: 3-chain, 2-chain with fixed point
#131#£1 (001) (011)

#131#d1 2-unary: 3-chain, 2-chain with fixed point
#131#£2 (002) (010)

#131#d2 2-unary: two 2-chain with fixed point

#1324#s  1,4,12,39,140

#132#£f (010 121 010)

#132#d groupoid

#132#fr Thelliez(1973), Wojciechowski & Wojcik(1979)

#133#s 1,4,17,72
#133#f (000 000 021)
#133#d groupoid: has zero

#1344s  1,4,18,166,7579 (n+1l)st term of #008#
#134#f (111) (000 011 012) (012 112 222)
#134#fd distributive lattice with one generic constant

#135#s  1,4,21,129, 991(?)

#135#f (000 001 022) (000 012 000) (000 000 012)

#135#d Murskii algebra with local discriminator operators
#135#r Pigozzi(1979)

#1364#s 1,4,27,336
#1364#f (000 001 021)
#136#fd groupoid: has zero

#137#s 1,4,28
#137#f (000 002 021)
#1374#/d groupoid: has zero

#138#s 1,4,35

#138#f (002 002 100)

#138#td groupoid: leader for family of threshold functions
#138#r Gutierrez & Moraga(1974)

#1394%s  1,4,49

#139#f (100 110 111)

#139##d groupoid: implication

#139#fr Bernstein(1924), Turquette(1966), Biela(19753)

#140#s  1,4,56

#140##f (111) (000 011 012) (012 111 210)

#1404##/d Kleene fragment: equivalence, disjunction, U as consta:
#140#fr Kleene(1952) p.334



#1l414ts
#l414f
#1414d
#1l41l4r

#1424s
#4241
#14244d
#1424r

#1434ts
#1434
#1434d
#1434fr

#1444ts
#LlLGH#E
#1444d
#lbbd4r

#1454s
#1454#f
#145#d
#1454

#1464s
#1464#f
#1464d
#1461
#1464d

#1474#s
#1474#f
#1474#d
#1l474r

#1484s
#1484#f
#148%#d

#1494s
#1494f
#1494d
#1494r

#1507s
#1504d
#1504d
#1504r
#1504r

#151its
#1514f

£15144d
#1514#r

#1524s
#1524
#1524 d
#1524fr
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1,4,64

(012 102 000)

implication

Goddard & Routley(1973) p. 365

1,4, 144 ,5038848 (2% (2%%n-1) )*#103#

(000 021 012) (200 121 222)

complemented semigroup; maximal subclone of #187#
Bosbach(1969), Raca(1969)

1,4,162,88219206 (n+1l)st term of #012#
(000) (002 011 212) (010 112 022)
tournament with one generic constant

Fried & Gratzer(1973)

1,4,245

(222 201 212)

Rescher's version of Post equivalence operation
Rescher(1969) p.53

1,4,576,8707129344 2% (2% 2 = 2 )k 3k (B -2 2%k n+] )
(022) (022 212 222) (000 111 012) (210 021 012)
quasiprimal

Csakany & Gavalcova(1982)

1,5,9,13,17 4n+1

(002) (011)

2-unary: two 2-chain with fixed point
(002) (212)

2-unary: two 2-chain wih fixed point

1,5,34,515
(200 002 022)
groupoid
Wojtylak(1979)

1,5,43
(111) (000 110 210)
Kleene fragment: implication with u as constant

1,5,63

(111) (012 111 210) (012 112 222)

Kleene fragment: equivalence, conjunction, u as constant
Kleene(1952) p.332

1,5,114

(000 200 220)

implication

Salomaa(1959), Thomas(1962), Goddard & Routley(1973) p.320
Meyer & Parks(1972), Epstein(1976), Zakrzewska(1976)

1,5,130 2% (3%¥n-2%%n4n)+n (7)

(022 202 220)

groupoid: equivalence

Reichenbach(1944), Muehldorf(1960), Goddard & Routely(1973) p.318

1,5,136

(222 020 002)

groupoid: implication
Anderson & Belnap(1975) p. &40



3

#153#s  1,5,154

#153#f (110 010 000)

#153#d groupoid; adjoin invisible element to implication
#153#r Wajsberg(1937)

#154#s  1,6,11,16,21 5n+1

#154#f (001) (020)

#154#f/d  2-unary: two 3-chains

#1544#£f1 (001) (022)

#1544f/d1 2-unary: 3-chain, 2-chain with fixed point

#1554#s  1,6,408
#155#f (000 100 201)
#155##/d groupoid
#155#r Rose(1961)

#156#s  1,6,480

#1564 (022 001 000)
#1564##/d implication

#1564#r Rescher(1969) p.135
#1564 (022 001 020)

#157#s 1,6,594

#157#f (022 001 010)
#1574#d implication

#157#r Rescher(1969) p.135

#158#s 1,6,768

#158#f (001 100 201)

#158#d groupoid used to show independence of Sheffer axioms
#158#r Dines(1915), Taylor(1920)

#1594s 1,6,1944 2% (2%%n =1 )7’:37‘::’: (3%*n=-2%"n)
#159#f (000 100 210) (012 122 222)

#159##d complemented semigroup; quasiprimal
#159#r Bosbach(1969), Werner(1978)

#160#s 1,7,13,19,25 én+1

#160#f (001) (021)

#160##d 2-unary: 3-chain, 2-cycle with fixed point

#160#£  (002) (021)

#160##d 2-unary: 2-chain with fixed point, 2-cycle with fixed point

#161#ks  1,7,57
#161#f (000 020 011)
#1614#d groupoid: has zero

#162#s  1,7,241

#162#f (021 000 021)

#162#d groupoid almost generating maximal clone
#162#r Jablonskii(1958) p. 111

#163#s 1,9,161

#163#f (102) (222) (012 111 222)

#163#d Zaslavskii system without all the constants specified
#163#r Zaslavskii(1979)

#164#s  1,9,6561,2541865828329 3%*(3%#*n-1)
##lé4ftf (000 012 021) (012 120 201)

#164#d ring: addition and multiplication (mod 3); maximal clone; quasiprimal
#l64#if (012 202 121)
#164#fd groupoid: used for complete independence proof
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#164#r Dines(1915), Taylor(1920)
#1l64#f (201 201 202)
#l64ffr Carvallo(1968) p. 49

#165#s 2,3,4,5,6 n+2
#165#f (000) (111)
#165#d 2-unary: two constant functions

#166#s 2,3,5,9,17 142%%n
#166#f (000) (222) (000 011 012)
#166#d semilattice with zero and unit as constants

#167#s 2,3,6,20,168 2440087}

#167#f (000) (222) (000 011 012) (012 112 222)

#167#d Dbounded distributive lattice: zero and unit as constants
#167#r Balbes & Dwinger(1974)

#168#s 2,4,6,8,10 2n+2

#168#f (000) (102)

#168#d 2-unary: constant, 2-cycle with fixed point
#168#f1 (000) (110)

#168#d1 2-unary: constant, 3-chain

#168#£2 (000) (112)

#168#d2 2-unary: constant, 2-chain with fixed point

#169#s 2,4,8,16,32 27%%(n+1)

#169#f (000) (111) (000 011 012)

#169#d semilattice: has zero as constant and generic constant
#169#f1 (111) (222) (000 011 012)

#169#d1 semilattice: has unit as constant and generic constant

#170#s  2,5,8,11,14 3n+2

#170#f (000) (100)

#170#d 2-unary: constant, 2-cycle with tail
#170#f (000) (101)

#170#d 2-unary: constant, 2-cycle with tail
#1704#£f1 (001) (110)

#170#d1 2-unary: two 3-chains

#1704#£2 (001) (112)

#170#fd2 2-unary: 3-chain, 2-chain with fixed point

#171#s 2,5,10,19,36 n+2%%(n+1)

#171#f (220) (002 002 220)

#171#d analog of complemented Boolean group
#171#r Rescher(1969) p.336

#172#s 2,5,14,49,298 sum i=0 to n (C(n,i)*#1674#)
#172#f (111) (222) (000 011 012) (000 012 022)
#1724d distributive quasilattices with two non-zero constants

#173#s 2,5,18,259,65540 n+2%% (2%%n)

#173#f (220) (002 002 222)

#173#d analog of negation and disjunction

#173#r Church(1953), Smiley(1962), Rescher(1969) p.336

#174#s  2,5,19,167,7580 1 + (n+l)st term of #008#
#1744#f (000) (111) (000 011 012) (012 112 222)
#1744t d distributive lattice: with zero constant and generic constant

#175#s 2,5,22,983(7)
#175#f (000) (222) (022 222 222) (000 000 002)
#175#d monotonic for 3-element chain with 2-element range
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#176#s  2,5,23,311,66659 l+sum i=0 to n (C(n,i)%2%#(2%%{) - 1)
#176#f (200) (000 011 012)

#176#d pseudocomplemented semilattice

#176#r Jones(1972)%*, Balbes(1973)*, Jones(1974), Taylor(1976)

#177#s 2,5,105

#177#f (000) (212) (012 112 222) (000 021 012)
#177#d maximal subclone of #187#

#177#r Raca(1969)

#178#s 2,6,10,14 18 4n+2

#178#f  (002) (101)

#178{fd 2-unary: 2-chain with fixed point, 2-cycle with tail
#178#£f (001) (102)

#178#d 2-unary: 3-chain, 2-cycle with fixed point

#179#s 2,6,26,318,66674 sum i=0 to n (C(n,i)¥2%*(2%*1i))
#179#£f (222) (000 011 021)
#1794##d Bochvar system with two nonzero constants adjoined

#180#s  2,6,45

#180#f (111) (012 101 210)

#180#d Lukasiewicz fragment: equivalence with Slupecki constant
#180#r Slupecki(1936)

#180#f (220) (012 102 220)

#180##d Heyting fragment: equivalence, negation

#181#s 2,6,50
#181#f (200) (012 112 222)
#181#d Heyting fragment: disjunction, negation

#182#s 2,6,70

#182#f (200) (222 022 012)

#182##d Heyting fragment: implication, negation
#182#r McCall(1962)*, Horn(1962)

#183#s  2,6,84

#183#f (210) (012 101 210)

#183#d Lukasiewicz fragment: equivalence and negation
#183#f (111) (012 102 220)

#183#d Heyting fragment: equivalence, 1 as constant
#183#d compare #184#; not congruence distributive

#184#ts  2,6,84,43918,160297985276 2+£0844F
#184#f (000) (222) (210) (000 011 012)
#184#fd Kleene algebra with two constants; compare #1834

#185#s 2,6,90,60750 product i=0 to n ((1+2%%i)¥*C(n,i))
#185#f (200) (212) (000 021 012)

#185#d maximal subclone of #187#

#185#r Raca(1969)

#186#s 2,6,108,233280 product i=0 to n (i-th term #167#%*C(n,i))
#186#f (200) (000 011 012) (012 112 222)

#186#d pseudocomplemented lattice; Stone lattice

#186#d Heyting fragment: conjunction, disjunction, negation

#186#r Balbes & Horn(1970)%*, Gratzer(1971)*%, Balbes & Dwinger(1974)*

#187#s 2,6,162,5078214  #103#%* (2%%(2%*n-1)+1)

#1874#f (000) (000 011 012) (222 022 012)

#187#d Heyting system: implication, conjunction, F as constant
#1874f (000) (000 011 012) (012 112 222) (222 022 012)



#1874#d
#1874#r
#1874#r
#1874#r

#1884#s
#188#f
#1884#d
#188#f
#188#d

#189¢s
#1894#f
#1894#d

#1904#s
#1904f
#190#d
#1904t

#191¢s
#1914f
#191#d
#1914#r
#1914#f
#191#d
#1914#r

#1924s
#192#fF
#192#d
#1924#tr

#1934#s
#193#1
#1934#d
#1934#r

#194its
#1944
#1944td
#1944

#1954#s
#195#f
#1954#d
#1954

#1964ts
#196#f
#196#d
#1964
#196#f
#1964#d
#1964
#196#f
#£1964td
#1964t

#1974#s
#1974#1f
#1974kd
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Heyting algebra; L-algebra; pseudo Boolean algebra
Heyting(1930), Godel(1932), Birkhoff(1940), Rasiowa & Sikorski(1963)
Raca(1966), Raca(1969)*, Horn(1969)*%, Kohler(1973)*, Monteiro(1972)%*,
Balbes & Dwinger(1974), Kohler(1975)*, Davey(1976)*

2,7,12,17,22 Sn+2

(001) (100)

2-unary: 3-chain, 2-cycle with tail
(001) (101)

2-unary: 3-chain, 2-cycle with tail

2,8,14,20,26 6n+2
(002) (100)
2-unary: 2-chain with fixed point, 2-cycle with tail

2,9,16,23,30 7n+2

(002) (020) (200)

3-unary: three peak functions

Rosser & Turquette(1945), Rosenberg(1976) p.11

2,9,514,134217731 n + 2%k (3¥n)

(100) (110 010 000)

implicational logic; adjoin invisible element to implication and negation
Wajsberg(1937)

(101) (110 010 110)

variant of implicational logic

Wajsberg(1937), Zakrzewska(1976)

2,9, >1000

(000) (111) (002 011 212) (010 112 022)
tournament: two elements as constants
Fried & Gratzer(1973)

2,10,18,26,34 2+8n

(022) (202) (220) (210)

3 peaks and negation function
Rosser & Turquette(1945)

2,10,516

(102) (000 011 011)

negation and implication used in independence proof
Bernays (1926), Meredith(1953)

2,10,562

(101) (000 011 012) (012 112 222)

distributive lattice with additional unary operation
Kollar(1980)

2,10,622

(101) (000 012 012)

negation and implication used in independence proof
Bernays(1926)

(022) (202) (220) (012 002 000)

example of implication with Rosser & Turquette J functions
Shoesmith & Smiley(1978) p. 358

(002) (022) (200) (012 000 000)

matrix used for independence proof in modal logic
Lukasiewicz(1953), attributed to C. A. Meredith

2,10,626
(200) (220) (000 011 012)
semilattice with pseudocomplement and dual pseudocomplement



#197#1F
#1974#r

#1984ts
#198#f
#1984#d
#1984

#1994s
#1994#f
#1994d
#1994

#200#s
#2004 £
#2004#d
#2004t
#2004 f
#2004#d
#2004 r

#201its
#2014 f
#2014#d
#2014#d
#201#r
#2014#f
#20144d
#201#d
#201#fr
#2014#f
#2014#d
#201#r
#2014#f
#2014#d
#2014 £
#2014#d
#2014#r
#2014
#201#d
#2014r
#201#f
#201#d
#2014
#201#f
#2014d
#201#r
#2014 £
#2014d
#2014fr
#2014#£
#2014d
#2014
#2014 £
#2014t
#201#r
#201#f
#2014d
#2014r
#201#f
#2014#d
#201#r
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(002) (020) (200) (000 011 012)
fragment Muehldorf system as in Rosenberg(1976) p.12

2,10,642

(100) (000 012 222)

negation and implication used in independence proof
Bernays (1926)

2,10,808

(111) (012 001 000)

Lukasiewicz implication with Slupecki constant
Slupecki(1936)

2,12,656

(102) (011 000 000) (012 112 222)
logical system similar to Bochvar system
Pirog-Rzepcka(1973)

(002) (020) (200) (210) (012 111 212)
logical system similar to Bochvar system
Finn & Grigolija(1979)

2,12,3888,297538935552 (2% (2%¥%n ) )¥ (3% (3%*n-2%%*n))
(000) (222) (210 121 012) (222 122 012)

Lukasiewicz system: implication, equivalence, two constants
maximal clone, quasiprimal

Lukasiewicz(1920)

(210) (012 001 000)

Lukasiewicz system: negation, implication as primitive
implicaton = max(0,x-y), negation = 2-x
Slupecki(1936)

(210 100 000)

Sheffer stroke for Lukasiewicz algebra
McKinsey(1936), Evans & Hardy(1957)

(111) (222 022 012) (000 011 012)

Heyting fragment: implication, conjunction, 1 as constant
(000) (210) (002) (022) (000 011 012) (012 112 222)
Lukasiewicz algebra, Moisil algebra

Moisil(1940), Cignoli(1970)*, Balbes & Dwinger(1974)*
(102) (000 012 020)

negation and implication used in indpendence proof
Bernays (1926)

(210) (022 002 000) (000 011 012)

Chang MV algebra

Chang(1958)

(001) (102) (012 111 222)

EFC system for recursively defined predicates
McCarthy (1963)

(011) (102) (000 012 022)

Aqvist logic of nonsense

Aqvist(1962)

(002) (020) (200) (000 011 012) (012 112 222)

max, min, three peak functions

Rosser & Turquette(1945), Rosenberg(l1976) p.11

(200) (220) (000 011 012) (012 112 222)

regular double Stone algebra

Varlet(1972), Katrinak(1974), Hecht & Katrinak(1974)%*
(200) (220) (210) (000 011 012)

pseudocomplemented Kleene algebra

Romanowska(1981)

(000) (222) (000 011 012) (012 112 222) (222 022 002)
P-algebra

Epstein & Horn(1974)
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#202#s 3,5,7,9,11 2n+3
#202##f (000) (122)
#202##d 2-unary: constant, 3-chain

#203#s 3,5,9,17,33 1+2*%*%(n+1)
#203#f (000) (111) (222) (000 011 012)
#203#d semilattice: all three constants adjoined

#204#s 3,6,9,12,15 3n+3

#204##f  (000) (120)

#204#d 2-unary: constant, 3-cycle

#204#£1 (000) (121)

#204#d1 2-unary: constant, 2-cycle with tail

#205#s 3,6,12,24,48 3y
#205##f (111) (222) (000 010 002)
#205#d semilattice: has two constants

#206#s  3,6,20,168,7581 2+(n+1)st term of #008
#206#f (000) (111) (222) (000 011 012) (012 112 222)
#206#d distributive lattice: all three constants named

#207#s 3,8,13,18,23 5n+3

#207#f (100) (221)

#207#d 2-unary: two 2-cycle with tail
#207#£1 (001) (221)

#207#d1 2-unary: 3-chain, 2-cycle with tail
#207#£1 (001) (220)

#207#d1 2-unary: 3-chain, 2-cycle with tail

#208#s  3,8,29,141

#208#f (000) (111) (222) (000 001 022)

#208#d Murski groupoid with all constants adjoined
#208#r Pigozzi(1979)

#2094s 3,8,38,566 #1764 + 2% (2%%n)~1 (?7)

#209##f (111) (200) (000 011 012)

#209##d Heyting fragment: conjunction, negation, all constants
#209##d pseudocomplemented semilattice with all constants

#210#s  3,8,52

#210#f (000) (111) (222) (100) (221) (00O 011 012) (012 112 222)
#210##d N-Boolean algebra

#210#r Schmidt(1972)

#211#s  3,9,15,21,27 6n+3

#2114#f  (002) (121)

#211#d 2-unary: 2-chain with fixed point, 2-cycle with tail
#2114£1 (000) (021) (120)

#21144d1 3-unary: all permutations and constants

#212#s 3,9,27,81,243 3% (n+1)

#212#f (111) (012 120 201)

#212#d group Z3 with all constants named; maximal clone
#212#r Jablonskii(1958), Clark & Krauss(1980)

#213#s 3,9,40,569
#213#f (000 010 000) (222 222 221)
#213#d analog of semilattice and analog of Sheffer stroke

#2144fs  3,10,17,24,31 7043
#214#f  (100) (121)



#2144d
#2144 f
#2144d
#214#1£1
#2144kd1

#215¢s
#2154
#2154d
#2154#r

#2164s
#2164f
#2163#d
#2164r

#2174s
$2174f
#2174#d
#2174+
#2174r

#2184s
#2184f
#218#d
#2184r

#2194ts
#2194f
#2194d

#2204s
#2204f
#:2204#d
#220#r

#2214is
#221#f
#2214r

##2224#s
#2224 f
##2224d
#2224t

#2234s
#2234 f
#2234d
#2234#1f
7#2234#d
#223#1f
#2234#d
#2234f1
#2234d1
#2234f1
#42237#d1

#2244ts
#2244 F
#224#d
#224ifr
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2-unary: two 2-cycle with tail
(100) (220)

2-unary: two 2-cycle with tail
(002) (020) (200) (111)

4-unary: three peaks and constant

3,10,45,248

(000) (111) (222) (000 001 022) (000 012 000) (000 000 012)
Murski algebra with constants and local discriminators
Pigozzi(1979)

3,10,46,244

(001) (002) (022) (111) (012 112 222)

maximal subclone of monotonic functions #2207
Machida(1979)

3,10,59

(001) (111) (112) (022 222 222) (000 000 002)
maximal subclone of monotonic functions #2204
intersection of clone #220f and #234#
Kolpakov(1974), Machida(1979)

3,10,83 n+3%E(2%*n) (?)
(211 100 100)

groupoid with large s(1)
Foxley(1962), Muzio(1971)

3,10,88
(111) (200) (012 112 222)
Heyting fragment: disjunction, negation, all constants

3,10,175

(111) (002) (022) (000 011 012) (012 112 222)

maximal clone: monotonic functions

Jablonskii(1958), Alexseev(1974)*, Schweigert(1979), Epstein & Liu(1982)

3,11,163 2 + #163%#
(102) (111) (222) (012 111 222)
Zaslavskii(1979)

3,11,197,129615,430904428717

(000) (111) (222) (210) (000 011 012)

Fragment of Slupecki variant of Lukasiewicz system; Regular functions
Kleene (1952) p.332, Berman & Mukaidono(1982)*

3,12,21,30,39 9n+3

(001) (200)

2-unary: 3-chain, 2-cycle with tail
(001) (121)

2-unary: 3-chain, 2-cycle with tail
(001) (212)

2-unary: 3-chain, 2-chain with fixed point
(001) (211)

2-unary: two 3-chains

(001) (202)

2-unary: two 3-chains

3,12,207

(112 200 200)

groupoid with large s(1)
Muzio(1971)



{22545
F2254f
#225#d
#2254 £
#2254#d

#2264ts
#2264 1
##2264d
#2264

#2274#s
#2274f
#2274#d
#227#f
#227#d

#2284s
#2284+f
#2284#d
#228#r

#2294s
#2294f
#2294d
#2294
#2294
#2294f
#2294d
#2294
#2294
#22944d
#2294

#2304ts
#2304t
#230#d
#2304r

#2314ts
#231#f
#2314d
#231#f
#2314#d
#2314#f
#2314#d

#2324¢#s
#2324f
#2324d
#2324#r

#2334s
#2334 £
#23344d
#2334
#2334

#234#is
#234H £
#23444d
#2344
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3,13,23,33,43 10n+3

(001) (210)

2-unary: 3-chain, 2-cycle with fixed point

(021) (101)

2-unary: 2-cycle with fixed point, 2-cycle with tail

3,15,333

(121 100 100)

groupoid

Foxley(1962), Muzio(1971), Rose(1979)

3,15,369

(111) (210) (012 101 210)

equivalence and negation in Lukasiewicz system with Slupecki constant
(111) (220) (012 102 220)

Heyting fragment: equivalence, negation, all constants

3,15,525

(121 200 100)

groupoid with large s(1)
Muzio(1971)

3,15,2275,473490375 product i=0 to n ((1+2%%(2%*1i))**C(n,i))
(000) (111) (000 011 012) (222 022 012)

Heyting fragment: implication, conjunction, all truth values
Heyting algebra with all constants; maximal clone
Jablonskii(1958), McKenzie(1982)¥, Demetrovics & Hannak & Ronyai(1982)
(000) (112) (000 011 012) (222 022 012)

Heyting algebra with modal operator

Mcnab (1981)

(000) (122) (000 011 012) (222 022 012)

Heyting algebra with additional unary operation

Ursini(1979)

3,17,1361

(222) (021 000 021) (001 020 100)

maximal clone: preserves central relation

Jablonskii(1958), Lau(1980), Demetrovics & Hannak & Ronyai(1982)*

3,24,45,66,87 21n+3

(001) (120)

2-unary: 3-chain, 3-cycle

(002) (120)

2-unary: 2-chain with fixed point, 3-cycle
(100) (120)

2-unary: 2-cycle with tail, 3-cycle

3,27,51,75,99 24n+3
(001) (021) (120)

all unary operations
Picard(1935)

3,27,105,399,1557  3%29(2%n+l) + 6%n - 3

(120) (021) (001 001 110)

clone of quasilinear functions, maximal subclone of #2347
Burle(1967), Malcev(1972), Malcev(1973)

Rosenberg & Szendrei(1981), Berman & McKenzie(1982)*

3,27,1545 3w (3%Fn) + 6%n - 3

(001) (021) (120) (011 111 111)

all unary and all non-onto n-ary operations; maximal clone
Jablonskii(1958), Burle(1967)



#2354#s
#2354f
#2354td
#2354
#2354t
##2354d
#235#r
#2354
#2354#d
#235%r
#2354 f
#2354#d
#235#f
#2354d
#2354
#2354
#2354
#2354
#235#d
#2354r
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3,27,19683,7625597484987 3uns (rip)

(201) (012 112 222)

Post system of 3-valued logic: negation, disjunction as primitive
Post(1921)
(121 222 120)

groupoid:

Webb(1936)
(111) (210) (012 001 000)

Slupecki variant of Lukasiewicz system
Slupecki(1936)
(111) (000 012 021) (012 120 201)

ring of integers mod 3 with all constants; field GF(3)

(221 201 111)

commutative, min{x,y}+1 (mod 3)

Rescher's version of Post conjunction
Rescher(1969) p.53
(002) (200) (220) (022) (000 011 012) (012 112 222)

Yoeli & Rosenfeld(1965)

(000) (111) (222) (210) (022) (002) (000 011 012) (012 112 222)
Post algebra
Cignoli(1970)*, Dwinger(1972)%, Balbes & Dwinger(1974)*

INDEX OF BINARY OPERATIONS

The minimal member of isomorphism/anti-isomorphism class is given.

(000
(000
(000

(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000

000
000
000

000
000
000
000
000
000
000
000
000
001
001
001
001
001
001
001
001
002
002
002
010
010
010
010
010
010
011

000)
001)
002)

010)
012)
021)
022)
100)
111)
200)
220)
222)
010)
011)
012)
020)
021)
022)
111)
112)
021)
022)
222)
001)
002)
011)
012)
021)
222)
011)

#0894
#1084
#0364
#2344
#0914
#0394
#1334
#0404
#1184
#1114
#1234
#1124
#0359

#0944t
#113#
#0434
#0924
#1364
#0484
#1154
#0474
#1374
#0044}
#0374
#0697
#0024
#0704
#0133
#0714
#0054
#0364

#1144

#0384

#1354

#1274

#050%

#1354

{10184

#038%

#0414 40494 #0544 #0674 #0744 F1174 #1754 #213# #2174#

2154

#0553 #0374 #0734 #1214 #1594 #2014

7#208% #2154

#0204 #0254 #40264f #032# #:104%# #114% #145# #2054

#1734 #1944



(000

(000
(000
(000
(000
(000
(000

(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
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(000
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(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(000
(001
(001
(001
(001
(001
(001
(001
(001
(001
(001
(001
(001
(001
(001
(001
(001
(001

011

011
011
011
011
011
012

012
012
012
012
012
020
020
021
021
021
022
100
100
100
100
100
100
101
101
101
101
102
102
102
102
110
110
110
111
111
112
202
211
000
000
001
010
011
011
011
012
012
012
020
021
100
101
101
101
110

012)

021)
022)
102)
212)
222)
021)

111)
122)
212)
220)
222)
001)
011)
011)
021)
222)
112)
100)
111)
200)
201)
210)
220)
100)
102)
210)
220)
100)
110)
120)
202)
120)
202)
222)
102)
222)
212)
101)
122)
100)
220)
110)
102)
111)
112)
120)
120)
121)
122)
100)
111)
201)
000)
100)
111)
012)

#0024
#050%
#086%
#1264
#1774
#2094
#0464
#0054
#0304
#0114
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TABLE OF p(n) SEQUENCES

n-ary operations for

n=0,1,2,3,4.

If fewer than

five values are given it is because the values are too large to print or are unknown
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WORD INDEX

absorbing element, #042# #0467 #0824

analog, #0364 #0384# #0674 #1094 #1124 #1174 #1714 #1734 #2134

BCK algebra, #095# #101# #105#

bichain, #0174# #0224

bisemilattice, #0154 #0174 #0184 #0204 #117# #0324

Bochvar system, #082#

Bochvar system fragment, #0157 #043# #0464 #0524 #081# #0824 #179# #2004

Boolean group, #1094 #171#

Boolean ring, {#052# {1174

Brouwerian semilattice, #103#

Chang MV algebra, #043# #073# #099# #2014

»comp lemented semigroup, #1064 #1294 #1424 #1594

conjunction, #015# #038# #0414 #061# #1034 #1064 #1254 #1494 #1864 #1874 #2014 {209#
#2294 {12354

deontic logic, #085#

disjunction, #015# #038# #041# #0624 #102{f #1064 #1264 #1404 #1734 #1814 #1864 #2194
#2354

distributive, #0087 #015# #0174# #0184 #0224 #026# 0384 #0414 #0494 #0934 #0974 #1164
#1344F #1674 #1724 #1744 #1837 #195# #2064

entropic, #0294 #0374#

equivalence, #043# #0524 #0614 #0624 #0814 #0954 #0994 #1064 #1094 #1254 #1264 #1404
#Flabdt #1494 #1514 #1804 #183# #2014 #2274

field, #0744 #127# #2354

finitely based, #0484 #076#

fuzzy, #0844

generic element, #1104 #1224 #1344 #1434 #1694 #1743

group, #0814 #1094 #1144t #1714 #2124}

groupoid, see initial entry in index of binary operations

Hanson threshold logic, #0257 #1144 #1294

Heyting algebra, #1874# #2294#

Heyting fragment, #099# #101# #1027 #103# #1807 #1814# 1824 #183# #1864 {£1874# #2014
#2094k #2194 #2274 #2294

Heyting system, #187#

Hilbert algebra, #1014

idempotent, see #001# through #0344

identity function, #0014

implication, #039# #0464# #052i #058# #059# #0644 #0754 #0954 #0984 #101# #1024 #1034
#1054 #1064 #1124 #1244 #1394 #1414k #1484 #1504 #1524 #1337 #1564 #1574 #182#
#1874 #1914 #194# #1964 #1984 #1994 #201# #2294

invisible element, #049# #153# #1914

kei, #005#

Kleene system, #0844}

Kleene system fragment, #043# #0594 #0614 #0624 #0734 #0834 #084# #1214 #1244k #1254
#1264 #1404k #1487 #1494 #1844 #2014

L-algebra, #1874

lattice, #0084 #0244 #0264 #0274 40384 #0494 #0504 #0544k #055# #0574 #0934 #1344
#1674 #1744 #1864 #195# #2064

lattice ordered semigroup, #027# #0544

left distributive, #006# #0074 #010# #0164 #0583

Lukasiewicz algebra, #2014

Lukasiewicz system, #2014#

Lukasiewicz system fragment, #084# #0994 #105# #1067 #180# #1837 #199# #2014 #2224
#2274k #2354

maximal clone, #072# {1644 #2014 #2124 #2204 #£2294# #2304 #2344

maximal subclone, #1304 #1424 #177# #185# #2164+ #217# #233#

minimal binary clone, #004# #0064 #007# #0094 #0114

modal, #1964 #2294

monotonic, #1754 #2164 ##217# #2204

Murski algebra, #0487 #135# {#208# #2154

N-Boolean algebra, #2104



45

negation, #042# #0664 #0824 #1737 #1804 #181# #1824 #1834 #1864 #1914 #1934 411944
#1964 #198% #2014 #2094 #2194 #2274 #2354

P-algebra, #2014

peak functions, #190# #193# #1964 #201# #2144

Post system, #2354

Post system fragment, #0664# #0754 #1445 #2354

pseudo Boolean algebra, #1874#

pseudocomplement, #0664 #1764 #1864 ##1974# #2014 #2094

pseudosum, #0964

quandle, #005#

quasigroup, #0037 #068# #1144

quasilattice, #015# #0974 #1164 #1724

quasilinear, #233j

quasiprimal, j#028# #0337 #0344 #0654 #0723 #0794 #0864 #104# {11064 #1294 #1454 #1594
#1644 #2014

quasitrivial, #004# #0054 #0074 #0104 #0114 #0214

ring, #0527 #1144 #1174 #1644 #2354

saturation arithmetic, #0784

self dual, #028# #0724

semigroup, #0013 #005# #0064 {027 {0354 #036# #0394 #043# #054# #0894 #1064 #1084
#1094 fF1144 #1204k #1294 #1424 #1594

semilattice, #002# #0264 #0364 #067# #0904 #1034 #1104 #1664 #1694 #1764 #1974 #203#
#2054 #2094 #2134#

Sheffer function, #082# #084# #0854 #1294 #1384 #2014 #2134

Slupecki constant, #1804 #1994 {2224 #2274 #2354

Sobocinski system, {085#

Stone algebra, #103# #1864 #2014

Sugihara system, #0867}

Sugihara system fragment, #085#

t-closing, #072#

threshold function, #0254 #1144 #115# #1294 #1384

tournament, #0124 #1434 #1924

unary algebras:

l-unary, #001# #0354# 70664 70897 #1074

2-chain with fixed point, #035# #066# #0804 #0874 #0884 #1074 #1314 #1463 ##154f #160#
#1684k #1704k #1784 #1894 #2114 #2234 4210

2-cycle with fixed point, #0354 #0804 #088# #1074 #160# #1684 #1784 #2254

2-cycle with tail, #0664 #0874 #088f #1704 #1784 ##188# #1897 #2044 $#207# #2114 #2144
#2237 #2254 #2314

2-unary, {0664 #0804 #0884 #1074 #1317 #1464 #154{ #1604 #1654 #168# #1704 #1784
#1884k #1894 #2024 {12044} #2073 #2114 #2144 #2234 #225# #2314#

3-chain, #107# #1314 #154# #1604 #1684 #1704 #1784 #1884 42024 #2074 #2234 12254
#2314

3-cycle, #0664 #0724 {0884 #204# #2315

3-unary, #1904 #2114

4-unary, #2144

unit, #0144 #0234 #0564k #0604 #063# #077# #0854 #0904 #0964 {0994# #1284 #1664 #1674
#1697}

upper bound algebra, #0044 #072# #1224

zero, #005# #013# #036% #039% #0404 #0427 #0434 #O044ft 0464 #0484 {#052# #0694 #070#
#071# #0814 #0824 #f089% #0904 #0914 #0924 #0947 #1084 #1134 #1143 #1334 #1364
E1374 #1614 11664 #1674 #1694 #1744
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TREE ALGEBRAS AND CHAINSD

Gary Brenner and Donald Monkz)

For any tree T, one may define the tree algebra BT as the field of subsets of T
generated by the collection of sets S, = {seT:tz<s} forteT. The notion was
introduced and used to construct rigid Boolean algebras and to solve a question about
weakly homogeneous Boolean algebras in Brenner [B]. Here we relate this notion to
linear orderings.

We concern ourselves with two main questions. First, which chains occur in
tree algebras? This is the topic of section 2. Our main results are that if C is a
chain in a tree algebra and the cardinality of C is regular uncountable, then C con-
tains a well-ordered or inversely well-ordered subset of the same power; and for K
regular uncountable, T has a branch of power >k iff By contains a well-ordered chain
of power >k.

In section 3 we consider the relationship between the classes of tree algebras
and of interval algebras. We show that every tree algebra is isomorphic to a subal-
gebra of an interval algebra and use results from section 2 to show that some inter-
val algebras embed in no tree algebra.

Section 1 contains definitions and lemmas used in the later sections, some of
independent interest, as well as a discussion of several other methods of generating

Boolean algebras from trees.

1. BASIC DEFINITIONS AND FACTS. We use "BA" to abbreviate "Boolean algebra."

For any tree T and any t € T, let SE =8, = {s eT: t<s} The tree algebra B,

DThe results of this paper are contained in chapters 1, 3 and 4 of the Ph.D.
dissertation of the first author, prepared under the direction of the second author
at the University of Colorado.

Research supported in part by Forschungsinstitut fur Mathematik, ETH-Zentrum,
Zurich.
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over T is the field of subsets of T generated by {St :teT})., Forany t ¢T, A is
the set of immediate successors to t. A tree T is splitting if for any t e T, |At| #

1; it is infinitely splitting if for all t e T, A, is infinite, The level of t ¢ T

is the oxder type of {s : s < t}; for any ordinal o, level a= {t e T : level of t is
al. The height of T is sup{(level of t) + 1 : t e T}. If t e T, then S, may be con-
sidered as a tree in its own right. An initial chain in T is a chain C in T such that
x £y eC~+x €C. Tis limit-normal if for every initial chain C in T without last
element, there is at most one t € T such that C= {s ¢ T : s < t}., A maximal initial
chain in T is called a branch.

1 0

If A is any BA and a € A, we set a~ = a, a- = -a. If (L,<) is a linear ordering,

the interval algebra on L is the BA of subsets of L generated by {[a,b) : a <b in L}

U {[a,*) : a € L}. For any BA A, depth A = sup{|X| : X €A, X well-ordered}, and
length A = sup{|X| : XgA, X a chain}. A partition of A is a subset P of A which is
pairwise disjoint, with O ¢ P, and with z P = 1. For any cardinal «, k* is the least
cardinal greater than «, «*0 = k and x*(M+1) o (tmy+,

Other ways of associating Boolean algebras with trees are known, and for back-
ground, we mention several,

In Horn, Tarski [HT] the following notion is discussed. A ramification set in

a BA A is a subset X of A satisfying the following conditions:

(1) For all x e X, x # 0.
(2) Por all x,y € X, x £yory<xorx-*y-=0.

(3) For all x ¢ X, {y : x < y} is well-ordered by 2.

PROPOSITION 1.1. B is isomorphic to a tree algebra iff B has a ramification

set as a generating set.

PROOF. ( + ) obvious. ( <+ ): Let X be a ramification set in B. Then under
>, X forms a tree. If X has finitely many roots, we may assume that z {t : t a root
of X} = 1. We now define a homomorphism f of BX onto B. For any x ¢ X, let fo = X.
Then f extends to a homomorphism by the Sikorski extension criterion. Since B is a
homomorphic image of B

X B is isomorphic to a tree algebra by Theorem 5.2 of the

first author's dissertation.
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Note that the mapping f in the proof of 1.1 is not in general an isomorphism.
For example, if the ramification set has an element t with At finite, and t = z At’
then f is not one-one.

Notice the similarity of 1.1 to the well-known fact that a BA B is isomorphic
to an interval algebra iff B contains an ordered basis (i.e., a linearly ordered set
which is a generating set).

One method of associating a BA with a tree is common in forcing arguments.
Make T into a topological space by letting {St : t € T} be a base for the topology.
Then RO(T) is the BA of regular open sets of T. It is a complete BA, so for T infi-
nite, it is never isomorphic to BT by Theorem 3.1. However, there is a close connec

tion with By, given by our next result.

PROPOSITION 1.2. If T is infinitely splitting, then BT is isomorphic to the

subalgebra of RO(T) generated by {§; : t e T}

PROOF. By the Sikorski extension criterion.

Note the following about RO(T) and the operations in it.
int cl S8 ={s : Forall r s, r and t are comparable}.

Thus for T splitting, int ¢l St = St'

-8, = {s : s and t are incomparable}.
Thus -Sy # ~St unless t is the unique root of T.
For T not splitting, Proposition 1.2 can fail. For example, if T is a well-
ordered chain, then RO(T) = 2, while BT is isomorphic to the interval algebra on T.
Shelah in [S] makes use of the following constructien., If T is a tree, let Fp

be a BA freely generated by {x. : t e T} subject to x, < X for s < t. Of course B

t T
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is a homomorphic image of FT’ but in general F._ is not isomorphic to a tree algebra.

T
For example, if T consists just of uncountably many roots, then Fq is an uncountable
free BA, which by Theorem 3.1 cannot be embedded in a tree algebra. Shelah also con-

siders F+, which is freely generated by {x, : t ¢ T} subject to x; < x, for s <t and

Xy X = 0 for s and t incomparable.

PROPOSITION 1.3. If T has infinitely many roots, then BT S F+. If T has finite-

ly many roots, then a = I {-xr ¢ r is a root} is an atom of F+ and BT 2 F+r-a.

PROOF., Note that S * . .. S +-S_ + .. .+ -8 =0 iff one of the
t1 tm 51 Sn

following conditions holds:

1) t, and tj are incomparable for some i,j ¢ {1,...,m},

A

(2) s; =:tj for some i ¢ {1,...,n}, some j ¢ {1,...,m},

(3) R is a subset of {51,...,sn}.

On the other hand, Xe "0 o0 T Xp ot SX_oo0o.L . e -xs = 0 iff (1) or (2) holds.
1 m 1 n

Hence the proposition follows.

The final method of associating a BA with a tree has been used implicitly in
several constructions, and was made explicit in a letter from Judy Roitman to the
second author. Ch(T) is the BA of subsets of T generated by {C : C is an initial
chain of T}. It is easy to see that Ch(T) is always hereditarily atomic, and hence
there are tree algebras not embeddable in any algebra Ch(T) (see, e.g., Theorem 2.9)

We now turn to several simple facts about tree algebras which will be used later.
First we have a normal form lemma.

LEMMA 1.4. Let b e Bi. Then b can be expressed in the form ) £, where
i<n

la

n € w and
(i) For all i,j < n, i #j ~» fi . fj = 0;

(ii) If b < z 84 for some J & [T]<”, then fn = 0 and Jn = 0; otherwise
ted

£ o= -y S, with J e [TIY;

n

(iii) For all i < n, £, = S_ -}
i t.
i se J,

1

SS with Ji a finite set of successors to tj;
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(iv) for all i< nm, Ji is pairwise incomparable;

(v) for all i< n, for all j; n, for all s ¢ J:, t4 # s.

j,

PROOF.  Since {St : t e T} generates BT’ we can write

b=} £,
1ep
each £, # 0, f; - fj=0fori;éj, and
_ e(i,j
fi = H. St ’J)

J < mi i,j
each e(i,j) ¢ {0,1}. Since St . SS = 0 if s and t are incomparable and S, * S, =8

if s £ t, we may assume that each fi has the form

—z Ss’ J; a pairwise incomparable set of successors to ti, or
i
(2) £, =-) S.» J; a pairwise incomparable set.
i
If £ <7 S for some K ¢ [T]c“’,then £,.=7 (f. + S ) ; hence we may assume
= u i i u
ue K uek

that (2) holds only if £, £ ¥ S, for all K ¢ [T]*®. Clearly (2) occurs for some
T u e K

iiff b g S, for all K ¢ [T1“. This is possible only if T has infinitely
uek

many roots. Now (2) can hold for at most one i < p; for if it holds for i,j < p with

i # j, then choose a root v of T such that v £ § S

Thenvefi.fj,a
UQJi UJj

u’

contradiction. Finally , note that if fi and fj have the form (1) and tj e Ji» then

f.+ £, =8 -} S
i seJiUJj,s#tj

similarly, if fi has the form (2). Thus we may assume that (i)-(v) hold.
The following supplement to the normal form lemma is sometimes useful.

LEMMA 1.5. (i) Suppose b < } S, for some J & [T]® and b = § £, and
teld i<m

fia

c = z g; are the normal forms of b and c¢. Then b < ¢ iff for all i < m, there
i n

ia

is j <n such that fi ;gj.
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(ii) Let {s,t} UJ UK e [T]<w, with J and K pairwise incomparable sets. (a) If

J is a set of successors to s and K a set of successors to t, then S_ - z S, 2
ueld

S¢ - L S, iff the following conditions hold: (I) t <'s, (II) for any u ¢ K,
uek -
uds, and (I1I) for all u e K, s <u -+ there is ve J, v cu. (b) If J is a set of

successors to s, then S_ - ] Sy<-1 S, iff (II) and (III) hold. (<) If K
ueld uek

is a set of successors to t, then - z S, <S8 - z Su iff either z Sy =
ueld t uelk ueld

1 or else the following conditions hold: (A) t is a root, (B) {r e T : r is a root,

r # t} is a subset of J, (C) for all u e K, there is veJ, v <u. (d) - z Sy £
ueld
-3 S, iff for all u ¢ K, there is ve J, v < u.
UQK
(iii) If b < S, for some J e [TI®, and b = ) £, =17 g. are
TTued igm * jgnd
two normal forms for b, then n = m, g, = fm =0, and {g; : i<m}={£ff :1i<ml
PROOF. (i). We only need to show ( + ). Say f; = S, - ) S, for all
i s e J,
i
i<m f,=0, g; = Su‘- z SS for all i < n, g, = - z Sg or g, = 0, with
i s € Ki s e K,

all conditions of the normal form lemma satisfied. Suppose there is i < m, for all

j<n, £ g:gj. Thus i < m. Now t; e f. <b< e, so t; e gj for some j < n. Since

= 1

fi g:gj, we can choose w € fi - gj of lowest level. Since t; < w and ti € gj, it

follows that w ¢ 8¢ for some s ¢ Kj' Now

For, assume s < w. Then t; <w, s < w, so tj and s are comparable. Since t; ¢ g;

and s € Kj’ we have t; < s. Thus s ¢ £ - g5 contradicting the choice of w.

Now w ¢ fi < b < c, so choose k < n so that we gy. Recall that w ¢ gj» SO

k # j. Also, u

A

w, and by 1.4(v), uy #w.

CASE 1. j,k <n. So u < w and uj < w. It follows that u < uj - hence uj € gk,

gy * 8k # 0, a contradiction; or uj < u, - hence uy e gj» &5 * 8k # 0, again a contra-

diction,

CASE 2. j <nmn, k =n, Since ti I wWe gy, we also have ti e g» SO ti e gj . 8o
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a contradiction,

CASE 3.

j =mn, k <n. Then U o eg t g 2 contradiction,
It is straightforward to verify (ii).
We note that the hypothesis b < §

Condition (iii) is immediate from (i).
1.5(1) and 1.5(iii).

St for some J ¢ [T]<” is necessary in
ted
For example, if T has infinitely many roots T Tpseee s then
b=ec=T=8_+-5 =85 + -5 are two normal forms that violate 1.5(i) and 1.5(iii).
T r T
0 0 1 1
COROLLARY 1.6. (i) For any b ¢ B , b is an atom iff there is t ¢ T, Ay is
finite and b = S, - ] S-
S € At
(i1) {8 :

teT, Ay is infinite} y (b ¢ BT
COROLLARY 1.7.

Br

b is an atom} is dense in BT.
is atomless iff for all t ¢ T, At is infinite.
iff for all t ¢ T, there is s > t, AS is finite.

BT is atomic
It can be shown that BT is hereditarily atomic iff T does not contain a subtree
T' with exactly one root, height w, such that [A.]

The following result is frequently useful,

w for all t ¢ T'.
THEOREM 1.8,

For any tree T there is a tree T' with a single root such that
By 2 B,
PROOF. CASE 1. T has a finite set R of roots. Fix r ¢ R, Let T' = T, and
<= {(x,y) : x,y € T' and either x < y or X = r}
T?
The identity on {S, :
CASE 2.

t e T\ {r}} extends to an isomorphism from B
T has an infinite set of roots.

Ty Onto BT.
Fix z ¢ T, and let T' = T U {z},
' = {{x,y) ¢ x,y € T'" and either x £ y or X

z}
The identity on {SI t ¢ T} extends to an isomorphism from B

THEOREM 1.9. BT:‘St =B

T onto BT"
St
THEOREM 1.10.

If T and T' are trees and T' € T, then B

T embeds in B, ..

T
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PROOF. First suppose that T' contains all the roots of T, or T' has infinitely

1
many roots. In this case the map St Pa—Sz, t ¢ T', extends to an embedding.

Second, suppose T' has only finitely many roots tys..o,ty. For all i £m, let

T '
S. =8, and R. = ST . Now by the first case, B_ embeds in B_ for all i, so
1 t. 1 t. R. S.
i i i i
BT, 2 (Bpy Ry x . o o x (Bpy Ry
=B  x. . . xB
R1 Rm
embeds in
BS X o o o X BS = (BTIS:[) X o e e X (BT“Sm)
1 m
z BTr(S1 L 3 Sm)

which, as is well-known, embeds in BT.

2, CHAINS CONTAINED IN TREE ALGEBRAS. Some of our methods here are adapted

from McKenzie, Monk [MM].

THEOREM 2.1, Let k be uncountable and regular, and suppose C is a chain of

cardinality « in BT. Then there is a W ¢ [C]¢ which is well-ordered or inversely

well-ordered, and T has a chain of type k.

PROOF. By 1.8 and its proof, we may assume that T has only one root. We say
that b e By has wedge - size n iff in the normal form of 1.4 we have b = ) fi
iZ<n

(recall also that f; = 0 in our case). It suffices to show by induction on n that the

conclusion of the theorem holds when all members of C have wedge-size n.

First suppose that n = 1, Say b = S¢ - z S;, for each b e C, in normal
b se J
b

form. By 1.5(ii), if b,ce C and b < ¢, then t. < tb'

|
(ad

CASE 1. There is C' ¢ [C]*, for all b,ce C', t, = t_. Say t, = t, for all be C'.

Then by 1.5(ii) again, we have

89 if b,c e C' and b < ¢, then for all s ¢ Je there is ue Ji, u < s.

Now we choose C" ¢ [C']K so that (J, : b e C") forms a A-system, say with kemel K,
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and Jy, # K for all b ¢ C". Then (1) clearly extends to
2) if b,c € C" and b < ¢, then for all s ¢ Jc \ K, there is u ¢ J \ K, u <s.
Now we claim
(3) There is £ ¢ T (Jb \ K), for all b,ec e C", b <c » fb < fe.
b eC"
This follows from

(4) Forallnew for allb e g, (bg< . . . < b1+ There is c ¢

I 3y, \ K) such that ¢g <. . .< ¢y 7).
ien i

Condition (4) is clear from (2). One can derive (3) from (4) by using the Tychonoff
product theorem or the compactness theorem. By (3), C" is a chain of type >« in By

and {fb : b e C"} is a chain of type >« in T.

CASE 2. Otherwise, there is a C' e [C] such that for all b,e ¢ C', b < c »t, <t
Hence C' is inversely well-ordered, and {t, : b ¢ C'} is a chain of type >¢ in T.

Now suppose inductively thatn > 1. Say b = § f?, f? =s_ -3 S

. s
i<n tb1 S e Jbi

in normal form, for each b ¢ C. By 1.5(i) we have:
If b,c € C and b < ¢, then for all i < n, there is j < n, f? §=f§'

Hence by the Tychonoff product theorem, there is an x : C -+ n such that for all

b,c € C, if b < ¢ then fgb < f;c. Without loss of generality, xb = 0 for all b ¢ C.

Thus fg < fg whenever b,c € C and b < c.

CASE 1. There is C' e [C]¥, for all b,c e C', £) = £ Forall be C' let b' =

b - fg. Thus

(5) if b,c € C' then (b < c iff b' < ¢').

Now {b' : b ¢ C'} is a chain of cardinality k, all members of which have wedge-size

n-1. By the induction hypothesis, there is a C" ¢ [C']¢ such that {b' : be C"} is
well-ordered or inversely well-ordered, and T has a chain of type «. By (5), C"
itself is well-ordered or inversely well-ordered.

b
CASE 2. Otherwise, there is C' ¢ [C]¥, for all b,ce C', b< c = £5 < fg. By the
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case n = 1, there is a C" € Ic'1° such that {fg : b eC}is well-ordered or inversely
well-ordered, and T has a chain of type «. Clearly C" is itself well-ordered or

inversely well-ordered.

COROLLARY 2.2. Let k be regular and uncountable. Then the following conditions
are equivalent:
(i) T has no branch of type 32«.

(1i) BT has no chain of cardinality «.

COROLLARY 2.3. If T is an infinite tree, then length By = depth By =

sup{|X| : X is a branch in T}.

PROOF. Clearly sup{|X| : X is a branch in T} = depth Bp % length Bp. If the
corollary is false, then By has a chain of size (sup{[X] : X is a branch in T})+,

contradicting 2.1,

PROPOSITION 2.4, If « is singular, then there is a tree T of cardinality «x and
height k which has no branch of size «, but By has a chain C of order type « and a
chain D of size x with no well-ordered or inversely well-ordered subset of D of size

K.

PROOF. Let (A, : a < cf k) be a strictly increasing sequence of infinite

cardinals with supremum x., Let T = {taB :a<cfk, B<2A,}and define
tas é=ta'8' iff (a = o' and B < B8') or (a 2 o' and B = 0).

Clearly T contains no branch of length «, |T| = x, and T has height «. Let

c=1{s + 8§ ta<efx, 8<at, D={S + (S -S ) i a<efx
3 t b
taB ta+1,0 ¢ ta+1,0 o,0 ta,B

0 <8« Aa}. It is easily checked that C is inversely well-ordered in type x, and D

satisfies the desired conditions.

One might ask about the very existence of a non-well-ordered chain in Br, since
no such exists in T. If for all t e T, |At| 2 w, then By is atomless, and so n is
embeddable in BT. However, this is not a necessary condition. For example, let T be
the full binary tree of height w (T has one root, height w, and |A.| = 2 for every
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t € T). It is not hard to see that T', the full w-tree of height & is embeddable in
T; see, e.g. Rabin [R] (T' has one root, height w, and [A | = w for all t e T').
Hence BT" which is atomless, is embeddable in Bp by 1.10, so n is embeddable in Br.

See the comment following corollary 1.7. In this connection we have:

PROPOSITION 2.5, Let T be a splitting tree, and let w <« <min{Xx : T has no

branch of power A}. Then in BT there is a dense chain of size «.

PROOF. For all t e T, let R, < BpiS, be a chain of type n. Let C be an initial
chain of limit type in T of size x. For every t ¢ C let s, be an immediate successor
to t which is different from the immediate successor u, to t in C. Set D = {Sut+ r:
teC, re Rst}. It is easily checked that D is as desired.

3. THE RELATIONSHIP OF TREE ALGEBRAS TO INTERVAL ALGEBRAS.

THEOREM 3.1. For any T, B embeds in an interval algebra.

T

PROOF. By theorem 1.8 we may assume that T has a single root, and by 1.10 that
T is limit-normal and infinitely splitting.

For all t ¢ T, let well-order A, in a type with last element. Let

b9y
L=1{b: b is a branch in T}, We define an ordering g, on L as follows: for b = ¢,
b %y, © for b # ¢, since T is limit-normal and has one root, the first ordinal ¢

where b(g) # c(&) is a successor, say £ = ¢ + 1. We let b 4 c iff b(&) < c(g).

) ()
The map St o [b?ln, b?ax) for t € T, where b?ln and bgax are, respectively,
the ;i-minimal and ;L-maximal elements of {b : b is a branch in T and t ¢ b}, is

easily seen to extend to an embedding of B,, into the interval algebra on L.

T

A BA B is retractive iff for all homomorphisms f mapping B onto A, there is a
one-one homomorphism g mapping A into B such that f « g is the identity on A. Rubin
[Ru] contains a proof that if A is a subalgebra of an interval algebra, then A is

retractive. So 3.1 has the following immediate corollary.
COROLLARY 3.2. 1If A is a tree algebra, then A is retractive.

Now we show that not every interval algebra embeds in a tree algebra.
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PROPOSITION 3.3. For X an uncountable subset of the real numbers, Int(X), the

interval algebra on X, cannot be embedded in any tree algebra.

PROOF. Given X as above, clearly Int(X) contains a chain C of power w .

Suppose for contradiction that Int(X) embeds in BT for some T. Let D be the image of
C under the embedding. By theorem 2,1, there is D'< D such that D' has order type
@ or wl* (the order type of w) under >). So the preimage of D' in Int(X) has order

type w or wl*, which as is well-known cannot occur.

Next we exhibit tree algebras that are not isomorphic to any interval algebra.
The finite-cofinite algebra on any cardinal k (consisting of all finite or cofinite
subsets of k) is isomorphic to the tree algebra generated by a tree of x roots. In
[MM] it is shown that no finite-cofinite algebra contains a chain of type w + w. Thus
for any uncountable k, the finite-cofinite algebra is not isomorphic to any interval

algebra. We use theorem 2,1 to obtain atomless examples.

PROPOSITION 3.4. For any regular uncountable k, if T is a tree satisfying
) |T| =«,
2) height T < k,
3) for all t ¢ T, At is infinite,

then BT is atomless and is not isomorphic to any interval algebra.

PROOF. Suppose BT = Int(L) for some L. By 2.1 and condition (2) on T, BT does

not contain a chain of cardinality k. However, x = |T| = |BT| = |Int(L)| = |L|. So

Int(L) contains a chain of cardinality «.

Theorem 3.1, proposition 3.3 and proposition 3.4 yield the following diagram.

TREE ' INTERVAL
ALGEBRAS ALGEBRAS

SUBALGEBRAS OF SUBALGEBRAS OF
TREE ALGEBRAS INTERVAL ALGEBRAS
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Proposition 3.4 gives examples that lie in region A. Proposition 3.3 gives
examples that lie in region B, Examples that lie in region D are given in the first
author's dissertation. These results will appear in a forthcoming paper.

The demumerable atomless BA is isomorphic to the tree algebra generated from any
infinitely splitting countable tree. It is an example that lies in region F.

Finally, for any uncountable cardinal x, if A is the algebra obtained from k
as in proposition 3.4 and B is the interval algebra on the reals, then A x B is atom-
less and lies in region E (If A is the finite-cofinite algebra on «, then A x B is an
atomic example.). Only region C may possibly be empty. Thus we ask the following

question,

QUESTION. Is there a BA which is isomorphic to an interval algebra and to a

subalgebra of a tree algebra but is not isomorphic to any tree algebra?
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BOOLEAN CONSTRUCTIONS

Stanley Burris

When I was first studying decidability results in the late 1960's and early 1970's
it seemed there must be some fundamental connection between classes of algebras having
a decidable first-order theory and classes of algebras having a fairly transparent
structure theory. We have made alot of progress in recent years, and at present it
seems that the only good candidates for constructions to describe a good structure
theory are certain Boolean constructions called Boolean products.

Since Boolean products were so useful in obtaining positive decidability results
it came as somewhat of a surprise that a modification of the more specialized Boolean
power construction would lead to sweeping undecidability results, The tale of these

developments, and many others, will be sketched in the following survey.
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§1, AN EXAHPLE CONCERNING BOOLEAN CONSTRUCTIONS

As mentioned in the introduction I became interested in structure theorems about
ten years ago because of work on decidability. A basic example is that of a variety
generated by a finite Abelian group G -- certainly this has a very good structure
theory since every member of the variety is isomorphic to a direct sum of copies of
cyclic subgroups of G, And the variety V(ZZ) generated by the ring Z2 of inte-
gers modulo 2, where the language is {+,+,-,0,1}, is considered to be well-behaved,

being the variety of Boolean rings. Now let us look at the variety V(Z3) generated

by the ring Z3. At first one might be inclined to think that this variety is quite
different from Boolean rings -—~ we shall see that there is a very tight bond between
them,

By a result of McCoy and Montgomery [1937] we know that every member of V(Z3)

P . . I «
is isomorphic to a subdirect power of Z so let R < (Z3) be a subdirect power

39
of Z3. For X ¢ I 1let us define XX by

1 if 1ie X
0 if i ¢ X

Now the set B = {X ¢ I: X, « R} is a field of subsets of I as

Next, for f ¢ R let

fO =1- f2
f1 =1- (f-l)2
f2 =1 - (f+1)2.
Then one can check that ¥ -1 =f, ¢ R for 1= 0,1,2. Thus we see that there is

O -1 -1 -1
a one-one mapping ¢ from R to B~ defined by ¢(£f) = <f “(0),f "(1),f "(2)>. If

now f ¢ R and ¢(f) = <X,Y,Z> then clearly

(1) XnY=XnzZ=YnzZ=¢

2) XuYvuz=1I,

Conversely, if <X,Y,Z> 1is any triple from B3 satisfying (1) and (2) then

f = Xy + ZXZ is an element of R, and ¢(f) = <X,Y,Z>. Thus letting R* be the se

of triples from B3 which satisfy (1) and (2) we see that ¢ is a bijection from R

to R*, ©Next we wish to endow R* with the unique ring structure which makes ¢ an
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isomorphism. We can express this in the language of sets by observing that, for

f,g ¢ R,

E+) 1) = (10 0 g ] v FTA) 0 g @] v et 0 og )
Ty = 10 0 gt v F i) f g o] v e 0 g t@)]
)t = 1) 0 gt@1 v £ @ 0 g o) v et o g .

Thus given <X,Y,Z>, <U,V,W> ¢ R* we must define
(3) <X,Y,Z2>+<U,V,W> = <(XnD) U (YnW) U(ZnV), (XnV)u(YnU) u(ZnW), (XnW)u(ZnU)u(YnV)>.
Likewise we can derive

(4) <X,Y,Z2> ¢ <U,V,W> = <XulU, (YnV)u(ZnW), (YnW)u(zZnV)>

5) <X, Y,7>= <X,Z,7>.

The zero element of R* is <I,@,$>, and the identity is <@,I,8>.

Since the definitions (1)-(5) are phrased entirely in terms of union and inter-
section it is clear that, given B, we can readily reconstruct R. Furthermore,
given any Boolean algebra <B,v,A,',0,1> we can use (1)-(5), replacing U by Vv
and n by A, to obtain a member of V(Z3). Thus, in the language of logicians, we
have interpreted the theory of V(Z3) into the theory of Boolean algebras.

These same ideas show that the theory of V(Zp), for p a prime, can be inter-
preted into the theory of Boolean algebras, by using p-tuples instead of 3-tuples.
Thus the reader can readily see that the study of a number of interesting varieties
reduces to the study of Boolean algebras, We will return to this construction in §4.

One might ftry similar ideas on V(Z4). The only nontrivial subdirectly irredu-

cibles in this variety are Z2 and Z4. But there is a major obstacle here.

2. THE DEVELOPMENT OF BOOLEAN ALGEBRA

When Boole first presented his mathematical analysis of the laws of human though
in 1847 he did not have the notion of an algebraic structure <B,v,A,',0,1>, but
rather he was concerned with the syntactic side of Boolean algebras. This seems to
have been the vantage point until Huntington's 1904 paper on postulates for the alge-

bra of logic.

G. BOOLE 1847, 1854

Boole introduced a mathematical analysis into logic which was analogous to
existing work in algebra. He was primarily concerned with equations and deductions
from equations -- however in modern terminology he was not working with equations in
the language of Boolean algebras since his + was a partial operation which could

only be applied to disjoint elements.
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W.S. JEVONS 1864

C.S. PEIRCE 1867

They suggest that Boole's exclusive + be replaced by the now common inclusive +.

C.S. PEIRCE 1880

Peirce presented a mathematical development of the algebra of logic based on the
copula, denoted by -—<. On pages 32-33 of this paper he gives what appears to be a
flawless development of the equational axioms for lattices based on what we now call
a partial order with g.l.b.s. and l.u.b.s. (He does not isolate the concept that we
call lattices in any way -- this is just a fragment of his development of an algebra
of logic.) There are two difficulties with his treatment., First, although the copula
is treated like a partial order in this development, in previous pages and subsequent
pages it acts like a binary operation, for example on page 34 one sees the expression
(atb —< a) —< (b —< a). The second problem is that he claims the distributive laws
follow from his definitions.

It is interesting to note the significance attached to each identity discovered.

Peirce is careful about allocating credits, and his list includes:

X=X+ X} X XX =% (Jevons 1864)
a+b=b+aj;axb=>bxa (Boole, Jevons)
(a+b)+c = a+(b+c); ax(bxc) = (axb)xc (Boole, Jevons)
(a+b) xc = (axXc) + (bxc) (Boole, Jevons)
(axb)+c = (at+c)x(b+c) (Peirce 1867)

a+(axb) = a; ax(atb) = a (Grassmann, Schroder)

E. SCHRODER 1890 - 1895

Schroder was strongly influenced by Peirce's axiomatic approach to the algebra of
logic and wrote three volumes (approximately 2,000 pages) on the subject. He followed
the aforementioned development of Peirce, but used subsumption, denoted by ¥, as his
fundamental notion. Also he realized the distributive law could not be derived as
Peirce had claimed, and indeed gives two counterexamples in the appendices to volume
one. The difficulty he encountered in constructing a counterexample seems to indicate
that he never achieved a thoroughly abstract view of the algebra of logic -- the
counterexamples he constructed were intimately connected with deductive systems. The
first counterexample was obtained by looking at deductively closed subsets of a
collection of 990 quasigroup equations. (We note that Schroder had invented, equation-
ally defined, and studied abstract quasigroups previously.) His second counterexample
uses, in modern terminology, the subalgebras of the free Boolean algebra with three

free generators.
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R. DEDEKIND 1897

Dedekind realized that Schroder's development of the laws of logic overlapped
considerably with his unpublished investigations intothe laws which govern the com-
binations of modules (in algebraic number theory) using g.c.d. and l.c.m. Then, as
a common abstraction, he defines in full generality what we now call lattices (he
called them dualgroups) using the following set of axioms (replacing his operation

symbols +,- by v,A):

a" avpg=gva
am aAB=BAra
2" (avB) vy = av(Bvy)
2" (arB)AY = an(BAY)
(3" av(aaB) = a

(3" ar(avB) = a.

Shortly after listing these axioms he proceeds to find the smallest examples of lattices
which fail to satisfy (1) the modular law, and (2) the distributive law, namely the

lattices we now call N5 and MS.

A.N. WHITEHEAD 1898

Whitehead's book Universal Algebra was an attempt to unify the study of the impor-
tant algebraic systems -- all had two binary operations called addition and multipli-
cation, and these operations satisfied several basic laws such as a + b =b + a, etc.
Such algebras were divided into two basic types, those of numerical genus and those
of non-numerical genus, the latter satisfying a + a = a. His only example of an
algebra of non-numerical genus was the algebra of symbolic logic. Linear associative
algebras give examples of algebras of the numerical genus. He does not treat scalar
multiplication by complex numbers as fundamental operations requiring further axioms,
but rather as a natural extension of writing 2a for a + a. By current standards

his scope was extremely narrow, not even including groups.

E.V. HUNTINGTON 1904

Huntington gives three sets of postulates for the algebra of logic, one based on
®,®, oneon ®, and one on ®. He does not use the word 'algebra' to describe
a set with operations. However he does introduce systems <K,®,0>, <K, ®>, and
<K,&> to prove his postulates are independent. In the appendix he suggests that
one use the name logical field (analogous to Galois field) for systems <K,®,0,Q>
which satisfy the laws of the algebra of logic. Ther he shows (1) every finite logi-
cal field has 2" elements, and (2) for each m there is exactly one logical field

i m
with 2 elements.
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E.L. POST 1921

The completeness of the propositional calculus is proved, and n-valued logics are

introduced.

0. FRINK 1928

He shows that every Boolean algebra can be considered as a ring using the opera-

tions symmetric difference and meet,

M.H. STONE 1935, 1936

Stone rediscovers the result of Frink above, and proves that conversely every

Boolean ring can be considered as a Boolean algebra.

G. BIRKHOFF 1933

He proves that every distributive lattice can be represented as a ring of sets.

M.H, STONE 1934, 1936

Every Boolean algebra can be represented as a field of sets.

M.H, STONE 1934, 1937

Stone develops the duality between Boolean algebras and Boolean spaces.

M.H. STONE 1938

"I believe it would be accurate to say that of the many books, memoirs, notes, and
reviews (more than one hundred seventy-five in number [6]) which deal with Boolean
algebras the great majority draw their inspiration directly or indirectly from the
work of Boole. The orientation of these studies toward symbolic logic is apparent
in their preoccupation with algorithms, identities, and equations, or with the logi-
cal interrelations of the formal properties of the various Boolean operations. Re-
cently there has emerged a different tendency, namely, to view Boolean algebras
structurally, as organic systems, rather than algorithmically. Although this tendency
might naturally have been expected to take its origin either in the rich experience
of algebraists or in the needs of mathematicians concerned with the calculus of classes,
it sprang, in fact, from quite different sources as a recognizable, if somewhat remote,
consequence of the work of Hilbert. The most intensive exploitation of this new
tendency is due to Tarski and myself [28]-[39]. Tarski's theory of deductive systems,
which is but one illustration of the way in which logic has been enriched by the sort
of metamathematical inquiry first seriously attempted by Hilbert, deals with systems
of propositions which are complete with respect to logical inference; from a mathema-
tical point of view, it is therefore a theory of the relations between special sub-
algebras of a Boolean algebra. My own investigations are a systematic attempt to

discuss the structure of Boolean algebras by the methods which have thrown so much
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light on far deeper algebraic problems. The need for investigations of this character
was suggested to me by the theory of operator-rings in Hilbert space: there, as in
other rings and linear algebras, the 'spectral' representation as a 'direct sum' of
irreducible subrings reposes in essence upon the construction of an abstract Boolean
algebra; and this construction, trivial for rings with strong chain conditions, is

not trivial in the case of operator-rings."

§3. THE DEVELOPMENT OF STRUCTURE THEOREMS FOR VARIETIES

N.H. McCOY and D. MONTGOMERY 1937

They point out that Stone's representation of Boolean rings by rings of sets is
clearly equivalent to the statement that every Boolean ring is isomorphic to a sub-
ring of a direct sum of rings Fo. They go on to prove that every p-ring (a commu-
tative ring satisfying a® = a and pa = 0) 1is isomorphic to a subring of a direct
sum of rings Fp. One of their basic observations is that given (abstract) algebras
A and B, A € ISP(B) iff there are homomorphisms from A to B which separate

points.

I. GELFAND 1941

Gelfand showed that certain Banach algebras are isomorphic to the algebra of con-
tinuous functions C(X,R) or C(X,¢), where X is a compact Hausdorff space and R

is the reals, ¢ the complex numbers.

P.C, ROSENBLOOM 1942

Rosenbloom introduces the equational class Pn of n-valued Post algebras, for
n=1,2,..., and proves that the finite members of Pn are finite powers of the

smallest nontrivial member Pn' He does not know if Pn = ISP(PH).

G. BIRKHOFF 1944

Birkhoff introduces the concepts of subdirect product (he calls it subdirect union)
and subdirectly irreducible, and proves that every algebra is a subdirect product of

subdirectly irreducible algebras.

L.I. WADE 1945

He proves that Pn is the only nontrivial subdirectly irreducible n-valued Post

algebra.

4, THE INTRODUCTION OF BOOLEAN POWERS

R.F, ARENS and I. KAPLANSKY 1948

They blend the ideas of Stone and Gelfand, and thus introduce the first Boolean

constructions. "Stone [23, Theorem 1] has shown that a Boolean ring with unit is the
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set of all open and closed sets in a compact zero-dimensional space. In slightly
different terminology: a Boolean ring with unit is the set of all continuous func-
tions from a compact zero-dimensional space to the field GF(2) of two elements,"
Then they proceed to look at representations of the form C(X,R) where X is a
Boolean space and R 1is a simple ring or algebra, and generalizations of such repre-
sentations. Thus they introduced, for rings, what is now the most popular definition
of a bounded Boolean power, namely the algebra of continuous functions C(X,R) where

X 1is a Boolean space and R is given the discrete topology. (This gives a sub-

direct power of R.)

A.L. FOSTER 1953a

Foster was apparently working completely independently of Arens and Kaplansky
when he presented his version of Boolean powers. Given any algebra A and Boolean

algebra B he defined the universe of the Boolean power A[B] to be

(£ < B f(a,)Af(a,) =0 if a, # a,, \v/ f(a) = 1}.
1 2 1 2
ach
If A is infinite then B is required to be a complete Boolean algebra. The funda~

mental operations are defined on A[B] by

F(f ...,fn)(a) = fl(al) A A fn(an).

1’ =
F(al,...,an)-a

(In the case that A is Z
in §1.)

3 note that this is exactly the construction we developed

Foster also introduced a notion of normal subdirect power, and proved that for
special finite algebras (so-called f-algebras), normal subdirect powers were essen-

tially the same as Boolean powers.

A,L, FOSTER 1961

Foster introduces the bounded Boolean power construction A[B]* by adding the
requirement '|{a ¢ A: f(a) # 0}| < w" to the definition of A[B]., Thus for A
finite, A[B] = A[B]*.

B. JONSSON 1962

In his review of Foster's 1961 paper, Jonsson points out that A[B]* is, in a

natural manner, isomorphic to C(X,A), where X 1is the Boolean space of B.

M. GOULD and G. GRATZER 1967

They give a new, more general definition of normal subdirect power (based on the
normal transform) and prove that this construction is equivalent to the bounded

Boolean power.
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C.J. ASH 1975
S. BURRIS 1975

If we let PB(K) denote the class of all bounded Boolean powers of algebras in

K then one has PB . PB <TI- PB' This is based on the observation that

* * = * i
(A[Bl] )[BZ] A[Bl*BZ] s Bl*B2 being the free product of B1 and B2.

§5, BOUNDED BOOLEAN POWER REPRESENTATION THEOREMS FOR VARIETIES

In the following BA denotes the variety of Boolean algebras.

M.H. STONE 1934, 1936

(rephrased) Let 2 be a two~element Boolean algebra. Then BA = IPB(g).

R.F, ARENS and I, KAPLANSKY 1948

For F a finite field, {algebras over F} = IPB(F).

A.L. FOSTER 1953a/b

For A a primal algebra, V(A) = IPB(A).

R. QUACKENBUSH 1980

For finite algebras A, V(A) = IPB(A) iff A 1is quasiprimal with no proper

subalgebras or A 1is simple modular-Abelian with a trivial subalgebra.

S. BURRIS and R, McKENZIE 1981

A variety V can be expressed as IPB(K) for some finite set K of finite
algebras iff V = V(A) where (a) A 1is quasiprimal with no proper subalgebras, or

(b) A 1is a finite simple modular-Abelian algebra.

§6. DIRECT PRODUCT PHENOMENA AND THE WUMBER OF MODELS

Bounded Boolean powers have been extremely useful to show that the various direct
product phenomena observed by Hanf in BA transfer to numerous other varieties, and
to show that many varieties have the maximum possible number of isomorphism types of
algebras in all suitably high powers. The key concept is that of a B-separating
algebra ~~ A 1is such an algebra if for any Bl’BZ ¢ BA, A[Bl]* = A[BZ]* = B1 = B,.

W. HANF 1957

Hanf proved the following results:

(1) There exist denumerable Boolean algebras B1 and B2, given a positive integer

n, such that for any positive integers m,k we have Blm = B2m X sz iff nlk.

(2) There exist denumerable Boolean algebras B1 and B2, given n, such that

B k ~ B k

1 2 iff nlk. (This was pointed out by Tarski.)
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(3) There exists, for any n 2 2, a Boolean algebra B such that B = B x %n but
BEB x25 for k=1,...,0-1.
(4) There exists, for any n 2 3, a Boolean algebra B such that B = 3" but

B ¥ BX for k=2,3,...,0-1.
(5) There exist Boolean algebras B1 and B2 such that B1 X B2 = B1 x B2 x 2 but

2 B2 x 2.

~

)14

neither B B, X2 mnor B

1 1
A, TARSKI 1957

Letting A be the semigroup <w,+> Tarski shows that A[B1XB2]* = A[Bl]* ><A[B2]*,
and also that A 1is B-separating., From this he concludes that the Hanf phenomena

above (replacing 2 by A) apply to commutative semigroups.

B. JONSSON 1957

Jénsson shows that indecomposable centerless countable algebras (defined within
a special class of algebras) are B-separating, and hence again we have the Hanf

phenomena.

G. BERGMAN 1972

He shows that if M 1is any module and B, ,B are Boolean algebras of the same

1772

cardinality then M[Bl]* = M[BZ]*.

S. BURRIS 1975

(1) In this paper it is noted that if A 1is a B-separating algebra then IPB(A)
has 2K isomorphism types of algebras for each k = fAI.

(2) If S 1is an algebra such that for every positive n, ICon Snl = Zn, then
S is B-separating. In particular this shows that thenontrivial simple algebras

in congruence-distributive varieties are B-separating.

J. KETONEN 1978

Ketonen vastly increases the possibilities for curious direct product phenomena
in Boolean algebras by showing that any countable commutative semigroup can be
embedded into the semigroup of isomorphism types of countable Boolean algebras under

direct product,

J. LAWRENCE 1981

Lawrence shows the following results for groups:

(1) Every finite subdirectly irreducible group is B-separating.

(2) G x G 1is not B-separating for any group G.

K. HICKIN and J.M. PLOTKIN 1981

They continue the study of groups and prove:
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(1) If G 1is a nonabelian group which (i) is not a central product of two nonabelian
groups, or (ii) is finitely subdirectly irreducible, then G 1is B-separating.
(2) If G 1is a finitely generated nonabelian group then G has 2¥ countable

Boolean powers.

J.T. BALDWIN and R.N. McKENZTE [a]

Using Boolean powers to help count the number of models in universal Horn classes

they prove:

(1) Every nonabelian subdirectly irreducible algebra in a modular variety is B-
separating.

(2) Every countable nonabelian algebra A has ZX distinct bounded Boolean powers

of power A for every uncountable XA, each of wiich is elementarily equivalent

to A[FBA(w)]*.

57. BOUNDED BOOLEAW POWERS AND INJECTIVES

B.A. DAVEY and H. WERNER 1979

A series of papers, starting in 1972, which show that in certain varieties the
injectives, or weak injectives, are of the form (%) Al[Bl]* X ... XAn[Bn]*, where the
Ai's are certain subdirectly irreducible algebras and the Bi's are complete Boolean
algebras, are brought under the following theorem.

Let V be a variety, let K be a finite set of finite algebras from V and
suppose VSI c Is(K), where VSI is the class of subdirectly irreducibles in V.

If there is a simplicity formula for K and K has factorizable congruences then

the following are equivalent:

(i) A is a [weak] injective in V

(ii) A 1is of the form (*) above where each Ai ¢ H(K) n V Ai is a [weak]

ST’
injective in V, Bi is a complete Boolean algebra, and the Ai are pair-

wise nonisomorphic

P.H. KRAUSS [a]

Krauss shows that in filtral varieties with a finite number of nonisomorphic
simple members in each finite cardinal the [weak] injectives are characterized as
direct products of bounded Boolean powers of [weak] V. -injectives using complete

ST
Boolean algebras.

58, RIGID ALGEBRAS

An algebra A is rigid if it has exactly one automorphism.
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B. JONSSON 1951

Answering Problem 74 of Birkhoff's Lattice Theory Jonsson proves that there is

an infinite rigid Boolean algebra.

S. BURRIS 1978 [b]

Suppose that S 1is a finitely generated algebra which is rigid and |Con Snl =
2" for all positive mn. Then if B 1is a rigid Boolean algebra it follows that

S[B]* is rigid.

J.D. MONK and W. RASSBACH 1979

They prove there exist ¢ rigid Boolean algebras in every uncountable cardi-

nal «k.

§9. MATRIX RINGS

In the following R denotes a Boolean ring, B the corresponding Boolean alge-

bra, and S an arbitrary ring.

J.G. ROSENSTEIN 1972

He proves that GL,(R) = GL, (F,) [B]*.

H. GONSHOR 1975

Gonshor generalizes and simplifies Rosenstein's work in his proof of GLn(R) =

GLn(FZ)[B]* for n any positive integer.

S. BURRIS and H. WERNER 1980

Specializations of the results in this paper show that

(1) M (S[B]*) =M (S)[B]*
n n

(2) 6L (S[B]*) = GL (S)[B]*

(3) SLn(S[B]*) SLn(S)[B]*

(4) PSLn(S[B]*) = PSLn(S)[B]*.

§10, FIRST ORDEPR ASPECTS OF BOOLEAN POWERS

A. TARSKI 1949

The elementary types of Boolean algebras are characterized (using the Tarski in-

variants). Also the theory of Boolean algebras is proved to be decidable.

YU. L. ERSHOV 1964

Ershov shows that for every Boolean algebra B there is a filter F over W
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such that B = 2w/F.

YU. L. ERSHOV 1967

He shows that if P
BA.

is a primal algebra then one can

variety V(P) into (We did this in §1 for the case

A, WOJCIECHOWSKA 1969

She gives a Feferman-Vaught analysis of A[B]*, From
preserves elementary equivalence and elementary embeddings

also Burris 1975, Ash 1975.

R. MANSFIELD 1971

Mansfield proves that two structures are elementarily

isomorphic Boolean ultrapowers.

J.T. BALDWIN and A.H. LACHLAN 1973

They show that if A 1is a finite structure and B

Boolean algebra then A[B]* is w-categorical.

B, WEGLORZ 1974

semantically embed the

P = 23.)

A[B]*

in both arguments —-- see

this it follows that

equivalent iff they have

is the denumerable free

He shows that free products of Boolean algebras preserve =.

S. BURRIS 1975

This paper contains the following results:

(1) If A 1is a finite algebra and B 1is a complete Boolean algebra then A[B]* is
equationally compact.

(2) If A 1is a finite B-separating algebra then A[Bl]* = A[BZ]* implies B1 = B2.

(3) Every bounded Boolean power of an algebra A is elementarily equivalent to a
reduced power of A, and vice-versa.

(4) A first-order sentence is preserved by bounded Boolean powers iff it is equiva-
lent to a disjunction of Horn sentences.

(5) An elementary class K is closed under bounded Boolean powers iff it is closed

under reduced powers iff it is defined by a set of disjunctions of Horn sentences.

S. BURRIS 1978 [a]

We say that A En B if A and B
alternations of quantifiers.
separating algebra then for any positive n

% = * * *
such that A[Bl] 2 A[BZ] but A[Bl] F3 A[BZ] .

In this paper it is proved that if A

there exist Boolean algebras

satisfy the same sentences with at most n

is a finite B~
Bl’ B2



B. BANASCHEWSKI and E. NELSON 1980

They show A[B] preserves elementary equivalence and elementary embeddings in

both arguments, that A[B]* = A[B], and the canonical embedding of A[B]* into

A[B] is elementary.

S. GARAVAGLIA and J.M. PLOTKIN [a]

They construct an infinite B-separating structure A and two Boolean algebras

* *
B, and B, such that A[B] A[B,]* but B1$B2.

1

§11. FILTERED BOOLEAN POWERS

R.F. ARENS and I. KAPLANSKY 1948

They realized that bounded Boolean powers were going to be severely limited as
a method of proving representation theorems for rings, so they introduced two genera-
lizations of this construction, the first of which we call a filtered Boolean power.
This construction proceeds as follows (we describe it for arbitrary algebras, whereas
they were only concerned with rings): Let A be an algebra and let Ai’ i e I, be
the family of its subalgebras indexed by some set I. Then, given a Boolean space X
and an indexed family (Xi)ieI of closed subsets we construct the subalgebra of AX
whose universe is given by {f ¢ C(X,A): f(Xi) c Ai for i e I}. Given a class of
algebras K 1let PFB(K) denote the class of all filtered Boolean powers of members

of K. 1In the following we use Y» (K) to denote the countable members in the variety
1
V(K). Arens and Kaplansky proved the following two results on filtered Boolean powers:

(1) For the variety V(F4) of rings generated by the 4-element field F4 one has

V(F4) # IPFB(F4)'

(2) For any finite field F, Vw (F) ¢ IP__(¥).

1 FB

M.0. RABIN 1969

In this paper Rabin proves, as a corollary to his work on two successor functioms,
that the theory of countable Boolean algebras with quantification over filters is
decidable.

S.D. COMER 1974

Comer realized that the result (2) of Arens and Kaplansky above could be used to
interpret the theory of (xm = x)-rings into the theory of countable Boolean algebras
with quantification over filters; hence the theory of (xm = x)-rings is decidable.

S.D. COMER 1975

Comer shows that if A is a finite monadic algebra then there is another finite
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monadic algebra A' such that Vi (A) < IPFB(A'). Then using Rabin's result he con-
1

cludes that any finitely generated variety of monadic algebras has a decidable theory.

H. WERNER 1978

S. BURRIS and H., WERNER 1979

Werner extends Comer's methods to show that if V(A) is a finitely generated

discriminator variety then there is a finite algebra A' such that Y» (4) <
1

IPFB(A'); hence if V(A) 1is also of finite type then it has a decidable theory.

S. BURRIS and R. McKENZIE 1981

In this monograph there are three fundamental theorems on filtered Boolean powers

(= sub-Boolean powers):

(1) For a finite algebra C, V(C) = IP_.(C) iff the following conditions hold:

FB
(i) C= A XD where A 1is modular-Abelian and D generates a discriminator
variety.
(ii) V(C) 1is congruence permutable.
(iii) If A and D are both nontrivial then they both have trivial subalgebras.

(iv) V(A) = IP__(A) and V(D) = IP__(D).

FB FB

(2) If A 1is a quasiprimal algebra then V(A) = IP_,(A) iff every isomorphism

FB
between nontrivial subalgebras of A has a unique extension to an automorphism

of A, and the only automorphism of A with a fixed point is the identity map.

(3) If A 1is a quasiprimal algebra then Vw (A) < IPF (A) 1ff every isomorphism

1
between nontrivial subalgebras of A extends to an automorphism of A.

B

§12, MODIFYING BOUNDED BOOLEAN POWERS USING HOMEOMORPHISMS

This modification of bounded Boolean powers introduced by Arens and Kaplansky is
a more applicable, less tractable construction for representations, as is the Boolean

product in the following sections.

R.F. ARENS and I. KAPLANSKY 1948

They show that if R 1is a ring of characteristic p such that each element
n
satisfies xP = x then there is a Boolean space X with a homeomorphism & whose
nth power is the identity such that, letting F be the finite field of order pn,

we have R 1is isomorphic to the subring of C(X,F) whose universe is

{f ¢ C(X,F): flox) = (£(x))° for x ¢ X}.
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K. KEIMEL and H. WERNER 1974

They generalize the above to obtain representations for finitely generated

discriminator varieties.

A. WOLF 1975

If G 1is a group, let BA(G) be the variety of Boolean algebras expanded by
the group of automorphisms G. Wolf shows that if G 1is a finite solvable group
then BA(G) has a decidable theory, and uses this to show that varieties generated

by certain quasiprimals have a decidable theory.

S. BURRIS [b]

For G a finite group BA(G) has a decidable theory.

§13. THE DEFINITION OF BOOLEAN PRODUCTS

We will use the notation A = I A to mean that A 1is a subdirect pro-

s.d. xeX
duct of the indexed family of algebras (Ax)xex'
1o f e A ler [O(f,...,E)]= {x ¢ X: A F==¢(f1(x),...,fn(x))}

For o(x,,...,x ) a first-order
1 n

formula and f

An algebra A 1is a Boolean product of members of K 1if there is a family

(A)

of algebras A_ ¢ K indexed by a Boolean space X such that
x'xeX X

(i) A = m A
s.d. xeX

(ii) (atomic extemsion property) for f,g ¢ A, [[f = g]] is a clopen subset of X.
(iii) (Patchwork property) for f,ge¢ A and N a clopen subset of X we have

er U gPX—N € A,

The Boolean product construction was introduced by Burris and Werner [1979] as a
reformulation of the Boolean sheaf construction, popularized by Dauns and Hofmann

[1966]. Given a class K of algebras we let Fa(K) denote the class of Boolean
a

products of members of K. On can check that PB < PFB < I'7.
s14, BOOLEAN PRODUCT PREPRESENTATION THEOREMNS

If V is a variety let VSI be the subdirectly irreducible members of V, let
VS be the simple algebras in V, and let VDI be the directly indecomposable

members of V.

J. DAUNS and K.H, HOFMANN 1966

They prove that for R a biregular ring one has R ¢ Ir®(K) where K 1is the

class of simple rings with 1 (in the language {+,+,-,0}).
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R.S. PIERCE 1967

In this study of Boolean product representations of rings (in the language

{+,+,-,0,1}) he states and proves the following:

(1) "Roughly speaking we would like to obtain a representation of rings by means of
indecomposable rings."

(2) For R a commutative ring, R ¢ IFa(CRDI), CR being the variety of commutative
rings.

(3) For R a commutative regular ring, R ¢ IFa(F), F being the class of fields.

(4) TFor any ring R a Boolean product representation is constructed using the
central idempotents of R. (This construction is now called the Pierce sheaf

of R.)

S.D. COMER 1971

He discusses a general result to the effect that if the factor congruences of an
algebra form a Boolean algebra then one obtains a Boolean product representation of

the algebra in a natural way.

S.D. COMER 1972

Letting CAn be the variety of cylindric algebras of dimension n he shows that

_ a
CArl = 1IT ((CAn)S).

K. KEIMEL and H. WERNER 1974

They show that for V a finitely generated discriminator variety we have
a
V=r1r (VS).

S. BULMAN-FLEMING and H. WERNER 1977

They improve on the previous result by showing that for any discriminator variety

_ a
v, V=1,

W.D. BURGESS and W. STEPHENSON 1978

They show that iterations of the Pierce sheaf construction (applied to rings)

need not terminate in finitely many steps with directly indecomposable stalks.

W.D. BURGESS and W. STEPHENSON 1979

Let R be the class of rings in the language {+,+,-,0,1}. Then R ¢ IFa(RDI)

iff every idempotent of R 1is central.

H. WERNER 1978



S. BURRIS and H. WERNER 1979

These papers contain Werner's generalization of Comer's key result on monadic
algebras, namely Werner shows that for K a finite set of finite algebras there
exists a finite algebra A' such that {A ¢ Fa(K): IAI < w} ¢ IPFB(A'). This is a
key step in proving the decidability of finitely generated discriminator varieties

of finite type.

S. BURRIS and R. McKENZIE 1981

The limitations of using Boolean constructions for representation theorems is
most clearly set forth in the following result from this monograph: Let V be a
finitely generated variety. Then there is a finite set K of finite algebras such
_ a, : _
that V = IT5(K) iff V Vab ® Vdiscr
is of finite representation type. (Vab is an Abelian subvariety of V, V

and the ring R(Vab) assoclated with Vab

discr
a discriminator subvariety of V.)

S. BURRIS [a]

D.M. CLARK and P.H. KRAUSS [a]

Suppose V is a congruence-distributive variety. Then V = IFa(VSI) iff V

is a discriminagtor variety.

§15, FIRST-ORDER ASPECTS OF BOOLEAN PRODUCTS

A. MACINTYRE 1973

Macintyre uses Boolean products to study the model companions of classes of rings,
giving conditions which ensure that K has a model-complete theory implies certain

Boolean products of K have a model-complete theory.

S.D. COMER 1974

e

Let T be the class operator obtained by replacing condition (ii) of the

N
definition of T2 by: (ii') [9¢(f)] 4is clopen for any first-order formula. Comer
presents a Feferman-Vaught theorem for re,

S.D. COMER 1976

Comer generalizes Macintyre's conditions to study model companions of varieties

of monadic algebras.

S. BURRIS and H. WERNER 1979

This paper is devoted to the elementary properties of Boolean products and in-
cludes the following results:

(1) ISP =ISF§SK)P

R U’
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(2) Any finitely generated universal Horn class has a model companion.

(3) If V is a discriminator variety and VS has a model companion then V has a
model companion.

(4) If K 1is a model-complete elementary class with a discriminator formula then
ISPR(K) has a model companion, and the algebraically closed members form an
elementary class. Both are described using Boolean products.

(5) A sentence is preserved by I iff it is equivalent to a Horn sentence. (This

answers Prob. 1 of Mansfield [1977].)

P.H. KRAUSS [a]

In this paper Krauss uses Boolean products to characterize the algebraically
closed and the existentially closed members of filtral varieties, and to describe

injectives in these varieties.

S. BURRIS and R. McKENZIE 1981

A discriminator formula for the class of simple aglebras in a variety with

equationally definable principal congruences is given.

S. BURRIS [c]
Using the Boolean product construction the following are proved:

(1) If T* 1is the model companion of a finitely generated universal Horn class
1SP(K) then the following are equivalent: (a) T* is w - categorical,
(b) T* is complete, (c) ISP(K) has the joint embedding property, (d)
ISP(K) = ISP(A) for some finite A. (We assume the language is finite.)

(2) TFor T* as above, T* admits a primitive recursive elimination of quantifiers.

As the theory T* is primitive recursive, it follows that T* 1is decidable.

516, DOUBLE BOOLEAN POWERS

I discovered double Boolean powers in late 1978 while constructing directly in-
decomposable algebras, and shortly thereafter realized their value in proving undecid-
ability results. McKenzie modified this construction yet further in order to prove
the wide-ranging undecidability results of our 1981 Memoir. It is quite remarkable
that both our best decidability and our best undecidability results depend on Boolean

constructions.

M. RUBIN 1976

Rubin answers a longstanding question on monadic algebras by showing their first-
order theory is undecidable. As a consequence the theory of Boolean pairs BP, the
class of Boolean algebras with a distinguished subalgzbra, is undecidable.

Let us use this result to show that the variety generated by the three-element
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Heyting algebra H = <{0,e,1},v,A,>,0,1> has an undecidable theory. Given a field

B of subsets of an index set I and a subfield B of B let us define the sub-

0
algebra H(B,B,) of HI by letting its universe be

(£ cn: f_l(O) € B f*l(l) ¢ B}.

0?

For X ¢ I let Xy be defined by

and let e* be the constant function in H(B,BO) with value e. Then

def
c = {XX: Xe Bl = {f Vve* fe H(B,BO)}

def
c =

o {XX: X e BO} = {(e* > f) v e*: f ¢ H(B,BO)}.

Now we clearly have an isomorphism between the structures <B,B0,§> and <C,C0,s>;

hence we can semantically embed BP into V(H).

S. BURRIS and R. McKENZIE 1981

Double Boolean powers are used along with a modification of a technique of
Zamjatin and results from the study of the modular comutator to show that if a
locally finite modular variety has a decidable theory then it decomposes into the
product of an Abelian variety and a discriminator variety. Then it is shown that
for finitely generated varieties of finite type which are modular the decidability
question reduces to the decidability question for all unitary left R-modules, for

R a finite ring with 1.

S. BURRIS and J. LAWRENCE [a]

Double Boolean powers are used to give brief proofs of Ershov's theorem on de-
cidable varieties of groups and Zamjatin's results on decidable varieties of rings

with 1.

S. BURRIS [b]

Using double Boolean powers this paper shows that if G 1is not a locally finite

group then BA(G) has an undecidable theory.

Acknowledgements: This work has been supported by NSERC Grant No. A7256.
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EXTENSION OF POLYGROUPS BY POLYGROUPS

AND THEIR REPRESENTATIONS USING COLOR SCHEMES

Stephen D. Comer*

In this paper we introduce a construction for building a "big'" polygroup from
two "small" ones and show that the important classes of polygroups are closed under
this construction. In general, it is very hard to determine whether a given polygroup
is chromatic or not. A sufficient condition was given in Section 5 of [2] and gener-
alized in [3]. The construction here gives an easy way to show that a large number
of polygroups are chromatic. In view of Theorem 5 perhaps the product Y[B] could be
called the wreath product of A byB.

To make the paper reasonably self-contained basic definitions are collected in
Section 1. The product construction U[B] is described in Section 2. Section 3 contains
the main results, namely, that the product operation Y[B] preserves various properties.
For example Theorems 2 and 6 show that polygroups U and B are chromatic iff YMB] is
chromatic. An easy application of the product construction to the study of relation

algebras is given in Section 4.

1. PRELIMINARIES. We recall a few basic definitions from [2].
A polygroup is a system 9)?=(M,-,e,_l) where etM, -1 is a unary operation on M,

. maps M? into nonempty subsets of M, and the following axioms hold for all x,y,z & M:

P Gey)z=xe(yez)
(P2) X.e = X = e'X

-1 -1
(P3) XEy-z implies y&x-z and zey °x.

Many important polygroups are derived from color schemes, a notion that extends D.G.
Higman's homogeneous coherent configuration (see [5]). Suppose C is a set (of colors)

and ¢t is an involution of C. A color scheme is a system W=<V,Ca> aeC where

(1) ‘[Ca : agC} is a partition of VZ~Id = {(x,y) &£ V2: x %y},

* Research supported by NSF grant MCS-8003896 and by the Citadel Development Founda-
tion.



92

(ii) Ca = Ct(a) for all aeC,
(iii) for each color and vertex the color is present on some edge from the
vertex,

(iv) for a,b,ceC if (x,y) ¢ CC the existence of an (a,b)-path from x to y is

independent of the choice of x and y, in symbols,

N
CC (CaICb) * @ = CCECaICb.
Given a color scheme %, choose a new symbol I¢C. (Think of I as the identity rela-

tion.) The algebra (color algebra, or configuration algebra) of %9 is the system

My = Uil LT
-1 -
where a "= t (a) for aeC, I 1 I, x-I =x=1I.x for all xeCy{I}, and for a,b,
and ¢ in C,

a-b={ceCc:CceccClC }U{I:b=a_l}.
c— "a b

A polygroup is chromatic if it is isomorphic to the algebra of some color scheme.
A natural example of a chromatic polygroup is the system G/H of all double cosets

of a group modulo a subgroup H. Namely,

-1

G/H =( {HgH : geG},-, H, )

where (HgH):(Hg'H) = {Hghg'H : he H} and (HgH)_l= Hg_lH. That these systems are

chromatic was established in [2]. The double coset construction generalizes to the
idea of a double quotient. This idea will not be needed in this paper for a general
polygroup but only for ordinary groups. The general notion (see [2]) is equivalent
to the following when restricted to groups. An equivalence relation § on a group G
is called a conjugation on G if

1 0x—l for all x, and

1 6
(ii) O(xy) < (%) (Oy) for all x,y€G.
The natural quotient system G/ 6 is a chromatic polygroup ([2]) and we define
Q2(Group) ={ Gy8 : 8 is a conjugation on some group G}.
A conjugation 8 is called special if it satisfies
(iii) x fe = x = e.

The class of all polygroups isomorphic to double quotients of groups via special con-

jugations is denoted by Qi (Group).

2. AN EXTENSION CONSTRUCTION. Suppose U and B are polygroups whose elements
have been renamed so that ANB = {e} where e is the (common) identity of both A and
B. We use M to denote { xeM:x #e}, the non-identity elements of a polygroup M.

A new system Y[B] = ( M,*, e,I), called the extension of U by B, is formed in the
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following way. Set M = A UB U{e} and let eI= e, xI=x_l (in the appropiate sys-—

tem), exx=xxe=x for all xe¢M, and for all x,yaM_,

Xy if x,yeA
b:4 if x&B, yeA
X*y = y if xeA, yeB
Xy if x,y¢&B, y=¢“x_l
X yUA if x,y€B and y=x_l.
In the last clause, e occurs in both x-.y and A. If A={e,al,a2,...} and B =
{e,bl,bz,...}, the table for * in 9Y[B] has the form
e a; a, bl b2 .
e e a; a, . bl b2 .
a; a; aay a2, . bl b2 .
a, a, azal a8, . . bl b2
bl bl bl bl e bl* bl bfk b2
b2 b2 b2 b2 PN bz*bl bz*b2 .

Several special cases of the algebra 9Y[B] are useful. Before describing them
we need to assign names to the two 2-element polygroups. Let ? denote the group 22
and let 3 denote the polygroup S3//< (12)) = 23//0 where 6 is the special conjuga

tion with blocks {0}{1,2}. The multiplication table for 3 is

0 1
0 0o 1
1 1 0,1

The names 2 and 3 are suggested by the color schemes that represent the algebras

(see Section 3).

EXAMPLE 1. Adjoining a new identity element.
The system 388 is the result of adding a "new'" identity element to the poly-

group M. The system 2[M is almost as good. For example, suppose R is the sys-—
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tem with table

0 1 2
0 0 1 2
1 1 02 12
2 2 12 01
Then
0 a 1 2 0 a 1 2
0 0 a 1 2 0 0 a 1 2
a a Oa 1 2 a a 0 1 2
1 1 1 0a2 12 1 1 1 0a2 12
2 2 2 12 O0al 2 2 2 12 O0al
3R] 2[R

The element "a" acts like the "old" identity on R.

EXAMPLE 2, Adding a "last" element,

In section 20 of [1] two non-isomorphic one-element extensions of a polygroup
IR were introduced. In the present terminology these algebras are just IR[2] and
MI(3]. For example, the tables for R[2] and R[3] are given below.

0 1 2 a I 0 1 2 a
0 0 1 2 a 0 0 1 2 a
1 1 02 12 a 1 1 02 12 a
2 2 12 0l a 2 2 12 01 a
a a a a 012 a a a a 012a
R(21 R3]

EXAMPLE 3. As an example of U[PB] where neither Y nor B are minimal systems we

consider R[R] whose table is given below.
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0 1 2 a b
0 0 1 2 a b
1 1 02 12 a b
2 2 12 01l a b
a a a a 012b ab
b b b b ab 012a

We finish this section by showing that the extension construction will always

yield a polygroup.
THEOREM 1. 9A[B] is a polygroup.

Proof. Since (P2) is clear it is enough to check (Pl) and (P3).

P,) : (x*y)*z = Xk (y*z).

1

Without loss of generality we may assume X,y,z *e and not all elements belong
to A, Note that
(1) if ueB and veE A, then uxv = vu = u,

If exactly one of x,y,z belong to B, then (1) implies that both sides of (Pl)

equal the element in { x,y,z }nB. Tf exactly two of x,y,z belong to B, say u and v,
then (1) implies that both sides of (Pl) equal uxv. We assume X,y,Z € B~ and show
(2) ué (xxy)xz 1implies wue x*(y*z).

If uf¢A, then uéwkxz for some wexxy. Now, if wigA, wex-y and uew-z so

ue (xy)z = x(yz) (in B) < x*(y*z).

Also, if we A, uew*z = z (8o u z) and e exy. Thus,

u =z €& (xy)z=x(yz) c x*(y*z).
Now, suppose ué€ A. Then z‘_la X*y, z—l¢A s0 z—la xy (in B), so et (xy)z = x(yz).
Thus,
X—lS yrzc y*z and hence ueA < Xx (y*z) .
The proof of the opposite inclusion x*(y*z) € (x*y)*z is similar to 2).

(P3) : X € y*z implies vye x*zI and z¢& yI*x.

The condition is clear if x,y,z €& A. Since x¢ B implies y or z belongs to B~
and x&A implies z¢& B_, we may assume at least two of x,y,z belong to B . On the
other hand, if x,y,z&€B , then =xé&y*z implies x€&y-z (in B) from which (P3)

follows. Therefore we may assume exactly two of x,y,z belong to B . This reduces to
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two cases.
(3) X €& yxZ where x,y¢ B and zeA.
By (1), y*z=y so x=y; thus y=x=x>l<z—_l using (1) again and zeA C x—l*x
= y-l*x.
(4) xey*z where xeA and y,zeB .

In this case y = z__l so the desired conclusion follows using (1). This completes

the proof of (P3) and hence the theorem.

Where there is no confusion possible we write* = . and =

3. PROPERTIES OF U[B]. The first result shows that the extension of A by B

preserves being chromatic.
THEOREM 2. If?[gim@,and %gimy, then UWB) is also ehromatic.

Proof. Suppose %= (V,Ca) First introduce a family of pairwise disjoint

color schemes {9/w tweEW} wherzaiach % is isomorphic to 2. Assume the vertex set
of 97 is V_and the isomorphism of % onto % sends X to x_. We comstruct a
scheme Z°[#] in the following way. Replace each vertex w of the scheme # by the copy
of % with vertex set Vw. Thus the set of all vertices of 9/[#] is just the union

of all Vw's. An edge coloring using the elements of A U B as colors is introduced

in the following way. For a&A and beB let
(xu,yv) eC, iff u=v and (x,y) € c, (in Q/U),

(xu,xv) £ Cb iff (u,v)e Cb (in ).

It is easily seen that 2/[#] is a scheme that represents Y[B].

The converse of Theorem 2 will be established later (Theorem 6).

The construction given in the proof above can be carried out in practice. The
idea is to take a color scheme representing B and "blow-it-up" by replacing each
vertex by the configuration that represents U. As an illustration we use this method
to produce representations for the systems Z2[R], 3[R], RI(2]1, R(3), and RIR]
given in Examples 1,2,3. The systems 2, 3, and R have representations given as

follows.
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The next three results show that various important special classes of chromatic
polygroups are closed under the extension operation 9[B]. Several types of proofs
are offered. The approach via automorphism groups, illustrated by the proof of Theorem
3, could be used to establish all three theorems. A more concrete approach is used
to prove Theorems 4 and 5. When using a special representation of a polygroup it is

often convenient to explicitly give the groups and/or conjugations involved.
THEOREM 3. If U, B eQ2(Group), then UA[B]e Q2(Group).

Proof. Recall (Theorem 4.1 of [2]) that for a polygroup M,
(*) Me Q2 (Group) iff MW Sm@/ where Aut(9) is transitive on vertices,

Suppose ?IgSm%, %gfmy, and 2/[#] is the color scheme constructed from % and #
in the proof of Theorem 2, Automorphisms 7 on % and ¢ on # induce automorphisms
on 2[#] in the following way.

(i) For o&Aut(¥) define ¢ on 2°[#] by &(xw) = for all weW.

o (w)
(ii) For 7€ Aut(9) and weW, define ;w on 2'[#] so that ;w acts like 7 on
% and is the identity otherwise.
It is easily seen that the maps ¢ and Tw described in (i) and (ii) are automorphisms
of 91#]1. From (*) we may assume Aut(%9") and Aut(¥) are transitive. Using maps of
type (i) and (ii) it easily follows that Aut(Z/[#]) is transitive on vertices so (*)

yields the desired conclusion.
THEOREM 4. If ¥, % £Q2(Croup), then U(B] ¢ Q2 (Group) .

Proof. Suppose A= Gl//t9 and B = G2/7t92 where 8 and 02 are special conjugations

1 1

on Gl and G2 respectively. Let G = Glx G2 and define § on G by

3 = - r ] A\
(8,,8,)9 (g],8)) iff (g,=8)=eand g0 8)) or (8,,8;*e and gfg)).

Note that the §-classes are

6 (g,e) { (h,e) : hﬂlg }

and, for h+#e,
6 (e,h) = { (g,h"): h'02h 1.
To show 6 is a special conjugation, conditions (i), (ii), and (iii) need to be checked.

-1
First, (iii) holds because 8, special implies 0 (e,e) = {(e,e)}. Also (1), 0O(g,h) =

1
(t9(g,h))—l , holds since 01 and 02 have similar properties. It remains to check

(11) 0 (g)sh))(8)h,) ) S (g ,hy)) (8(g,h,) ).

Suppose (g,h) €8( glgz,hlhz) = 6( (gl,hl)(gz,hz) ). The definition of § gives two cases:

Case 1. h = hlh2 = e and gBl(glgz).
Since 01 is a conjugation, g = gigé for some gi Blgl and gé 01 8y Then

(g,e) = (gi,hl)(gé,hz) so it suffices to show that (g;,hi) B(gi,hi) for i=1,2. The

conclusion follows from g:!LB when h =h2=e while it follows from hiBZhi if

181 1
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hl,h2¢e.

Case 2. h, hlh2 +*+ e and h02 hlh2 .

Since 92 is a conjugation, h=hih£ for some hiezhl and h£02h2. This yields
(g,hi)e(gl,hl) and (e,hé)e(gz,hz) whenever hi,

(8:0) = (8,h]) (e,h]) € (6(g1,h1)) (6(gy,h)))-

hé *e; sO

On the other hand, suppose one of h!, hé is e, say hi=e and hé=h¢e. Then

(gl,e)e(gl,hl) and (gzlg,h)e(gz,h) since h#e from which it follows that (g,h)
belongs to (8(g),h)))(6(g,,h,)).
Thus, 6 is a special conjugation on the group G.xG,. A bijection F between

1 "2
the elements of Y[V] and G, x G2 18 is defined in the following way. Let F(e) =

1

0(e,e) and, for a=#8 #e in A let

181
F(a)

it

0(gy,e),

and, for b = 02g2=¢=e in B—, let

F(b) = 6(e,g,).

From the description of the #-classes above it is clear that F maps A[B] one-one
onto Glx Gz//e. By properties (i) and (ii) of 6 the inverses and identity elements
correspond. Computations, as in the proof of (ii), show that F preserves products in

case at least one factor belongs to A . When both factors belong to B there are two

; . ' - 1
cases. First, if 02g2’ 02g2 €B and 02g2¢ (Bzgz) , then
"y = . '
F(8,8,,0,8)) = F({b,8 : exge (8,8,)(6,8))})
= . 1
{0Ce,8) : g2 (6,8,)(0,87)}
= - T
{(h,g) = ge (6,8,)(6,8))}
= (6(e,8,)) (0 (e58)))
= '
F(6,8,)F(8,87)
- -1
3 ' v 9 g o!
Finally, suppose 02g2,02g2 ¢B and 02g2 (Bzgz) . Then ec¢( 2gz)( 2g2) so
' - . 9 '
F((6,8,)(6,87)) = F({6,8 : g& (0,8,)(0,87)} UA

{6(e,8) : g& (0,8,)(0,87)} U (G {e})

{(h,g) = ge (6,8,)(6,8))} since et (6,8,)(6,85)
(8Ce,8,)) (8(e,87))

F(0,8,) F(6,8))-

The theorem follows from the fact F is an isomorphism.

The next result shows the class of double coset algebras is closed under the
extension construction. For information on semi-direct products see M.Hall [4]. The
group é defined below is also known as the wreath product of Gl and Gz, see €.8.,
H. Neumann [7], p.45ff.
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THEOREM 5, If ‘llgcl//Hl and %gcz//Hz, then there exist groups ¢ and H

with (A3 = ﬁsueh that A[B] ~ Gt H.

Proof. Let X = GZ/HZ = {Hzg : chz} and let é = G)l( @wGZ, the semi-direct

product of G)l( by Gz, where ¢, mapping G2 into Aut(G)l(), is the homomorphism given

by w () = g for all feG)l(.

g)‘:
X & X

£
sag(f)

I.e., gan induces g*: X — X by right multiplication, so wg(f) (x) = f(xg) for

X s X-{H,}
gSGZ, fSGl and x&X. Also, let H= (Hlx Gl 2 )@sz where
X-{H,}
¢t H, — Aut( HxG] 2°)

is defined, as above, by wg(f) =g*f,

Note that H = H @kﬂ H2 where H = {fe G)l(

f(Hz)aHl}. Clearly H 1is a sub-
group of é, so it remains to show that 9[B] ~ G/H.

First we identify U with part of cr ﬁ For gaGl let & = (f,1) where 1 is
the identity element of G2 and fe¢ G)l( iz defined by

g if Hx=1H
f(Hzx) = { 2 2
e if H2x * H2

>

it

Then, HgH = (H® H))(f,1)( H o H)
(Hf @ H,) (H & H,)

= (EfH) ®H,

It

where the second equality holds because, for hée¢H

f. Thus,

2 % fixes the "Hz—coordinate" of

X 7 ~
(@Y (Gl ® Hz) IH = G/H).

(=~ B ). For geG, let g = (E,g)

Now we consider the elements in Gz//H 2

2
where E is the identity element of G)l(. Then

Hg = (He Hz)é =He Hg
and, for g¢H2,

aon - = _ X

Hglh = (H e Hyg)(Ho Hy)) = G} o (H,gH))

X

1
(To see this observe that gatHz means g*¥ 1is a permutation of X that moves H2; so0,

since, for fl,fzaﬁ, (fl-szlg) (x) = fl(x)fz(xhg) will produce any element of G

for all x¢ X, either fl(x) or fz(xhg) can be any element of Gl.) Thus,

,._ X .
(2) G = U{Gl®b i beG/H)).
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A one-one correspondence between the non~identity elements of (Gl//Hl) [Gz//Hz]
and G/ H is introduced as follows: to a¢& (Gl//Hl)— assign the element a ©H,. where
— X 2

= . - X
a=1{fe 6] : f(Hz) €a } and to be (Gz//Hz) correlate G] ® b. In view of (1), to

show this correspondence is an isomorphism it is enough to check:

it

(3 (Hg, H) (Hg,H) 8,H for 816G, 8,8 G,-H,,

it

(4) (ngH)(Hng) Hg,H for 8186y, 8,£6,~H,, and

(5 Hg H) (Hg,f) = oX
) ( g, 1) (Hg ,H) Gl e (H,g Hyg Hy)  for 8128, G, —H,.
To establish (3), let gl= (gi,l). Then
Asn A= = = X
Hg H)- (fig. B) = !
(Hg, 1)~ (Hg,H) = ((Hg|H) © H)) (] ® H,g,H,)
_ X
= C) ® Hye,H,

= ngH

since, for hSHz, 4 fixes the "Hz-coordinate" and permutes all others.

The verification of (4) is easier:
feal s X = 4z X
Hg H) (H = ! =
(He,H) (Hg H) = (C) ® Hyg,H)) ((Hg]H) ® Hy) = C] ® H,8,H,.
Finally we check (5):
(g, ) (g 1) = ¢} e n,g )X on
1 2 198 1@

X
H -
172 2851p) = C) @ (Hyg H)) (Hyg,H)).

It now follows that G/ H o Y[ B)] as desired.

We now consider the converses of the properties established in Theorems 2,3,4,
and 5. The basic idea for establishing the converses is illustrated by the proof of

the following result,
THEOREM 6., If UIP] is chromatie, then both Y and BV are chromatic.

Proof. Suppose Y[B] gfmy for some color scheme #'= (W,CX)Xa cr Recall

that C = AU B . Define a relation =~ on W by

w = w' iff w=w' or (».7,»»7'):»:Cél for some at€A .

It is easily seen that = is an equivalence relation on W and each = -block, say
[p] = {w : w= p} for a fixed pe&W, inherits the structure of a color scheme from #.
The color algebra of this scheme is exactly 9; so U is chromatic,

In order to treat B we form a new scheme ¥/~ on the set {[w]: w €W}

using the elements of B as colors. For distinct vertices [v] and [w] set

([v],[w])SCb iff  (v,w)€C,_ (in #).

b

ba, = b holds in A[WV] for a ,aZSA and beB, it follows that the assign-

1772 1
ment of a color to the edge ([v],[w]) is independent of the =-representation. It

Since a

is not hard to check that #/~ 1s a color scheme and Sm%,/,_\‘, =~ B as desired.
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Using the idea above an analysis of the proofs of Theorems 3,4, and 5 give a

hint of how to construct thelr converses. We leave the details to the reader.

THEOREM 7. If ALB] <8 a double coset algebra ( in Q2 (Group), Qg(Group) )s
then both U and B are double coset algebras (in QZ(Group), Qg(GrouP) respectively).

4. AN APPLICATION. We conclude with an easy application of the extension
construction to the study of relation algebras. There are many non-chromatic poly-
groups with 4 elements - at least 28 and at most 34. As one example we cite the

algebra 9?0 with multiplication table:

0 1 2 3
0 0 1 2 3
1 1 1 0123 13
2 2 0123 2 23
3 3 13 23 012

In view of the connection between polygroups and integral relation algebras (see [2])
the fact that 9%)is non-chromatic is just the result of McKenzie [6] that the corre-
sponding relation algebra is non-representable. 9?0 can also be shown to be non-
chromatic by a direct argument.

In Section 2 four extensions, W[21,M[31, 2{M], and 3[IM] were given that
add a new element to a polygroup IM. By Theorems 2 and 6, M is chromatic if and only

if each extension is chromatic. Starting with N McKenzie's example above, we can

0!
obtain a sequence (in fact many sequences) of non-chromatic polygroups. For example,

R=N(21, ®, =R (21,

Again using the connection [2] between polygroups and relation algebras we obtain:

PROPOSITION 8. For all n 24 there exist a non-representable integral relation

algebra with n atoms.
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A CHARACYERIZATION ¥OR CONGRUENCE

SEMI~DISTRIBUTIVITY

X
Gébor Czédli

1, INTRODUCTION, A variety of algebras is said to be congruence-meet-semi-

distributive if in the congruence lattices of its algebras the semi-distributive

law,

(s,) (Vo) (W) (V) (AAP = Ay = otAfd = otA (pVY)),

holds, From the general description of properties that can be characterized by
lal’cev conditions (Taylor [10], Neumann [7]1) it follows that there exists a
weak lMal’cev condition characterizing congruence meet semi-distributivity of
varieties (Jdénsson [4, Theorem 2,16]). However, 3D, has seemed the simplest
(characterizable) property of congruence lattices for which no concrete weak
lial’cev condition has been known, The aim of this note is to present such a
condition and some corollaries to it. (Note that the dual law, SDV’ has been

characterized in [11.,)

2, A WEAX LAL’CEV COiDITION, Our Mal’cev conditions will be given by means
of certain graphs, First for any lattice term p = p@x,fb,g‘) we define a set
G(p) of graphs associated with p, The edges of any C € g(p) will be coloured
by the variables o ,p, and T, and two distinguished vertices, the so-called
left and right endpoints, will have special roles. In figures these endpoints
will be always placed on the left-hand side and on the right-hand side, respec-
tively, For all k> 2 Gk(p) will be a distinguished member of G(p), but
S(p) will be different from {Gk(p) i k> 2} in general, Before defining
g(p) we introduce two kinds of operations for graphs, We obtain the parallel
connection of graphs Gl and G2 by taking disjoint copies of Gl and G2
and identifying their left (right, resp.) endpoints (Figure 1). By taking disjoint
graphs Hy, Hy, ..oy 1, (£>1) such that Hj‘é'ci for i= j mod (2) and

*This work was supported by N3ERC, Canada, Operating Grant A8190,
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identifying the right endpoint of Hi and left endpoint of Hi+1 for i =1,

2y eeey C - 1 we obtain the serial connection of length [ of the graphs G
and G, (The left endpoint of H

1

1 and the right one of Hl are the endpoints

of the serial connection, cf, Figure 2,)

DO - O

Figure 1

Figure 2

Now, if p 1is a variable then, for all k > 2, let Gk(p) be the following
graph

1Y
or—————0

which consists of a single edge coloured by p, and let g(p) be the singleton
{Gk(P)}. Let G(py A p,) (G(pyV p2), respectively) be the set of all parallel
(serial, resp.) connections of G, and G, with G, belonging to S(pi).
Furthermore let Gk(pl/\ p2) and (}k(p1 v p2) be the parallel connection and
the serial connection of length k of the graphs Gk(pl) and Gk(pz), respec-
tively,

For m> 2 the smallest equivalence relation of {0, 1, ..., m} collapsing
0 and m will be denoted by «(m). Similarly, /A(m) ('J‘(m), respsctively) is
the smallest equivalence of {O, 1, euey m} that collapses (i, i + 1) for
0<i<m, i even (odd, respectively), If 1?‘6{9(,/3,7'} and j £ m then the
smallest member of {0, 1, ..., m} that is congruent to j modulo u(m) will
be denoted by ja(m) or j¥.

Given a lattice term p = p(«, r ,3‘), an integer m > 2 and a graph
G € S(p) we associate the following (strong, i.e. finite) Mal’cev condition
U(m, G) with G and m:

"For any vertex f. of G there exists an (m+l)-ary term fi(xo, Xis eee
vees xn) such that for each 1r G{d,/},'f} and any W-coloured edge connecting,
say, f, and fj the identity fi(xo,“, Kigpr ooor xm,'r) = fj(xo,”, Xiqre eoes Xm,,,)
holds (here N abbreviates %(m)), and for the left and right endpoints f

0
and f, the endpoint identities fo(xo, Xy eoes xm) =x
fl(xo, X1y eees xm) = x  are satisfied."

We shall consider the ternary lattice terms pn =/3n(o(,{3 ,?‘) and

Tn =Tn(a(,(3,3*), n=0,1,2, ..., defined by the following induction:

fo =/5: 7o =7 pn+l =/5V (ot /\’fn), Tn+l = TV (o(/\Pn). Denoting U(m, Gn(ﬁn))

Ol
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by U(m, n) and letting E(Pﬂ) be equal to the union of all S([Ln),

2 < n<&@, we can formulate our main result:

THEOREM, Tor any variety ,Y: of algebras the following three conditions

are equivalent:
(i) ,Y, is congruence meet semi-distributive;

(ii) For any integer m > 2 there exists an even n > 2 such that the

strong Mal’cev condition U(m, n) holds in v

(iii) u(m, G) holds in V for infinitely many m > 2 and appropriate

(depending on m) G eg(ﬁ”)_
Moreover (ii) is a weak Mal’cev condition in Jénsson'’s sense [41, i.e.

U(m, n) implies U(m, n + 2) for all m, n,

3. PROOF OF THE THEOREM, Since (ii) imples (iii) trivially, (i)=>(ii)
and (iii) =>(i) have to be shown. While the latter requires almost the same
argument that Wille [11] and Pixley [9] used, the implication (i)=>(ii) needs
a different approach,

Given congruences &,rb,?‘ of an algebra A, ags 8 € A, a ternary lattice

can be connected by the graph G

term p, and G € G(p), we say that ag, 8
in A if there are further elements aiE A for i€ {2, 3y eees s}. where
{O, ly eeey s} is the vertex set of ¢ with endpoints O and 1, such that
(ai, aj)G ¥ holds for all W e{d,/},z’} and W-coloured edge of G connect-
ing 1 and j. The following statement follows from the general description of
the join of congruences @V‘F= U(@G\I’O@O... (k factors): k<cs ) and from
reflexivity, thus the proof will be omitted.

Claim 1, Tet A'&'f)'i' a, a;, and p be as above, If (ao, al) €
€ p(o—(,f—j,i‘) then there exists a natural number ko such that for all k 2 ko

an and a, can be connected by the graph Gk(p) in A, Conversely, if a,

1
€ p(&lﬁl?)c

The following assertion will be also needed.

and a, can be connected by some member of G(p) in A then (ao, al) €

Claim 2, Given a variety ’]‘/, m > 2 and an equivalence ¥ of {0, 1, seey m}.
Let ¥ denote the congruence generated by {(xi, xj) : (1, j)€ET} in the free
algebra Fv(xo, Xs eees xm). If for m-ary V-terms f and g (f(xo, Xy ooy xm),
8(xy, X1, ooy x ))EM  then the identity f(Xgys Xpgs eoes Xyy) =
= Ve
= g(xo,r, Xygr oeor xm,,) holds throughout V

Proof. Extend the map X, > % (i =0, 1, voey m) to an endomorphism

X
¢ of Fu(x,, X1y eees x ). Since ¥ Glerq we obtain E(Zgpys Xpygs oo xm'rr) =
f(xoxp,~..., xmq)) = f(xo, eos xm)(P = g(xo, ey xm)‘{’ = g(xO(P, P xm({’) =

&8(x Xigpr eees xm,,), yielding the assertion,

[}
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Claim 3, Given congruences o(,/5 3‘ of an algebra A, define
P = p(a.p 7) and  Fur T PT) to be U(pn(&.f&.ﬂ : n<w) and
U('J'n(c( P 7‘*) : n<w), respectively. Then {—5 and 7., are congruences.
Furthermore, denoting Lo (x, P 7‘) and ¢ (o(, p 1) by rb and 7 , respec-
tively, we have {5 (5]“1, ‘fn C Xn+l for all n and O /\,5 = o(/\T

0(/\’3 o(AT then F’ Pn -fSoo and Y= ’J‘n g‘w for all n.

Proof, The inclusions are trivial for n = 0, If they hold for n - 1

5 LDV (XAT ) EPVXAT) -] ¢y
then (5 TSV (o A’a’n_l) = P v( AJ‘ ) _Pn p»end ¥ =Y . follows simi
larly, Therefore P and 7, are congruences, If (x, y)E o(APm then we
have (x, y) € o Ap Co(/\(]'v(o(/\p )) = o(/\x 1§0(/\’J‘ , thus O(AP“’
= a(A’J‘w by symmetry., The rest is a trivial induction,

{1)=>(ii): Suppose ¥V is a congruence 5D, variety, m> 2 and consider
the congruences &,P,’J‘ of F(Xgs Xy eeey X ) generated by
{(x;0 x) ¢ (1, ) €}, (x ESENCE € pm)} ana {(x,, x DIENCHE)

i?

e"‘(m)}, respectively. Let us adopt the abbreviations Pn Pm Tn T from
Claim 3, Since
(xo, X )E L (m) N (P(m) o 'b’(m) o P(m) e ’0'(m)° ees) S KA (’3 I"p I"‘... €
X A (PV]’)Cd A (Poovz‘ ) (with m - 1 factors occurring), SD, and Claim
3 yield (xo, xm)G AAP . Therefore there exists an even integer n > 2 such
that  (x,, x ) epn(&,'p ,37). Therefore, by Claim 1, there exists k 2 n such
that x, and x  can be connected by G, (B ) in Fz(xo, X1y eees x ). We
can assume that k = n, (We have (0, m) €(m) whence, by repeating the "end-
point" elements X, and xm, X, and x can be connected by Gk(Pn+2)’
Gk(Pn+4)’ etc,)., Now we have elements a; in F (xo, coes xm) associated with
the vertices f, of Gn(pn). But a,
whence, by Claim 2, it follows that U(m, Gn(pn)) = U(m, n) holds in ¥,

(iii)=? (i): Now suppose a2y € AE V, ¥ is a variety satisfying (iii),
5(,[—5,5' are congruences of A, &Afs = &Ai‘ , and (ao, al) €A A (TBV[).
Then there are elements bO’ bl’ ceey b € A such that a, 1
(bys bm)e& o (b, by )E [ for i even, and (b, b, )JEF for i odd.
From (1ii) we have a graph G € E(Pco)’ and thus G € G(Pn) for some n, such
that U(m, G) holds in V. Ve claim that via assigning fi(bo, biy eees bm)GA
to all vertices fi of G bO and bm are connected by G in A, Really, if

= fi(xo, X1s eees xm) for some terms f,

=b0, a =bm,

two vertices, fi and f., are connected by a ¥ -coloured edge in G,
ME ot p,j"} , then f, (bo, 1s oo BN L (B gy Dryy oy Bpp) =

= £(bgys Drys eoes ) WE;(bgs By eoes D). Hence Claims 1 and 3 yield
(a,al)_(bo,b)ep(otp 7) p,yleldlng()
Finally suppose U(m, n) holds in a variety ¥V via the terms fo, £,

f2, eee o To satisfy U(m, G (Pn 2)) in y we can asgociate the same terms

fo’ £, f2, ... with the vertices of a subgraph S, S £ G (P ), and associate
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the projections on x, and xm with the other vertices of Gn(Pn+2)' Having
U(m, Gn({bn+2)) satisfied, by repeating terms appropriately one can define terms
for U(m, Gn+2(Pn+2)) = U(m, n + 2).

4, COROLLARIES, In Jénsson and Rival’s paper [5] a sequence of lattice
identities En was produced with the property that an arbitrary lattice variety
is meet semi-distributive if and only if En holds in it for some n<w ., (Note
that the proof of Theorem 6,1 in [5] yields this result, which we cite in a
slightly modified form,) Furthermore, Day [2]1 showed that ’I«-(n’ the n=-th Polin
variety, is congruence meet and join semi-distributive, congruence (n+2)-per—
mutable, and 62n holds in its congruence lattices. (For n = 2 Day and Freese
[3, Theorem 7.1l] have proved more, namely, even 6‘2 holds in the congruence
lattices of 52
O(A(P Va‘)S Pn by En we can present a similar observation,

= 2, the original Polin variety,) Denoting the lattice identity

COROLLARY 1, Given a congruence m-permutable variety Y, .Y; is congruence
meet semi-distributive iff there exists n< @ such that the identity En holds
in the congruence lattices of V, or equivalently, iff U(m, n) holds in v for

some n<w,

Proof. If V is congruence SD, then, by our Theorem, U(m, n) holds in
it for some n, But what was really shown in the proof of Theorem is that if
U(m, n) holds in a variety with m-permutable congruences then its congruence
lattices satisfy en' Conversely, if o(/\P = o(/\z' for elements o(,P,T of
an arbitrary lattice, then an easy induction yields pn(o(,P ,a") = P and
I RCHERY =J for all n<w . Thus g implies o A (pvy)ﬁo( "Pn(“'P'T) =
=d AP, the meet semi-distributivity, in any lattice.

It is worth mentioning that the dual statement also holds, i,e. we have the

following:

Observation, Let VY be a congruence m-permutable variety of algebras,
Then LI is congruence join semi-distributive if and only if there exists an
n € @ such that 81*1’ the dual of En, holds in the congruence lattices of z.

Proof. By duality, 8:1 implies join semi-distributivity (in any lattice).
w, = un(ol,F, ,a‘) and v = vn(o(, p,]‘) defined by
the following induction: uj = AP, v =AY , u . = oA (rbv vn), Vel =
=0(A("J' Vv.n ), and let !Cn denote the identity olA (p Va")ﬁ u . We obtain

= = * ¥
u =odlAp and v = oAy, ., whence £ ~ and & (and thus g, and % as

Consider the lattice terms

i

well) are eguivalent in any lattice., Now, if ,\.\" is m-permutable and congruence
join semi-distributive then, by [l, Proposition 11 U(m, m, ..., m) (defined there,
m occours n + 1 times) holds in LI sor some n<@ ., Therefore, as it is
implicit in [11 (ef. also Pixley [91), ’C: holds in the congruence lattices of V.
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Before formulating our last observation we define some (recursively defined)
llal’'cev conditions occurring in (iii) more explicitly. Let G q3 )+ GBQ%m-L)E
G( ) denote the serial connection of length two of two d13301nt copies of
G (Pm 1) for m odd. Then U(m, G (Fh 1) + G q%m l)) is the following condi-
tion (cf. Figure 3 where m = 3):
"There exist (m+l)-ary terms fi’ fl, g gl for 0£ i€ m=1 such
that, denoting Mr(m) by 4 and h(xo,n,, Xyqs Xopp eees xm,”) by h(%), the
following identities

£(P) = 21 (P)s £1(P) = £HP), (P = &Py &) = ey ()
mr0<1<m-l i even,

(s &) = &7 &) = & ()

] ) for 0€i<m-1, i odd,

£.) = £ (), gl(d) &) for 0€i<m-1,

£ 2(P) = PP NP = gy (P P 2xgr Ty weer %) = 8 %kgs Xps nes B,

fo(xo, X1y eees xm) =x,,and g (xo, X1y eees xm) =

holad",

1+l

L = @ T

it

X
m

Figure 3

COROLLARY 2 (Papert [8]). The variety of semilattices is congruence meet
semi-distributive,

Proof, TFor i =0, 1, ..., m = 1 consider the semilattice terms fi =
i
=ifi(x0, X1s eees xm) = XXXy eee Xy T o= £, 8 =X X X o oeee X4y and
g = X8 Since these terms satisfy the identities prescribed in U(m, GB(Fﬁ-l)
+ GB(Fh-l)) for all odd m » 1, our Theorem completes the proof.,
Note that essentially these terms from U(m, GB(Fh-l) + G3q5m_l)) were

used by Nation [6] in proving congruence SQA for semilattices.
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GEOMETRICAL APPLICATIONS IN MODULAR LATTICES

Alan Day(*)

This paper represents the content of lectures given at the meeting on Universal
Algebra and Lattice Theory at Puebla, Mexico in January, 1982. It attempts to survey
recent important results in modular lattices, due mainly to Freese, Herrmann, and
Huhn, that have a strong geometric content in their ideas and proofs. These results
(and others) represent a beautiful amalgamation of the classical results of Birkhoff
and von Neumann with the newer disciplines (also due in part to Birkhoff) of universal
algebra and model theory. Because the roots of the essential ideas lie in geometry,
or perhaps more importantly in the lattice interpretation of projective geometry and
the coordinatization thereof, we have attempted to present here a short (in fact too
short) introductory course in these basic ideas.

We wish to thank Professor Octavio Garcia and his organization committee for
the opportunity to present this material, Professor Ralph Freese for his encouragement
in putting these notes on paper, and Professor Bjarni Jénsson whose pioneering work

and continuing example has been an important inspiration for many of us.

1. PROJECTIVE GEOMETRIES AS MODULAR LATTICES. 1In [18], Birkhoff proved that
finite dimensional projective geometries could be characterized by their lattice of
linearly closed subspaces. This characterization is the fundamental link between
modular lattices and projective geometries. In this section we describe that linkage

for projective planes and present some related results.

DEFINITION. A projective plane is a triple G = (P, L, I) where P and L
are disjoint non~empty sets and I ¢ P x L. 1is a relation satisfying:
(PP1) For all p # q in P there exists a unique £ in L such that pIf and
qIf . We denote this "line" by {£(p, q) .
(PP2) For all £ #zm in L there exists a p in P such that pIf and pIm .
(This "point" is also unique in light of (PP1).)
(PP3) There exists distinct Pys Pys P3» P, in L satisfying for distinct 1, j, k
in {1, 2, 3, 4}, pilﬂ(pj, )

We of course call P the set of points, L the set of lines, and I the
incidence relation, p is on £ . We could also identify each line with the set of

(*) This research is sponsored in part by an NSERC Operating Grant, A8190.
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points incident with the line, namely: i = {p e P: pI€}, £ ¢ L. . By defining C c P
to be linearly closed if p, q € C and p= q imply 2(p, q) < C , we define L(G),
the (closure) system of all linearly closed subsets of P . These subsets are pre~
cisely {@, P} u {{p}: p ¢ P} u {£: £ ¢ L} and the Hasse diagram of these subsets
looks like:

(lines)

(points)

Alternatively we can let M(G) = P u L u {0, 1} (assuming these sets are dis-
joint) and define a partial order relation on M(G) by:

Mo MM
f fl ]
= O <

€ Py vy e L and xIy .

PROPOSITION: (M(G); <) is a lattice in which
(a) For p#zq in P, p Vv q = £(p, q)
(b) For £ #m in L, £ Am is the (unique) point guaranteed by (PP2).
We now wish to characterize the lattices (M; v, A) [or (M; £)] that are pro-
duced by projective planes. To do this we need some terminology.
Let (M; vV, A) be a lattice. (M; vV, A) is sald to be bounded if there exists
0, 1 eM with 0<x<1 forall xe¢ M. For x<vy in M, [x, y] = {zeM:ix<zsy}.
If (M; v, A) 1is bounded, a ¢ M (respectively c ¢ M) 1is called an atom (resp.
coatom) if [0, a] = {0, a} (resp. [c, 1] = {c, 1}) . A spanning 3-frame in a
bounded lattice (M; v, A) 1is a sequence (Xl’ Xys Ko, xq) in M satisfying (Fal)
\/(pj: j21) =1, (all 1) and (Fy2) p, AV(p: k=1, 3) =0, (all 1= 3j)
Finally a lattice (M; v, A) 1is called modular if M does not contain a sublattice
of the form

THEOREM. Projective planes "are' precisely modular lattices (M; v, A) that

eontain a spanning 3-frame (pl, P,s Py» pq) of atoms.
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Proof. If G= (P, L, I) 1is a projective plane, then (M(G); v,A) has a span-
ning 3-frame by (PP3). If (M(G); Vv, A) contained a sublattice of the form

v

then by the construction of M(G) we would have u =0, ae¢ P, ce¢L and v=1.
Since b ¢ P u L we obtain contradictions on b ¢ P by (PPl) and b ¢ L by (PP2).
Therefore (M(G); vV, A) 1is also a modular lattice.

Conversely suppose (M; V, A) 1is a modular lattice with a spanning 3~frame of
atoms, (pl, Pys Pys pq) . For i 2 j we obtain from modularity that 0 < P; <Py Vv
\% pj ~1 (where a—<b means |[a, b]| = 2) . Now if x e M\ {0, 1} , there
exists 1 # 3 =1, ..., 4 with x $ {0, Pys Py V pj, 1} . Since the free lattice
generated by {x, P;s Py V pj} is

we have, since M 1is modular and 0 =< pi‘-< .5 v pj‘-< 1 , only two possible homomor-

phic images in M; viz

1 1

PiVPj X P. VP

In the first case x is an atom, and in the second, a coatom (again by modularity).
Therefore if P 1is the set of atoms of M and L the set of coatoms, we have
M; v, A) = (M(G); v, A) for G= (P, L, <) . Easy calculations show that (P, L, <)
is a projective plane.

For a more detailed analysis, the reader may consult [64]. For his/her own

proof, the following results will help.
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THEOREM (Dedekind [27]). Let (M; Vv, A) be a lattice; then the following are
equivalent:
(1) ;5 v, A) is modular.
(2) M™; v, A) satisfies: (Vx, y, ze M)(x£z=> xV (yAaz)=(xVy)Az)
(3) M™M; v, A) satisfies: (Vx, y, z e M)((x A z) VvV (yAaz)=(xAz)Vy)arz)).

LEMMA., If (M; Vv, A) 1is a modular lattice and a, b ¢ M, then the intervals
aAb, bl and a, aV b are isomorphic via the (order) isomorphisms x > x v a and

y byab.

By defining a spanning n-frame in a (bounded) modular lattice (M; Vv, A) to be
e Pps pn+l) satisfying: (Fnl) \/(pj: j=z1i) =1, (all i)
and (Fn2) P A\/(pk: k#i, j)>=0, (all i = j) , we can by definition or theorem

n + 1 elements (pl,

produce:

"

PROPOSITION. The projective geometries of dimension n - 1 "are" precisely

those modular lattices with a spanning n-frame of atoms.

We should note several items. Firstly Dedekind's result allows one to define
modular lattices by means of a lattice equation or identity (part (3)). Secondly the
n-frame produces (n - 1) + 2 points in general position, an obvious requirement for
a projective geometry of dimension n - 1 . Finally, in order to produce a projective
geometry, it is essential that the members of the spanning n-frame be atoms of the
modular lattice. This last requirement is emphasized by the following important

(counter) examples.

EXAMPLE A. The n-frame determined by a ring. Let (R; +, -, 0, x, 1) be a ring
(with identity), and let (L(RRn); c) be the (complete) lattice of all submodules of

the left R-module R® . We let €05 rrs Sn—l be the standard basis of Rn , and
define:
Xi = Rei, i=0, ..., n -1
0,n-1
X =

0 R( § gi) = {(x, X, ..., X): X € R}

n
Easy calculations show that (X , X ) 1is a spanning n-frame in L(RR ) . More~

prees Xy
over XO is an atom in L(RRn) iff Xi

and only if R 1is a skewfield (= division ring).

is an atom in L(R") for all 1 sn if

EXAMPLE B. The n-frame determined by an R-module M . Let R be a ring and
™M; +, -, 0, (x rx)réR) be a left R-module. Define (L(RMn), g) to be the
(complete) lattice of all submodules of the (bi-) product left R-module, M® . There

exists the canonical coproduct embeddings : M- Mn, i=1, ..., n, and the canoni-

n
i
cal diagonal A: M - M® . We define
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Yi = Imui, i=1, ..., n
and Yn+l = ImA
Again easy calculations show that (Yl’ ceey Yn+l) is a spanning n-frame and that
Y, 1is an atom in L(RMn) if and only if RM is simple.

2. ELEMENTARY COORDINATIZATION. The classical procedure to coordinatize a pro-
jective plane G = (P, L, I) goes as follows:
(1) Take four points (x, y, z, t) 1in general position (i.e. a spanning 3-frame as
guaranteed by (PP3)).
(2) Consider the line h = x V y as the "line at infinity" and coordinatize the
affine plane, Gh = (P \ ﬁ, L \ {h}, I) determined by h by means of the three par-~
allel classes of lines: y Vv z, the y-axis; x V z, the x-axis; and 2z V t, the co-

ordinatizing diagonal. In pictures we have

w=(zVt)A (VY

Lattice theoretically we have the points of the affine plane defined as comple~

ments of h
A = {prpvh=1 and pAh-=0}.
The coordinatizing diagonal, the points on z V t save for w , the point at infinity

D={p e Aips<zV t}
{ptpvw=2zvt and pAw-=0}.

]

LEMMA. There is a bijection between A ~and D x D namely p b ((z vV £) A
Ay Vvp), (zVvt)Ar (xVvp)) with inverse (a, b)f~> (y v a) A (x V b)

Proof. wv [(zvit)Aa(yvp)l=(@GEvVvt)awvVvyVvp)=zVvt since wVvy=h
and wA (zVvt)A(yvp)=wAhA(yvVp)=wA[yv(hAap)] =wAy=0. There-
fore, using x - y symmetry, p P> ((z Vt) A (y vp), (zVt) A (xVp)) is indeed
a mapping from Ah into D x D . Similar modular calculations give (a,b)t>(yva)a(xvb)
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as a function from D x D into Ah .

Now (yv [ [GVvet)a@vp)a v [(zvi)an &vp])=(vVvzVvi)ralyVvpa
AfxVzVe)Ar xVvp)=((yVvpla@xVp)=pVviyraha Vvp))=pVvy~rllzxvV
Vhapl)=pVv yArx)=p, zve)rlyv ((yvaaxvb)] =(zVvit)Ar(yva)
A{yvVvb)=a and (zVt)A[xVv ((yVva)Aa (xVb))] =b. Therefore these

functions are inverse to each other.

EXAMPLE A (n = 3). By letting (X, ¥, Z, T) = (Re;, Re,» Re s R(g  + e +¢)))
we have:
(i) W= R('g1 + 32)
(i1) Ay = {R(g) + ag +beg): (a, b) ¢ R?}

(iii) D = {R(g, + ae; + ag,): a ¢ R}

Proof. Let S be a submodule of _R® with S+ H=R> and Sn H=0 (Note

R
H = Rgl + Rgz .). Since e, € S+ H there exists an s in § and a,b ¢ R such
that e =g - (ag1 + bgz) . Therefore R(go +ag + bgz) < 5 . But easy calculations
show that R(e, + ag; + be,) is a complement of H . Since L(RR3) is modular, we
have S = R(go + ag, + bgz)
If Se¢D then S<ZVT=2ZVWs= ReO + R(e1 + e2) . Therefore a =b . That

W= R(s1 + 32) is easily seen.

EXAMPLE B (n = 3). Let (X, Y, Z, T) = (V,, ¥
(i) W={(, x, X): x € M} .
(ii) AH = {A(¢’¢): ¢, p ¢ End M} where
(iii) D = {A¢: ¢ ¢ End M} where A

Y., Y) . Then

37 "1 Ty

A(¢’¢) = {(x, x¢, xP): x € M} .
R CR)

Proof. Exercise.

In a projective plane, there are three major operations definable on a coordina-
tizing diagonal that are of interest: multiplication, addition, and the (planar)
ternary ring operation. Since the multiplication and addition can be derived from the
ternary ring operation, we consider it first.

We wish to construct the line analogous to the "ideal" affine line Y = Xm + b
To do so, we need a Y-intercept point (with coordinates (0, b)) and a parallel class
or slope point on the line at infinity. The first is obtained by intersecting the

line through (b, b) parallel with the x-axis with the y-axis. In lattice terms
by = (v Vz) A (xVb)

The second is formed by finding the infinity point determined by the slope m .

#

m, (y vt) A (x vm), the point (1, m)

0

=h A (zV ml), the parallel class of lines with slope m .

Our desired line is now m_V bO . The reader should show that 2z = x (slope zero)
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and t_ =w (unit slope). We now can compute what is supposed to be am + b by going
up to the line by y=a (ie. y VvV a) and across to the diagonal by xV[(yVa)A(mebO)L

In pictures:

In lattice theory, for a, my, b € D

T(a, my D) = (z Vv t) Adx Vv [(yVva)ar (b, Vvm)l}
a®b="T(a, b, z) (zvit)y a{xv [(yVva)Ar (zV bl)]}
a®b = T(a, t,b)=(th)/\{xV[(yVa)/\(bOVw)]}

]

it

LEMMA. T: D3 =D .
Proof. We must calculate using the modular law.

wVT(a, mb) =(zVvit)a{wvxxyv [(yVva)Aa (b0 v mw)]}
=GV AhvIar Vb vl
= (zVvt) A(hvVva) since yV bO vm, =1
=z V t

wAT(@, mb)=wa{xVv[ha(yVa)A (bO v mw)]}
=wAa{xv [ya (bO vm)]l}

= w A X, since y A (bO \ mw) = 0

= 0
EXAMPLE A (n = 3) . Let A(a) = R(gO + a(s1 + 32)) for a € R .
1) A(b)O = R(gO + bgz)
(ii) A(m)oo = R(g1 + mgz)
(1ii) (Y v A(a)) A (A(b)O vV AMm)_ ) = R(So + ae, + (am + b)gz)
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(iv) T(a(a), A(m), A(b)) = A(am + D)

(Warning: In performing the above calculations do not make the false assumption

that R 1is a division ring or field! We did not assume x # 0 and xy = Xz implies

y = z . Such a false assumption would allow one to show R(qgo + bsl + csz) = [Rgo v
v R(bg1 + qu)] A [Rgl v R(agO + qu)] A [RS2 v R(asO + bgl)] . This is not neces-—
sarily so!)

EXAMPLE B (n = 3). T(A¢, A¢’ Ae) = A¢¢+6 where again right hand functional nota

tion is used x b x(¢p + 8) = (xd)¥ + (x)0

We should note that our affine "points' A, and "coordinatizing diagonal" D
depend not only on the chosen spanning 3-frame but also on the order given to the
chosen points., There exists projective planes and four points Pys Pys Py Py
satisfying (PP3) such that non-isomorphic ternary rings are obtained for different
assignments of {x, y, z, t} = {pl, Pys Py» pq}. (c.f. Demboski [31])

Projective planes provide examples where @ and @ are not 'well behaved".

Our examples A and B provide a different type of aberration. In a projective plane
two distinct points meet to 0, and join to produce a line. In examples A and B, these

properties fall apart.

EXAMPIE A (n = 3). L(RR3) is a projective plane if and only if R is a divi-
sion ring (or skewfield). In general for a ¢ R ,
(1) Z A A(a) =0 1if and only if £(a) = {x ¢ R: xa = 0} = 0 .
(2) Z v A(a) Z VT 1if and only if there exists b ¢ R with ba =1

[

#

EXAMPLE B (n = 3). (M3) is a projective plane if and only if ;M is a simple
R-module. In general for ¢ ¢ End(RM)

1 Z AA
(1 )
2) ZVA
(2) "

Before exploiting the above question of invertibles, we need to examine the gen-

i

0 if and only if ¢ is injective.

Z Vv T if and only if ¢ 1is surjective.

eral case of a spanning (n+l)~frame (Xl’ cees Xy 2, t) in an arbitrary modular lat-
tice (M; v, A) . We define:
h =\/(xi: 1 <4i<n)
A= {peMipvh=1 and p A h = 0}
w=haA (zVt)
D= {a ¢ Ah: a<zvtl={aeMiavw=zVt and a A w= 0}
§i =\/(xj: j =z 1)

The affine space A, » with respect to the "hyperplane at infinity" h can be co-
ordinatized by means of the coordinatizing diagonal D wviz:

(1) p € Ah P¢>(a1, ey fn) where a; = (z vVt)A (;i v p)

1) (ays -ees 3 b A vas1=1, oo, n): = (15 2)

1
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LEMMA. The above functions establish a bijection between Ah and D" .

For each i =1, ..., n, and vy = §i A(zVvity Xi) , we obtain a 3-frame
(Xi’ Vi 2 t) spanning the interval [0, z V t V Xi] . For this 3-frame, v, o=
= (zV t) A (xi \ yi) = w, and therefore its spanning 3-frame has D as its co-
ordinatizing diagonal. This 3~frame supplies then a planar ternary ring operation

on D :
Ti(a, my b) = (2 Vv t) A {x, vV [(x; Vv a)a (byg vV my )13

where bio = (xi Voz) A (Xi vV b), m

Easy modular lattice calculations will convince the reader that any x', y'

= (xi VvV t) A (xi v m) and m, = ha (zv mil)'

satisfying x' A (zVv t) =y' A (zVvt) =0 and &'V y')A (zVvit)=w will pro-

duce a ternary operator T': D3 - D . If x', y") £ x", y") in M x M, then

T' = T" since both operators produce comparable complements of w in [0, z V t]

If nz3, then (x,y) = (x, ;‘1) s (;(3, ;1) 2 (;?3, x,) < (;?3, ;2) > (x,, §<2) 2

2 (x2, y2) . Therefore all Ti’ i=1, ..., n2 3 are the same ternary operator.
We now state some general results for T, & and ® . They are phrased in the

language of a modular lattice with spanning 3-frame. The above discussions apply to

these considerations as well if n 2 3 .,

LEMMA, (D; @, z) 1is a loop with left and right difference operators from D
to D defined by:

cArb (zvit)a (yv[(xve)as wy bo)])

aﬂAc =(zvi)a @vi{i@vz)yalwv (gyva)axve)l)).

That is: ¢ = a & b iff a = cArb iff b= aﬂAc .

As we have seen multiplication need not behave as nicely as addition., We can
define Inv(D) = {a e D: zva=2zVvt and z A a =20}, and left and right division

functions from D? into [0, z v t] by:

c/b (zvt)alyv [(xVve)ar(zyv bl)]]

Eve)yrlxvi@ve)alzy (yva)axve)l]

)

a\c

LEMMA. (1) a®@z=2z=2¢@®a
(2) z® t=a=tea
(3) If ae¢ Inv(D) and b ¢ D, a\b and b/a €D

(4) a e Inv(D) iff b® a=t =a ® ¢ for some b, c ¢ D .

LEMMA. For b ¢ D and any p, q ¢ [0, z V t]
(1) p®bsq iff p < q/b
(2) b\p<sq iff p<sbe®q.
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EXAMPLE A (n = 3). For A(a) and A(M) ¢ D
1) A(a)\a(b) = R(ag, + ble +¢,))
(i1) A(a)/A(b) = {xgo +y(e, + e,): xa = yb} .

EXAMPLE B (n = 3). For A¢ and AW eD
(€9) A¢\A¢={(x¢,xw,xw)=xeM}
(ii) A¢/A¢ = {(x, vy, ¥): x = yp} .

LEMMA. For a,be D,aVb=zvt and aAb=0 1if and only if aArbeInv(D).

Proof. z V (aArb) =zV[wA (aVvb)] and z A (aArb) =z A [wvVv (aAbd)] .
Therefore aArb € Inv(D) iff z Vv [wA (@aVvb)] =zVvw and zA [wV (aAb)] =0

iff w<aVvVb and wzaAb {ff avb=zvct and aAb=0.

The final result of this section provides a more algebraic description of pro-

jective geometries.

THEOREM. Let (M; vV, A) be a modular lattice; then (M; v, A) <te& a projective
geometry of dimension n 1if and only if the following properties are satisfied:
(1) M has a spanming (ot+l)-frame (Xl’ cees X, 2, t)
(2) M 4s generated as a lattice by D u {xl, cees xn}
(3) D= {z} v Inv(D) .

3. THE ARGUESIAN LAW. It is well known that there exists projective planes that
do not satisfy Desargues' Axiom. 1In [116], Jonsson introduced a lattice identity which
precisely reflected Desargues' Axiom. In the last 18 years much work has been done by
Jonsson et al (see [119], [125], [128], and [66]). We present in this section a de-

velopment based more on hindsight than Jénsson's original pioneering work.

DEFINITION 1. A lattice (L; Vv, A) 1is called Desarguean® if it satisfies the

implication

[(aO v bO) A (a1 v bl) <

a, Vb
=>[(aO v al) A (bO v bl) <

] =

2
[(aO v a2) A (bO v b2)] v
[(a

v - a2) A (b1 v b2)]] .

In order to maintain a geometric flair we call triples, a = (ao, als a2) and

= 3 . .
b= (bo, bl’ b2) ¢ L° , triangles in L . We do not assume that these elements of

L _are atoms! Two triangles in L, a and b , are called centrally perspective if

(aO \ bO) A (a1 v bl) <a, Vv b2 . This may be abbreviated as CP(a, b) or just CP

2
if the meaning is clear. For triangles, a and b in L , we write for 1 < 2,
ey = ci(g, b) = (aj v ak) A (bj v bk) where {i, j, k} = {0, 1, 2} . The triangles

are called axially perspective (or AP(a, b) or just AP) if ey, g Ve . The

* The spelling liberties taken here will be explained later.
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Desarguean implication then becomes ''centrally perspective triangles are axially per-

spective'.
LEMMA 2. Desarguean lattices are modular.

Proof. Consider the triangles a = (x, xV z, x) and b= (x,y,y) ina
Desarguean lattice (L; V, A) . They are centrally perspective trivially. Therefore

c, < ey Ve . This produces for all x, y, z ¢ L ,

xvy)as xvz)ysxVv[yasxva],
an inequality equivalent to modularity.

The pertinent question now is to compare Desarguean (modular) lattices with a
spanning 3-frame of atoms and projective planes satisfying Desargues' Axiom. Since
Desargues' Axiom for projective planes is usually stated with several inequality
assumptions as well as the assumption that the triangles are indeed triangles of
points, we must show that in all "degenerate' cases, AP follows from CP and the

modular law.

LEMMA 3., Let (L3 V, A) be a modular lattice and let a and b be centrally

perspective triangles in L . If a; < aj

then a and b are axially perspective.

or b, < bj for some i = j in {0,1,2}

Proof. By a - b symmetry it is enough to consider comparabilities in the tri-

angle a and by 0 - 1 symmetry it 1s enough to consider three cases: a, < a,,

0 1
a, < a, and a, < a, -
). < . = A vb .
Case (i) If a, a then a, < a, \ b2 by CP. Moreover c, a (bO 1)
Now ¢, < a, va, < a, va, gives
<, v c, = (a1 v a2) A (b1 v b2 v Cl)

= (a; vV a,) A (b, v b, Vv [bO A (aO Voa, Vv bz)])

2 (a1 v a2) A (b1 v b2 v [bO A (a1 v bl)]) by CP

= v A v v v

(a1 c2) (b2 [(b1 bO) A (a1 bl)])
2 c2 .

Case (ii) is left for the reader.

Case (iii). If a, s a, then using CP and modularity (a2 vV a

< a, v [(a1 v bl) A (aO v bo)] < a

LV bl) A (aO v bo)

v b and
2 2

0
<
0

n

c. VvV [aO A (bO \ b2)]

0 1 0
=c, v [a2 A (bO v b2)] A [aO A (bO v b2)]
= {(a1 via,) A (b, Vb,V [a2 A (bO v b2)])} v [aO A (bO v b2)]
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{(a1 v a2) A (b1 v [(b2 v a2) A (bO v bz)])} v [aO A (bO v bz)]

{(a1 v a2) A (b1 v [(a1 Vi,V bl) A (aO v bO) A (bO v bz)])} v
v [a; A (by v b,)]

{(a1 Via,) A (b1 v [(aO v bo) A (bO v bz)])} v [aO A (bO v bz)]

(b1 v [(aO v bO) A (bO v b2)]) A [a1 Vi, v {aO A (bO v bz)}]

2 (b Vb)) Afa Vv (a, A (b, VDb,V a))]

(bO v bl) A [a1 v (aO A {bO v [(a2 vV a

v

L}

[\

LV B A (g v b)ID]
(bO v bl) A [a1 v (aO A (bO va, Va v bl))]

€y

This last lemma throws out many degenerate substitutions. Our next lemma makes

our lattice triangles behave like real geometric triangles.

LEMMA 4, A lattice (L; vV, A) 1is Desarguean if and only if centrally perspec-—
tive triangles, a and b , satisfying a; = (ai v aj) A (ai v ak) and b, =

= (bi v bj) A (bi v bk) for {i, j, k} ={0, 1, 2} are axially perspective.

Proof. Let a, b be centrally perspective triangles in a lattice satisfying our

(restricted) condition. (A quick check of lemma 2 shows that such a lattice is modu-

1 s 1 = [ -
lar!) Define aj (ai Voa,) A (ai v ak) and bi (bi v bj) A (bi v bk) for
{i, j, k} = {0, 1, 2} . Easy checking shows that a' and b' satisfy our extra
condition.
Now

i)

(ag vbp) A (af vbr) = [a v (a A (a Vva))Vvb v (b v (b AbN]A

Ala vi(ayr(a vay)) vb v (b, A (b Vvb))]

(a, A (aO v az)) v (b, A (bO Vb)) v (aO A (a v az)) v

v (bO A (b1 v bz)) v [(aO v bo) A (a1 v bl)]

< (a1 A (aO v az)) v (b1 A (bO v b2)) v (aO A (a1 v a2)) v
v (bO A (b1 v bz)) v (a2 v b2)

a' v b!
2 2

#

Therefore a' and b' are centrally perspective triangles satisfying the extra con-

for 1 =0, 1, 2, we obtain AP(a', b') = AP(a, b)

dition. Since c} = ¢
i i
THEOREM 5. Let (M; v, A) be a projective plane. (M; v, A) 1is a Desarguean

lattice if and only if, qua geometry, (M; v, A) satisfies Desargues' Axiom.

Proof. Given the usual statement of Desargues' Axiom we have a few more "degen-—
erate' cases to check. Using a - b and 0O - 1 symmetry these cases reduce to:

ag < bO v b2, a, < bO v b2, and a; s bO v b1 . The ingeneous reader will be able

to prove AP from CP and any of the above conditions in a modular lattice! The
restriction to a projective plane together with the restrictions that a and b are

point triangles (lemmata 3 and 4) provide easier methods. Hint: For {i,j} = {0,1}
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= i i [
ey 2 [a2 A (bj v b2)] v [b2 A (aj v a2)] , therefore c, Ve ey Ve where oy
= 1 1 = 1
oy v [a2 A (bi v b2)] v [b2 A (ai v a2)] . Compute efs 1 0, 1 using as well
CP(a, b)

Since the modular implication is equivalent to an identity and modular lattices
are characterized by the exclusion of the pentagon, it is natural to ask such questions
for Desarguean lattice. The first will be answered affirmatively while the second is

still an open problem.

LEMMA 6. If FM(6) with free generators {xo, X Xys Yoo Vs y2} the tri-
angles <xg, X, X, V [x; A (x, v y)]> and <y, A [xO vz vy oA (x, v y,)I,s

¥i» ¥,> are centrally perspective.
Proof. Compute.

THEOREM 7. 4 lattice is Desarguean if and only if it satisfies the identity

A< p where

>
1

Gy v Xl) : <y6 Y yl)
=[xy v x) A lyg Vydl vz vx)aly, vy)lv [y A (x,Vvx)]
and yi =y A [xg v ((x vy) A (x, vVy))]

©
1

Proof. Since every Desarguean lattice is modular, the identity follows from
lemma 6. Conversely if L satisfies the identity, then firstly L is modular.
(See lemma 2 for the correct substitution.) Secondly if a and b are centrally

perspective triangles in L ,

by = by A[lag v [(a; v b)) A (ag vV B)]] = by A (a5 V 2 V by)
A(a, b) = (aO v al) A (bO v bl) =cy
pla, b) = c; Vieg v [by A (ay Vv a)]
=c v [(b1 v b2) A (a2 Va v [aO A (a1 v bl)])]
e vV [{(by Vb)) A (a,Va v [a, A (a, v b2)])]
=c Ve,V [b2 A (aO v az)]

= <
¢y Ve £0(a, b)

n

Therefore c, < A(a, b) < p(a, b) = ¢y Vv cy

The Arguesian identity introduced by Jénsson in [118] and proven equivalent to
the Desarguean implication in [66] and [128] is not the one presented above. In order

to give it and several other equivalent forms, let ays 8;5 8, bO, bl’ b2 be six

variables and define lattice terms

1

(aO v bO) A (a1 v bl) A (a2 v b2)
(aj v ak) A (bj v bk) {i, j, k} = {0, 1, 2}

= A v
e, (cO Cl)

01k o

and
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THEOREM 8. For a lattice (L; VvV, A) , the following are equivalent.

(1) L {e Desarguean

(2) L satisfies p s ag Vv [by A (b Vv )]
(3) L satisfies p < [ag A (a; vV )] V [by A (by V )]
(4) L satisfies p < ag Vb v c

Proof. Clearly (3) implies (2) and (2) implies (4). Moreover all imply L is

modular. To obtain (2) implies (3), use the symmetry of p to deduce

P (ag vV [by A (byve)l) A (byV [a; A (a v )])
= [aO A (a1 v g)] v [bO A (b1 v ¢)] after some calculations using the
modular law.
(4) implies (1) is a recent result of Doug Pickering [29]. If a and b are

centrally perspective then (4) gives us

)< a Vb Ve.

(ag V bg) A (a; v D 0 1

1

Joining both sides with a4, V b and then meeting with ¢ produces

0 1 2

< A v <
c, £ ¢, [cO Ve Vi(e, A (ao b,))] e,

Easy modular calculations and central perspectivity show that

c, Ve

0 v (c2 A (ao v bl)) =cy Ve Vv [ao A (bO v bl)] v [bO A (aO v al)] =c Ve

1 1 0 1

Finally we show that for modular lattices, the identity in Theorem 7 is merely

an adjustment of (2):

pSaOV[bO/\ (bIVE)]
1ff ag Vp<agVibgr b VI Va)a (Ve
iff by A [ag Vopy,] S ap VIby A (by vV [(ay v a) A (cp v eI
. v bl) A (a2 v b2)
iff bg A [ag V pr,] € by A (b Vv [(ay v a) A (e vV e)])
1ff bo A [ag vV P12l < by VvV [(gp v a)) A (ep vV )]
1f b vV [by A (e vp )]l Sb v va)a (e Vel
1ff (a; va)ib, v [by A (ay v p )]} <ec

where P, = (a

o VeV [b1 A (aO v al)] .

We should note that Jénsson's form of the Arguesian identity has allowed Gratzer
and Lakser to produce an identity that holds in every complemented modular lattice,
and to provide other proofs of some of the above results., The reader should consult
[6435 p. 205-214] for these.

Finally, as Jdnsson has observed, we have Cartesian coordinates and not Descarte-
sian coordinates. This provides in the author's mind sufficient justification for the
appellation "Arguesian". The author's spelling of Desarguean (instead of Desarguesian)

has no justification save that it better translates into English usage the French
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pronunciation of Desargues.

4. FULL COORDINATIZATION RESULTS. The classical coordinatization theorem of
projective geometry states that every (finite dimensional) Desarguean projective
geometry is coordinatized by a division ring. In lattice theoretical language this
would become: every (finite dimensional) complemented, modular, algebraic lattice,

L , 1is isomorphic to L(KV) for some (finite dimensional) vector space V over a
division ring K . The extensions of this result that concern us will all impose a
finite dimensionality condition on the given lattice L . This condition is of course,

the existence of a spanning n-frame.

DEFINITION 1. A lattice L dis said to be of order n if L possesses a span-

ning n-frame.

An early restriction on the order of the (modular) lattice under consideration
was that n 2 4 . This restriction occurred since there exists non-Desarguean pro-
jective planes (ie. n = 3) and since every (finite-dimensional) projective geometry
of dimension 2 3 (ie. of order qua lattice, 2 4) was Desarguean (qua lattice,
Arguesian). When von Neumann obtained the following result, he assumed that L was
complemented. Freese noticed that von Neumann really did not use complementation -~ an
important observation for Freese's subsequent results. Artmann obtained another proof

of this result that latticizes the geometrical notion of special central collineation.

THEOREM 2 (von Neumann [161], Artmann [6]) . Let L be a modular lattice of

order n, for nz4 . If (xl, cees X z, t) 1i& a spamming n-frame, then

_]_’
(D; @, z, ® t) 18 a ring.

The companion theorem for Arguesian lattices was proved recently by the author

and Douglas Pickering.

THEOREM 3 (Day and Pickering [28]). Let L be an Arguesian lattice of order n
for nz23. If (xl, cees X

18 a ring.

_y» z» t) is a spanning n-frame, then (D; @, z, ®, t)

The major problems in the above proof were commutativity and associativity of
addition. These proofs made essential use of the multiplicative unit, t . Unless
alternative proofs are found, a counterexample to Jénsson's question concerning
Arguesian lattices and type I-representability may be obtainable by producing a
counterexample to these supposed alternative proofs.

The complete coordinatization theorems of von Neumann, Jénsson, Baer-Inaba and
Jénsson-Monk will be stated presently. They all state conditions when a modular
lattice of order n is isomorphic to a (sub) lattice of L(RRn) for suitable rings
R . The von Neumann and Baer-Inaba results for certain modular lattices of order

n 2 4 provide proofs that their lattices are indeed Arguesian. As we shall see these
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deep coordinatization theorems are not needed for that fact.

THEOREM 4 (Day and Pickering [28]). Let L be an Arguesian lattice of order
n+1 for nz22 and (x5 ..., X 5 2, t) a spanming (utl)-frame. The function
F on [0, h] defined by a e F(p) <Zff ha (zv (15 8)) < p is an (arbitrary) meet
preserving map from [0, h] into L(DDn) . If L also satisfies (h - UC) , then
F <s a lattice homomorphism. If also {h A (z v (1; ga)): a ¢ o™ separates elements
of [0, h]l , thenm F ie a lattice isomorphism onto a sublattice of L(DDn) eon-

taining all finitely generated submodules.

The condition (h - UC) is an Upper Complementability condition for hipvh =1

implies there exists q ¢ Ah with q £ p . It is a condition that holds in any
+1
L(RRn ) hence it is necessary for any full coordinatization result. It need not be
n+1l

true in our examples of the form L(RM ) , where it at least implies a type of self

projectivity condition.
We can now present the two main full coordinatization results.

THEOREM 5 (von Neumann [161], Jénsson [118]). ZEvery complemented modular (resp.
Arguesian) lattice of order n for n 2 4 (resp. n = 3) 1ig isomorphic to the lat-

tice I(RRH) of all finitely generated submodules of RRn for some regular ring R .

Outline of Proof. By Frink [51], every complemented modular lattice, L , 1is

a sublattice of a projective geometry. If n 2 4 , the dimension of this geometry
is greater than equal to 3. Therefore the geometry, qua lattice, and in particular
L is Arguesian. Thus Jénsson's result includes trivially(?) von Neumann's.

Given that L 1is complemented, the F: [0, h] — L(DDn) is a lattice embedding
and D 1is a regular ring. Again since L 1is complemented, every P ¢ L 1s of the
form q Vv (h A p) where g A h=0. This allows F to be extended to G:L+L(DD1+N)
as In von Neumann's Case II ([161]).

To present the Baer-Inaba, Jonsson-Monk result we must introduce some less famil-

iar terminology. A ring is said to be completely primary and uniserial if there is a
(two-sided) ideal, P, of R such that L(zR) = L(Rp) = Id(R) = (R = PO, P, P2,

.y Pk = {0}}. An element ¢ of a finite dimensional modular lattice L is called
a cycle if [0, ¢] is a chain. A dual cycle is defined dually. A modular lattice
L is called primary if it is finite dimensional, every element is the join of cycles
and the meet of dual cycles, and every interval that is not a chain contains at least
three atoms. One can easily deduce that a primary lattice of geometric dimension n
(see Jénsson-Monk [128]) is a primary lattice possessing a spanning n-frame of cycles

and conversely.

THEOREM 6 (Baer-Inaba [14], [113], Jénsson-Monk [128]). Every primary modular

(resp. Arguesian) lattice of order n for n 2 4 (resp. n z 3) is isomorphic to
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the lattice Z(RRn) of all finitely gemerated submodules of RRn for some completely

primary and unisertal ring R .

Outline of Proof. By Monk [140], every (modular) primary lattice of order n 2 4

is Arguesian. Therefore Jdnsson-Monk subsumes Baer—Inaba. Again, primary Arguesian
lattices allow the full effect of Theorem 4, so F: [0, h] -+ L(DDn) is a lattice
embedding. Since L is primary, D becomes a completely primary and uniserial ring.
F 1is extended to G: L -+ L(DDl+n) by an intricate examination of the properties of

cycles. The reader should consult [128] for the (many) details.

It would be of some interest if a common proof could be provided for both the
above theorems. This would require the right common generalization of von Neumann
regular and completely primary-uniserial rings. This is at present unknown. One
seemingly crucial common fact is that for every n and every a ¢ R" , Ra 1is a mem-
ber of the sublattice of L(RRn) generated by the canonical n-frame and its coordi-

natizing diagonal.
PROBLEM. For which rings, R , is the above always true?

5. THE ARITHMETIC OF FRAMES. There are many properties of the models L(RRn)
and L(RMP) which can be completely interpretted in the general frame model. In
this section we will develop some of the more useful results.

In both EXAMPLE A and EXAMPLE B, n = 3 , we have that the interval [0, T] 1is
precisely the left ideals (resp. submodules) of the ring R (resp. left module M) .
In general, if (x, ¥, z, t) 1s a spanning 3-frame in a modular lattice L (with
h=xVy,w=haA (zvVrt), Ah and D as before) we can associate with each pe[O0,t],

a "left ideal" of D .
DEFINITION. For p ¢ [0, t] ,
I(p) ={aeD:t A (zVa)c<pl.

Easy calculations show that I(p) 1is close to being a true left ideal (if addi-

tion were properly behaved).

LEMMA. For all p ¢ [0, t], I(p) satisfies
(1) z ¢ I(p)
(2) a, b ¢ I(p) implies aArb e I(p)
(3) aeD and b e I(p) imply a @b ¢ I(p) .

Since the map p > I(p) 1is not necessarily well behaved, it is sometimes
better to consider the elements of [0, t] as the "left ideals' or "submodules'.
In this case, if P, Q <M, then L™, L@QY) < L™ with PP A Q" = ® A Q"

and P" v Qn = (P v Q)n . This process is completely generalized.
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LEMMA.

vzVop)

The map ": [0, t] - L defined by

is a lattice embedding with 0=

0, t] .

Since (xVyVvp)A (xVyVa)

yvpArg,

GvzvplVviixa (yVvzvqg)l

try, that "~ preserves joins. Since t A

and

t=1
EXAMPLE B (n = 3). For
Now L(U3) < L(M3®) and L(Q1/U)3)

have their own canonical n-frames.

embeds

we have, using {x, y, z}-symmetry, that
p=1IxA GGvzvplviya xvzvplVviza xVyVop]
xAyvzvpVvag,

follows by the frame properties of

EVvyvp)a xvazvp A
1

P
0,

and t A p =p for all

xVyVvipAaxvyvag) Aat] =
PreservesS meets,
and that
we have, again by

is an embedding. That

p=p,"
x, v, z, t) .

U<M and P={(x, x, x): x c U} < T, P =03,

into [U3, M3] . Moreover both lat-

LEMMA. For p ¢ [0, t] , and p as previously defined,

pVv (x, v, z, t) 1is a 3-frame spanning [p, 1]

PA(x,V, z, t) 1is a 3-frame spanning [0, P] .

By EXAMPLE B (n = 3), we have D(U3) ¥ End(U) and D((M/U)3) = End M/U) .
Moreover there are easy to find examples in module theory for which there is little
relation between these endomorphism rings and the original one End(M) # DM3) . If

and U is ¢-invariant (i.e. [U]¢<cU) , then ¢]U ¢ End(U) . Moreover

¢ ¢ End (M)

U being ¢~invariant is also the criterion for the completion (commutatively of

cours

(1)
(2)
(3)
4

v (y
is eq

Similarly (2) is equivalent to

(2) and (3) are equivalent.

e) of the diagram
M ¢ —> M
K K
V7] Q— N > M/U
LEMMA. For p e [0, t] and a ¢ D, the following are equivalent:

a AP eD[0, Bl
aVv peD[f, 1]

<a, w, p> 1s a distributive sublattice of L

tA(zVvp®a)=<p.

Proof. Easy calculations give us that w A p = [(z A DP) Vv (£t AP)] A [(xAP)V
AB)] and wVvp=1[(zVvDP)V (cVvDP)]AalxVEVFTVDHI Therefore (1)

(@ap) vwap)=1(zArp)V

uivalent to

(@vp)ar (wvp)=p=(arwVvDH,.

By direct calculation,

(t

AP)=(zve)ap=(avw AD.
Therefore (1),

tA(zvpea) = tAa(zv(ar(wvp))) and
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t A(zvp®a)<p holds if and only if a A (wV p) £z V p . Since (3) is also

equivalent to a A (wV $) < p , we obtain that (3) is equivalent with (4).

DEFINITION. For a ¢ D and p ¢ [0, t] , we say that a 1ifts modulo p 1if

one of the above equivalent conditions hold.

LEMMA. For ae¢D and p e [0, t] , if a 1lifts modulo p then so does

t®a and a @t .

Proof, That b 1ifts modulo p is easily shown to be equivalent to wA(pvb) <
<zVp, and also to bA (wV p)<zVp. Thereforeif wa (pVvas<zvp,

we compute

wA(Vveea)=wAr VvV [{yve)a@Vayll)

AV [yVve)a(pvwy aG)])
Alyveviiza@vwy [Fvaz)axyvaD])
Aevyviixayvzy [@xva)a@vwDD
ev[yvx)avzylaa (VvwD])

A Vv wa(yvzviiaa(pvw]
A(zVv[anan(pVvw])

A (z V p) by assumption.

L}
€ £ € € € € £ %
>

COROLLARY. If a 1ifts modulo p then:
(1) in D[B, 1], (avp) @ (t V) =(a®t) VD
(2) in D[O’ ﬁ]) (anp)e (t A ﬁ) =(ae®t) Ab.

We now are ready to examine particular p ¢ [0, t] that are "naturally' defined
by the coordinatizing diagonal. For any a € D, p = pr(a) =t A (z v a) , the
"principal ideal generated by a" or q = amn(a) =t A (wV (z A a)) are excellent

choices and the reader should be able to check the following results.

LEMMA, For a, b €D
(1) a 1lifts modulo pr(b) 1iff pr(b @ a) < pr(a)
(2) a 1lifts modulo ann(b) 1iff ann(b) < ann(a @ b)
(3) pr(a) £ pr(d) iff wv (a/b) =z Vv t
(4) ann(a) € ann(b) 1iff w A (a\b) =0 .

Specializing even further, we can interpret the natural numbers in D via

0=z

(m+ 1) t & (n)

i

and define the characteristic of a 3-frame by:

DEFINITION. A 3-frame (x, y, z, t) in a modular lattice L 1s said to have
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characteristic q for gqe¢ N if q =2z .

Our previous lemmata now produce the following important results.

THEOREM. Let L be a modular lattice with spamning 3-frame (x, y, z, t) and
let q, r eIN ; then:
(1) g 1ifte modulo pr(z)
(8) pr(x) v (x, y, z, t) 18 a 3-frame of characteristic r

(3) afin(r) A (x, ¥, z, t) s a 3-frame of characteristic r .

We note that everything above works for all n-~frames, n 2 3 . We state the
relevant results found in their full generality in Herrmann-Huhn [94] and Freese [46].

THEOREM. Let x = (Xl’ sees X

l) be an n-frame in a modular lattice L ,
spanning the interval [u, v] . Then for y € Ln+

Louith wsy sx forall i,
the following are equivalent.

(1) 'y 1is an.n-frame

(2) §i=§j for all 1 # j

(3) For some 1 and all j = i: Vi =%y A (xij v yi)

(4) For all 1= j, vy = % A (Xij
Moreover if the above hold and w =
sparming the interval [w, v] .

, then y=wAx, and wV x 18 an n-frame

If n=3 and L 1is not Arguesian then our definition of characteristic seems
to depend on the orientation of our 3-frame (although no counter-example is known to
the author). If L is Arguesian or n 2 4 , then for any permutation = ¢ Sym(nt+l),
X = (Xl’ cees X
has characteristic q .

) has characteristic gq if and only if (x)7 = (Xlﬂ’ P X(n+l)w)

Our final comment in this section concerns our definition of an n—frame. von

Neumann defined a spanning homogeneous n—frame to be a family (al, ceey @ 3 C

n’ ij’
iz j=1, ..., n) such that 1 =\/ai, 0= a; A ;X; aj, cij = Cji’ a; v aj =a, v Cij’
a; A cij =0, and Cik < (ai v ak) A (cij v Cjk) . Our definition of an n-frame is

exactly Huhn's definition of an (n-1)-diamond. Herrmann and Huhn in [95] showed that

these concepts were indeed definitionally equivalent.

THEOREM. If (al, cres B3 Cij’ iz j=1, ..., n) 28 a von Neumann homogeneous
spanning n-frame in a modular lattice L , then (al, Clgs trtr Cuy o an) is a
Huln spanning (n-1)-diamond. Conversely if (xl, cees xn+1) 18 a Huhn spanning

(n-1) diamond, then (al, cees B3 Cij; tzj=1, ..., n) g von Neumann homogeneous.
sparming n-frame where

a;= Vigs k=) A Vg 3>1),4=1, .oy

i
= < 1 —
Ci,i+l LI for 1 <4i<n-1

)

and for 1 < j, ¢y = Cji = (ai v aj) A (Ci,i+l Vo oi.. Vv Cj—l,j
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Huhn's own results (as well as others) indicate that his concept is more manage-
able and provides better geometric insight into most applications. We have therefore

adopted his concept and von Neumann's numbering in our definition of an n-frame.

6. APPLICATIONS TO THE THEORY OF MODULAR LATTICES. In this section we will try
to outline some of the applications of n-frames and coordinatizations to the equation-
al theory of modular lattices. This outline will unfortunately not be exhaustive
since, for no other reason, research is continuing. Our main attentions will be

focussed on the works of Freese, Herrmann, and Huhn.

One of the principal tools used for these results is the projectivity (in modular

lattices) of certain partial lattices. We first formulate the general notioms.

DEFINITION. Let K be a variety of algebras. A configuration in K 1is a pair

(X, R) where R ¢ FK(X) X FK(X) . An algebra A ¢ K has the configuration (X, R)
by means of a: X + A if R £ Ker « where o is the unique extension of a ,

o FK(X) + A . If there is no chance of confusion we will sometimes say Y £ A is
an (X, R) configuration if the a: X + A such that Y = Im o 1is obvious. Finally,

a configuration (X, R) in K 1is called a projective configuration in K if

FK(X; R), the'K—algebra freely generated by the presentation (X; R) , is a projec-
tive algebra in K .

An easy universal algebraic fact is the following:

LEMMA., Let (X, R) be a configuration in a variety K ; then the following
are equivalent:
(1) (X, R) 1is a projective configuration in K .
(2) The canonical op: FK(X) +> FK(X; R) splits.
(3) There exists polynomials (p,: x € X) in Fp(X) such that for all A ¢ K and
at X > A, A has (X, R) by means of o if and only if for all x ¢ X a(x) = u(px).
(4) If o: X+ A gives (X, R) in A and f: B »> A 1is a surjective homomorphism

then there exists g: X - B giving (X, R) in B with f o 8 =a

Since the only configurations (in Mod) we have seen so far are the notions of an
n-frame and of an n-frame of characteristic ¢ , the next result should not be sur-

prising.

THEOREM (Huhn [102] and Freese [46]). An n-frame (resp. an n-frame of charac-

teristic q) 18 a projective configuration in Mod.

Proof. We exhibit the polynomials in FM(n + 1) as required by the last lemma.

For free variables x veey X define:

1°? n+l’

v= NV x)

i tj#2i ]



i j#i'k#i,j

u=v( (\/ %))

Py (uv Xi) AV =1uV (xi Av) .

To obtain an n-frame of characteristic q (possibly orientated if n = 3), we first
obtain an n-frame. By orientating (w.f.o.g. if n 2 4) this frame as (Xl’ ey
X 15 Z, t) and for p = pr(q) < t construct PV (Xl’ cees X152 t) as the

required frame of characteristic q .

Our second important (projective) configuration involves the Hall-Dilworth
gluing of modular lattices. This notion's importance has been demonstrated by Hall-
Dilworth in producing a modular lattice not embeddable into a complemented modular
lattice and by Jomsson first by providing a classification of Arguesian lattices of
length n £ 4 , [119], and secondly by finding an Arguesian lattice that was not
representable as a lattice of subgroups of an Abelian group, [121]. It was Freese
in [47] and [48] who applied Hall-Dilworth to frames and by doing so, showed the

word problem for FM(n), n 2z 5 to be unsolvable.

DEFINITION, Let x = (Xl’ ey ) be an n-frame in a modular lattice L

X
n+1l
spanning the interval [Ox’ lx] . For T <{l, 2, ..., n+ 1} we write

X =\VQxi: ie I)
§I =\Vij: j % I) .

For I ¢{l, 2, ..., n+ 1}, the lower reduced frame determined by I is {xi:ieI}

U {XI A §I} and the upper reduced frame determined by I is {xj Vox: g ¢ 1} .

From our choice of words, the next lemma should be obvious.

LEMMA., If x = (Xl’ vees X is an n-frame in a modular lattice L , and

o
Ic{l, ....,n+1} with |I| = k, then the lower (resp. upper) reduced frame

determined by I is a frame of order k (resp. n - k) spanning the interval
[Ox’ xI] (resp. [xI, 1x] .

We hasten to note that this lemma requires a modified definition of a k-frame
for k=0, 1. The obvious modifications are that a O-frame is a point, and a 1-

frame is the two-element lattice.

DEFINITION. The k-dimensional gluing of an n—frame over an n-frame is the con-

figuration in Mod consisting of:

(1) An n-frame x and an m-frame y .

(2) Sets Ic¢{l,2, ...,n+1} and Jc{l, 2, ..., m+ 1} with |I| =n -k
and |J| =k .

(3) lX v 0Z =y; and 1X A 0y =X .
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(4) Under the transposition [xI, 1x]\\»[0y, yJ] , the upper reduced frame deter-

mined by I maps onto the lower reduced frame determined by J .

Obviously k < min{n, m} and if k 2 0 , we may assume that J = {1, 2, ..., k}
and I ={k+2, ..., n+ 1} . Some easy diagrams occur when k, m, and n are

small

The following result was proven by Freese [47], for n=m =4 and k =2 and

by the author for m=n =%k + 1, [25] and [26].

THEOREM. The k-dimensional gluing of an m-frame over an n-frame 1s a projective
configuration in Mod. Moreover the n and m-frames may be given arbitrary charac-

teristics.

Proof (Sketch). Let ¢: A »> B be a surjective homomorphism in Mod and let
(x, y, I, J) be a k-dimensional gluing of the n-frame y over the n-frame x in
B . Since the case where k = 0 1is trivial, we assume k 2 1, I = {k + 2, ..., ntl},

J=A{1, ..., k} and
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Since n-frames are projective configurations, there is an n-frame u in A

with (w¢ =x , and an m-frame y din u, with (¥)¢ =b

I =2
Now consider Zy S UL AV, e, Zy =y oA Vi Zk+l= Uty A v, A Vi Zp =
= . = . < < i = [N
Uppgs v > zZ %W _We have OE zg Sug, 4 1, , n+ 1 and therefore
u' = (z1 A Z, eees 2o A Zn+l) is an n-frame with the properties:

1) @We =x
(2) wjsv, i=1, ...,k

i
: -

3) U < VAV

(4) ui < Ov’ i=k+1, ..., n+1 and

(5) lu' < vy

By letting u =u we now have two pre-image frames that satisfy the necessary

order relations.

In order to fix the joins, let v) = 0_ Vv u, for i=1, ..., k+ 1 . These
i v i’

v} form a "sub" frame of the restricted frame (vl, cees V A ;J) and this can

k* Vg

be extended to a "sub"frame y' = (v{, cees VI, of v with (v')¢ =y .

ey V)
mt1
In order to fix the required meets, we could look at the dual lattices and note
that the dual of a k-dimensional gluing of an m-frame over an n—frame is a k-dimen-

sional gluing of an n-frame over an m-frame. Alternatively we consider the ~-element

generated from u by p = Uy A 0v . This is
= i i i
P=lyn 0 ngt (ul Viug voees Vg Voup )
where ui = u A 0v . The n-frame P v u together with the (new) y have all the

desired properties.N

The addition of characteristics is left to the reader. He or she may consult
Freese [46, Theorem 2.1] on how to do it.

The importance of projective configurations lies in the following facts. Let
(X, R) be a projective configuration in a variety K and let V be a subvariety
of K. If wv: FK(X) >> FV(X) is the canonical surjection then we have the commu-

tative diagram:

WWR)»JL—»%my—J—ﬁ>WmR)
f v f
' v v
. u p! .
F,(X; R) Fy,(X) > F,(X; R)

with p o yu = ident and p' o u' = ident . For any p, q € FK(X; R) we then obtain
that V satisfies the equation (u(p), u{(q)) if and only if all models of (X, R)
in V satisfy the (extra) relation (u(p), u(q)) . [That is: for all B ¢ V and
all (X; R) configurations B: X = B, 8(u(p)) = B(u(q)) .]
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Now Herrmann and Huhn [94] have shown that an n-frame (n 2 3), x , in a modu-

lar lattice is either trivial [x =x_= ... =X ] or non-trivial [x, # x, for
—_— 1 2 n+1 —_— i 3
all i = j] . From this one can derive that for k > 1 the k-dimensional gluing of

an m-frame, y , over an n-frame x (with or without specified characteristics) can

be really trivial [x1 = . = X =y, == ym+1] , essentially trivial [x1 =
= = = = — i t i i
v Xn+l < y1 PN ym+l] or non-trivial [all x,'s are pairwise distinct and

all yj's are pairwise distinct]. By judicious use of p, q ¢ FK(x; R) , the fol-

lowing results are obtained.

THEOREM (Huhn [103], Bergman [17]). For amy n 2 1 the class of all modular
lattices not containing a (non~trivial) (n+l)-frame is an equational class of modular

lattices. Two equivalent defining equations are:

l,n l,n
(1) n-distributivity: x4 V y. = V &+ Vy,)
i "1 i jzi J
l,n+l 1,n+1 l,n+1 1,n+l 1,nt+l
2 A (Vzxp=VY (A CV x)
i j=i i j=1i k=i,j

This result provides dimension discriminating equations for projective geometries

in that:

COROLLARY (Huhn [103]). A projective geometry G = (P, L, I) 1is of dimension

£n~1 if and only if L(G) is n-distributive.

THEOREM. For k 2 1, n, m 2 2 , the class of all modular lattices containing
at most essentially trivial k-dimensional gluings of an m-frame over an n-frame is

an equational class.

In [25], the case where n =m = k + 1 was studied and a rather complicated
explicit form was given for the so called n-gluing dimension equation, (GDn)

These equations also provided a dimension discriminating system of varieties
that are finer than Huhn's n-distributivity equations. In fact the subdirectly
irreducible algebras of maximal possible order in such a variety are, if they are
generated by their frame and coordinatizing diagonal, projective geometries, For
these results the reader should consult [25].

More importantly, there are the two applications of Freese in [47] and [48].

THEOREM (Freese [47]). The variety of all modular lattices is not generated

by its finite members.

Proof (Sketch). Take k =2 , m=n =4 and let x be of characteristic p
and y of characteristic gq for distinct primes p and q . We examine models of

this projective configuration in K = HSP(Mod ). Since the configuration is pro-

fin
jective we need only examine models that are subdirect products of finite modular

lattices hence only finite models. Now n =m > 4 will produce two finite rings of
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characteristic p and q which because of the two-dimensional overlap must have the
same cardinality. Therefore the only models of this configuration are (essentially)

trivial and we have an equation satisfied by all finite modular lattices.

THEOREM (Freese [48]). The word problem for TM(n) , n 2 5 <s recursively

unsolvable.

Proof (Sketch). Here Freese again took a special 2-dimensional gluing of 4-
frames, the lower of which contained a coded version of a (multiplicative) finitely
presented group with an unsolvable word problem. The projectivity of this configura-
tion allowed him to obtain a copy of this configuration in a free modular lattice,

and an examination of the necessary generators showed that 5 sufficed.

Recently Herrmann has extended both of these results, After characterizing the
free modular lattice generated by an n-frame for n 2 4 , he applied this to obtain

the following extremely important result.

THEOREM (Herrmann [91]). An equational class of modular lattices that contains
all rational projective geometries, L@y , camot be both finitely based and gen-

erated by its finite dimensional members,

COROLLARY. Modular lattices and Arguesian lattices are not generated by their
finite dimensional members,

In a very recent preprint Herrmann, [93], has also replaced 5 by 4 in Freese's
second main result. He used another projective configuration, that of a "skew-frame
of type (4, 3) and weak characteristic 3 x 3" . His main theorem is then that

the word problem for FM(n), m = 4 is recursively unsolvable.

Department of Mathematical Sciences
Lakehead University
Thunder Bay, Ontario

Canada P7B 5El
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SUBDIRECTLY IRREDUCIBLE ALGEBRAS

IN MODULAR VARIETIES

Ralph Freese

In a distributive variety generated by a single finite algebra
A, every subdirectly irreducible algebra lies in HS(A) by Jénsson's
Theorem. In this paper we define the concept of similarity between
subdirectly irreducible algebras and show that if A is finite and
V(a) is modular then every subdirectly irreducible algebra in V(A)
is similar to one in HS(A). The monolitth u of a subdirectly
irreducible algebra B 1is the unique atom of Con(B). If u 1is

nonabelian (definitions below) then the similarity class of B

contains only B. Suppose Y 1s abelian and let o be the
annthilator of 1y (the largest congruence with [a,u] = 0). Then
each pu-block is in a natural way an abelian group. Moreover, by a

result of Gumm [5], H-blocks which lie in the same a -block determine

isomorphic groups. Roughly, B is similar to B’ (with abelian
monolith p' and annihilator a') if B/a ¥ B'/a', the abelian
groups inside of corresponding o and o' blocks are isomorphic, and

a certain natural action of B/a on these groups is preserved under
these isomorphisms. The correspénding concept for groups is given in [8].
In the first section we review those parts of the commutator
theory which we will need. The second section gives a useful lattice
theoretic characterization of similarity and uses it to prove the main

result, In the third section we investigate the relation between
similarity and the Gumm-Herrmann concept of isotopy. We also show that
if 0 1is a minimal abelian congruence then there is a division ring
D such that each 6-block is a vector space over D and the unary
algebraic functions of the algebra act densely on these vector spaces.
In particular if A 1is finite and 6 1is a minimal abelian congruence
then each block has prime power order for a fixed prime. The fifth
section gives another characterization of similarity.

The author would like to thank Ralph McKenzie for several helpful

comments and the NSF for support.
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1. PRELIMINARIES. We let V denote a modular variety; i.e., a
variety of algebras all of whose congruence lattices are modular. We
use + and juxtaposition for the lattice operations. The congruence
lattices of members of V have a third operation, the commutator,
denote [a,B] (see [4] or [5] for a detailed development). The basic

properties are
[a,B] = aB
[a,8] = [B,a]
[0,V 1 = Vi8]

Moreover if f 1is a homomorphism from A onto B with kernel 6

then for a,B € Con(A)
[0,8] + 6 = £ S[£(a+0),6(8+6)].

Using the complete additivity, we define a residuation operation
(v :B), a,B € Con(A) to be the largest 6 with [6,B] = a.
The commutator can be defined by the following term condition:

[a,B] is the least congruence 7Yy such that if t 1is an n+m-ary

term gl,gz € An, hl,hz € A™ and ai o ai, i=1,...,n and
2 2
b? [ bj’ j=1,...,m, and t(gl,kl) Y t(il,kz) then t(g{k})"{t(i,hzy

By a result of Herrmann and Gumm V has a ternary term d(x,y,z)

satisfying
d(x,%x,2) = z
d(x.z,z)[a,0]x if x o z

([4] or [5]). If a € A € V and © € Con(A) we let a/® denote the
block of © containing a. If 6 dis an abelian congruence, i.e.,
[6,86] = 0, then the operations x + y = d(x,a,y), -x = d(a,x,a) for
X,y € a/6 make a/® into an abelian group with a as null element.

We also require a useful result of Gumm [5].

THEOREM 1.1. Let o =2 B <n Con(A). The following are necessary
and suffieient conditions in order that [a,B] = 0. For any term
function s(xl,...,xn) and elements X, R vy O 25 i=1,...,n,
we have d(s(x),s(y),s(g)) = s(d(x;,y1527),...,d(x 5y 52 ), and
x By implies d(x,y,y) = x.

As a corollary to this theorem note that if 7y 1is abelian Y

permutes with all congruences. Indeed, since [y,y] = o, if
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a Y b themn a = d(a,b,b). Hence if a Y b 6 ¢ then
a = d(a,b,b) 8 d(a,b,c) y d(a,a,c) = c.

If a > B8 and Y =2 8 1in a lattice we write a/f x y/8 (and
also vy/8 ~ afB) if o = B + y and & = By. We say a/B and Y/S§
are projective if they can be connected by a sequence of such

transpositions.

2. SIMILARITY. Let V be a modular variety, A € V, a,a' € A,
and © an abelian congruence on A. Let Hom(6,a,a’') be the set of

all functions g from a/8 to a'/® which have the form

(1) g(x) = f(x,a,a';c ,cn) x € a/b

1000

where f is a term such that V satisfies the identity

(2) £(v,v,v'5y 505y ) =V

This definition makes it appear that Hom(6,a,a') depends on
V as well as A. To see that it does not, let Clser+sCy € A and
suppose h 1is a term such that

2" h(a,a,a';cl,...,cn) = a',
Let f(u,v,v';yl,...,yn) =d(h(u,v,v';yl,...,yn),h(v,v,v';yl,...,yn),vﬂ
Clearly V satisfies (2) for this f, and the properties of d
give that f(x,a,a';cl,...,cn) = h(x,a,a';cl,...,cn) for all
X € a/®. ©Notice that this shows that Hom(8,a,a') <s simply the
set of restrictions to al/® of unary algebraie functions which map
a to a'

Let o = (0:8) be the annihilator of 6. The 8,0-term
condition tells us g 1s unchanged if we replace each ¢y with di
provided ¢, o di’ i=1,...,n (for x € a/®, of course). Thus

i
we may think of ¢y in (1) as an element of Afa. We write

- - /
(3) g, (® f(x,a,a';¢c /a,...,c /o) x ¢ a/g.

We have added the subscripts a and a' to emphasize the domain

and range of g.
Since ©6 1is abelian, a/® 1is an abelian group with a as
zero element and x + y = d(x,a,y). We denote this group M(6,a).
By Theorem 1.1 each g ¢ Hom(8;a,a') 1is a group homomorphism of
M(6,a) to M(B,a').
Let B be another algebra in V with abelian congruence Y and

and let B = (0:y). Then we define 6 in A to be sgimilar to
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in B 1if several things occur. First there is an isomorphism

(4) o : Ala »>> B/B.
Moreover, for each a €A and b € B such that o(a/a) = b/B there

is an isomorphism

(5) Tap ¢ M(8,a) »>» M(Y,b)

satisfying: if a' € A and b' € B and o(a'/a) = b'/B and 8.at
is as in (3) then

(6) Ta'b'gaa'(x) (x) for x € a/®

o T
EpbtTab

where is defined by

g:b ]
(7)) ghp (X)) = £(x,b,b'50(c /o), ... ,0(c_[a)).
Roughly this says that A/0 1is isomorphic to B/B wvia & and
that the group determined by a 6-block, M(8,a) 1is isomorphic to the
group M(Y,b) provided a and b correspond under o. Moreover, (3)
defines an "action'" between the 6-blocks. Condition (6) says that the
isomorphism between M(86,a) and M(Y,b) preserves this action.

Now suppose A and B are subdirectly irreducible with monoliths

¥ and Vv, respectively. Let o = (0:u) and B (0:v). Ve say

that A is s<milar to B and write A ~ B if A * B or both u and

Vv are abelian and p in A dis similar to v in B, as defined above.
The next theorem gives a useful characterization of similarity. If ©

is a completely meet irreducible congruence we let 6% denote its

upper cover.

THEOREM 2.1. Let A and B be subdirectly irreducible algebras
in V. Then A ~ B <f and only <f there is an algebra C € V and
Ys8,n,e € Con(C), with n and € completely meet irreducible, such
that A ¥ C/n, B ¥ C/e, and n*/n = v/8 » €*/e. Moreover, if A ~ B
then such a C can be found among the subalgebras of A x B with n

and € as the projective kernels.

Proof. Let Y4 and v be the monoliths of A and B and o
and B their annihilators. Suppose C 1is as described in the theorem.
Tf we replace Y with y' =y + ne and § with &' = ne, we have
n*/n x Y'/S8' o~ E*/E. Thus we may assume Y = Nne and § = ne.
Moreover, by replacing C with /8, we may assume & = O.

Let ¢ = (n:n*) and ¢' = (¢:¢e*). Then [0,e¥] = [¢,e+7] =
[¢,e] + [6,Y] =€ + [d,n" ]y = € + ny = €. Hence by definition ¢ =< ¢'.
So by symmetry, ¢ = ¢'. It follows that A/a ¥ C/¢ ¥ B/R. There is

no loss of generality in assuming A = C/n and B = C/e. Now ¢ = n
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and ¢ 2 € so ¢ =2 n + €. Thus ¢ =2 n* unless 1n = €. Now if the
latter holds then, in fact, n = €, and hence A = B, since n > ¢
implies n = e* = Y, contradicting Yy + n = n* (which is a consequence
of the projectivity). Thus we may assume ¢ = n* and ¢ = g*, Hence
[n*,n*] =N, so pu 1is an abelian congruence on A, Similarly  1is
abelian. Now [y,y] £ [n*,n*][e*,e*] = ne = 0. So Yy 1is an abelian
congruence and hence permutes with all congruences of C. For a € C,
let M(n*/n,a) be the abelian group whose elements are {x/n : xn*al
(which is isomorphic to M(u,a/n)). For a € C define

T, G a/n* > a/e* as follows. If x € a/n* then since n* = n + vy =
n oy there is a y € C with a y y n x. 8Since ny = 0, vy is
unique. Set Ta(x) = y. Since v < €%, y € a/e*. Let

?a : M(m*/n,a) > M(¢*/e,a) be defined by ?a(x/n) =1, (x)/e. It is
easy to check that if x n x' then Ta(x) Y Ta(x'), from which it

follows that ?a is well-defined.

To see that ?a is a group homomorphism, suppose, for some
x,x' € a/n%*, Ta(x) =y and Ta(X') = y'. Then a y y n x and
ay y'nx'". This implies a = d(a,a,a) vy d(y,a,y') n d(x,a,x").

Hence Ta(d(x,a,x')) = d(y,a,y"'). Thus Ta(x-+x') = Ta(x) + Ta(X'),

and it follows that Ta preserves +. To see that Ta is one to one,
suppose Ta(x/n) = Ta(x'/n). Let y = Ta(X), y' = Ta(X'). Then we
have y € y' and a yynx and a y y' n x'. Hence y YNe y' so
y = y' and hence x 1n x'.

If y € a/e* then there is an x with a Y x € y. Clearly
a vy xn x, so ?a(x/ﬂ) = x/€ = y/e€. Thus ?a is onto.

Remark. This proof shows that in general, if we have a

projectivity o/B w yv/S8 and either J[a,a] = B8 or [y,Y] = 6§, then
the other one holds and in this case the groups M(o/B,a) and
M(Y/S8,a) are isomorphic. This may be thought of as a version of the

second isomorphism theorem.

Now suppose f is a term satisfying (2). Then

(8) 1 _.f(x,a,a’;¢) = f(1 x,a,a"58) x € a/n*

since a' = f(a,a,a';g) vy f(Tax,a,a',g) n f(x,a,a’';¢).

Now suppose a,b € C and a ¢ b. Define T,p ° a/n* » b/e* by

= * - N * *
Tab(X) d(Ta(x),a,b) for x € a/n™. Let Tap * M(n /n,a)-»ME? /e,b)
be defined by Tab(x/n) = Tab(x)/e. It is easy to see that T,p 1s

well-defined. By Gumm's result (see Proposition 7.2 of [4]) the map

z Hd(z,a,b) induces a group isomorphismof M(e*/e,a) onto M(e*/e,b). It follows
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that ?ab is an isomorphism of M(n*/n,a) onto M(e*/e,b). Suppose
now that f dis a term satisfying (2) and that a',b' € C with
a' ¢ b'. VNote [v,¢] = [n*,91[¢*,¢] = ne = 0. Hence by Theorem 1.1

and (8) we have for x € a/n*

£(1,, (®),b,b"50)

f(d(Ta(x),a,b),d(a,a,b),d(a',a',b');d(cl,cl,cl),...,d(cn,cn,cn))

d(f(Ta(x),a,a';g),f(a,a,a';g),f(b,b,b';g))

d(f(t, (®),a,a";0),a',b")

d(r_,f(x,a,a";0),a",b")

= Ta,b.f(x,a,a';g).

It follows that the isomorphism Tab has the desired properties
and thus A ~ B,

Conversely suppose A ~ B, The case A = B is easy to handle.
Thus we assume U and v are abelian and thus o 2 p and B = v.
Let D = A/fa and let h be the natural map A > D and let k : B > D
with kerk = 8. Define C = {(x,y) € A x B : h(x) = k(y)}. Let
Y € Con(C) be defined by (a,b) y (a',b') 4if a p a', b v b', and
Tab(a') = b'. Clearly Yy 1is reflexive. To see symmetry suppose
(a,b) v (a',b'). Let gaa.(x) = g(x) = d(a,x,a') and note
g € Hom(u,a,a') since a u a', g(a') = d(a,a',a') =a. Hence
by (6) Ta'b'gaa'(a') T BpprTy
d(b,b',b') = b, proving symmetry.

b(a'). Thus Ta,b,(a) = gbb.(b') =

Suppose (a,b) vy (a',b') Yy (a",b"). Then a, a', and a are
U related and b, b', and b" are Vv related. Also Tab(a') =b',

Ta,b,(a") = b", and Ta,b,(a) = b (by symmetry). Let ga,a(x) =

d(a,x,a'). It is easy to see that a" = ga.a(d(a,a",a')) and
b" = gb.b(d(b,b",b')). Thus
Tab(a") = Tabga'ad(a’a"’a')
By ipTarprd(@a”sat)
gb,bd(b,b",b')

b".

Suppose (a,b) y (a',b') and f(x;yl,...,yn) is a term. Then
(x,y) H’(f(x;cl,...,cn),f(y;dl,...,dn)) is a unary algebraic function

on C provided (ci,di) € C; 1i.e., h(ci) = k(di). As was pointed
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out earlier f(x;¢) € Hom(u,a,f(aj;¢)) and £f(y;d) € Hom(v,b,f(bj;d)).
Then by (6)

Tf(a,((\:‘)f(b;d)f(X;’%) = f(Tab(x) ;,(\1,)-

Now setting x = a'

we see that Yy Trespects the unary algebraic
funetions. Hence vy 1is a congruence.

Let n and ¢, be the kernels of the natural maps of C onto

A and C onto B. Suppose (a,b) yn (a',b'). Then a = a'; so
b' = Tab(a') = Tab(a) = b; amd thus +yn = 0. Clearly y = n* and
n < n* Hence N + y = n*. Thus n*/n x y/0. Similarly e*/e¢ % y/oO,

completing the proof.

The next theorem shows that any subdirectly irreducible algebra
in V with abelian monolith is similar to one whose monolith equals

its annihilator.

THEOREM 2.2. [Let B be a subdirectly irreducible member of V
with abelian monolith. Then there is a subdirectly irreducible
algebra B' € V with B ~B' gud (0:u'") =u' iy Con(B').

Proof. Let B(u) = {(ao,al) € B x B : ag, u al}, i.e., W
thought of as a subalgebra of B x B. if © € Con(B) 1let
6i € Con(B(n)), i = 0,1, be defined by (ao,al) 6i (bO,bl) if
a, © bi' Let n;s i = 0,1, be the kernels of the projection maps,
i,e., N, = Oi' Let o = (0:pu) € Con(B). It is easy to check that

= = i > = =
UO My and o o (since o = u) and nO + nl UO Ul. Let

A=A € Con(B(p)) Dbe the congruence generated by the set of pairs

u,0
Kx,x),(y,y)) : x o y}. If (a0 al) ao (b0 bl) then a, a bO. Hence

(a0 al) o (a0 ao) A (b0 bO) no (b0 bl). Thus Ng + A = Oy = 0

Similarly nl + A = ao = al. Suppose (a0 al) Aﬂnl (b0 bl). Then

a, =b and it follows from Theorem 4.11 (iv) of [4] a, [uw,al bO’

i.e., aO = bO. Thus Anl = 0 = Ano. These facts show

(€)) aO/A X n1/0 x uo/n0~

Let B' = B(u)/A. To see that B' 1is subdirectly irreducible we
need to show that A 1is completely meet irreducible. Suppose B > A
in Con(B(pu)) and that R # Ay = 0. Then B # ny since otherwise
> = = . = i . h
B = A + ny ao oy Hence Bnl 0 since nl > 0 by (9) Thus
[Buyl = [B8,n

= . = . th
0+-n1] = Ny + Bnl o Thus [a0+-8,u0] Ny By e

definition of o din Con(B) this means- R = %qs which implies

B =a a contradiction. Thus B' is subdirectly irreducible.

0’
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Since B(u)/n0 * B, the projectivity (9) and the previous theorem

imply B is similar to B'

COROLLARY 2.3. Suppose V = V(A) where A 1is finite. Then
every subdirectly irreducible algebra in V is similar to a finite

subdirectly irreducible algebra in V.

Proof. Let B € V be subdirectly irreducible. If the monolith
w of B is nonabelian, then B € HS(A) by the Generalized Jonsson
Theorem (see [2]). Thus by the last theorem we may assume (0 :U) = U.
So by the Generalized Jonsson Theorem B/u € HS(A). Hence
|B/u| = |A|. By Theorem 10.5 of [4] each p-block contains at most

|A| elements. Hence |B| = |A|2.

THEOREM 2.4. If A 1is finite then every subdirectly irreducible
algebra in V(A) s similar to a subdirectly irreducible algebra in
HS(A).

Proof. Let B € V(A) be subdirectly irreducible. By the above
corollary we may assume B is finite. Thus B ¥ C/6, for some

congruence 6, where C 1is a subdirect product of subdirectly

irreducible algebras Bgseveshp € HS(A). Let P P € Con(C)
be the projection kernels. Since C€C is finite we may assume that if
8s---»8 1 € Con(C) satisfy (1) 8 z/\ei (2) for each i there
is a j with 6i > nj’ then {no,...,nk_l} < {60,...,6m_1}. Now let
ni = jéﬁﬁj. If 6ni # 0, then we can replace n; with n, + 6ni,
violating the above. Thus 6ni = 0. Let 6% be the unique congruence
covering 6. Since 6 = ni would violate the condition above,

B* =8 + ni, so 6% + ni =0 + ni. Modularity now implies that

6*ni > 0. From this it follows easily that 8*/0 x 6*n£/0. If

. = 5} ' then 5} ! =0 ' . =0 a contradiction. Thus since
’
1 1 1 1 1

% %
6*ni > 0, ny + 8 ni = nz. Hence 67°/86 6*ni/0 b n?/ni. Thus we

have B ~ Ai for each 1.

3. ISOTOPY. Gumm and Herrmann called algebras A and B 1in
V isotopie if there is an algebra € € V with A x C * B x ¢ via
an isomorphism which commutes with the second projection (i.e., one
of the form (a,c) P’(b,c)). They showed that A 1is isotopic to B
if and only if there is a C € V a congruence B on A x C with
(A x C)/B*B and B a complement of the second projection kernel

N.. In this situation the congruence lattice of A X C must contain

1
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a homomorphic image of the following lattice.

Combining this lattice theoretic characterization with Theorem 2.1

we have the following.

THEOREM 3.1. Let A and B be subdirectly irreducible algebras
in V. If A 4is isotopic to B them A s similar to B. If A
and B are simple, them A 1g& isotopic to B 1If and only <f A 1is

similar to B.

4., MINIMAL ABELIAN CONGRUENCES. Now we examine the sets
Hom(6,a,a') for © an abelian congruence. We give Hom(6,a,a’) an
abelain group structure by defining g + h, for g,h € Hom(8,a,a’)
to be the function d(g(x),a',h(x)), x € a/6; - g is the function
d(a',g(x),a'), and the function x |+ a' is the zero. If we recall
that when x, vy, and 2z are all in the same 6-~block then
d(x,y,z) = x —y + z for an abelian group structure on this block,
it is easy to verify that Hom(6,a,a') 1is an abelian group. If
g € Hom(6,a,a'), h € Hom(B,a',a") then h o g 1is defined by
function composition. It is easy to see that both the left and right
distributive laws hold for this multiplication. 1In particular,
Hom(6,a,a) 1is a ring with 1.

Let a;, i € I, be a system of representatives for the
O6-classes. We combine the Hom(e,aj,ai) into a matrix ring Mat(8).
This consists of all I by I matrices whose (i,j)th entry lies in
Hom(e,aj,ai) and each column has only finitely many nonzero entries.
This is a ring under the usual matrix operations. Form the direct
sum abelian group ZiEIM(e,ai). This may be thought of as a Mat(6)
module (under matrix multiplication, where we think of ZM(e,ai) as
column vectors).

Now consider the case 6 > 0 (and 6 1is abelian). It follows
easily from Lemma 11 of [3] that XM(e,ai) is a simple Mat(9)
module. By Schur's Lemma the endomorphism ring of this module is a
division ring D and Jacobson Density Theorem says that Mat(8) acts
on ZM(e,ai) as a dense ring of linear transformation. Since Mat(9)

includes the transformation which leaves the ith component unchanged
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(for 1 fixed) and changes all other components to zero, the subgroup
M(e,ai) of ZM(e,aj) is a D-space. It follows that Hom(e,ai,ai)
is a dense ring of linear transformations on M(e,ai) and more
generally Hom(e,ai,aj) is a dense set of linear transformations
between M(e,ai) and M(e,aj).

Thus if © 1is a minimal abelian congruence then there is a
division ring D such that each 6-block is a vector space over D
and the hom sets act densely. Note when A is finite this says there
is a prime ©p such that each 6-block has a size pi with 1, but

not ©p, depending on the block.

5. ANOTHER CHARACTERIZATION OF SIMILARITY. In this section we
show that canonically associated with subdirectly irreducible algebra
A is another subdirectly irreducible algebra D(A) such that A v B
if and only if D(A) ¥ D(B). 1In fact D(A) is the algebra constructed
in the proof of Theorem 2.2. More precisely, if A is subdirectly
irreducible with monolith | and W 1is nonabelian, let D(A) = A.

If u 4is abelian and o = (0 : u) then set D(A) = A(p)/AU’a.
Theorem 2.2 contains the appropriate definitions and shows that
A v D(A) and that the monolith of D(A) 1is its own annihilator.
Also note from the definition of A {(z,x)/n : x € A} isg a

H,a’
subalgebra of D(A) which is a transversal for the monolith of D(A).

THEOREM 5.1. Let A and B be subdirectly irreducible algebras
in a modular variety. Then A ~ B 4if and only if D(A) = D(B).

~

Proof. If D(A)
Now suppose A v B. Then D(A) ~ D(B). Recall the definition

D(B) then A ~ D(A) ~ D(B) ~ B.

of ay and ay and that ay = 0 in Con A(u). Also note that

aO/A is the monolith of ©D(A). Thus D(A)/qu = A(u)/a,.. Hence,

p(4a)

since D(A) ~ D(B), there is an isomorphism o : A(u)/ao

0 o

B(VY/By»
where VvV is the monolith of B and B = (0:v). If (x,y)/A € D(A)
then (x,y) ao(x,x). Let o((x,x)/ao) = (u,v)/B0 = (u,u)/SO- Now
define p : D(A) - D(B) by

p((x,y)/A) ((x,y)/8)

T(x,x) /A (u,u) /T

where T is the congruence on B(v) corresponding to A on A(n),
i.e., T = V,B If (x,y) A (x',y') then, since oy = A,

(x,x) ao( ,x') thus xax'. But then by the definition of A,
(x,x)/8 = (x',x'")/A. It follows that p 1is well-defineéd. Similar
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arguments, combined with the fact that the Tt'

s are isomorphisms,
show that p is bijective.

To see that p 1is a homomorphism let f(xo,xl,...,xn) be a
term and let (XO,yO)/A,(cl,dl)/A,...,(cn,dn)/A be elements of
D(A). Then g((xo,yo)/A) = f((xo,yO/A),(cl,dl)/A),...,(cn,dn)/A)
is in Hom(aO/A,(xo,xo)/A,g((xo,xo)/A)). By the invariance described

in section 2,
8((xy,y ) /8) = E((x .y ) /8, (e e ) /b, oy (e ye)/8)

since (ci,di) ao(ci,ci). Let x = f(x .,cn) and

0°¢17""
y = f(yo,cl,...,cn); then f((xo,yo)/A,(cl,cl)/A,...,(cn,cn)/A) =
(x,y)/n = g((XO,yo)/A) and g((xo,xo)/A) = (x,x)/A. Hence if

0((X,X)/a0) = (u,u)/B0 and 0((x0,x0)/a0) = (uo,uo)/B0 then by (6)
pf((xo,yo)/A,(cl,dl)/A,.~~,(cn,dn)/A)

pg((xo,yo)/A)

TG, x) /8, (a0 /18 (xgx ) /8, Gy /6 oY o) /8D

o
g(uo,uo)/rxu,u)/rT(xo,xo)/A,(uo,uo)/F((XO’yO)/A)

870 ((x(,y) /)

£ (xysy ) 18,0((c e ) /ag), e ,0((e e )/a)).

Of course, in the last expression any element of 0((ci,ci)/a0) may
be used. Since p((ci,di)/A) € 0((ci,ci)/a0), these values may be

substituted, proving p is a homomorphism.
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A SURVEY OF VARIETIES OF LATTICE ORDERED GROUPS

W. Charles Holland

A lattice ordered group is both a group (which I will write multiplicatively)
and a lattice in which the group translations are assumed to preserve the lattice
operations: x(y v z)w = (xyw) V (xzw) and dually. Such structures form a
straightforward generalization of various structures encountered in analysis, such
as the real numbers, function algebras, and vector lattices. In this context, a
fruitful example to bear in mind is the group (under pointwise addition) and lattice
(under pointwise order) of all real-valued functions on some space. From another
standpoint, lattice ordered groups are closely connected with non-commutative
algebra because they arise as automorphism groups of chains. More precisely, if @
is any totally ordered set, then the group A(%) of all order-preserving permuta-
tions of Q becomes a lattice ordered group under the pointwise order. The main
theoremof [8] states that every lattice ordered group can be embedded in A(q) for
some totally ordered set Q.

Lattice ordered groups are of interest from the standpoint of universal algebra
as algebraic objects with two operations and a rich structure, and which are less
familiar than rings, though just as firmly based on classical mathematics. Much of
the standard background material on lattice ordered groups is contained in any one
of [13, [21, [5]; most of the material needed in this paper is also in [6].

By a variety of lattice ordered groups is meant the class defined by some set
of equations involving (universally quanitfied) variables and the group and lattice
operations. Besides the trivial varieties £ of all lattice ordered groups, and
E of the one-element lattice ordered groups, the most studied variety is the
abelian variety A defined by the equation xy = yx. More generally, any variety
of groups (defined by equations not involving the lattice operations) restricts to
a variety of lattice ordered groups, and many of these are quite interesting; for
example the lattice ordered groups which are nilpotent of class n have a fairly
simple structure which I will say more about later. A word of warning, however:
lattice ordered groups are always torsion free, so equations which force the
existence of elements of finite order will not be of much interest here. In a
similar fashion, one should consider varieties defined by equations not involving

the group operations. This turns out to be much less interesting because every
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lattice ordered group is a distributive lattice, and it is well-known that
distributive lattices form the smallest proper variety of lattice. Thus, an
equation involving only the lattice operations will either say nothing about a
lattice ordered group or will force it to be trivial. A more typical example of a
variety is the representable variety R defined by the equation

(X_l(y Vex)Aa (y_l ve)=e, where e 1is the identity element of the group. A
classical result of Lorenzen [13] shows that R 1is the variety generated by all
totally ordered groups, and consists of those lattice ordered groups which are
subdirect sums of totally ordered groups. Another variety which has received much
attention is the normal valued variety N defined by the law xy < y2x2 if

X,y 2 e. Although in this form the law is not an equation, it is easily seen to be
equivalent to the equation (x ve)y ve)lx v e)_z(y v e)-2 Ves=e.

Just as in any type of algebra, the intersection of any collection of varieties
(of lattice ordered groups) is a variety, so the set of all varieties is a complete
lattice V ordered by containment. This paper is a survey of results concerning
the structure of V.

Any lattice ordered group with more than one element contains an element
a > e. Such an element must generate a subgroup isomorphic (as a group and lattice)
to the integers Z. This makes it clear that the variety generated by Z is the
unique smallest proper variety of lattice ordered groups. Weinberg [21] proved the
much less obvious fact that this minimal variety is the abelian variety A. It is
interesting to paraphrase Weinberg's result in the following way. If the lattice
ordered group G satisfies the law xy = yx then G satisfies every law (except
those which would trivialize G).

Concerning the other end of V, J. Martinez who did much of the early work on
varieties of lattice ordered groups [141, [151, [16] observed that the normal
valued variety N 1s "very large." I believe hls observation simply was that XN
contains all the known varieties of interest. In [9] I was able to prove Martinez
ecorrect and to obtailn a sort of dual to Weinberg's result: N 1is the unique largest
(proper) variety. This can be stated in paraphrased form: 1if G satisfies any-
thing then G satisfies xy < y2x2 for x,y 2 e.

At this point it would be worthwhile to take a careful look at a lattice
ordered group which is not normal valued. Consider the lattice ordered group A(R)
of order-preserving permutations of the real line., Certalnly there are members
a,b e A(R) with a,b > e such that for the real integers 0,1,2,3,4,5,6, 0Oa = 3,
2a =4, 4a=5, Ob=1, 1b=2, and 3b = 6., Then Oab =6 > 5 = 0b%a?, so
that A(R) is not normal valued. The important point is that A(R) acts highly
transitively on RB. It can be shown in a similar fashion that any sufficiently
transitive subgroup of an ordered permutation group A(Q) fails to satisfy any
non-trivial equation. The detalls are in [9], MecCleary has shown [17] that if G

is a lattice ordered group which is not normal valued, then G contains a subgroup
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which acts highly transitively on an ordered set . It then follows from the
previous statements that a non-normal valued G cannot belong to any proper
variety, and so N is the largest proper variety.

Returning again to the bottom of V, since the abelian variety A is defined
by just one equation, it follows from general results in universal algebra that A
must have covers--varieties immediately larger than A. In fact, A cannot be the
intersection of any properly descending tower. It is still an open problem to find
all the covers of A, However, in [20] Scrimger discovered a large class of them,
For each integer n 2 2, there is a lattice ordered group Gn generated by
a,b > e such that (b_iabi) Aa=e if 1<1<n and b Tab" = a. Then Gn
generates the Scrimger variety Sn. For each prime p, Sp covers A, and for
different primes p and q, § and Sq are distinect. Moreover, none of the Gn
are representable, so 5p NR =A.

The representable variety R 1s not a cover of A; in fact as Hollister
showed [111, R contains all of the nilpotent varieties, which form an infinite
ascending chain., Nevertheless, R must contain a cover of A. In [18]1 Medvedev
discovered three representable covers of A. Let M+ be the totally ordered group
generated by a,b > e with a" < blab for all n (notation: a K b_lab). Let
ﬂ+ be the varilety generated by M Similarly, ™ is defined with a << bab_l.
Finally, ™ is the variety generated by the free nilpotent class 2 group on a,b
ordered lexicographically on aibj[a,b]k. Medvedev showed that each of m+, n,
and M 1is a cover of A and that any variety which contains a solvable non-abelian
group contains one of these three,

There is just one other known cover of A, 1In [3]1 T, Feil observed that there
would be another representable cover of A if there is a non-abelian totally
ordered group in which whenever e <K x <Ky, then x <K y_lxy. Recently, G.
Bergman (unpublished) has constructed such an order of a free group.

The set V of all varieties also has a semigroup structure related to
extension, If 1,0 € V, we define 1 +to be the set of all lattice ordered groups
G such that G has a homomorphic image G €N with corresponding kernel N € U,
There is an equivalent way to view the product u®. In [10] it was established that
for each variety U and lattice ordered group G, there 1s a unique largest convex
subgroup sublattice 1(G) of G which belongs to 1. The subobject "(G) is
also normal and is thought of as the HU-radical of G. Then G € UM 1if and only if
(G/m(G)) e v,

What are the idempotents » = »2 of the semigroup V? These are the varietles
which are closed under extension. Two obvious examples are E and £. A less
obvious example 1s N [16]1. Since any non-trivial variety contains A, any non-

trivial ildempotent must contain AA = AZ,A3,...,An, and hence \/ A", In [71 it
n

was shown that \/ A" = M. Thus, there are no idempotents other than £, N, and
n
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£. This makes the following notion of dimension useful. For a variety ¥»., we say

dn® =n if A"cH pur AN

variety has a positive dimension. In [7], we showed that dim() = dim )1 + dim »

&Y. Then, except for E, N, and £, every

and dim(ll Vv ¥) = max(dim U,dim ¥). As a consequence, if 11 and ¥» are different
from N, then W #N and UV ®» # N. Thus, M is irreducible (in the semigroup
V). There are also irreducible varieties of every dimension. From the homomorphism
property of dim it follows that every variety (different from E, ¥ or £) is
the product of irreducible varieties. In [7]1, we showed that the varieties
different from E, N, or £ form a free semigroup on the irreducible varieties.

Since there are only a countable number of equations, the number of varieties

can be no more than the number of subsets of this countable set, that is 2‘%. The
question of whether this upper bound is achieved remained open until Kopytov and

Medvedev [121 modified an argument of Olshansky (for varieties of groups) to show
there are 2 0 varieties of lattice ordered groups. Reilly [19] found an anti-

chain of ZHO varieties, which shows that V is very "broad." And Feil [4] found
a chain of varieties isomorphic to the chain of real numbers, showing that V is
also very "tall."

It is fairly easy to give a description of Feil's varieties. let p,q be

positive integers with 0 < p,q <1. Let [Ca,pD = |[a,b]] = a v ap v b7t

a_lba.
Then ¥ ,q is the variety of representable lattice ordered groups which satisfy the
inequality T x,Tx,yD 1 Perp x,y]]q if e <y < x. A straightforward computation
shows that if p,q < r,s, then Fp,q < Fr,s' To show that the contalinment is
strict 1f the inequality is, consider, for each real number 1, 0 <t <1, the
totally ordered group Ft = R xZ ordered antilexicographically, with group
operation

n.
(rl)nl)(rzynz) = (rl + (t/(t+l)) LI‘Z)nl + nz);

a splitting extension of the reals by the integers. It is easy to show that

F € FP q if and énly if t < p/q. Finally, for each 0 <t <1, 1let
)
F, - t2;>q Fo/q- Then {F |0 <t <1} 1is a tower of varieties, ordered (under

containment) like the real interval (0,1). In particular, for each irrational 1,
the variety Ft cannot be defined by a single equation because it is a proper
intersection of infinitely many varieties.

The study of varieties of lattice ordered groups is being actively pursued by
many mathematicians., Among the interesting unsolved problems are these two:

1. Find all the covers of the abelian variety.

2. Which varieties satisfy the divisible embedding property--that if G

belongs to the variety then G can be embedded in a divisible H in the
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variety? It is known that the abelian variety does and the variety of
all lattice ordered groups does. It is not known whether the representable

variety does.

REFERENCES

G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloquium Pub. vol. 25, (1969).

A, Bigard, K. Keimel, and S. Wolfenstein, Groupes et Anneaux Réticulés,
Lecture Notes in Mathematics 608, Springer, (1977).

The Black Swamp Problem Book, unpublished, original kept at Bowling Green
State University.

T. Feil, An uncountable tower of f-group varieties, Algebra Universalis, 14
(1981), 129-131.

L. Fuchs, Partially Ordered Algebraic Systems, Addison Wesley (1963).

A. M. W. Glass, Ordered Permutation Groups, London Math., Soc. Lecture Notes 55,
Cambridge U. Press, (1981).

A, M. W. Glass, W. C. Holland, S. H. McCleary, The structure of f£-group
varieties, Algebra Universalis, 10(1980), 1-20.

W. C. Holland, The lattlce ordered group of automorphisms of an ordered set,
Michigan Math. J., 10(1963), 399-408.

, The largest proper variety of lattice ordered groups, Proc. Amer.
Math., Soe., 57(1976), 25-28.

, Varieties of f-groups are torsion classes, Czech. Math. J., 29

{1979), 11-12.

H. A. Hollister, Nilpotent f-groups are representable, Algebra Universalis, 8
(1978), 65-71.

V. M. Kopytov and N. Ja. Medvedev, Varieties of lattice ordered groups,
Algebra and Logie, 16(1977), 281-285.

P. lorenzen, Uber halbgeordnete Gruppen, Math. Z., 52(1950), 483-526.

J. Martinez, Free products in varieties of lattice-ordered groups, Czech.
Math, J., 22(1972), 535-553.

, Archimedean-like classes of lattice-ordered groups, Trans. Amer.
Math. Soe., 186(1973), 33-49.

, Varietles of lattice-ordered groups, Math. Z., 137(1974), 265-284.

S. H. McCleary, O-primltive ordered permutation groups I, II, Paeifie J. Math.,
40(1972), 349-372; 49(1973), 431-443.

N. Ja. Medvedev, The lattices of varieties of lattice ordered groups and Lie
algebras, Algebra and Logie, 16(1977), 27-30.

N. R. Reilly, A subsemilattice of the lattice of varietles of lattice ordered
groups, Can. J. Math., 33(1981), 1309-1318.



158

20. E. B. Scrimger, A large class of small varieties of lattice ordered groups,
Proe. Amer. Math., Soc., 51(1975), 301-306.
21. E. C. Weinberg, Free lattice-ordered groups, Math. Amn., 151(1963), 187-199

Bowling Green State University
Bowling Green, Ohio 43403



ON JOIN-INDECOMPOSABLE EQUATTONAL THEORIES

Jaroslav JezZek

There are various papers dewoted to the inwestigation of the lat-

tice &,

a
4 1is a large type (a type containing either at least two unary symbols

of equational theories of a given type A. For example, if

or at least onme at least birary symbol), then the following properties
off .Z;] are known, o% has uncountably many coatoms and no atoms; .,ZA
satisfies no nontrivial lattice identity; every algebraic lattice with
only countably many compact elements is isomorphic to an interval in
$A 3 ogb has no automorphisms besides the obvious "syntactiecally de-
fined" ones; any finitely based equational theory of type 4 is defi-
nable up to automorphisms in ,% 3 every non-extreme element of o%

is a cover of some other element.

An element a of a lattice L is said to be join-indecomposable
if it is nmot the least element of I and cannot be expressed in the
form a=bve where b<a and c<a. In[3] it is proved that an
element of °ZA is Jjoin-indecomposable iff it is strongly join-inde-
composable (or essentially one-based) and a problem is formulated to
characterize those equations (a,b) whose generated equational theory
Cn(a,bt) is join-indeecomposable in &, . The purpose of this paper is
to give a partial solution to this problem. The class <€ of all equ-
ations of type 4 can be decomposed into four subclasses ‘f], fz, €.,
f4 as follows (see Section 1 for the meaning of the symbols !, ~, < ):

‘E] = {(a,b)e‘g; var(a)#var(b)},

'gz = {(a,b)e¥€; var(a)=var(b) and allb},
f3 = {(a,b)e ‘f-, var(a)=var(b) and a~sb},
‘£4 = {(a,b)e €; var(a)=var(b) and either a<b or b<a}.

The following will be proved in Section 2:

THEOREM. If (a,b)e f] then Cn(a,b) 1is join-indecomposable
iff A contains only nullary symbols. If (a,b)e % then Cn(a,b)
is always join-indecomposable, If (a,b)e 53 then Cn(a,b) is Join-
indecomposable iff b can be obtained from a by a permutation f
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of wariables such that the ordem of f 1is a prime power.

As for the equations from %a, the problem remains open. We have
the following

CONJECTURE. If (a,b)e <€4 then Cn(a,b) is always join-decom-
posable,

The author was not able to prove itj; in Section 3 we prove only
three very special cases of this conjecture.

Join-indecomposable equational theories are also considered in
[1]. There it is proved that the equational theory of commutative
groupoids is join-indecomposable and a ecategorical characterization
of warieties with join-deecomposable equational theory is giwen (these
varieties are called approximable in [1]).

1. PRELIMINARIES. The terminology and notation here are the
same as in Section 1 of [2]. Throughout this paper, A is a fixed
type. The set of variables is denoted by V and the algebra of terms
(of type 4 ) by W,. Endomorphisms of W, are called substituti-
ons, If f is a mapping of a set MCESV into Wy, then the mapping
fuilyy can be uniquely extended to a substitution; this substituti-
on will be denoted by Ff, but we shall often write f(t) inmstead
of f(t). If a,b are two terms, then a<b means that f(a) is a
subterm of b for some substitution f. We write a~b if acx<h
and b<a at the same time. If a<b and bga, we write a<hb.

If neither a<b nor b<a, we write allb. The length of a term t
is denoted by A(t). var(t) is the set of variables contained in

te If t is a term and ueVvd4, then Pu(t) denotes the number of
occurrences of u in t. By an equational theory (of type 4 ) we
mean a fully invariant congruence of Wy i,e, a set of equations
which is closed for consequences. é@d denotes the lattice of equati-
onal theories of type A. An equational theory is said to be join-
decomposable if it is a join-decomposable element of &, .

Let an equation (a,b) be given. An equation (c,d) is said to

be an immediate consequence of (a,b) 1if, for some substitution £,
d results from c¢ by replacing one occurrence of a subterm f(a) by
f(b). By an (a,b)-proof (from ag to an) we mean a nonempty fini-
te sequence 8Gyeeerdy of terms such that for every ie{l,...,n}
either (ai_],ai) or (ai,ai_]) is an immediate consequence of (a,b).

For the following it will be useful to have a supply of concrete
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examples of equatiomal theories,

EXAMPLE 1.1, Let E be the set of equations (a,b) such that
var(a)=var(b). Then (obviously) E is an equational theory,

EXAMPLE 1.2, For any n21 1let L, be the set of equations
(a,b) such that either a=b or A(a)n and A(b)2zn. Then (obvi-

ously) L, is an equational theory.

EXAMPLE 1.3, TFor any term t let Y, be the set of equations
(a,b) such that either a=b or aft and bgt. Then (obviously)
Y, is an equational theory.

EXAMPLE 1.4. For any n2z1 and any subset D of 4 1let 2
be the set of equations (a,b) such that n divides P (b)-P (a)
for all ueVwvD, Then Zn,D
evident that Zn,D is a congruence of W,3; 1its full invariancy fol-
lows from the fact that if t 1is a term, f a substitution, xeV
and ueD then

P_(f(t))= P_(£f(y))P_(1)
x ;é;ér(t) X y

P (f(t))=P (t)+ E P (f(y))P_(t).
u u yevar(t) 4 v Y

D

is an equational theory. In fact, it is

2. THE EQUATIONS FROM ‘f] v fg uz’;.

THEOREM 2.1. Let (a,b) be an equatiom such that var(a)#var(b).
Then Cn(a,b) is a join-indecomposable equational theory iff A
contains only nullary symbols,

Proof. If A contains only nullary symbols, then Cn(a,b) is
the greatest element of 4& and it is easy to see that it is join-
indecomposable, Now let A contain a symbol F of arity nxzl. It
is enough to consider the case when var(b)\var(a) 1is nonempty. For
every term t and every iz 1 define a term t(l) by induction on
i as follows: t(])=t; t(i+])=F(t(i),t(i) (1)),
i21 define two substitutions f,,g; as follows: if xevar(b)svar(a)
then fi(x)=a(1) and gi(x)=b 1), if x is a variable not belonging

For every

to var(bavar(a) then fi(x)=gi(x)=x. Evidently, there exist posi-
tive integers m,p,q such that m>2A(a), m> A(b), A(fp(b))?_m,
A(gq(b))Zm. Put

T] = Cn(a,fp(b)),

T, Cn(fp(b),gq(b)),

T, = Cn(gy(b),D)

I

il
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and consider the equational theories E and Lm (see 1,1 and 1.,2).
Then T, ¢E, Cn(a,b)4 E, T, €L Cn(a,b) Lo T3£-.E, Cn(a,b)¢$E and

so T,T,,T; are different from Cn(a,b). It is easy to see that

Cn(a,b)=T, v Tsz3 and so Cn(a,b) 1is join-decomposable.
LEMMA 2.2. Let (a,b) be an equation such that var(a)=var(b)

and allb., Let ¢ be a term such that (a,c)eCn(a,b). Then either
c=a or c=b.

Proof. There exists an (a,b)-proof Ugseeesty from a to c.
It is enough to prove by induction on ie{0,...,n} that ujefa,bl
For i=0 it is clear, Let i<n and u; _q=a. Either (ui_],ui) or
(u;,u;_y) 1is an immediate consequence of (a,b). Since bga, only

i-1
(uj_y»u;) can be an immediate consequence of (a,b). There exists
a subgtitution f such that f(a) 1is a subterm of uj 4 and ug

is obtained from ug by replacing this subterm by f(b). Evidently
f(a)=u; _,=a and f(x)=x for all xevar(a)=var(b), so that f(b)=b

and wu;=b. It can be proved similarly that if u; _;=b then u;=a.

i-1
THEOREM 2.3. Let (a,b) be an equation such that var(a)=war(b)
and allb, Then Cn(a,b) is a join-indecomposable equational theory.

Proof. Suppose Cn(a,b)=T]v T for some equational theories

T,,T, different from Cn(a,b). Siice (a,b)eT]\'Tz, there exists

a sequence Ugyees,U, (nz0) such that a=ug, b=un and (ui_l,u e
T,vT, for all iefl,...,n}. By 2.2 we have {uo,...,un}={a,b1 and
so there is an iefl,...,n!{ such that {ui_],ui}={é,b}. We get

(a,b)eT,v T, and so either T, or T, equals Cn(a,b).

1

LEMMA 2.4, Let a be a term and f be a permutation of var(a).
Let w be a term, Then (a,w)eCn(a,f(a)) iff w=£®(a) for some in-

teger c.

Proof., Let (a,w)eCn(a,f(a)), so that there exists an (a,f(a))-
proof UgseeeslUy from a to w. It is enough to prove by induction
on ie{0,,..,n} that ui=fc(a) for some integer c¢. For i=0 it

is clear, Let i<€n and u. =fc(a). If (ui_],ui) is an immediate

i-1
consequence of (a,f(a)) then evidently u; equals et a), If
(uj,uj_;) 1is an immediate consequence of (a,f(a)) then ui=fc-](a).

The converse is evident.

THECREM 2.5. Let (a,b) be an equation such that var(a)=var(b)
and arb, so that b=f(a) for some permutation f of var(a).
Then Cn(a,b) 1is a join-indecomposable equational theory iff the
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order of f 1is a prime power,

Proof, Denote By n the order of f (the least positive inte-
ger such that fn:lvar(a))' If n=1 then a=b and Cn(a,b) 1is
join-decomposable by definition., Let nz2,.

Consider first the cease n=pk where p 1is a prime mumber and
k21, Suppose Cn(a,b)zT]vT2 for some equatiomal theories T],T2
different from Cn(a,b). Since (a,b)eT, vT,, there exists a finite
sequence Ug,...,uy such that a=u,, b=u  and (u;_y)uy)eT, vT, for
all ie{l,...?m}. For every ief0,...,m} we have (a,u;)eCn(a,b)
and so ui=f°1(a) for some integer c; by 2.4. Of course, cu151
(mod pk), so that c_~ is not divisible by p. Denote by J the
least number from §0,...,m} suech that cs is not divisible bz_ P
we have j>O0 and 5y is divisible by p. The equation (f 1"](a),
£°1(a)) and hence also the equation (a,fci-el‘](a)) belongs either
to T, kor to T,. The greatest common divisor of the numbers c;-c; ,
and p equals 1 and so there are integers d,e such that
(ci-ci_1)d+pke=1. The equation (azb)=(a,f(ci-°i'])d+pke(a)) belongs
either to T, or to T f ci'ci‘l)d+pke=f(ci-ci‘1)d.

1
a eontradiction.

sinee We get

2’
Now consider the case when n 1is not a prime power, We can write
n=km for some integers k,mxz2 whose greatest common divisor equals
1. Put T]=Cn(a,fk(a)) and T2=Cn(a,fm(a)). It follows from 2,4 that
both T, and T2 are proper subtheories of Cn(a,b). There are in-
tegers d,e such that dk+em=1, The equation (a,b)=(a,fdk+em(a))

belongs to T,v T, and so Cn(a,b)=T]v T

1 2 2°

3. THE EQUATIONS FROM fa - SOME PARTIAL RESULTS.

PROPOSITION 3.1. Let (a,b) be an equation such that var(a)=
var(b) and a<b, Suppose that Cn(a,b) is a Jjoin-indecomposable
equational theory. Then (a,b) 1is a consequence of (a,c) for any
¢ such that (a,c) 1is a consequence of (a,b) and a<ec,

Proof. Let (a,c)eCn(a,b) and a<c. Evidently Cn(a,b)=
Cn(a,c)vCn(c,b). We have Cn(c,b)SY_, and Cn(a,b)SJ’;Ya (see 1,3)
and so Cn(a,b)#Cn(c,b). Since Cn(a,b) 1is join-indecomposable, it
folYows that Cn(a,b)=Cn(a,c) and so (a,b) 1is a consequence of

(a,c).

PROPOSITION 3.2. Let (a,b) be an equation such that var(a)=
var(b); let there exist a permutation f of wvar(a) such that f(a)
is a proper subterm of b, Then Cn(a,b) 1is a join-decomposable
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Proof. For every i21 define a teem by, containing f'(a)
as a proper subterm, as follows: b,=b; if bi is already defined,
let b. 141 ke the term obtalned from b by replacing one occurrence

of the subterm f(a) by fH(b). Wwe have (a,bi)eCn(a,b) for all i,
Put c=b, where n 1is the order of f. Then (a,c)eCn(a,b), war(a)=
var(e) and a 1is a proper subterm of c. Define terms CpsCoseee

as follows: c¢,=¢; if ¢y is already defined, let G4 be the term
obtained from c; by replacing one occurrence of the subterm a by
c. We have (a,c;)eCn(a,b) for all i. We cannot have P (a)=P (c)
for all ueVv4 , and so there exists an integer k22 which is not
a common divisor of the numbers Pu(c)-P (a) (ueVvA ). For every
iz 2 and for every ueVvA we have P (e;)=P (c; ;)+P (c)-P Llaks
hence Pu(ck)-Pu(a)=k(Pu(c)-P (a)). Con31der the equatlonal theory
Zk,A (see 1.4)., We have (a 1€y ) €2y 4 and (a c)¢Zk , so that
(a,c) 1is not a consequence of (a ck)’ hence (a,b) 1is not a con-
sequence of (a,ck). It follows from 3.1 that Cn(a,b) is Join-de-
composable,

PROPOSITION 3.3. Let (a,b) be an equation such that var(a)=
var(b)={x],...,xn} (n2z1), a<b and Pxi(a)#PXi(b) for some 1i.
Let there exist a substitution f such that b=f(a). For every 1i,je

{1,.0.,n} put ai,j=PX'(f(xi)) and demote by A the matrix (aj j).

]
If det(A)#0 then Cn(a,b) 1is a join-decomposable equational theory.

Proof. For every term t such that var(t)S{x,,...,x;} denote
by C, the matrix (Px](t),...,P (t)). It is easy to prove Cf(t)=

Xn
CtA' For every k21 denote by ak i,3 the members of A~. There

exists a prime number p such that p does not divide det(A) and
p does not divide (b)-P (a) for some 1i. There exists an infi-

nite set N of p031t1ve 1ntegers such that whenever i,jeN] 1

1,1
then a = a

&N
=1,
We can proceed in this way and construct infinite sets N] ]E.N] 5 2
y ’
see 2N 2N 2 .00 2N 2.,.,.2N _., Let us fix two numbers k, leN

1,n 2,1 2,n n,n k_ 1 n,
such that k>1, Every member of the matrix A is divisible by

i31,1 331,1

{mod p). There exists an infinite subse{ N] >
such that whenever 1,JeN; 5 then a;.4 > = a5 5 (mod p).

p. Put m=k-1l, Evidently, (a,fm(a)) is a consequence of (a,b)

and a<f'(a). By 3.1 it is enough to show that (a,b) is not a
consequence of (a,fm(a)). Considexr the equational theory Zp,g (see
1.4). We have (a,b);!ﬁzp,g and so it is sufficient to prove that
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p divides any member of Cfm(a)—ca=CaAm-Ca=C (Am-AO). Denote this
matrix By (d;,...,d ). Since Ca(Am-AO)Alzca(Ak-Al) and p divides
any member of A -Al, every member of the matrix (d],...,dn)Al is
divisible by p. This means that over the field jzp of integers mo-
dulo p, the vector (dl""’dn) is a solution of a system of linear
equations; the determinant of this system equals det(Al)z(det(A))l
and so it is nonzero in Z ; hence (d,,...,d ) is the zero vector

over i,e, p divides all the numbers dl"'*’dn'

p’
PROPOSITION 3.4, Let x be a variable and (a,b) be an equati-
on such that var(a)=var(b)={x! and a<b; 1let there exist a substi-
tution f such that f(a) is a subterm of b and xevar(f(x)). Then

Cn(a,b) 1is a join-decomposable equational theory.

Proof. TFor every i2z1 define a term by, contaiming fi(a)
as a subterm, as follows: b, =b; if b, is already defined then b
is obtained from bi by replacing one occurrence of the subterm
f'(a) by f£'(b). We have (a,b;)eCn(a,b) for all i.

Consider first the case Px(f(x))2:2. Then Px(a)< Px(b)<IPx(b2),

so that (a,b2) belongs and (a,b) does not belong to the equational

i+

theory Zk @ where k=Px(b2)-Px(a); we can use 3.1.
’

Now let P (f(x))=1. We cannot have Pu(a)=Pu(b) for all ue
{x}vA and so there exists an even number k22 such that for some
ue{x}vd, k+1 does not divide P (b)-P (a). It is easy to see that

Px(bk)-Px(a)=(k+1)(Px(b)-Px(a))
and

P (b )=P_(a)=(k+1) (P (b)-P_(a))+ XEp (£(x))(P_(b)-P_(a))

u 'k u u u 2 u X b'8
for all ued and so (a,bk) belongs to the equational theory Zk+1 A*
’

On the other hand, (a,b) does not belong to this theory and so
(a,b) 1is not a consequence of (a,bk); we can use 3.1,

References

[1] o0.C.Garcia and Mario Solay Z.: A classification in warieties of
algebras, Universidad Nacional Autonoma de México, Publicaciones
Preliminares del Instituto de Matematicas, No.21, 1980, 1-12.

[2] J.Je¥ek: The lattice of equational theories. Part I: Modular ele-
ments, Czechoslovak Math, J. 31, 1981, 127-152.

[3] R.McKenzie: Definability in lattices of equational theories.
Annals of Math, Logiec 3, 1971, 197-237.

Charles University, Department of Mathematics
Sokolovska 83, 186 00 Praha 8, Czechoslovakia






IDEALFREE CIM~GROUPOIDS AND OPEN CONVEX SETS

Jaroslav JeZek and Tomé3 Kepka

A groupoid is said to be a CIM-groupoid (commutative idempotent

medial groupoid) if it satisfies the following three identities:

Xy = yx ,

XX = X,

XYe2ZU = XZo.YUe
Let us remark that in some papers medial groupoids are called abelian
or entropic., There are several papers devoted to CIM-groupoids. For
example, the lattice of varieties of CIM-groupoids is described (in
[4]). The theory of CIM-groupoids is connected with other algebraic
theories, e.g, with the theory of modules and with universal algebra,
CIM-groupoids are algebraic structures with nice and rather strong
properties and there seems to be a possibility of deep structure the-
orems on CIM-groupoids. For example, consider the problem of classifi-
cation of all finitely generated CIM-groupoids. It turns out that for
any such groupoid G we can define a congruence Wy on G such that
G/wG is a finite semilattice and every block of v is a finitely
gq-generated idealfree CIM-groupoid (this follows from Propositions 2.1
and 1,6 below). Now, in the present paper we classify all finitely
q-generated idealfree CIM-groupoids. Although we do not know which of
them serve as blocks of Wq for some finitely generated G and it
seems to be a difficult task to reconstruct G from the blocks of wg
and from the finite semilattice G/wG, the solution of the above men-
tioned problem is at least not beyond hope.

The main result of this paper, the classification of finitely
q-generated, idealfree CIM-groupoids, is formulated in Section 5; its
proof, together with necessary definitions and partial results, is
contained in Sections 1,2,3 and 4.

1. PRELIMINARIES. Let ) designate the set of rational numbers
of the form a2™¥ where a,k are integers. Then ID is a principal
ideal domain, For nz=0 define a binary operation e on o by
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(X)pe0e,X )o (Fyseeeryy) = (2“](x]+y]),...,2-](xn+yn))
and define n+1 elements of D™ as follows:
en,0 = (0,0,...,0),

en,i = (1,0,44.,0),
€ = (Oyeeey0,1).

sl . .
The set PT will be considered together with the usual topology and
metrics.

PROPOSITION 1.1. Let n 0. Then;

(1) D"(e) 1is a free CIM-quasigroup and the set {e ,e yeeey€ }

. n,0’"n,l n,n
is 1ts free basis.

(2) The subgroupoid F; of D"(e) generated by f{e y€  1sesese  }
. . n,0’"n,1°****"n,n
is a fre? CIM-groupoid and the set {en,O’en,l""’en,n} is its
free basis,

(3) An element (X ,e..,x ) of D™ belongs to Fn Iff 0SX y000,X

teeetx. <1,
and X xn__l

n

Proof. See [3].

PROPOSITION 1.2, The varieties of pointed CIM-quasigroups and
(unitary) ]D -modules are equivalent. In more detail: Assign to any
pointed CIM-quasigroup Q(.,/,e) a [ -module with the underlying set
Q by

xty = (xy)/e,

-X = e/x,

0

2
Conversely, assign to any D -module M(+,-,0,(rx; rel))) a pointed
CIM-quasigroup M(.,/,e) by

Xy = 2“](x+y),

x/y = 2x-y,

e = 0,
In this way we get a pair of mutually inverse bijections between the

= e,
-1 -
X = eX,

two varieties; these bijections preserve underlying sets and homomor-
phisms,

Proof. Easy and well known (it follows e.g. from [2]).

It should be pointed here that quasigroups (considered as algeb-
ras with three binary operations) have permutable congruences and that
CIM-quasigroups are abelian in the sense of commutator theory.

et G bhe a groupoid. For a nonempty subset M of G we denote
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by [M] the subgroupoid generated by M. A subgroupoid H of G is
called q-closed if aeH whenever aeG, beH and either abeH or
baeH. A nonempty subset M of G 1is called q-generating if G is
the only q-closed subgroupoid of G containing M. We denote by

@(G) the least cardinal number of a generator set of G and by

eq(G) the least cardinal number of a gq-generator set of G.

PROPOSITION 1.3. Let G be a cancellative CIM-groupoid. Then
there exists a CIM-quasigroup Q such that G 1is a gq-generating sub-
groupoid of Q. Moreover, Q is determined uniquely up to isomorphism
over G. We have Gq(G) = Gq(Q).

Proof. See Theorem 5.3.1 of [6].

By an ideal of a groupoid G we mean a nonempty subset I of G
such that IG<&T and GICI. A groupoid G 1is said to be idealfree
if G 1is the only ideal of G.

PROPOSITION 1.4, Every idealfree CIM-groupoid is cancellative,
Proof. See Proposition 6.9 of [5].

PROPOSITION 1.5. Let H be a subgroupoid of a finitely q-gene-
rated, cancellative CIM-groupoid G. Then H 1is finitely q-generated
and Gq(H)SG'q(G). If G is q-generated by H then e’q(H) = o'q(G).

Proof. By 1.3 it‘is enough to consider the case when H,G are
quasigroups. Put n= Gq(G). The quasigroup G can be g-generated by
some elements Upyeeeyly such that u]eH. Consider H and G as
pointed quasigroups, with the point Uy It follows from 1.2 that the
assertion ean be translated into the language of [) -modules. However,
it is well known (see e.g. [7]) that if" R 1is a prinecipal ideal domain,
if M 1is an R-module generated by n-1 elements and if N is a

submodule of M then N is generated by n-1 elements too.

PROPOSITION 1.6. ILet H be a subgroupoid of a finitely genera-
ted CIM-groupoid G. Then H is finitely q-generated and 6@(H)5;
G(G).

Proof. Put n=6(G). By 1.1 there is a homomorphism of F'_]
onto G. The rest is easy by 1.5.

2. THE CONGRUENCE Wae For any groupoid G define an equiwalen-
ce w, on G as follows: (a,b)ew; iff the elements a,b generate
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the same ideal of G. In a CIM-groupoid G, the condition (a,b)ewG
is ewidently equiwalent to the existence of elements UjseeesUysVyy
+eeyv G (n,m20) such that b=(((au,)uy)...)u ~ and a=(((bv])V2)
ceedvy.

PROPOSITION 2.1. Iet G be a CIM-groupoid. Then:

(1) wg is a congruence of G.

(2) G/wG is a semilattice,

(3) Every block of W, 1is an idealfree CIM-groupoid.

(4) The natural homomorphism of G onto G/wG induces an isomorphism
of the lattiece of ideals of G onto the lattice of ideals of G/wG.

(5) If G 1is finitely q-generated then G has a least ideal.

(6) If G 4is finitely generated and n= &6(G) then Card(G/wG)s.zn-l.

Proof. (1) If (a,b)ewG then b=(((au1)u2)...)un and a=
(((bv])vz)...)vm for some n,m20 and some elements Upseessl Vi,
eeeyV e€G. Since CIM-groupoids are distributive, this implies bec=
(((ac.uje)eusc).oedouc and ac=(((be.v,c).v,c)...).v c for any ceG,
so that (ac,bc)ewG.

(2) In order to prove that (ab.c,a.bc)ewG for any a,b,ceG,
it is enough to show that if I is an ideal then ab.ceI iff a.bcel.
However, we have a.bc=ab,ac=(ab.,a)(ab.c) and similarly ab.c=
(a.be)(c.be).

(3) Let H be a block of w; and a,beH. We can write b=
(((au])uz)...)un and a=(((bv])v2)...)vm. Hence b=bb=(((ab.u]b).u2b)
...).unb and a=aa=(((ba.v]a).v28)...).vma. From this it is easy to
see that the elements by,u;bye..yu bya,v 85000,V 8 belong to H and
so (a,b)ewy. Hence wysHx H and H is idealfree.

(4) is obvious.

(5) If G 1is finitely q-generated then G/w, is finitely q-ge-
nerated too. It is easy to see that a semilattice is finitely gq-gene-
rated iff it contains a least element (with respect to the ordering
defined by x<y iff xy=x).

(6) We have G(G/WG)sxu a semilattice with n generators has
at most 2"-1 elements.

3. THE CONGRUENCE tG. For any groupoid G we define a binary
relation tg on G as follows: (a,b)etG iff the subgroupoid [a,b]
is finite. G 1is said to be a torsionfree groupoid if tG=idG, i.e.
if any two distinct elements of G generate an infinite subgroupoid.
G 1is said to be a torsion groupoid if tq=G * G, i.e., if any subgrou-
poid generated by two elements is finite,
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LEMMA 3.1. Let G be a torsion ecancellative CIM-groupoid. Then
G 1is a locally finite quasigroup.

Proof. Obviously, G is a quasigroup. The rest is easy (use
either 1,2 or the fact that fuo,...,un+]]=fuo,...,un][uo,un+]] for
any uO""’un+leG)'

PROPOSITION 3.2. Let G e a ecancellative CIM-groupoid. Then:
(1 ty; 1s a congruence of G.
(2) Every block of tG is a locally finite CIM-quasigroup.
(3) G/tG is a torsionfree, cancellative CIM=-groupoid.

Proof. (1) Let (a,b),(b,c)ety, H=[a,b] and K=[b,c]. Then
both H and K are finite and HK=[a,b,c]. Consequently, (a,clety
and we have proved that tg is an equivalence. However, for a,b,ceG,
the map x +» c¢x is an isomorphism of [a,b] onto [ca,cb] and we
see that t, is a congruence and, moreover, that G/ty 1is a cance-
llative groupoid.

(2) is clear, use 3.1,

(3) Put H=G/tG. As we have proved in (1), H is cancellative;
it remains to show that it is torsionfree. For, let a,beG be such
that (f(a),f(b))etH, f being the natural homomorphism of G onto
H. Put K=[a,b]. Evidently, ty 1s just the restriction of t;
to K, and so K/tK ig finite. If A is a block of ty then A is
a loecally finite, finitely q-generated quasigroup (use 1.6 and (2))
and therefore A 1is finite. We have proved that K is finite, i.e.
(a,b)etG and f(a)=f(b).

LEMMA 3.3. Let G be a finitely g-generated,cancellative CIM-
groupoid. Then:
(1) Every block of tG is a finite quasigroup.
(2) If G 1is idealfree then the blocks of tg are pairwise isomorphic.

Proof. (1) Use 1.5 and 3.2.

(2) Let A,B be two blocks of tge Take two elements aeA, beB.
Since G 1is idealfree, (a,b)ewG and so there are elements Ujgesey
U sVygess,VpeG (n,m20) with b=(((au;)uy)...)u, and a=(((bv,)v,)
eee)Vpe Put £(x)=(((xu;)uy)...)u, and g(x)=(((xv])v2)...)vm for
all xeG, We have f(A)<B and g(B)<A. However, f,g are injec-
tive and A,B are finite. Hence f(A)=B and A is isomorphic to B,

LEMMA 3.4. Let G be a q-generating, idealfree subgroupoid of
a finitely q-generated CIM~-quasigroup Q. If A 1is a block of tQ
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with ANnG #¥ @ then AcCG.

Proof. Since G 1is a g-generating subgroupoid, there exist a

limit ordinal number y- and a chain (G“')“<Jb of subgroupoids of Q

with the following properties:

(1) Gg=Gy

(i1) if a<y then a,G,, =G, for some ayeGy}

(iii) if e«sjpis a limit ordinal then G, is the union of all Gg
with B<o

(iv) Gu=Q.

Evidently, all the subgroupoids G, are idealfree (in fact, G“+] is

isomorphic to G, @and the union of a chain of idealfree groupoids is
idealfree); by 1.5 they are all finitely q-generated. Let B be any
block of t,. It is enough to show by transfinite induction that B
is a block of tGw for any ww<p. For =0 this is obvious. If B
is a block of tq”, denote by C the bloek of LG+ containing B.
Since x> a,x is an isomorphism of Gyt 1 onto G,, it follows from
3.3(2) that C 1is isomorphic to B. However, both B and C are
finite by 3,3(1) and so B=C. The limit case is clear and we are
through.

LEMMA 3.5. Let Q be a finitely q-generated CIM-quasigroup.
Then Q’-‘-’PXDn(o) for some finite CIM-quasigroup P and some nz20,

Proof, Let us fix an element eeQ and denote by P the block
of tQ containing e, so that (by 3.1 and 1.5) P is a finite qua-
sigroup. Consider P and Q as pointed quasigroups (with the point
e) and denote by N,M the corresponding D -modules (see 1.2), Then
N 1is Jjust the torsion part of M. Since M 1is a finitely generated
module over a principal ideal domain, there exists a free submodule
K of M such that M is the direct sum of N and K (see [1]).
Since K is free, the corresponding CIM-quasigroup is free too, and
we can use 1.1,

PROPOSITION 3.6. Let G be a finitely gq-generated idealfree
CIM-groupoid., Then G™~PxH for some finite CIM-quasigroup P and
some finitely g-generated, torsionfree, idealfree CIM-groupoid H.
Moreover, P and H are determined uniquely up to isomorphism, since
every block of tg is isomorphic to P and G/tG is isomorphic to H.

Proof. By 1.3 and 1.4, there is a finitely q-generated CIM-qua-
sigroup Q such that G is & g-generating subgroupoid of Q. By 3.5
it is enough to consider the case Q=PxD™(e) for some finite CIM-
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quasigroup P and some nzO0. The blocks of tQ are just the sub-
groupoids P:<{a} (aean). It follows from 3.4 that G=PxXH for a
subgroupoid H of l)n(o); evidently, H 1is torsionfree, idealfree
and (by 1.5) finitely q-generated.

PROPOSITION 3.7. Let G be a finitely g-generated,cancellative,
torsionfree CIM-groupoid with n= & (G). Then G is isomorphic to a
g-generating subgroupoid of D1 (o).

Proof. By 1.3, G 1is a gq-generating subgroupoid of a CIM-quasi-
group Q3 Q 1is torsionfree and 6&(Q)=n. By 3.5, Qcﬁwn_](°)-

4. SUBGROUPOIDS OF D"(e). For every nzl1 denote by D(n)
the ring of matrices of type (n,n) over D.

PROPOSITION 4.1, (1) Let nx1, aeD" and let Ae D py- The
mapping f: D" —>p" defined by f(x)=xA+a 1is an endomorphism of
D"(e). This endomorphism is an automorphism of D%e) iff A is
invertible in lD(n) iff det(a)= 2k for some integer k.

(2) Every endomorphism (automorphism, resp.) of D™(s) is of the
form described im (1).

Proof. It is easy.

LEMMA 4.2, TLet n2z2 and let 8yy.0058 De relatively prime
integers. Then there are positive integers b],...,bn,m such that

—_ m
b]al+...+bnan =+ 2,

Proof., We can assume without loss of generality that a; > 0 is
odd. There are integers CyyeeesCpy such that cja;teeate a =13 there
are positive integers d;> -c],...,dn> =Ch such that the number
k=d] ]+...+dnan is odd and positive. Put m=?(k) (the Euler func-
tion). Then k divides 2%-1, We have ku+1=2" for some uz1 and

.=d.utc:.,
we can put b1 dlu ¢

a

LEMMA 4.3, Let n21 and let G be a g-generating subgroupoid
of an(°). For each aeG +there are elements b],...,bneG such that

the matrix (bj-a), i=1,...,n, is invertible in D ;.

Proof. For x=(x],...,xn) and Ogis<sn put ix=(x],...,xi).
We shall show by induction that for every O<ms<n there are elements
b],...,bmeG and an integer k such that the determinant of the matrix
(mbi-ma), i=1,.4.,m, equals izk (here the determinant of the empty
matrix is 1). So, let 1<m<4n and let byjye..,b, ;€G De such that
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det(m-]bi-m-]a) = 12k. For every xel)n, let A(x) denote the matrix

< mbi _ma)
1=1y.404,m=1,
mx-ma ’ ’ ’

Let p>3 be a prime number. Denote by H the set of all xe D™
such that p divides det(A(x)) in D . It is easy to check that H
is a subquasigroup of I)n(°). Moreover, a+en n does not belong to
H due to the fact that p does not divide ast(™ 'b,-""a), i=1,...,
m-1, Since G is g-generating, G4¢H,

Hence for every prime number p2z23 there exists an element xeG
such that p does not divide det(A(x)) in D. It follows that
there are rz2 and elements z],...,zreG such that the numbers
det(A(21)),...,det(A(zr)) are relatively prime in D). Accecording to
4.2, cydet(A(z,))+...4e det(A(z)) = +2°
CpyesesC, and some integer t, Let s be a positive integer such
that (¢ +...+c )27%< 1. Then (c,27%,...,c,2"%)e F, by 1.1. The
mapping (x],...,xr) - a+x](z]-a)+.,.+xr(zr-a) is a homomorphism of
F;(o) onto the subgroupoid of l)n(o) generated by 8,2 ye00y2y, and
so the element a+c]2_s(z]-a)+...+cr2‘s(zr-a) belongs to Gj denote
this element by b . Now, det(A(by)) =c 27%det(A(z))) +auut
c,27%det(A(z)) = 2%78,

for some positive integers

1

LEMMA 4.4. Let n21 and let G be an open subgroupoid of
D"(e). Then G is a q-generating, idealfree subgroupoid of D" (o).
Moreover, G is a convex subset of DU,

Proof. Clearly, G 1is a g-generating subgroupoid. Further, let
I be an ideal of G, ael and beG., There exists an n-dimensional
sphere U with center b such that UZSG. Then b+(a-b)2-meU for
some positive integer m and we have b-(a-b)2-meU. However, I is
an ideal, b+(a-b)2 ®=be(,..(boa)) belongs to I and

b = (b+(a=b)2"")e(b-(a=b)2™™) e I.

We have proved that I=G, and hence G 1is idealfree, It remains to
show that G is convex, For, let a,beG and let ce D™ 1ie between
a and b. There is a neighborhood V of (0,0,...,0) in D® such
that a+V&€G and b+V <G, Obviously, there exists a te D with
0<t<1 such that ceat+t(b-a)+V, Put a’=c-t(b-a) and b’'=a’'+b-a,
so that a’ea+V and b’eb+V. Then a’,b’eG and c=a’'+t(b'-a’), so
that ceG.

LEMMA 4.5. Let n21 and let G be a g-generating subgroupoid
of D™(). Denote by I the interior of G, i.e. the set of all
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aeD™ such that a neighborhood of a 1is contained in G. Then I
is nonempty and it is Jjust the least ideal of G.

Proof. Let aeG he arbitrary. By 4.3 there are b],...,bneG
such that the matrix A=(b;-a), 1i=1,...,n, is invertible in ‘D(n)'
Put f(x)=xA+a for every xe D". Then f is a continuous automor-
phism of ,Dn(O) and fY( Fn)SG. Now it is clear that I 1is nonempty;
evidently, I is an ideal of G. On the other hand, I is an open
subgroupoid and so I is idealfree by 4.4. The rest is obvious,

PROPOSITION 4.6, Let nz1 and let G be a nonempty subset
of D™, The following are equivalent:
(1) G 1is a gq-generating, idealfree subgroupoid of Dlwo);
(2) G 1is an open convex subset of an;
(3) G is an open subgroupoid of D"(e).

Proof. In 4.4 we have proved (3) = (1) and (3) = (2). The im-
plication (2) = (3) is obvious and (1) = (3) follows from 4.5.

PROPOSITION 4.7. ILet nz1 and let G]’GZ
convex subsets of D™, let there exist an isomorphism § of G](°)

be two nonempty open

onto G2(°). Then J can be uniquely extended to an automorphism

of DM (o),

Proof, Let aeG,. There exists an mz1 such that the elements
b]=a+en,]2"m,...,bH=a+en,nz"m belong to G,. There are two endomor-
phisms e,f of D" (e) such that e(e O)-—a, e(e )=b],ooo, e(e, )=

b» f(en O) =j(a), f(en )= J(b ) J f(e n,n n)= J(b ). It follows from
4.1 that e 1is an automorphlsm of D™ (o). We have j(x)=fe” (x) for
all xe{a,b],...,bn} and so for all x from the subgroupoid H ge-
nerated by {a,b;,...,b }; evidently, H is just the convex set ge-
nerated by {a,b],...,bn}. I.et us fix an element u from the inte-
rior of H, Let xeGy . There exists an rz1 such that the element
v=(((xeu)eu)e,..)ou (where u appears r times) belongs to H. We
have j(u)=fe-](u) and j(v)=fe-](v0, so that

(((j(X)oj(u))oj(u))e...)°j(u)=(((fe‘](x)oj(u))oj(u))°...)°j(u)
and consequently j(x)=fe  (x). We have proved j&fe '. Since fe~
extends Jj, it is easy to prove that fe-] is injective and surjec-
tive, so that it is an automorphism of D"(e). The unicity of the
extension of J is evident.
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5. FORMULATION OF THE MAIN RESULT.

THEOREM., (1) A groupoid G 1is a finitely q-generated idealfree
CIM-groupoid iff there exist a finite CIM-quasigroup P, an integer
n2 0 and a nonempty open convex subset H of D™ such that G«

P xH(e),

(2) Let P,,P, be two finite CIM-quasigroups; let n,m 20, let
H] be a nonempty open convex subset of D™ and H2 be a nonempty
open convex subset of D™. Then P, *H, (o) &P, *xH, (o) iff P P,
n=m and H2=j(H]) for an automorphism J of D"(s). (Automorphisms
of lf%°) are described in 4.1.)

Proof, It is a combination of 3.6,3.7,1.4,4.6,4.7.

COROLLARY. The number of nonisomorphie finitely g-generated
idealfree CIM-groupoids is 2R".
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FINITE FORBIDDEN LATTICES

Ralph McKenzie*

ABSTRACT. Let L be any finite simple lattice of at least three elements,
whose co-atoms intersect to 0. One principal result of the paper is that L[ is
not dual isomorphic to the lattice of subvarieties of any locally finite variety.

A second principal result is that these statements are equivalent: (i) L is
isomorphic to the congruence lattice of a finite algebra with one basic operation;
(ii) L 1is isomorphic either to the subspace lattice of a finite vector space, or
for some permutation ¢ of a finite domain, to the lattice of equivalence relations

invariant under o.

INTRODUCTION. Lattices isomorphic to the congruence lattice of an algebra are
called algebraic, and have been characterized abstractly. Interesting questions
arise when we ask about representations in special classes of algebras. The simplest
questions of this sort, concerning the number and the type of operations required to
represent a lattice, have been the source of interesting and serendipitous results,
for instance the discovery of innocuous conditions on an algebraic lattice which
force every representing algebra to have rather well behaved operations.

"It is a trivial fact that, while representing lattices as congruence lattices
of algebras, we can confine ourselves to unary algebras." (Quoted from Palfy,

Pudldk [9].) 1Indeed, this is true in the sense that, for every algebra, there

exists a unary algebra having the same universe and the same congruence lattice.

And the quoted authors make good use of this fact. On the other hand, algebras

whose operations are unary are not widely important in mathematics. And so a major
theme in recent investigations of congruence lattices has been the elucidation of

the influence that the "shape'" of a congruence lattice can have on the structure of
n-ary operations, n 2 2, that preserve all the congruences. The discovery that deep
influences of this sort exist is a belated but spectacular by-product of work on the
simplest of special representation problems, the problem of characterizing abstractly
the algebraic lattices that are isomorphic to the congruence lattice of an algebra

having just one binary operationm.

*Research supported by National Science Foundation grant MCS-8103455.
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In [1], Freese, Lampe, and Taylor prove that for L the lattice of subspaces

of an infinite dimensional vector space over an uncountable field ¥, if A4 is
any algebra whose congruence lattice is isomorphic to L, then every operation of A4
satisfies a quasi-identity called the ''term condition" (which is strongly suggestive
of linear operations), and 4 must have at least k = IFI many operations.
(Lampe described, in 1977, a class of lattices that force the term condition, and
Freese and Taylor modified his result to include these subspace lattices.) Taylor
[14] uses Lampe's discovery to construct a countable algebraic lattice that is not
representable as the congruence lattice of any semigroup.

As a consequence of the mentioned result, and another result of Lampe's, the
sought—after characterization for congruence lattices of algebras with one binary
operation now seems very remote. He proved, in [4], that any algebraic lattice whose
unit element is compact (and this is true of every finite lattice) can be represented
as the congruence lattice of an infinite algebra with one binary operation.

This paper is the outcome of a long-standing interest in the characterization
of lattices that can be represented as the congruence lattice of a finite algebra
with one binary operation. The naive expectation that all finite lattices must admit
such a representation is shown here to be false. But our main contribution is to
show that the shape of the congruence lattice can force the operations of a finite
algebra to satisfy the term condition, and in fact, to satisfy an even stronger
quasi-identity. This paper, like [9], also clarifies some of the obstacles which
make it so difficult to construct finite algebras with prescribed congruence
lattices. At this moment, it remains unknown if every finite lattice is isomorphic
to the congruence lattice of a finite algebra. (We shall return to this question
a few paragraphs later.)

In 1969, we had shown that for every finite algebra A, there are finite
algebras B and C with Com A = Con B = Con ¢, and such that B has just four
unary operations, and ( has only a binary operation and a unary operation. These
proofs can be found in [2; Theorem 4.7.2] and in [5; §§1-2]. It remains unknown
today whether the four unary operations can be replaced by three, or by two.

One of the more striking results in this paper is the description of a congru-
ence lattice of two unary operations on a finite set (in fact, of two permutations),
which is not isomorphic to the congruence lattice of any finite algebra with one

operation (n-ary, for any n). Below is pictured such a lattice.

Sub A,

The alternating group on four letters, 4, , can be represented as a group of 12
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permutations on a 12-element set U. This group is generated by two permutations f
and g. The congruence lattice of the algebra (U,f,g) is isomorphic to the lattice
of subgroups of A,. It is a consequence of the result stated in our Abstract, and
the work in §5 (Theorem 5.3 and Exercise 5.4), that this lattice has the property
claimed for it.

Loosely speaking, the argument developed in this paper rums parallel to the one
in Freese, Lampe, Taylor [1]; but the details are completely different. Our starting
point is the idea of Palfy, Pudlak [9], that is,to consider the minimal algebras with
a given congruence lattice. TUnlike them, however, we admit any finite algebra with
a given congruence lattice, and we consider the family of all subsets of that algebra
on which minimal algebras are induced. We find that certain abstract properties of
the congruence lattice of a finite algebra, in fact the properties stated in our
Abstract, imply a kind of pseudo~geometric structure to the family of minimal sets.
Algebras possessing this structure are said to have tame minimal sets. Surprisingly,
every finite simple algebra has tame minimal sets (Corollary 1.10).

Through the vehicle of tame minimal sets, an additional property of the congru-
ence lattice is found to imply that an algebra satisfies what we call the "strong
term condition" (Theorem 2.10, Theorem 2.11). A complete structural analysis of
finite algebras with one operation, having tame minimal sets and satisfying the
strong term condition, is given in §4. This leads in §5 to the second result of
the Abstract (Theorem 5.3). The first result of the Abstract, which is Theorem 3.6,
was totally unexpected; it is an easy corollary of the other results.

The first manuscript of this paper was written in December 1981l. This one is
being written in December 1982. During the year we learned of two new results, and
these have led to improvements in the theorems we had earlier announced.

The first is the result in P.P,Palfy's paper [8], reproduced here as
Theorem 1.5, which characterizes minimal algebras. This has allowed us to replace
everywhere In our paper the adjective "Arguesian' by 'isomorphic to the subspace

lattice of a vector space,"

and tends to put all of our results in a clearer light.
The second new result, obtained by my student David Hobby, is that the subspace
lattice of a finite vector space of dimension greater than one, if it is isomorphic
to the congruence lattice of a finite algebra A, forces 4 to satisfy the term
condition (but not the strong term condition). The theorems in §3 about forbidden
lattices of subvarieties have been sharpened by incorporating Hobby's result.

Since it incorporates the results of Palfy and Hobby, mnot proved here, this
paper is not self-contained. The paper is so structured, with occasional comments
to the reader, that the earlier results, which are in effect fully proved here,
can be delineated.

We should like to acknowledge a substantial contribution made by W.A.Lampe to
this work, both by his presence in Berkeley at the time the results were obtained,

and by his careful reading of the first manuscript, which led to many improvements.
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We close the introduction with some commentary on the most challenging open
problem in the present-day theory of finite lattices. 1Is every finite lattice iso-
morphic to the congruence lattice of a finite algebra? (Only in 1976 did we learn,
thanks to Pudlédk and Tuma [11], that every finite lattice is isomorphic to a
sublattice of the congruence lattice of some finite algebra.) In the last real
advance made on this problem, Palfy and Pudlidk in [9] examined minimal finite unary
algebras having a given abstract congruence lattice, and were able to show, assuming
some properties of the lattice stronger than those stated in our Abstract, that each
of the unary operations must be constant or a permutation. They then constructed,
for every finite lattice, a finite lattice satisfying their conditions and having
the given lattice as an interval sublattice. In this way they proved: Every finite
lattice is isomorphic to the congruence lattice of a finite algebra iff every finite
lattice is isomorphic to the congruence lattice of a transitive set of permutations
on a finite set, or equivalently, is isomorphic to an interval in the lattice of
subgroups of a finite group.

The problem of finite representation remains unsolved, and thanks to the work
just cited, it seems more interesting and challenging than ever. P.Goraldik proposed
to consider the lattices of height 2 as test cases for the problem. Mn is easily
representable if n = l+pk (p a prime), as the subspace, or congruence, lattice

of a 2-dimensional vector space over the Galois field of order pk.

n atoms

For all other values of n >11, it is unknown whether M, has a finite congruence
representation. For n=7 or 11, the question has just recently been answered.
Partial results for n=7 were given in [3], [7], and [12]. Then Walter Feit (1982,

unpublished) found an M, interval at the top of Sub A and an M,, interval at

31°?
the top of the subgroup lattice of an alternating group of a larger prime degree.
For all n> 2, M, satisfies the hypotheses of our Abstract, and this paper gives
new information regarding finite non-unary algebras satisfying Con A =M,.

(As was mentioned earlier, for n = 1-+pk, the main result, that A satisfies the

term condition, is due to D.Hobby.)

NOTATION. Algebras, written usually as 4 = (A,fi(i.EI)), consist of a mon-
void set A paired with an indexed family of finitary operations over A. All
algebras encountered are implicitly assumed to be finite, and all operations are
finitary. (The set A is finite, and every fi is n~ary for some n satisfying

0 <n<w.) This implicit assumption is behind every result in the paper, and all



180

theorems carry the assumption, unless explicitly stated otherwise. Non-indexed
algebras (A,F), F a set of operations over A, will also be called algebras.
For both kinds of algebras, the set A is called the universe, or base set, or
underlying set, and the fi (or the f € F) are called the basic operations of the
algebra.

The definition of the congruence lattice, C(Con A = (Com 4, V, A), is the usual
one, for both kinds of algebras. Its elements are the congruences of 4, i.e. the
equivalence relations over the base set of A4 which are preserved by each of the
basic operations of the algebra. Isomorphism of indexed algebras is the usual notion.
(Two isomorphic indexed algebras must have the same similarity type.) An isomorphism
of non-indexed algebras,written w: (A,F) = (B,G), is a bijection 7 of A onto B
such that @(F) = G. (For an n-ary operation f on A, =f is defined by

(TE) (b suvesby ) = TE@ b e, by 1))

By a permutation group, we shall always mean an algebra (A,F) such that F is
a group of permutations of A, i.e. F 1is closed under composition and inverée and
contains the identity permutation. Two permutation groups, in this sense, are
isomorphic (as non-indexed algebras) iff the abstract groups admit an isomorphism
induced by a bijection of the base sets. Sym A denotes the set of all permutations
of the set A.

The clone of term operations of an algebra A, denoted by Clo 4, 1is the
smallest set of operations on A which contains the projections and the basic
operations of A and is closed under composition. By a clone, we mean the clone of
some algebra. (Although algebras are finite, the set of operations of an algebra
need not be finite, and not all clones are finitely generated.) The clone of poly-
nomial operations of an algebra A, written as Pol A, is the clone over A
generated by the set of basic operations of the algebra and the constant unary
operations (functions) from A into A. Clo, 4 is the set of n-ary term operations
of A while Pol, A4 1is the set of n-ary polynomial operations of 4. (Notice: Our

definition is quite contrary to Gratzer's usage, in which the term operations are
q y ge, P

called "polynomials," and our polynomial operations are called "algebraic operations.'
Our usage is an innovation of the Darmstadt school of universal algebraists. Our
notation for the two important clones of an algebra is also unconventional.)

It is well-known, and trivial, that for any indexed or mnon-indexed algebra 4,
the algebras (A, Clo A), (A, Pol A), and (A, PollA ) each have the same congruence
lattice as does 4. The last algebra in the list is a mapping monoid, i.e. it is of
the form (A,F), F a set of functions from A into A closed under composition
and containing the identity function.

Given an algebra A and a set X C %A, the congruence relation generated by X,
or CgA(X), is the smallest congruence of A4 that includes X. The least and
largest congruences of A4 are written as 0, and 1,. The identity function on A

A A

is idA. AB denotes the set of all functions from A into B. For a € AB, and for
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B\
UCA, a[U is the restriction of ¢ to U. For o € A an n-ary operation on A,

n>1, and for U & A, aIU is defined to be uan, and is called the restriction of
o to U. For F a set of operations on A and for U C A, FIU is the set of all fIU
such that f€F and U is closed under f.

Now let A = (A,...) be any algebra. Every nonvoid subset U of A is the
base set of an algebra which we call an Znduced algebra of A. It is the algebra
AIU = (U, (Pol A)IU). Observe that (Pol A)IU is a clone over U and it contains

the constant functions from U into U.

1, TAME MINIMAL SETS

The property called '"tame minimal sets,'" a property actually of mapping monoids,
is the central new idea of this paper. It is very useful here, and (after the first
manuscript of this paper was written) had a key role in a short proof of the Givant-
Palyutin theorem characterizing categorical quasi-varieties of countable type, in [6].

First we define the minimal sets of a mapping monoid.

Definition 1.1. (1) Let A = (A,F) be a mapping monoid. A subset B C A will
be called a minimal set of A iff B = a(A) for some o € F, |B| > 1, and 8(A) <B,
B € F, implies that IB(A)I = 1. (Here "< " denotes proper inclusion.) The set of
all minimal sets of 4 will be denoted by M(4).

(2) Let A be an algebra. We put M(4) = M({A, Pol 4)), and call the members

of this set the minimal sets of A.

Observe that M(4) is nonvoid if |A| >1, since we assume that 4 is finite.
Observe also that if the algebra A4 = (A,F) is a mapping monoid, then (1) and (2)
give the same minimal sets, since Pol; A is the union of F and the set of constant
functions, in this case. We define the property of tame minimal sets in such a way
that it looks innocuous and, possibly, ill-named. The definition makes it relatively
easy to prove in specific instances that an algebra has tame minimal sets. But the

proposition following the definition shows that it is quite a strong notiom.

Definition 1.2. We say that a mapping monoid A4 = (A,F) satisfies TMS (or has

tame minimal sets) iff there exists B € M(4) such that

i) (density) for all x,y € A, x#y, there is some o € F such that
a(x),aly) € B, alx) # aly).
ii) (connectedness) for all x,y € A there are O sees 5Oy € F for some n

with x € a (B), y € o, (B), and o, (B) N a, ,(B) # ¢ for all i<n.

An algebra A satisfies TMS iff (A, Pol, 4> does.
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Again, the two definitions will be found to agree for algebras that are mapping
monoids. 1.2(ii) is clearly equivalent to CgA(ZB) = 1A' 1.2(i) implies that
6 N 7B > O0p for each 6 > 0, in Con 4.

PROPOSITION 1.3. If a mapping monoid A = (A,F) satisfies TMS then the
following hold.

(1) For any pair of minimal sets B,C there are A,u € F with uAIB = id
and g = id. and pw(4) = B and A(A) = C.

(2) For each B € M(A) there is an e = e> € F with e(A) = B.

(3) For all x,y € A and B € M(4), if x#y, then for some o € F we have
a(A) = B and a(x) # o(y).

(4) Each B € M(A) satisfies 1.2(1) and 1.2(i1).

(5) If @ < U< A then for some B € M(A), UNB # p # B-T.

(6) For B € M(4) and o € F, a[B 18 ome-to-one or constant.

B

(7) For each B € M(A) we have M(A) = {a(B): a € F and of, is one-to-onme}.

(8) If o €F is not constant, then o is one-to-one on gome minimal set.

Remark: (2) and (3) above may suggest that the o in (3) can be taken to be idempo-

tent. However, there is a three element counterexample to this.

Proof. We wish to point out two elementary principles of minimal sets, The
first, and essentially obvious, one is that if B,y € F and RB(A) € M(4) then Ry
is constant or Ry(A) = B(A).

Suppose B and C are minimal sets, B € F, and B(A) = B. The second elementary
principle is that if B is not constant on C then B maps C onto B. This follows
easily from the first elementary principle by choosing any y € F with y(4) = C.

Suppose that B and C are minimal sets. A major part of the work in proving
(1) will be to show that there are B,y € F with B(A) =B and Y(A) = C, which have
the additional properties that B is not constant on C and y is not constant
on B.

Let B, be a minimal set of A satisfying (i) and (ii) of 1.2, First we find an
idempotent e, €F with B, = e (A). In general, if f:X~> X and X is finite then
some power of f 1is idempotent. There is some & € F with B, = a(A). (Why not just
let e, = some idempotent power of a? The idempotent powers of o may be constant.)
Pick x,y such that a(x) # o(y). Applying (ii) to these elements we find that there
must be some oy € F such that o is not constant on ot.l(Bo), i.e. o is not constant
on Bo' So oo and ooy are not constant on A. By the first elementary principle
we have Ototi(A) = a(A) = Ototia(A). Thus for k>1, (aai)k(A) = q(A) = Bo' We choose
e, to be some idempotent power of 0oy and so we have e (A) = B .

Now we are ready to establish (1). Let B € M(A). It suffices to consider only
the case when C=B,. Suppose that B = 8(A). Since B is not constant, by the

argument above, using (ii) for B we obtain € € F with R not constant on e(BO).

0
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Pick u#v in B and (by 1.2(i) applied to B) a § €F with Su # §v and Su,8v € B.

So e06 is not constant on B. Thus by the two elementary principles, e06 maps
both A and B onto B,, and Be maps A and B, onto B. Now by finiteness, we have
that BEIBO and eoélB are bijections. So BeeoélB is a permutation of B. Let e
be an idempotent power of Beeoé. Clearly eIB = idIB. Let A = e06. Then e factors
as Yi for a certain p such that p(A) =B and p maps B, one-to-one onto B. For

x € B, we have pApx = eux = ux. This implies that Aux = x, since pu 1is one-to-one
on B . So these mappings have the desired properties. This establishes both (1)
and (2)., Using C =B,, (3) follows from (1) and (2). To establish (4) we need only
that 1.2(ii) holds for each B € M(4). Again using C =B, and (1) we obtain the
desired result,

To finish (6) and (7) it is enough to show for o € F and B € M(4) that aIB is
one-to-one or constant and if not constant then a(B) € M(4). Using (2) we have
o(B) = a(e(A)) = ae(A)., Let aIB be not constant. Then «a(B) = ae(A) contains
a minimal set C. By (1), |C| =|B|. So a(B) = C, which is minimal, and aIB is
one-to-one (by finiteness).

Statement (5) follows from (6), (7) and (ii) for B,s by choosing x € U and
y € U. A similar argument yields (8). =

Definition 1.4. If B is a minimal set of an algebra A, the induced algebra

Alg = (B, (Pol A)IB) will be called a minimal algebra of A.

That the minimal algebras of any algebra are very restricted in kind is the

content of a beautiful theorem due to P.P.Palfy.

THEOREM 1.5 (Palfy). Let B be a minimal set of an algebra A, |B|>2. If
AIB has an operation that is not essentially unary, then a vector space V, over a
finite field, can be defined with underlying set B such that (Pol A)[B = Pol V.

Proof. 1t is obvious that (Pol A)[B is what Palfy [8] calls a permutational
clone, that is, every unary member of the clone is a permutation or constant, and

all the constant functions are present. This, then, is the main result of [8]. O

Let us observe that if 4 has tame minimal sets, and if the minimal sets of 4
are 2-element sets, then A must be a simple algebra. For if © is a congruence
satisfying 0A < 0, and if B is a minimal set satisfying 1.2(i) and 1.2(ii), then
0N ?B> 0, by 1.2(1); thus, if [B[ =2, then 02 ’B and so 0=1, by 1.2(i1).

We shall see in Corollary 1.10 that every simple algebra does have tame minimal sets,
although the minimal sets of a simple algebra can certainly have more than two
elements. But the algebras that truly concern us in this paper are not simple, and

Theorem 1.5 yields important information about them.
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PROPOSITION 1.6. Suppose that the algebra A has tame minimal sets. Then any

two minimal algebras of A arve isomorphic.

Proof, This follows easily from (1) of Proposition 1.3. m]

In section 2 we shall find a nice necessary and sufficient condition in order
that the minimal algebras of an algebra, which has tame minimal sets, be essentially
unary. In this section, we are about to demonstrate that TMS can sometimes be
inferred from a knowledge of the abstract congruence lattice of an algebra.

Let us pause to introduce some examples of algebras having tame minimal sets.

Suppose that A4 1is functionally complete, or just that Pol4 contains every
l-ary operation on the base set A. Then, obviously, M(4) is the set of all
2-element subsets of A, and it is clear that TMS holds. For a trivial example,
every 2-element algebra satisfies TMS. (However, l-element algebras, by our defini-
tion, do not.) A harder example: a finite lattice [ satisfies TMS iff it is simple,
i.e. Con L = 2. (The reader can puzzle this out. We shall soon see that every
simple algebra has TMS.) A vector space, V, satisfies TMS (at least if IVI >1)
because M(V) = {v}.

The next lemma and at least part of the idea for 1.8 and 1.9 come from [9].

The lemma is valid for infinite algebras as well as for finite ones.

LEMMA 1.7. Let A be an algebra, e = e’ € Pol A, B = e(A). For 0 € Con 4,

2

put nBe =6 N “B. Then m, 18 a lattice homomorphism of Con A onto Con AIB.

B

Proof. Let F = PollA. Note that FIB = Poll(AIB) and FIB is identical
with {ealB: a € F}. The lattices involved in this lemma are Con A = Con(A,F) and
Con A|g = Con(B,F[y).

Now nBe is trivially a congruence of AIB, if 0 is a congruence of A. And T

trivially preserves meets. For each 1 € Con AIB define
U = {Gy) € ®A: for all a € F, (ea(x),ea(y)) € v}.

Thus @ € Con A. It is easily seen that ﬂB$=1b (since e(x) =x for x € B) and,

further, that for all 0 € Con 4, nBe <y iff 0<y. That T is onto and preserves

joins follows easily from these facts. 0

THEOREM 1.8. 4n algebra A satisfies TMS 1ff the following condition holds.
There ig an idempotent e € Pol,A such that B = e(A) s a minitmal set of A and
for all 6 € Con 4:

i) 0 > 0, <mplies me0 > 0p

i1) 6 < 1, imp lies ﬂBe <l .
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Proof. Let B = e(4), e=e? a unary polynomial of A, and suppose that B € M(4).
We shall show for such a B that 1.2(i) «= 1.8(i) and 1.2(ii) + 1.8(ii). This
theorem will then follow from 1.3(2).

First, if 1.2(i) holds then for any 6 > OA’ say (x,y) € 0, x#y, we have
(ax,ay) € nBe —0B for some o. Thus 1.8(i) holds. Conversely, if 1.8(i) holds and

x#y in A, let 0 = CgA(x,y) >0 Choose (u,v) € 'nBe - 0_,. There are elements

u=Ssg,...,8; = v and unary polyﬁomial functions Opsene ,o: € PollA with
{Oti(x),ai(y)} = {Si’si+1}' e=e? and u,v € B imply e(u)=u and e(v) =v.
Then u# v implies that for some i, eai(x) # eoti(y). Since e(A) =B, this gives
1.2(1).

Second, 1.2(ii) is clearly equivalent to CgA(ZB) =1 which is equivalent

A
to 1.8(ii). 0

THEOREM 1.9. If the congruence lattice L of a nontrivial algebra A satis-
fies the following two conditions, then A satisfies TMS.

(1) For each x<1 and v>0 in I, CgL(x,l) = CgL(y,O) = 1.
(8) For every meet preserving function ¢ from L <nto L such that
x < ¢(x) for all x<1 in L, it is the case that ¢$(0) = 1.

Notice that the conditions of the theorem hold for any finite simple lattice

whose co-atoms intersect to 0. So we have the following corollary.

COROLLARY 1.10. Let A be a simple algebra, or more generally, a semi-simple

algebra whose congruence lattice is simple. Then A satisfies TMS.

There are many finite lattices which satisfy 1.9(1) and 1.9(2), are not simple,

and whose co-atoms do not intersect to 0. Here is an example:

Proof of 1.9. Let A be a finite nontrivial algebra (i.e. |A|> 1) and let
Con A = L satisfy the two conditions. Put F = Pol 4 and put I = {e € F: & =e}.
We search for an e€ 1 to demonstrate that the condition of 1.8 holds. There are
some non-constant functions in I, for example id, is one. Let B be a minimal
(under € ) member of {e(A): e€1 and e not constant}. And choose e€ I with e(A) =B.
By Lemma 1.7, s is a homomorphism of L onto Con AIB (which is not a trivial lattice,

since |B| >1). Thus 1.9(1l) yields 1.8(i) and 1.8(ii) for this B. All we need, to
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get TMS by 1.8, is to prove that B € M(4).

So let C be some member of M(4) that is contained in B. We hope C=B.
Suppose instead that C g B. Let K = {a € F: a(h) g_c}. K includes all o such
that a(A)= C, of which there is at least one. Let o, € K. We claim that of is
constant. Suppose it is not. The minimality of C implies that R(A) = qf(A) = a(A)
= C and so a(C) = C. Thus ak(A) = (C for all k 2 1. 1In particular, the idempotent
power of o has C as range. The choice of B, and C, implies this is impossible.

So we have proved that K*K consists entirely of constant functions. Now for any

0 € Cond define
$(0) = {(x,y) € ?A: for all a € K, (ax,ay) € 0}

Obviously, K*F C K, implying that ¢(6) € Con4d. Just as obviously, ¢(6) = 0 and ¢
is a meet preserving mapping of L into L. Since K*K consists only of constant
functions, ¢((0)) = 1, for all 0, and this implies that ¢(6) > 8 for all 6 < 1A
Now by 1.9(2), ¢(0A) = 1A' This simply means that every member of K is constant,
and so |C| =1. This contradicts C € M(4). So B = C € M(4). n]

The following fact seems noteworthy, although it will not be needed or proved
in this paper. (The proof is easy.) The notation used is from the proof of

Lemma 1.7.

PROPOSITION 1.11. Let A satisfy TMS and let © € Con A. Then A[/0 satisfies
THS iff 0< 1, and for some (or for every) B € M(4), 0 = @.

One can define B-minimal sets, where B 1is a congruence of an algebra A, and
define a property we would call tame RB-minimal sets. When B =1,, the two concepts
are identical with the ones we have been studying. If R is the monolithic congru-
ence of a subdirectly irreducible algebra A, then it can be proved that A has tame

B-minimal sets. These ideas will be developed in a future paper.

2., THE GLOBAL INFLUENCE OF MINIMAL ALGEBRAS

In the previous section, we described some properties of the congruence lattice
of an algebra which imply a property of the mapping monoid of unary polynomial func-
tions of the algebra. The implied property, which we named "tamed minimal sets,"
can be thought of as a kind of pseudo-geometry of minimal sets under translations
by polynomial functions.

Now for an algebra 4 satisfying TMS, there are just two possibilities. Either
a minimal algebra of A4 is essentially unary, or it has an operation depending on
more than one variable (and by 1.6 this is independent of the choice of the minimal

algebra). In this section, we show that if the second possibility holds for A, then
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this reflects back to the congruence lattice, implying that Con A can be mapped
homomorphically onto the lattice of subspaces of a nontrivial vector space; while
the first possibility is equivalent to a remarkable and very useful property holding
for all the polynomial operations of A4, of any rank.

Thus the minimal algebras of A4 exert a global influence, which is seen here
acting in one of two directions, either back upon the congruence lattice, or forward
upon the full clone of polynomial operations of 4.

The property of clones that we are aiming for is simple to state, but we shall
approach it in gradual steps. Recall that a quasigroup is an algebra (A,+) with
one binary operation, such that for any a,b € A, the equations x*b = a, bey = a
have unique solutions x and y. A quasigroup with 0 is an algebra (A,+) such

that for some element u€A, A-{u}! is non-empty, (A -{u}, - ) is a quasi-

A-{u}
group, and u*a = a*u = u for all a€A. A 2-element semi-lattice is any algebra

isomorphic to ({0,1},*) where <« is ordinary multiplication. (This is the same as
a 2-element quasi-group with 0.) An algebra B = (B,...) 1is said to be a reduct of
an algebra A = (A,...) if B=A, and every basic operation of B is among the basic
operations of 4. (Under this definition, non-indexed algebras can be reducts of

indexed algebras, and vice-versa.)

Exercise 2.1. Let A = (A,*) be a quasi-group (assumed finite, of course).
Show that Clo A has a ternary operation p(x,y,z) such that the equations
p(%,%x,y) =y = p(y,x,x) are identities of 4, and consequently Con A is a modular
lattice of comnuting equivalence relations. If 4 is a quasi-group with 0 then,

again, Con A is a modular lattice of commuting equivalence relations.

Exercise 2.2. Show that if a clone of operations on a set A contains all the
constant functions, and is not essentially unary, i.e. if it contains an operation

that depends on at least two variables, then it contains a binary operation that

depends on both variables, Stronger, if an operation f(xl,...,xn) on A depends on

at least two variables, then for some 1 < i < j € n and for some - - 1y € A, the
i h| . .

operation g(x,y) = f(al,...,x,...,y,...,an) depends on both of its variables.

THEOREM 2.3. If A satisfies TMS then the following are equivalent.

(1) Each minimal algebra of A 18 polynomially equivalent to a vector space,
or each minimal algebra of A has exactly two elements and has a
2-eloment semi-lattice us reduct.

(2) Each minimal algebra of A has a quasi-group or quasi-group with 0 as
reduct.

(3) Some (equivalently, every) minimal algebra of A <s not essentially unary

(4) For some n>1 there exists an n-ary polynomial operation £ of A
(what Gratzer calls an algebraic operation), which depends on at least
two variables, and a set B € M(A) such that £("A) C B.
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Remark: The statement of the theorem is encumbered by our desire to simultaneously
get the strongest possible versions of later results, avoid reproving Palfy's
Theorem 1.5, and keep our paper as nearly self-contained as possible. The strongest
versions depend on the equivalence of (1) and (4), which depends on Theorem 1.5.
Slightly weaker versions, which we will sometimes point out, use the equivalence

of (2) and (4), for which we give now a complete, self-contained proof.

Proof. We assume that A4 satisfies TMS. The implications (1) = (2) = (3) are
trivial. And (3) = (4) is easy; if B € M(4), and f € Pol 4 is such that f(nB) C B,
and fIB depends on at least two variables, then, choosing e = e € Pol;A with
e(A) = B (by 1.3(2)), we have that range ef C B and ef 1is not essentially unary.

Our proof that (2) implies (1) is short, using Theorem 1.5. Let (2) hold, so
that the minimal algebras are not essentially unary. By Theorem 1.5, either each
minimal algebra has its clone, (Pol A)IB, identical to the polynomial clone of a
vector space, or else the minimal sets are 2-element sets. Suppose the latter.

Let B be any minimal set, and C = (Pol A)IB.

Recall that 2-element semi-lattices and 2-element quasi-groups with O are the
same thing. So we can assume that C does not contain the binary operation of a
quasi-group with 0, but does contain the operation of a quasi-group. Since |B|= 2,
and C contains the two constant functions, it is easy to see that C contains the
polynomial clone of a 2-element vector space V. Now it is known that Pol V is a
maximal clone. So either C = Pol ¥, or C contains all possible operations. In
either event, we get that (1) holds. Thus (1) and (2) are equivalent.

Now we prove that (4) implies (2), which will give the equivalence of (2), (3)
and (4). Let f be an n-ary polynomial operation of 4, f(nA) C B, B € M(4), and
f not essentially unary. By Exercise 2.2, we can arrange that n=2. We now choose
c,d € A such that g(x) = f(x,d) and h(x) = f(c,x) are not constant on A. Then,
by 1.3(8) and 1.3(7), we choose 050 € Pol;A so that g(ao(x)) and h(al(x)) are

one-~to-one on B. We define, for any x,y € A,

f,0x5,y) = fla,(®0),y)
£ ) f£(x,0,(¥))

€)Y
(£)

Thus (fo)d and (fl)C are permutations of B.

Consider first the case when (fo)y and (fl)x are permutations of B for all
x,y € A, In this case, f(a,(x),a,(y)) restricted to B is obviously a quasi-group
operation. Thus AIB (and, by 1.6, every minimal algebra of 4) has a quasi-group
reduct. So we are done, in this case.

Consider now the case when (fo)y fails to be one-to-one on B, for some y€A.
(The symmetric assumption for (fl)x yields a symmetric argument.) Then by 1.3(5)
and 1.3(6) we can assume that there is D € M(4) with d,d' € D, and (fo)d is a permu-

1]
tation on B, while (fo)d is constant on B (take U = {y:(fo)le is one—to—one} in
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1.3(5), and use that every unary polynomial function is one-to-one or constant on B,
by 1.3(6)). Choosing o, € Pol 4 with a,(B) = D, we now define q(x,y) = f(ao(x),az(y))
for x,y € B. This gq 1is a binary operation of the minimal algebra AIB. We define

(for x,y € B)
., = axy) = d

and we note that each qy, and each qy, is either constant or a permutation of B.

Letting v,v' € B be such that a, (v)=d, az(v') = d', we have that
v d :
q = (f) | is one-to-one ,
0 B
1] 1]
' = (f )d IB is constant
We set 0 = the only value of q(x,v'); and set u' = the x such that q(x,v) = 0.

Now q(u',v) =0 = q(u',v'), implying that LY is constant. For u € B-{u'}, we
have q(u,v) # q(u',v) = 0 = q(u,v'), implying that q, is a permutation. Again,
letting w € B-{v'}, and choosing any u € B-{u'}, gq(u,w) # q(u,v') = 0 = q(u',w),
implying that qw is a permutation.

So we have

qu',y) = 0 = q(x,v') for all x,y€B
w 3 ' .
q, and q are permutations when u#u', w=v
If u' = 0 = vy', then it follows from the above that (B,q) 1is a quasi-group with 0,

as desired. If u' # 0 # v', then there are a # v' # b such that q(0,a) = u',
q(0,b) = v'. For the operation q(x,y) = q(q(x,a),q(y,b)) it is easy to see that
(B,q? is a quasi-group with 0. If, say, u' = 0 # v', then choose a#0 with
q(a,0) = v', and set q(x,y) = q(x,q(a,y)). Again, (B,3) is a quasi-group with 0.

This finishes the argument. O

Notice that the second alternative of statement (1) in the theorem can hold
only if A is a simple algebra, while the first altermative implies that the minimal
algebras of 4 do not have quasi-groups with 0 as reducts. Thus the last paragraphs

of the proof yield this additional result.

PROPOSITION 2.4. Suppose that A satisfies TMS and is not simple. Let B € M(4)
and £ € Pol, A, Then either £Y is one-to-one on B for all yEA, or £ is constant
on B for all y € A.

We now consider algebras satisfying TMS which do not satisfy the equivalent
statements of Theorem 2.3. Here is a property of operations that characterizes

this situation.
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Definition 2.5. An n-ary operation f on a set A is said to satisfy rc*
(or the strong term condition) iff for each i, 0 < i < n, and for all

u,v,aoboco,...,an_l,bn_l,cn_1 € A, the following implication holds:

f(a_, ) = £(b ,...sb;_15V,b

L L L T L ] 0 14127 oPpo1)

f(co""’Ci—l’u’ci+1""’cn—1) = f(co,...,ci_l,v,ci+1,...,cn_l)

We say that a clone C over A satisfies TC* iff every f € C satisfies TC*; and that

an algebra A = (A,...) satisfies TC* iff Pol 4 satisfies TC*,
This property can also be defined rather differently.

LEMMA 2.6. An n-ary operation f over A satisfies TC* iff there exist
equivalence relations Rf,...,R£_1 over the set A (uniquely determined by f)
such that for all a,b € "a,

N _ n-1 £
fa) = £(b) <> 3 (aj,b;) € Ry
The proof of this lemma is quite easy, and we omit it,. TC* is related to the

term condition studied in [1] and [14], which we now define.

Definition 2.7. An n-ary operation f on a set A is said to satisfy TC

(or the term condition) iff for each i, 0 < i < n, and for all

u’v’ao’bo""’an—l’bn—l € A, the following bi-implication holds:
f(ao,...,ai_l,u,ai+1,...,an_1) = f(bo""’bi—l’u’bi+1""’bn—1) >
f(ao""’ai—l’v’ai+1""’an—l) = f(bo"'"bi—l’v’bi+1""’bn—1)

We say that a clone C over A satisfies TC iff every f € C satisfies TC; and that

an algebra A4 = (A,...) satisfies TC iff Pol4 satisfies TC.

Exercise 2.8. TC* implies TC, for operations, clones, and algebras. A clone
C satisfies TC* (or TC) iff the clone generated by C U {constants} does; thus an

algebra A satisfies Tc* (or TC) iff CloA (the clone of term operations of A) does.

Notice that unary algebras satisfy TC*. Modules satisfy TC, but a non-trivial
module cannot satisfy TC*. From a theorem of C.Herrmann, reproved in [14], it
follows that a non-trivial algebra in a congruence modular variety cannot satisfy

TC*. The next theorem is very important for us.

THEOREM 2.9. Suppose that an algebra A satisfies TMS. Then the minimal

algebras of A are essentially wnary 1ff A satisfies TC*.

Proof. Let A satisfy TMS. Suppose, first, that A satisfies TC*. Then each
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minimal algebra AIB obviously satisfies TC*. A quasi-group or quasi-group with 0
evidently cannot satisfy TC*, if it has more than one element. Thus statement (2)
of Theorem 2.3 fails, and consequently (3) fails also. The minimal algebras are
essentially unary.

Now suppose that the minimal algebras are essentially unary, and let f € PolnA.

Suppose that u,v € A and a,b,c € n-l

A are such that f(u,c) # f(v,c). By Proposi-
tion 1.3(3), there are B € M(4), a € Pol,A such that a(A) =B and af(u,c) # af(v,c).
By Theorem 2.3 (the equivalence of (3) and (4)), the operation f'(x) = af(x) is
essentially unary. Since f'(u,c) # f'(v,c), the one argument that f' depends on
must be the first. Thus f£'(u,a) = f'(u,c) # £'(v,c) = £'(v,b), implying that
£(u,a) # £(v,b).

So we have that f(u,a) = f(v,b) - f(u,c) = f(v,c). The same argument works

for each of the n arguments of f, showing that f satisfies TC*. 0

If P is any property of algebras, we shall say that a lattice L forces P
provided that for every algebra A, Com A = [ implies A has the property P.
(Recall that "lattice" means "finite lattice,” and "algebra'" means "finite algebra"

in this paper.)

THEOREM 2.10. Let L be any lattice such that the two conditions of Theorem
1.9 hold for L, and for no non-trivial vector space V 1is Sub V a homomorphic
image of L. Then L forces TC*.

Proof, If L[ is a l-element lattice, it certainly forces Tc*. Suppose that [
satisfies our hypotheses, has more than one element, and Con 4 = L. Then by Theorem
1.9, A satisfies TMS. Let B be any minimal set of A. By Proposition 1.3(2) and
Lemma 1.7, we have a lattice homomorphism of Con A4 onto Con AIB. Thus AIB cannot be
polynomially equivalent to a vector space. (The congruence and subspace lattices of
a vector space are isomorphic,) Also, |B|> 2, because IBI =2 would imply that A 1is
simple, i.e. L = 2; but then [ would be isomorphic to Sub V for a 2-element V.

So statement (1) of Theorem 2.3 fails for A4, and A satisfies TC*, by Theorems 2.3
and 2.9. - 0

We proceed to note some immediate consequences, and some easy extensions, of

the last theorem.

THEOREM 2.11. Let L be any simple lattice, not Lsomorphic to the subspace
lattice of a vector space, such that the co-atoms of L 1intersect to 0. Then L
forces TC*. Moveover, if A <is any algebra and Con A = L, then every homomorphic

image of A satisfies TC*,

Proof. It is obvious from the remark after Theorem 1.9 that the hypotheses on

L in this theorem imply those in the last theorem. Thus L forces TC*,
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Now let Con A =L and 6§ € Con A. It must be shown that for every f € PolnA
and u,v € A, a,b,c € ™A, that f(u,d) #o £(v,0) implies f(u,d) %, £(v,b).

So suppose that (f(u,c),f(v,c)) € 6. Choose a minimal set B of 4. Since Con 4
o~
B is an isomorphism in Lemma 1.7. Thus 0 = nBe. So there exists an

o € Pol,A, a(A) € B, such that af(u,c) ie af (v,c). By 2.3 and 2.9 (and because A4

is simple, T

satisfies TC*), af is essentially unary. Then the computation in the proof of

Theorem 2.9 shows that f(u,a) ie f(v,b). 0

It follows from the last theorem that the lattice En of all equivalence
relations on an n-element set, n > 4, forces TC¥, and so does the dual of En'
Likewise, the height two lattices Mn’ for n > 3, n not the successor of a prime
power, force Tc*. A simple observation allows us to greatly extend the class of
lattices known to force TC¥.

By an Znterval in a lattice [ we mean a sublattice whose universe is of the
form u/v = {x €L: vs<x< u} for some v<u in L. Such a sublattice will simply

be denoted as u/v.

THEOREM 2.12. Each of these conditions implies that L forces TC*.

(1) L =Ly x...xL  and L forces TC* for 1i=0,...,k.
(2) In L there exist VsV such that G v; = 0 and the Lattice

1/v; forces TC* for 1=0,...,k.

Proof. (1) implies (z), so we focus our attention on (2). Suppose that

v in I satisfy (2), and that Con A = L. So we have 60,...,6k in Con 4

NERTEA
satisfying (2). This means that A4 is a subdirect product of the algebras A/ei,

and since Con A/0; = 1/ei, these algebras satisfy TC*. Now this theorem follows
from the easy observation that subdirect products preserve the satisfaction of TC*.

O

We conclude this section with two remarks. The first remark is that results
somewhat weaker than Theorems 2.10 and 2.11, but not depending on Theorem 1.5 for
their proof, are obtained by replacing the class of subspace lattices of vector
spaces by the class of congruence lattices of algebras having a quasi-group or
quasi-group with 0 as a reduct. (By Exercise 2.1, this is still a quite restricted
class of lattices.)

The second remark is that although M, for n = 1-+pk, p a prime, certainly
does not force TC*, it has recently been proved by David Hobby that every M, , n > 3,

forces TC.
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3. TLATTICES OF SUBVARIETIES

In this section, we find that some remarkable conclusions about the lattices of
subvarieties of locally finite varieties of algebras are easy consequences of results
in the last section. Perhaps the most remarkable fact, following from Hobby's result
mentioned at the close of that section, is that for no locally finite variety U is
L) EMA, A= 3.

In this section, we do not follow the convention that all mentioned algebras
are finite. However, the phrase "I forces P" will continue to have the same
meaning as in the last section, namely, that L 1is a finite lattice such that for
every finite algebra A4, Con A = [ 1implies that 4 satisfies the property P.

Recall that a variety UV of algebras is termed locally finite iff the V-free
algebras FV(n) are finite for all finite n. L(V) denotes the lattice of all
subvarieties of V. The dual of a lattice I is denoted by La. It is well known
that L(V)a is isomorphic to the lattice of all fully invariant congruences of Fv(m).
(A congruence 0 € Con 4 is fully imvarignt iff (x,y) € 0 implies (s(x),s(y)) € 8,
for all endomorphisms s of 4 and for all x,y € A.) The lattice of fully invariant
congruences of an algebra A4 will be denoted by I-Con A.

If a variety V is finitely generated, i.e. if V = V(4) for some finite
algebra 4, then UV is locally finite. If L(V) is finite, and if V is locally finite,
then V is finitely generated (since V = nYm V(Fv(n)) and V(Fv(l)) < V(FV(Z)) < L.

However, L(V) is not always finite, for finitely generated V.

LEMMA 3.1. Let V be any variety such that L(V) <s finite. For large n<uw,
L(V)a is isomorphic to the lattice I-Con Fv(n).

Proof. Since L(V) is finite, there is n such that whenever W,W' € L(V) and
W' € W, there is an n-variable identity that is valid in (0 and not valid in W'.
Let L = I-Con Fv(n). For each W € L(V), let 8,  be the smallest congruence 0 on

w

Fy(n) satisfying Fv(n)/e € W. Then ew € L ew is the kernel of the natural homo-

morphism of Fv(n) onto Fw(n). By the choice of n, © iff W=W'. Moreover,

w= %
ew < ew, iff W' < W, To see that W —+ ew is cnto L, let O be any member of L,
and let W = V(Fv(n)/e). Now ew C 0, obviously. If ew < 0, then any pair

(u,v) € 0 -ew represents an identity that holde in Fv(n)/e, due to the full invari-
ance of 0, and does not hold in (! because it coes not hold in Fv(n) /ew. This

contradicts the definition of (W. So we conclude that 6 =0, . O

w

Definition 3.2, Let F be the universe of a V-free algebra, Fv(n), freely
generated by elements Xy esX,. We define an n+l-ary operation, sub, on F. For
Tslyses sy € F we put sub(c,pl,.. .,pn) = g(¢) where s is the unique endomorphism
of Fv(n) which sends X; TO U, 1 <i<n. (More suggestively: sub(c,ul,...,pn) =

c(pl,...,un).) We now form two algebras, Ff/(n) = (F,sub) and F:;(n). The latter
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algebra is Fv(n) with all its operations together with the n+l-ary operation sub.

LEMMA 3.3.
z) For any V, I-Con Fv(n) = Con F;(n).
i7) If the fundamental operations tn V are all of rank <n, then

I-Con Fy(n) = Con Fa(n).

Proof. For fixed Hyseenshy €F, su(u) = sub(u,ul,...,pn) is an endomorphism
of Fv(n). Moreover, every endomorphism has this form, so they are all polynomials
(what Gratzer calls algebraic functions) in each of the new algebras. And every
operation of Fv(n) having rank <n can be expressed as f(u ,+++,lp) =
sub(¢,pl,...,um,xm+1,...,xn) with ¢ = f(xl,...,xm) € F; so all such operations
are polynomial operations of F;(n).

Since congruences are closed under all polynomials, the rest of the proof is
easy. (It is trivial to see that invariant congruences of Fv(n) are closed under

sub.) 0

LEMMA 3.4. Suppose that V is a locally finite variety, L(V) is finite, and
L(V)a forces - TC. Then V is a variety of trivial algebras and L(V) = 1.

Proof. Choose n>2 so large that (by Lemmas 3.1 and 3.3), L(V)a = I-Con Fv(n) =
Con F;(n). F;(n) is a finite algebra, so it must satisfy TC. Let K sveesXy be
the free generating elements, in terms of which sub was defined. Now

sub(xl,xl,xl,...,xl) = sub(xl,xl,x .,xz). By TC (see Definition 2.7) we can

e
replace x, at the first place in this equation by any other member of Fv(n).
In particular, replacing by X,, we obtain the equation x, =Xx,. This simply means

that F;(n) is a one-element algebra and L (V) is a one-element lattice. 0

THEOREM 3.5. Let L be any lattice such that for some u<1 in L, the interval

9

lattice 1/u is finite and forces TC. Then L° 1is not isomorphic to L(V) for any

locally finite variety V.

3

Proof. If L(V) 2L°, then for some variety V' C V, L(V')a = 1/u. So the

theorem follows by the preceding lemma, 0

That the class of finite lattices satisfying the hypotheses of the last theorem
is quite a large class, is amply demonstrated by Theorems 2,10, 2,11, 2,12, However,
all the lattices that force TC, by our theorems, also force the stronger Tc*. Now
D.Hobby has proved that the class of lattices that force TC is a good deal more
extensive than the subclass that force TC*, He proved, in particular, that L forces
TC whenever [ is a finite simple lattice, ILI >3, and the co-atoms in [ intersect

to 0. The next two theorems are a consequence of this result of his and Theorem 3.5.



195

THEOREM 3.6. Let [ be any lattice such that for some u in [, the interval
lattice u/0 is finite and simple and has at least three elements, and u is a join

of atoms in L. There does not exist any locally finite vartety V with L =L(V).

A variety V is called equationally complete iff |L(V)| = 2; and called

equationally pre-complete iff L(V) = M, for some cardinal X > 1.

THEOREM 3.7. An equationally pre-complete locally finite variety has at most

two equationally complete subvarieties.

Proof., Let V be equationally pre-complete and locally finite, and assume
that V has more than two equationally complete subvarieties. Thus L(V) = MA for
some cardinal A 2 3. By Theorem 3.6, it is forbidden that ) be finite and >3.
So A 1is infinite. Let F = FV(Z), a non-trivial finite algebra, U-freely generated
by two elements x and y. Let wo,wl,... be an infinite list of distinct atoms of
L(V). As in the proof of Lemma 3.1, let ei be the smallest congruence 6 of F with
F/0 € W;. Now 6,V 0, =1p for i#j, since F/(o,V 0,) = CENIA(CH vej)/ei) €
wi n wj. And ei A ej = 0p, 14733 for if (u(x,y), v(x,y)) € oM ej, then the
identity py=~v holds in both wi and Wj, hence in wi v wj = VU, and so u(x,y) = v(x,y).
It is impossible for a finite non-trivial lattice to have an infinite sequence
0354
So we have a contradiction, proving the theorem. O

of elements as above. But Con F is certainly a finite non-trivial lattice.

4, IMPLICATIONS OF TC*

The convention that all mentioned algebras are finite is followed in this
section. Our purpose here is to develop a complete description of all algebras
A = (A,f) which have tame minimal sets, satisfy the strong term condition, and have
just one basic operation, It turns out that either f is constant, or (A,Clo 4
is isomorphic to a [k]-th power of a non-indexed algebra (U,C) where C is a clone
generated by a single permutation o € Sym U, From this result, coupled with the
earlier results, we shall be able to quickly delineate a broad class of finite
lattices that cannot be represented as the congruence lattice of a finite algebra
with one operation.

Let us recall a few concepts and results relating to clones. Two algebras
A=(A,...) and B = (B,...) are called equivalent iff their underlying sets are
equal and Clo A = Clo B. (This definition makes sense, and we use it, even in
case A is an indexed algebra and B 1s non-indexed.) A4 and B are called weakly
tgomorphic iff the non-indexed algebras (A,CloA’ and (B,Clo B} are isomorphic, i.e.
iff there is a bijection from A onto B which carries Clo4 onto CloB. The
non-indexed product of A and B is (A,CloA’x (B,CloB)= (AxB,C) where C consists

of all operations on AXB which act co-ordinatewise, and act like a member of Clo 4
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in the first co~ordinate, like a member of CloB in the second. Notice that C is
a clone.

Let 1 < k < w. The [k]~th power of A 1is the algebra (kA,C) where C consists
of all operations f such that, if f is n-ary, there exist fo""’fk—l € C1OnkA

satisfying (for all io,...,in_l S kA):

4.1) £, & - (£,3)se.sfy_ (3)) , where

0 0 xn—l
- 2%

- =17

xn—l) - X bl e O in—l
R L S

This non-indexed algebra (kA,C) is denoted by A[k].

(k]

Three special operations of 4 are particularly interesting.

- = =0 k k

(4.2) FOr X,¥,X ,++v.,X in A, define
-0 =k-1 _ 0 _1 k-1
dk(x yrreX ) = (x03x13"‘3xk_1) >
pk(x) = (Xk—l’xo’xl""’xk—z) ,
b GGLY) = (Y 0%y s X ) .

PROPOSITION 4.3. Let A,B be algebras, 1 < k < w.
(1) If A 4is an indexed algebra, then A[k] 18 equivalent to the algebra
(kA’dk’Pk) consisting of the ordinary k-th direct power of A and its

A[k] 18 also

operations, together with the operations dy and Py+
equivalent to (kA,bk).

(2) A[k] = (A,Clo A>[k], and the k-fold non-indexed power of A s a reduct
of A[k].

(3) Con((A,CloA) x(B,Clo B)) = Cond x Con B, while C(Con A[k] = Con A.

(4) Any algebra A' = (Ka,...) with universe ky 7g equivalent to A[k] iff:
the operations d, and p, belong to Clo A' (equivalently, by belongs),
and CloA is identical with the clone generated by all operations of the
form g(xg,...,xﬁ:}) = mEE, .., B, where f€ Clo A', n 7s arbitrary,

and T 1is one of the k projections of Ky to A

Proof. These facts are easily verified, and in any case are well-known. The

reader is referred to W.Taylor [13] for more information about [k]-th powers. O

In [5), we used [k]-th powers to show that for any algebra A with finitely
many basic operations, Con A is congruence representable with a binary and unary
operation. In fact, if 4 has <k basic operations, and these have rank <k, then
A[k] has its clone generated by the binary operation b, and one unary operation,
and Con 4 = Con A[k] by statement (3) in the above proposition. Here we shall use

[k]-th powers for the opposite purpose, to facilitate a proof that one operation
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does not suffice for congruence lattice representations with finite algebras.
Recall the properties TC* and TC defined in Definitions 2.5 and 2.7. We now
have several constructions available for producing algebras satisfying these proper-

ties. The next theorem is fairly obvious.

THEOREM 4.4. The class of algebras satisfying TC* contains all multi-unary
algebras, and is closed under weak isomorphism, and wnder the formation of reducts,
direct products (of similar indexed algebras), non-indexed products, [k]-th powers,
subalgebras, and dirvect factors. The class of algebras satisfying TC also has these
properties.

Among the simplest examples of algebras satisfying TMS and TC* are the permuta-
tion groups (algebras of the form (A,G’ with G a subgroup of Sym A). From them,

we get the basic examples for this section.

THEOREM 4.5.
(1) If FCSymA, |Al>1, and 1 < k < w, then (A,F)[k] satisfies TMS and TCc*,
(2) If f €SymA, and 1 < k < w, then (A,f)[k] s equivalent to an algebra

(kA,b) with one binary operation.

Proof. We first tackle (2). Let f € Sym A. We claim that the clone

C = Clo (A,f)[k] is generated by the operation b defined as
b(}_{’§) = (fyk_laxoa"-’xk_z)

It is obvious that bE€C. Defining q(X) = b(x,X) and fr(x) = qk(i) (i.e. g
iterated k times), we have that f'((xo,...,xk_l)) = (fxo,...,ka_l); i.e. f' is
the basic operation of the direct power algebra k(A,f). By Proposition 4.3(1), C 1is
generated by f' together with bk' Since A is finite, we can choose n >1 such that
£ = idA. Then we can check that bk(§,§) = (f')n_l(b(F(i),§)). Thus b generates
the entire clone C.

Now we tackle (1). Let F C Sym A, |A|>1, 4" = (4,7 [¥). since the algebra 4'
depends only on the clone of (A,F), we can suppose that F is a subgroup of Sym A.
That A' sacisfies TC* is a part of Theorem 4.4. To see that 4' satisfies TMS we
use Definition 1.2, and we put B = {(x,...,x): x € A}. B is obviously the range
of a polynomial function of A'. We show that B is a minimal set of A' satisfying
1.2(i) and 1.2(ii).

Suppose that o € PollA' and a(kA) C B. We wish to show that either a(kA) = B,
n-1 k

or 0. 1is counstant. We can find h € ClonA' for some n>1, and 51,...,5 € A,
such that o is the function a(x) = h(i,al,...,an_l). Now the clone of A' consists
of all operations of the form (4.1). Since Clo(A,F) consists of all operations of
the form t(xo,...,xu_l) = f(xj) for some fEF and some j <u, we have that

_ n-1
alx) = (fo(so),...,fk_l(ek_l)) with each £y IS {xo""’Xk—l’a;""’ak—l} and

fo""’fk—l € F. The only way it can happen that a(kA) C B and ¢ 1is not constant,
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is if all €, are chosen from among the components of x, and in fact all are the

same componint of X. Thus we can assume that a(;<) = (fo(xj)""’fk—l(xj)) for a
certain j <k, and for all x. Again, OL(kA) C B implies f0 = ... 0= fk—l’ and then
clearly a(kA) = B, So we have proved that B € M(4").

Let 4,V € KA, 4 #%. For some j <k, uj#vj. Clearly, a(x) = (x.,...,xj)

defines a polynomial function of A' such that a(u) # o(v) and Ot(kA) = B. Thus
1.2(1) holds for this B.

For each j <k and ao""’aj—l’aj+1""’ak—1 € A, the operation
o(x) = (ao,...,aj_l,xj,aj+1,...,ak_1) is in PollA'. The sets 0 (B), o of this form,
obviously connect ka, 5o 1.2(ii) holds for this B. o

Up to now, we have been preparing the ground to motivate the principal result

of this section, Theorem 4.8. Now we begin the proof of it.

Definition 4.6. An n-ary operation f over A 1s called §-injective iff

the function fa(x) = f(x,...,X) 1s one-to-one.

LEMMA 4.7. Suppose that A = (A,f) satisfies TMS and TC*. If f 78 not

§-injective, then it is constant.

Proof. We suppose that f 1is n-ary and that f6 is not one-to-one. Let a#b,
f

n-1
fa(a) = fa(b). Using the notation of Lemma 2.6, we then have that (a,b) € 8 Ri'

Now it is easy to prove that for every o € Pol,A4, iIf a # idA then a(a) = a(b).
(Pol,A 1is the subalgebra of ) generated by the constant functions and the identity
function. Lemma 2.6 must be used also in this proof.) By 1.3(3), there is

a € PollA such that a(a) # a(b) and a(A) is a minimal set. Thus a=1d A€ MA).

A’
Then by 1.3(6) every o € Pol;A 1is constant or one-to-one. Thus Pol 4 = {idA} v

1A for all i, because Ri is the kernel

of a polynomial function, and (a,b) € R;. Thus f is constant. 0

{constant functions}. Now finally, Rf

Herh i

THEOREM 4.8. Suppose that A = (A,f) satisfies TMS and TC*. If f s not
constant, then A <Ts weakly isomorphic to an algebra (U,o? (k] yhere ¢ € Sym U.

Proof. We assume, by 4.7, that f is §-injective. Now we claim that the clone,
Clo A, of term operations of A4 has no essentially n-ary members, if n is large.
Indeed, it follows by Lemma 2.6 that If g is an essentially n-ary, n-ary operation
in Clo A, then IAI > 2%, This is because g induces an injective map of
H(A/R%, i<n) dinto A, and R% <1, iff g depends on its i-th variable.

Let k be the largest n such that Clo4 has an essentially n-ary, §~injective
operation. Let g be a k-ary member of Clo4 such that g is §-injective and essen-
tially k-ary. We assume that k>1, since otherwise f is essentially unary and we
are done (as f6 is a permutation). Choose n>1 such that gg = idA, and put
d(xo""’xk—l) = gg—lg(xo,...,xk_l). This d is essentially k-ary and d6 = idA.
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We claim that d satisfies the identities

(1) d(Xy...,X) = X

(2) d(d(xg,...,XO

k_1),...,d(x

k-1 k-1
""’Xk-l)) = d(xg,xi,...,xk_l)

Indeed, (1) is the equation d6 = idy. To prove (2), note first that the kz—ary

operation d on the left-side of (2) is 8-injective, in fact, 36 = idA. Thus, by
our assumption, d depends on at most k arguments. Suppose that for some 1,
say i=0, d is independent of xz,...,x;_l. Then

d(x,xl,...,xk_l) = E(X,...,x,xl,...,xl,...,xk_l,...,xk_l)

el s . = i
is independent of X, a contradiction. Thus d must depend on exactly one xj, for

each 1 <k. Let xg ,...,x§;11 be the variables on which d depends. Notice that
0 -
d(xo,...,xk_l) = a(xo,...,xk_l,...,xo,...,xk_l)
= d(xjo,...,xjo,le,...,le,...,xjk_l,...,xjk_l)
= d(Xs ,...,X3 )
Ty Jk-1
So i-+ji must be a permutation T of {0,...,k—1}. (Since d depends on all

variables.) Now the above computation implies that

a(xo,...,xk—l) = dx’ ,...,x0 ,...,xk_1 ,...,xk_1 )
0 k-1 m(0) m(k~1) m(0) m(k~-1)

If mn(i) # m(i) for some i, then the displayed equation implies that d does not

depend on x} . Thus we can conclude that 7(i)=1i for all i. Then it follows that
i
T(x" k-1, _ 5/.0 01 1 k-1 k-1
d(xo""’xk—l) = d(xo,...,xo,xl,...,xl,...,xk_l, ’Xk—l)
_ 0 1 k-1
= d(xo,xl,...,xk_l) .

as was claimed.
There is a classical representation theorem for operations which satisfy the

identities (1) and (2). It states that there exists an algebra (A',d') and an

isomorphism ¢: (A,d) = (A',d"), where A' = Ay X ... XA, for some sets Aj,
and d' is the diagonal operation (which was defined in formula (4.2), but only in
the case A = ... = Ak—l)' There is an operation f' with ¢: (A,f) = (A", f".

We now replace (A,f) by the isomorphic algebra, i.e. we henceforth assume that

(3) A = A X .,. X Ak—l s
= =k~ ~ - -k-1
d(xo,...,xk 1) = (xg,x .,xi_}) for any xo,...,x € A
Now let us finally examine the basic operation f. Say f 1is n-ary, and let

us define an operation in C1°nkA by
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0 0 k-1 k-1 k~1 k-1
q(xo,...,xn_l,...,x0 ""’xn—l) = d(f(xg,...,x;_l),...,f(x0 ""’xn—l))

This q is S-injective and thus depends on at most k variables, but for each i<k
i i
PEEERFE SR

0 0 PN
X oseeesX 95 then we would have that d(fa(xo)""’fa(xk—l)) is independent of X s

giving that d is independent of its first variable, since f6 is a permutation.

it must depend on at least one of x For if, say, q were independent of

It follows that for some jo""’jk—l < n, q depends precisely on xg ,...,x?ill.
0 -
From this we derive easily the equation f(xo""’xn—l) = d(fG(xjo)""’fé(xjk_l))’

implying that

(4) Clo A 1is generated by d and f6

We define one more auxiliary operation.

k~1 k-1
,...,fad(x0 ""’Xk—l))

v, 0 k-1 _ 0 0
q (XO""’xk—l) = d(féd(xo""’xk—l)
Consideration of this operation leads, as in the demonstration of (2) above, to the

conclusion that for a certain permutation 7 of {0,1,...,k—1}, we have the identity

ONEEN CICHPIRE SN IR ((NCERIP NCININS)
In view of (3), this means that there exist functions 0, An(O) - AO,...,ck_l:
Aﬂ(k—l) - Ak—l such that

(6) for x = (xj,eve,x ) €A, f.(0) = (co(xﬂo),...,ck_l(xﬂ(k_l))) .

The 0; are bijective maps, since f. is a permutation of A.

Next we claim that m 1s a trinsitive permutation, that is, a cyclic permutation
with one orbit. Suppose that this is false. Then we can write {0,...,k—1} = TUJ,
INT=¢, T#@+4J, and () =1, n(I)=J. Let 0 = {(x,y) € %A: x;=y; for all ie1}.
From (3), (4) and (6), it is easy to see that 6 is a congruence of 4. Choose any
a € A and define a(X) = d(EO,...,Ek_l)
Obviously, a € PollA, and o 1is not constant. Thus a(A) contains a minimal set

with €, =a for i€ 1T and Ej=§< for jE€J.

B € M(4). But then 2B ¢ 0, implying that CgA(ZB) < 1A’ which contradicts the

comment following Definition 1.2,

So m is transitive. We can therefore write {O,l,...,k—l} = {20""’2k—1}’
with 20= 0. and ﬂ(2j+1) = lj for j=0,...,k-2, and m(0) = lk—l' We can use these
facts to set up a bijection between kA0 and A. Recall that oy (in (6)) 1s a bijec~

tion of Aﬂ(l) onto Al' Thus forkj= 1,...,k-1, Bj = Oljolj—l"".cll is akbljectlon
of A0 onto A2 . A bijection of Ap onto A 1is defined by setting, for a € AO’

- 3 , ~ ) _ )
¢(a) = (Co""’ck—l) with c,=a, and for 1 < j <k, ey = Bj(aj). We have a unique

algebra (kAO,f',d',fé) isomorphic to (A,f,d,fa) unde% ¢. Moreover,

Clo(kAO,f') = Clo(kAO,d',fé) , since this holds for the isomorphic algebra.

The structure of the operations d' and f! can be determined. We write down

s
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their definitions in the next formulas, and leave the verification to the reader.

- k- g =L e
(@) d'(ao,...,ak 1) = dk(ao,a 1,...,a k 1), and

~1 —
ta((ao""’ak—l)) = (c(ak_l),ao,al,...,ak_z)

where d, 1s the diagonal operation on kA defined in formula (4.2), and 0 € Sym A0

k 0’
is o B, ;- -
The operations d' and £ obviously belong to the clone of Al = (Ao,c) .
So (kAo,f') is a reduct of A'. On the other hand, dk is obtained from d' by

permuting the variables, and the binary operation in the proof of 4.5(2) is express-
ible as b(x,y) = fédk(x,...,x,y). Thus A' is equivalent to (kAo,f'), and weakly

isomorphic to (A,f’. This concludes the proof. o

In the proof of the theorem, excluding the helping Lemma 4.7, TC* was invoked
only in the first paragraph, to get a bound on the essential arity of term operations.
TMS was used only to conclude that 7 is transitive; but the argument showed that
the orbits of m induce factor congruence relations on 4 in any case. We should
point out that this argument is modeled on a proof of J.Ptonka's characterization
of idempotent algebras having no term operations of large essential arity (his
"k-dimensional diagonal algebras"). The argument, with minor revisions, will prove
the following theorem. We omit the proof because the result is peripheral to our
main concerns.

Finiteness is an implicit assumption of this theorem.

THEOREM 4.9. The following are equivalent, for any algebra A.
(1) The clone of term operations, Clo A, is¢ generated by S-injective
cperations, and there is a bound on the essential arities of operations
in this clone.
(2) 4 <s weakly isomorphic to a non-indexed prcduct of algebras of the form
o, F ¢ sym v
Either of these statements implies that A satisfies TC*. Moreover, they imply
that A satisfies TMS 1ff it is weakly isomorphic to an algebra (U,F)[k], F C Sym U.

We wonder if it may be possible to describe all clones satisfying TC*; but we

shall not pursue this goal here, Before moving on, we reword Theorem 4.8 slightly.

THEOREM 4.10. Suppose that A = (A,f) satisfies TMS and TC*, and has just
one operation. There exists an algebra (U,g), 0 € Syn U, such that:
7) Com A = ConlU,0)
i2) if Com A does mot comsist of all equivalence relations on the set A

then A s weakly isomorphic to some [k]-th power of (U,o).

Proof. By Theorem 4.8. If f is constant, we can take U=A, o = idA.
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Proposition 4.3(3) supplies the lattice isomorphism if f 1is not constant. n]

5. CONGRUENCE LATTICES OF ALGEBRAS WITH ONE OPERATION

We return to the question with which the paper began, having the machinery in
hand now to resolve it. We define three classes of lattices. ( is the class of
finite simple lattices whose co-atoms intersect to 0, Incidentally, for precisely
this class of lattices, R.Wille [15] proved that the clone of polynomial operations
of each lattice is identical with the set of operations preserving the lattice
ordering. The second class, M, a subclass of (, is the class of finite lattices
isomorphic to Sub V for some non-trivial vector space V.

To define the third class, we first define some lattices. Given any pair (m,n)
of positive integers, we write Lm,n for the lattice of congruences of the algebra
A = (mxn,0), where o((i,j)) = (i,j+1) if i<m, j < n-1, and o((i,n~1)) = (1,0).

m,n

Thus Lm a is the congruence lattice of a permutation consisting of m cycles of
s

equal length n. In particular, [ is the full lattice of equivalence relations

m,1
on an m—element set.

Exercise 5.1. Suppose that I = Lm a with m*n > 1. Then L € M 1ff L€( and is
s
modular, and this is Zff m=2 or 3 and n=1, or m=1 and n is prime. [ satisfies

A(co-atoms) = 0 iff n is square-free. [ is simple iff m>1, or m=1 and n is prime.

The third class, N, is the class of lattices isomorphic to In for some (m,n)
>

n
satisfying: m>1; m> 3 if n=1; n is square-free. Notice that, by the exercise,

N is just the class of lattices in (- M isomorphic to Ly o for some m=>1, n=>1.
s

LEMMA 5.2. Suppose that L = Con(U,0), 0 € Sym U, U finite. Then L € C-M

iff L € N. Moreover, LEN and L =1L , imply Apn & (U,0?
s

Proof. We assume that L € C. We shall prove that (U,0) = Ak 0 for some
I ’

pair (k,%). Then by the exercise, the only further thing we must do is prove that

if the pair (k,%) satisfies the conditions for [ € N, then k and % are determined

k,L
by the abstract shape of L. Suppose, to get a contradiction, that the orbits of o

are not equal-sized. Say U, and U, are orbits and & = IUll <|U2|. We claim that

any pair (b,clb), b € U,, belongs to every co-atom of L. Since b # c2

b when b € U,,
this will contradict that LE€C.
To prove the claim, let 0 be any co-atom of L. Define
8 = {(x,y):H t>0 (x,cty) € 6}. It is easily checked that 8 €L and 6 > 0.
Thus two cases arise, If =0 then we are done, since each 8§ equivalence class
is a union of orbits. Assume that 0 = 1. Choose any a € U

(a,Otb) € 0. Since cla = a, we get (ctb,0t+2b) € 0, Then since idU is a power of

o, it follows that (b,0"b) € 6, as desired.

12 DET, t such that
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Since the orbits are of equal size, we have that (U,0) = Ak 0 for some
3
k,2 2 1, Now we assume also that I = Con{U,0) belongs to N, so that k>1, k>3
if 2=1, and % 1s square-free, by Exercise 5.1. Our problem is to show that k

and 2 are precisely determined by the shape of L. let U be the orbits

RRREELINE)
of 0. We begin by observing that there are two types of atoms in L. If 0 is an
atom of Cbn(Ui,OlUi), then 6 U OU is an atom of L. We call U; the support of this
atom. All atoms of this sort we call "type 1," and we let At(l) be the set of them,
If a €U, b € Uj’ i+#j, then {(Ota,ctb): 0 < t<12} U0y is an atom of I, We say

that 1t is of "type 2," that it has support U, VY U;, and we write At(2) for the

set of type 2 atoms. Obviously, every atom is of iype 1 or type 2. The element
A= ZUO (N ZUk—l of [ is very special. The interval A/OU is a distributive
lattice. (This follows easily from the fact that Cbn(Ui,clUi) is isomorphic to
the distributive lattice of divisors of 2.)

Given distinct atoms 0 and 0', there are several possibilities for their join.
If they are both of type 1, then 0 V 6'/0 =¥,, since 0V o' < A, If they are
both of type 2, with unequal but intersecting supports, then 0 V 6'/0 = M, If
they are type 2 with disjoint supports, then 9 V 8'/0 =M,. For all other pairs
of distinct atoms 0 VO' has height >3, Thus 0 V '/0 = M, if and only if
0,0' € At(2) and they have overlapping but unequal supports.

The argument breaks into two cases.

Case 1, k=3, (This holds iff 6 V 0'/0 is an ¥, , for some atoms 6 and 6' of
of L.) Let p be the binary relation on atoms defineé by 6p8' iff B V 0'/Oo = M,.
Then At(2) = {6: 006" for some 6'}. Let 1 be the relation on atoms defined by

ono' iff @ V 0'/0 =M,. Now for any 6 € At(2), the relation
6 = 0" <> 008 00" A Tepe’ A T10M0T

is an equivalence relation. Its domain is the set of type 2 atoms which share 1/2
support with 60. Two of these atoms are in the same equivalence class iff their
supports are equal, It is easy to see that the equivalence classes have size £, and
their number is 2(k-2), Thus k and % are determined.

Case 2, k=2, Here, an atom is of type 2 iff its join with every other atom
has height at least 3. Thus At(2) is abstractly defined. |At(2)| = 2.

The proof of the lemma is finished. o

It may be interesting to observe that M, like N, is a two parameter family of
lattices; a finite vector space is determined by its dimension and the size of its
field.

Here is the principal result of this section.

THEOREM 5.3. For any lattice [ in C, the following are equivalent.
(1) L is isomorphic to the congruence iattice of a finite algebra with

one basic operation,
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(2) L belongs to M or to N,

Proof. Suppose that LE€ C. To see that (1) implies (2), let I = Con(A,f),
A finite, and let [ € M. By Corollary 1.10 and Theorem 2.11, the algebra (A,f) has
TMS and TC*. Then by Theorem 4,10, there exists (U,g), ¢ € Sym U, U finite, with

L = Con{U,c’. And by Lemma 5.2, L €N,

Now L € N trivially implies that (1) holds. So suppose that I € M and let
L= Sub V (2 Con V) where V = (V,+,f (fEF)) is a finite vector space over a field
F., Say F = {0’1’f2""’fq—1}' Define h(xo,...,xq_l) = x, + X, + fz(xz) + ...+
q—l(xq—l)' It is trivial to see that Con V = Con(V,h)., With this, the proof is
concluded, 0

0f course, the class C-M-N of lattices excluded by the theorem is contained
in a larger, but less understood, class of excluded lattices, composed of those
that force TMS and TC* and do not belong to N.

For relatively small lattices, it may be easy to check that the lattice belongs
to C-M, and difficult to see that it does not belong to N. The next exercise provides
a simple criterion which at least ensures that L € N. The result is related to some
facts proved in [9].

Exercise 5.4. Every lattice in N has an element x such that x/0 =/,.

THEOREM 5.5. Let Lm’n € N and let (A,f) be a finite algebra with one operation.

(1) If n=1, then Con(A,f) = Lo iff £ <s constant and |A|=m, or |A] = ok
for some k=1 and (A,f) is weakly <somorphic to (m,id)[k].

(2) If n>1, then ContA,© =1L, iff |a]= (m)X  and (a,£) <5 weakly
Tgomorphic to Aé?g for some k=1,

[

Proof. Suppose that Con(A,f) = [ .
Lroot ‘m,n

proof of Theorem 5.3, using Theorem 4.8 instead of 4.10, we obtain that either f

Following the first paragraph in the

is constant, or (A,f) is weakly isomorphic to (U,c)[k]. If f is constant, then
L =7
a

m,n
constant. By Lemma 5.2, (U,0) = Ap o and that concludes the proof. 0
’

10 @ =|A|, so by Lemma 5.2, m=a and n=1. Assume that f 1is not
’

We wonder 1if there is an analogue of Theorem 5.5 for the class M.
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A variety V is inherently nonfinitely based provided V is locally finite and W
is not finitely based whenever W is a locally finite variety and V ¢ W. The central
task of the present work is to develop the theory of inherently nonfinitely based
varieties; especially to provide conditions sufficient to insure that a variety gen-
erated by a finite groupoid is inherently nonfinitely based. These conditions, for
the most part, have a syntactical character which makes their formulation a bit com-
plex. However, they are easily verifiable conditions by means of which we have dis-
covered that a good number of small groupoids actually generate varieties which are
inherently nonfinitely based. We have included a list of these as an appendix.

An algebra O will be called inhkerently nonfinitely based if HSP W is inherent-
ly nonfinitely based. Evidently, if W is inherently nonfinitely based and L ois
any finite algebra such that W e HSP J{y , then & 1is also inherently nonfinitely
based. Hence, the existence of one inherently nonfinitely based finite algebra in-
sures the existence of infinitely many more, each with a distinct equational theory.
In this way, nonfinitely based finite algebras are seen to be much more common and
much less sporadic than appeared to be the case only a few years ago.

Not all finite algebras which fail to be finitely based turn out to be inherent-
ly nonfinitely based. In particular, the nonassociative rings discovered by Polin
[16], as well as their descendants, the rings of Oates-MacDonald and Vaughan-Lee
[10], the loops of Vaughan-Lee [18], and even the pointed group of Bryant [2] are
all nonfinitely based but, by construction, they all fail to be inherently nonfinitely
based. As we will establish below, the first nonfinitely based finite algebra to be

*) The first author was supported, in part, by NSF grant MCS 80-01778

%%) Part of this work subsumes Chapter 7 of the second author's Ph.D, thesis written
under the direction of Kirby Baker at UCLA.
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discovered, that of Lyndon [4], also fails to be inherently nonfinitely based. On
the other hand, the groupoids discovered by Visin [19], Murskii [8], and Shallon [17]
are inherently nonfinitely based. The status of Perkins' [13] six element semigroup
and of Park's [13] four element commutative groupoid is at present unknown.

The concept of an inherently nonfinitely based variety was introduced indepen-
dently around 1979 by V. L. Murskii [9] and P. Perkins [14]. In Murskii's work the
notion is implicit; he demonstrates that the three element groupoid first published
in Murskii [8] is inherently nonfinitely based. Perkins explicitly identifies the
notion and proves several general results concerning it. Both men were investigating
the asymptotic growth of nonfinitely based finite groupoids and Murskii achieved a
sharp result. (The asymptotic density of nonfinitely based finite groupoids behaves
like n_6). Curiously, the ideas of Murskii and Perkins about inherently nonfinitely
based varieties, for all their common motivation and timing, seem to have little
overlap. Our work is primarily an elaboration of the ideas put forward by Murskii
and Perkins.

Sections 1 and 2 contain our main results. A proof that Lyndon's groupoid is not
inherently nonfinitely based can be found in section 3. Some open problems are gath-~
ered in section 4. The last section is an appendix of nonfinitely based finite
groupoids.

We are happy to acknowledge the encouragement and fruitful discussions we had
on these topics with many people. Among them are Kirby Baker, the thesis advisor of
the second author, Joel Berman, who brought Murskii [9] to our attention, Tom
Harrison, who read an earlier version of this paper and caught many errors, the
Hawaiian Universal Algebra Seminar: Cliff Bergman, Ralph Freese, Bill Lampe, J.B.
Nation, Doug Pickering, and Dick Pierce, as well as Ralph McKenzie, Peter Perkins,
Don Pigozzi, Ivo Rosenberg, and Walter Taylor. The first author is grateful to the
University of Hawaii for its hospitality while this paper was being written.

81. GRAPH ALGEBRAS AND RESEMBLANCE OF TERMS,

An algebra equipped with just one fundamental operation is called a groupoid if
that operation is binary. For the remainder of this paper, except as otherwise noted,
all algebras will be groupoids. We adopt the customary notation and write terms
with parentheses using juxtaposition to denote the operation. Our festriction to
groupoids is really inessential but it makes the underlying ideas more appealing.

We will use the word '"graph" to mean a graph without multiple edges, though
loops at the vertices are permitted. With each graph G = (V,E) we associate a
groupoid called the graph algebra of G and denoted by (g(G). The universe of ﬂ(G)
is Vu {*}) where « ¢ V. The operation * of US(G) is defined so that

© % g=a%o=0wo forall aeVu {®} and
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a 1if a and b are adjacent in G
a *p =

® otherwise.

The graph algebra Y (G) 1is Zoopless if G has no loops and looped if every vertex of
G has a loop.

Under two very similar hypotheses a locally finite variety V will turn out to be
inherently nonfinitely based and to have a number of other interesting properties.

These hypotheses are:

) Every loopless graph algebra belongs to V.
($) Every looped graph algebra belongs to V.

Before taking up the main theorem of this section, it is convenient to look more
deeply at graph algebras and at these two hypotheses.

Evidently G can be recovered from g (G). Two graph algebras are isomorphic if
and only if their graphs are isomorphic. In fact, one can read many properties of

graph algebras in their graphs.
THEOREM 1. Suppose W is a graph algebra arising from the graph G.

1) N is simple if and only if G is conmmected and any two distinct
vertices of G have distinet neighborhoods.

ii) ® is subdirectly irreducible if and only if G is comnected and no

more than one pair of distinet vertices have identical neighborhoods.

Proof: Suppose G is disconnected. Let C be one of the components and let
D=V~ C. Let O be the equivalence relation on V u {®} with blocks C u {e=}
and {d} for all d e D. Let B be the equivalence relation with blocks D u {=}
and {e} for all c e C. It is straightforward to check that o and B are both con-
gruence relations on M, But o n B 1is the identity relation. Hence O is not
subdirectly irreducible, much less simple.

So we restrict our attention to the case when G is connected. Note that 6(a,®),
the congruence relation generated by {(a,»)}, is the complete relation if a # .
Indeed, if b e A {®} and a,c

then

1,cz,...cn_l,b is a path connecting a and b in G,

b= b(cn—l(cn—z'"(CZ(Cla))"')
so (b,®) € 0(a,»).
Now we verify the Theorem. Let a and b be vertices in G. Let Na =
{c: a is adjacent to ¢} and Nb = {c: b is adjacent to cl. If Na = Nb, then ©(a,b)
is the congruence relation with blocks {a,b} and {d} for all {d} with a#d#b.
If Na # Nb then 6&(a,b) is the complete relation, since without loss of generality
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there is c¢ ¢ Na v Nb whence

c=caZcb=e mod 6(a,b).
The theorem follows immediately. 0

It turns out to be very easy to construct simple graph algebras of any size
desired.

Computing the value of a term function in a graph algebra is not hard. The
following analysis of terms reveals how. With each term © we will associlate a
rooted labelled tree T(0) the vertices of which are labelled with the variables
occurring im 0. If 0 is a variable, then T(8) consists of a single vertex,
the root, which is labelled with the variable 6. If ©6 is the term ¢y, then T(O)
is the tree obtained from disjoint copies of T(¢$) and T(P) by adding an edge be-
tween the roots of T(¢) and T(Y) and retaining the root of T(¢) as the root of
T(0). Thus T(®) will be a connected acyclic labelled graph with a distinguished

vertex. For example, if 06 1is the term

((xy)z) ((yz) (x2))
then T(0) 1is
z X y
o—r_}—o
X o———-l————o
y z
z

where the square vertex is the root. Different terms may give rise to the same tree.
The term ((x((y(xz))z))z)y has the tree drawn above. The following lemma, easily

established by induction on the complexity of the term 60, is very useful.

LEMMA. Let W be a graph algebra and let 0 be a term. Under any assignment

of members of O to the variables in 9 we have:
i) € 78 given the value « if = g assigned to any variable occuring in 0

i) €& 1s given the wvalue « if values not adjacent in the graph of W are

assigned to variables which label adjacent nodes in T(9).
iil) @ is given the value assigned to the root of T(8) in all other cases.

The terms ¢ and ¢ resemble each other provided the roots of T($) and T(Y)
have the same labels and for any variables x and y, T(9) has adjacent vertices
labelled x and y if and only if T(y) has adjacent vertices labelled x and y.
¢ weakly resembles § 1if the roots of T(¢) and T(P) have the same labels and for

any two distinet variables x and y, T(¢) has adjacent vertices labelled x and y

if and only if T(y) has adjacent Vertices labelled x and y. The variable x is
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doubled in 0 if T(6) has two adjacent vertices labelled x. These notions pro-

vide syntactical equivalents for (#) and (§).
THEOREM 2. The following are equivalent:
i) V satisfies (#).

ii)  Every loopless graph algebra arising from a finite commected graph belongs
to V.

i11) If VE ¢ 2 ¢, then either ¢ resembles ¢ or else both ¢ and V¥
have doubled variables.

Proof. (i) = (ii) is clear.
Let ¢ be any term. Let 1L ¢ be the groupoid whose universe consists

of <« and the variables which occur in ¢ and whose fundamental operation * satis-

fies x % @ = % x = o for all x occuring in ¢ and

x if T(p) has adjacent vertices labelled x and y

x:‘ey:
® otherwise.
Evidently ¢ is a finite connected graph algebra which is loopless if ¢ has no
doubled variables. Moreover, if ¢ resembles Y, then ® =

(ii) = (iii). Suppose V F ¢ < Y. First assume that ¢ has no doubled
variables. By (ii), i}¢ e V. In 15¢ assign x (construed as an element of £.¢)
to x (construed as a variable in ¢). Under this assignment ¢ is given the value
of its root, according to the Lemma. But Y must be given the same value since
i,¢ F ¢ = Y. Again by the Lemma, we conclude that ¢ resembles . A similar
argument yields that ¢ resembles ¢ if Y has no doubled variables. So the only
case remaining is for both ¢ and ¥ to have doubled variables. Thus (iii) is
established.

(1ii) = (i). This follows immediately from the Lemma. 0
THEOREM 2'. The following are equivalent:
i) V satisfies (8).

ii)  The graph algebra of Q__,_Sl__~_9 belongs to V.

iii) If VE ¢ 2, then ¢ weakly resembles 1.

Proof. As in the previous proof the only implication that requires argument is
(ii) = (iii), since (i) = (ii) is obvious and (iii) = (i) follows from the Lemma.
Let Ot be the graph algebra of ¥ Y . Suppose V]= ¢ &y and that
x and y are distinct variables labelling adjacent vertices in T($). Assign a to
X and c¢c toy and b to every other variable. Under this assignment ¢ is given

the value =, according to the Lemma. Since Ol|= ¢ =¥, we deduce that ¢ is given
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the value =« by the same assignment. According to the Lemma, two values not adja-
cent in the graph of must have been assigned to variables labelling adjacent ver-
tices in T(). a and ¢ are the only nonadjacent values in the graph and they

were assigned to x and y respectively. Hence x and y label adjacent vertices in

T(P). Thus ¢ weakly resembles V. g

EXAMPLE 3. (Murskii's Groupoid) The variety generated by the graph algebra

of ._____9 satisfies (#).

Proof. Let O\ be the graph algebra of ._____g . Suppose Ol ¢ =y .
Evidently the same variables occur in ¢ and W? If x 1is doubled in ¢ then by
assigning & to x and b to all other variables, ¢ would be given the value <.
Hence x must also be doubled in ¥, according to the Lemma. So assume that ¢ and
¥ have no doubled variables and that vertices labelled x and y are adjacent in ¢.
Assign a to both x and y and b to all other variables. Under this assignment
¢ is given the value *®. So V¥ is given the value *® as well. Thus two variables
assigned a are labels for adjacent vertices of T({). As Y has no doubled
variables we conclude that T(¥) has adjacent vertices labelled x and y. Thus ¢

resembles Y as desired. 0

THEOREM 4. Let G be a finite connected graph. The variety generated by
OJ (G) satisfies one of (#) and ($) if and only if G has at least two vertices,
G has at least one vertex with a loop, and G 1is not a complete graph with loops

at all vertices.

Proof. First suppose that G is a finite connected graph with all the proper-
ties listed in the theorem. If G has a vertex without a loop, then, by connected-
ness, G has ._____9 as an induced subgraph. But then Murskii's Groupoid be-
longs to the variety generated by OJ (G) and, according to Example 3,this variety
must satisfy (#). On the other hand, if every vertex of G has a loop, then

is an induced subgraph of G, in view of connectedness. Thus, the
graph algebra of belongs to the variety generated by 65 (G) and

so by Theorem 2' this variety satisfies ($).

To establish the converse we need to show that the variety generated by @) (G)
satisfies neither (#) nor ($) when G is a finite connected graph not having at

least one of the listed properties.

Case 0. G has exactly one vertex. There are two graph algebras to consider:

-4 a o« a
o ) o and o o o
a © © a © a
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Both 010 and 0 are commutative, but the commutative law violates (#) and ($) in

view of (iii) in %heorems 2 and 2'.

Case 1. G has more than one vertex, but no loops.

Suppose G has n vertices, Let 6 be any term with ntl distinct variables
such that T(0) has adjacent vertices labelled by every pair of distinct variables,
but 6 has no doubled variables. (Such terms are easy to devise by starting with
a tree correctly labelled.) Then CB(G) F 6 ® xx by the pigeonhold principle,

where x 1is a variable not occurring in 6. So neither (#) nor ($) can hold.

Case 2. G 1is a complete graph with loops at each vertex, and G has at least
two vertices.

In view of the Lemma, any assignment from 03 (G) that does not assign <« to
a variable occurring in ¢ will give ¢ the value assigned its root. Hence
(n (G) F ¢ ¢y 1if and only if the same variables occur in ¢ and ¥ and the roots
of T(¢) and T(P) have the same labels. According to (iii) of Theorems 2 and 2'
neither (#) nor ($) can hold. 00

COROLLARY 5. There is no finite set T of finite loopless graphs such that V
satisfies (#) if and only if 03 (G) e V forall GeF.

We are now in a position to prove the main results of this section.
THEOREM 6. Let V be a variety satisfying either (#) or ($). Then

0. If V s locally finite, then V 1is inherently nonfinitely based.
1. V has simple algebras of every cardinality larger than 4.

2. V 1is restdually large.

3. V does not have definable principal congruence relations.

Proof. Strictly speaking, each part of this theorem requires two proofs - one
under each of the hypotheses. We will only supply the proof under hypothesis (#).
Roughly speaking, the proof under ($) can be obtained by converting the loopless
graphs involved in the (#)-proofs into looped graphs.

0. Suppose V ©W and both V and W are locally finite. Since V satisfies (#)
we know that W also satisfies (#). Thus, if we can show that V is not finitely
based, then, mutatis mutandie, W is not finitely based either and so V will be

inherently nonfinitely based.
Let V[h] denote the variety of all algebras satisfying all equations true in

According to Birkhoff [1] a

fn]

V all of whose variables are among xo,xl,...,xn_l.

locally finite variety V of finite type is not finitely based iff V # V for
every natural number n. (See Burris and Sankapannavar [3] page 228 for the elements

of a proof.) For each natural number n we construct an algebra i;n such that
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L. vind pue {,n /.

The universe Bn of irn is the set

d0,1,...,n} xw) u {=}

where ® is the set of natural numbers and * is a set not belonging to
{0,1,...,n} X w. The fundamental operation ¢ of &,n is defined so that

Qo ®=0mwo0 g =0o for all ace¢ Bn and

(a,m) if a+l = b mod(n+l) where m = max(j,k+l)

(a,j) » (b,k) = (a,m) if a = b+l mod(n+l) where m = max(j,k-1)

© otherwise,

The algebras i‘n were first devised by Murskii [9], whose argument that the Murskii
Groupoid is inherently nonfinitely based we have adapted here. - n is not a graph
algebra. On the other hand, the "projection" of 'ifn onto its first coordinate is
the graph algebra of a cycle n+l vertices. This means that some parts of the
Lemma concerning the evaluation of terms in graph algebras still holds. In particu-
lar, let 6 be any term and assign members of Bn to the variables in 0. Observe

the followiang:
i) ® 1is given the value « if <« jis assigned to a variable occurring in 6.

ii) 6 1is given the value « if two pairs with nonadjacent (on the n+l cycle)
first coordinates are assigned to variables labelling adjacent vertices

of T(0).

iii) 6 1s given a value different from *® in all other cases; moreover, the
first coordinate of this value is the first coordinate of the value assign-
ed to the root of T(0).

Thus the only gap in our ability to evaluate terms in i’n lies with the second

V[n]

coordinates in Case (iii) above. Since we wish to show that iLn € we will

. Let

concern ourselwves with terms all of whose variables are among XO’Xl""’Xn—l

0 be such a term. Let Ae denote the set {i e occurs in 6}.

Claim. Under any assigmment of members of Bn to the variables in 6 either
6 1is given the value « or else the value assigned to § depends only on AAe and

the root of T(6).

Proof. Suppose 0 is not given the value <«. Then ®« 1is assigned to no
variable occurring in 6, So let (ao,ko), (al,kl),... be the values assigned

respectively to xo,x .. . Let (ae,ke) be the value assigned to the variable

1*°
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which labels the root of T(6). Now 6 has at most n distinect variables and so

at least one of 0,1,.,..,n 1is not among a In view of the automor-

02310300
0’31’32’°"}' We will prove by induction

on the complexity of © that 6 1is assigned

phisms of i(n, we can assume that 0 ¢ {a

(ae, ’max (ki + a; - ae)).'
1€Ae

This is obvious if © 1is a variable, so suppose 8 is ¢y, Thus neither ¢ nor ¥

is assigned <«. Therefore by the inductive hypothesis, ¢ is assigned

(a¢, i?ZX (ki ta; - a¢))
)
while Y 1is assigned
(aw, .mzx (ki +ay - aw)).
ie
Y
But a¢ = a, since the root of T(0) is the same as the root of T(¢). Moreover,

a¢ and aw are successive natural numbers. So there are two cases:

Case 0. a, +1=a,,

¢ 1

In this case 06 1is given the value

(ae, max ( max (ki +a - ae), 1+ max (k, + aj - aw))

ieA el
0 1%
which is equal to
(36, mBX(’mZX (ki ta; - ae), ‘mzx (kj + aj - (aw—-l)))
iedy jeby,

but this is

(ae, max( max (ki + a; -~ ae), max (k. + aj - ae))

ieA jel
o 1Y
or
(aes _max (ki +oa; -~ ae)) as desired.
ieA
6
Case 1. a, =a, + 1.
B v Y
This case is handled in a manner analogous to Case 0. So the claim is
established.

If ¢ and Yy both have doubled variables, then ‘tn F ¢ & ¢ since any assignment
will give both ¢ and Y the value o«; while if ¢ resembles P and both ¢ andy
are terms in the variables HgsersX 15 then i;n F ¢ = P, since resemblance in-

sures that any assignment gives both or neither the value ® and in the non-® case
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the assignment gives ¢ and y the same value, in view of resemblance and the claim.
But this means that ibn € V[n].
To see that 1ﬁ1¢ V we produce an equation true in V but not true in ﬂh.

For each natural number p let GP be the term

XO(Xl(XZ"'(Xn(xo(xl("’(mem+l)"')

where there are exactly p+l occurrences of variables in ¢P but xo,xl,...,xn
are the only variables to occur in ¢P. (One could view ¢ as a string of variables
which is of length p+l and is indexed cyclically modulo n+l.) Since V is locally
finite, there must be natural numbers p and q with p # q such that VE ¢P & ¢q.
But by assigning (i,0) to X, in 1ﬂf it turns out that ¢P is given the value

(0,p) while ¢q is given the value (0,q). Hence jGn # ¢P & ¢q and so i;n £ V.
This concludes the proof of part 0 of the theorem. (To obtain the conclusion under

($) modify ifn so that (a,j) ° (a,k) = (a, max(j,k)).)
1. For each k with k 2 4, let ke , be the graph algebra of
i) The path with k vertices, if k 1is finite.

ii) If k is infinite, the tree with k branches depicted below:

In either case n k € V and is simple by Theorem 1.
2. This follows immediately from (1) above.

3. Let 15 n be the graph algebra of the path

P e+ 3 4 el

an—l

on n vertices. Let T be any term in which the variable u occurs. Note that

if there is an assignment which gives the value an—l to u and the value aO to T,
then T has occurrences of at least n distinect variables. But (ao,w) belongs

to the principal congruence on 13n generated by (an_l,w). This means that any
principal congruence formula (see Burris and Sankapannavar [3], page 222) for any
variety to which 15n belongs must have at least n occurrences of distinct variables.
Since ‘prle V we conclude that no finite set of principal congruence formulas

serve to define congruences in V. Therefore V fails to have definable principal
congruences. ]

In recent years Michael Vaughan-Lee and Sheila Oates-Macdonald (aka Qates-—

Williams) in [10] and [11] have obtained some results concerning the subvarieties
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of the variety generated by Murskii's Groupoid. As all the algebras they employ to
prove their results are openly loopless graph algebras, the same results by the
same proof hold for all varieties satisfying (#). We gather these results in the

next Theorem.

THEOREM 7. (See also Oates-Macdonald and Vaughan-Lee [10] and Oates-Williams[111)
If V <is a variety satisfying (#), then V has an infinite ascending chain of
finite eritical algebras, an infinite ascending chain of subvarieties, and an infin-

ite descending chain of subvarieties.

The possibility of obtaining the conclusions about ascending chains under
hypothesis ($) is open. One impediment is that looped graph algebras only generate
three distinct varieties: that generated by the graph algebra of Q , that generated
by the graph algebra of , and that generated by the graph algebra of
One possible route around this difficulty is to develop the theory of '"digraph"
algebras. Shallon [17] sets down the beginnings of such a program. In this way
($) can be seen to entail an infinite descending chain. To conclude this section we

sketch the proof that the digraph algebra of

satisfies ($). The digraph algebra is constructed like the graph algebra by adding
a nevw "multiplicative zero"” <« and translating a+b as a * b = a, Our particu-

lar digraph algebra will be denoted by M. It is

© a b c

[=-] [=-] [=-] [=-] o

a © a a a
S

If 60 4is a term, then T(e) is the directed tree obtained from T(8) by directing
all the edges outward from the root. So if 0 is ((xy)z) ((yx)(xz)), then T(e) is

X
y 0¢&—{}—>0 z
X‘I<}—— o x

z
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Now the lemma concerning evaluation of terms in digraph algebras will be just like
the lemma for graph algebras. Simple and subdirectly irreducible digraph algebras
can be characterized by properties of their graphs (See Shallon [17]).

To see that our particular digraph algebra ({ satisfies ($) suppose “{F o < P,
Suppose x and y are distinct variables and x + y occurs in %(¢). Assign b to x,
a toy, and ¢ to every other variable. Under this assigmment ¢ 1is given the
value © so Y 1is given the value « as well. In view of the lemma about evalua-
tion u + v ocecurs in %(w) where b is assigned to u and a is assigned to V.
So uis x and v is y. Therefore ¢ weakly resembles Y (even in some directed
sense). Thus W satisfies $).

Digraph algebras represent a rich source of examples of finite algebras which

are inherently nonfinitely based.

82, NONASSOCIATIVE NONABSORPTIVE GROUPOIDS.

Just as the results of the last section were primarily inspired by the work of
V. L. Murskii, the present section draws its motivation from the work of P. Perkins.
Again, we develop syntactical conditions on locally finite varieties which entail
that the variety is inherently nonfinitely based.

Every term 0 can be construed, in the well-known way, as an ordered tree
the leaves of which are labelled with the variables occurring in 6. In this view

the term ((xy)z)(yz)(xz)) 1is rendered as

<<z\°\
PO NARAS

Notice that this way of associating a tree with a term is much different from T(6)

which is

y ou[]l—0 z

Moreover, the rendering of 6 as an ordered tree is faithful in the sense that ©
can be recovered from the ordered tree.

A term 0 1is slender provided the interior nodes of the ordered tree rendering
of O are linearly ordered. Equivalently, © is slender if and only if whenever

¢p is a subterm of © then at least one of ¢ and Y 1is a variable. Thus

x(((z(xy))x)y) is slender and is rendered by



218

Yet another characterization is to insist that every left parenthesis occurs to the
left of every right parenthesis.

Suppose 0O 1is slender. © has a unique subterm of the form xy where x andy
are variables. In the tree rendition, this is the tree consisting of the lowest
interior node and the two "leaves" suspended from it. Every occurrence of a variable
in 0 but outside this unique lowest term can be assigned a unique rank. Indeed,
number the interior nodes of the tree so that the lowest is numbered 0, the next
highest 1, and so on. Now number the leaves of the tree with the numbers of the
interior nodes from which they are suspended. Thus O is assigned to the two lowest
leaves but thereafter every number is assigned a unique leaf. The code of 0 1is a

R R u . R
configuration v} VW W where u and v are the leaves assigned 0 and w, 1is

172
the leaf assigned i and there are n+2 occurrences of variables in 0. In this
code 3} indicates an unordered part of the code. Both u and v are adjacent to

Wy Hence the code of =x(((z(xy))x)y) is

Xlzxyx.
y

The reduced code of © 1is obtained from the code of 0 by replacing all consecutive
occurrences of single variables by just one occurrence of the same variable. For
example, if © has code ;} yyzxxxyzxx, then the reduced code of 0 is ;} ZXYZX.
A slender term 6 is said to be singular provided no variable occurs more than once
in the reduced code of 0.

Let © be any slender term. 930 denotes the set of all slender singular terms
¢ such that some substitution instance of ¢ is a subterm of 0. If A 1is any
set of slender terms, then let JA = egA 30.

The next theorem represents only a modest extension of a theorem in Perkins [14].

THEOREM 8. Let V be a locally finite variety of groupoids. If there is a
set A of slender singular terms with arbitrarily long reduced codes such that

i) 9A < A, and

i1) if Ve o=xy and ¢ e A, then § ¢ A and ¢ and y have the same



219

reduced code,

then V 1s inherently nonfinitely based.

Proof. Suppose V fulfills the hypotheses and that W > V with W locally
finite. Then W fulfills the hypotheses, as well. Thus, if the hypotheses entail
that V 1is not finitely based, they will actually entail that it is inherently non-
finitely based. We w%l% prove that V is not finitely based. To do this, we

m

establish that V # V for every natural number m, by producing an equation true
in V but not true in V[m].

Fix the natural number m.

Since V 1is locally finite, there is a natural number p such that among any

collection of p distinct terms in x X there must be at least two which

I I
form an equation true in V. Pick © g Al such that the reduced code of 06 has
length greater than p. Without loss of generality, we assume that the reduced code
of 0 is
:1} Xy Xy eee X o
0

Let 6* result from* 0 by substituting x for Xj where 1iZ j mod(m+l) for j<n
and i < mtl., So 0 amounts to an indexing modulo mtl of the variables of 0.
Since 6* is a substitution instance of 60, we know that 230 ¢ 86*. On the other
hand, it follows from singularity that ae* c 30. Now 6* has at least p+l sub-
terms, each with a distinct reduced code. Moreover, these reduced codes have the
property that between any two occurrences of the same variable all the other m
variables must appear (even in order modulo mtl).

Let ¢ and ¥ be two subterms of e* with different reduced codes such that
v F ¢ ~ Y., We will prove that V[m] # ¢ ~ P, To see this, let [ be the set of
all terms n such that

i) n is slender,
ii) n has the same reduced code as ¢, and,
ifi) an <A
Note that ¢ ¢ ' since 9¢ < 36 s 96 <A . However, Yy ¢ ' since ¢ and

have different reduced codes. The following claim yields V[m] # ¢ =~ P, thus con-
cluding the proof.

Claim. If n eI and V[m] F n&u, then u e .

Proof. V[m] F N ~1u means that n ® u can be derived from equations true in

V which involve no variables other than XO’Xl""’Xm—l' We prove the claim by

induction on the length of such derivations. The crucial step is to suppose that

0~ 1t is true in V, involves only variables among XO’Xl""’Xm—l’ and that o' ® T
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is a substitution instance of O x~ T such that 0' is a subterm of 1 and § 1is
obtained by replacing o' by T',

Since n € T and ©' is a subterm of n, it follows that between any two occur

rences of the same variable in the reduced code of ¢' all m other variables occur.
But o' 1is a substitution instance of 0, which involves no more than m distinct
variables. Therefore tEere is a slender singular term 8 such that o' 1is a sub-
stitution instance of ¢ and ; is a substitution instance of 0. Let ; be Ehe
corresponding substitution instance of 1. Evidently g €ednclh and V F g 8T,
So ; eA and ; and ; have the same reduced codes, according to hypothesis (ii)
of the theorem. Hence o' and 7' have the same reduced code. Consequently yu is
slender and has the same reduced code as n. It remains to show that 3u < A.

Let Y be any slender term. 7 is the term obtained from Y by the following

recursion:

Y is x, if y is a variable.

Yy is Exk if y d1is py and either y is the last variable in the
reduced code of p and X, is the last variable in the reduced
code of 5 or else y is not the last variable in the reduced code
of p and k 1is the least natural number such that X does not

occur in p.

The case when Y is up and p 1is not a variable is handled similarly.

Thus Y is a singular slender term which results from renaming the variables
in y. (It is easy to see that 0 * is just 0.) Note that 3y = dy.

Recall that 8 ~ ; produced n = u by replacement of t' for o' in n.
Since g and ; are singular, observe that 8 ~ ; F n ~ Y. Since n e an c A and
VN ~ U, we deduce that il ¢ A. But 9u = 0, so 9u < A as desired. 0

Call a term *-singular provided no variable occurs in it more than once. The
proof written down above is not different in any important respect from the proof

supplied by Peter Perkins for the following theorem.

THEOREM 8' (P. Perkins [14]) Let V be a locally finite variety of groupoids.
If there is a set A of slender *-singular terms of wunbounded length such that

i) 3A ¢ A, and

ii) if VE o~y and d e A, then Ve A and xysyxkE ¢ x ¥,

then V 1s inherently nonfinitely based.

Theorem 8' is an immediate consequence of Theorem 8. The more complicated

Theorem 8 has the following consequence.
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EXAMPLE 9 VISIN'S GROUPOID

Let M be the groupoid with the following table:

0 a b c
o] o] o] o o]
a o] o] o] (o}
b o a o a
c o o o o

W 1is inherently nonfinitely based.

Let A be the set of all singular terms of the form

7/

0 u

where u ¢ {vo,vl,...,vn_l}. Evidently 8A < A, To verify hypothesis (ii) of Theorem
8, assume ¢ e A and Ol | ¢ ¥ . We must show that § ¢ A and that ¢ and ¢

have the same reduced codes,
Claim 0. The same variables occur in ¢ and VY.

Proof. By assigning a tou and b to all other variables in ¢, ¢ will be
given the value a. Hence Y is given the value a by this assigmment. Thus there
are assigmments that give both ¢ and y the value a. If some variable occurred in
one of ¢ or Y but not the other, it would be possible to alter one of these assign-

ments to give one term the value a and the other the value O. g
Claim 1. If o1 1is a subterm of ¥ , then ¢ is a variable.

Proof. Since there is an assignment that gives ¢ the value a and assigns
the variables values from {a,b}, this assignment must give every nonvariable sub-
term of ¢ and of Y the value a. Thus or has the value a. From the table
for 0t we see that o has the value b while T has the value a. Hence o must

be a variable. 00
Claim 2. ¢ and ¥ have the same rightmost variable.

Proof. Again assign a to the rightmost variable of ¢ and b to all other

variables. Let uv be the unique subterm of ¥ where u and v are variables.
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Under the assignment uv must be assigned the value a (since 0, the only other
possible assignment would reduce the value of Y to 0). uv can be assigned a
only if u is assigned b and v 1is assigned a. But v 1is the rightmost
variable of Y and it must be the rightmost variable of ¢ since that was the only

variable assigned a. O
Claim 3. The rightmost variable of ¥ occurs exactly once in .

Proof. Suppose X occurs in Y at other than the rightmost position. Thus
xT 1is a subterm of Y. Under the same assignment used above =xT 1is assigned a,
hence x must have been assigned b. But the rightmost variable was assigned a,

s0 x 1is not the same as the rightmost variable. ]
Claim 4. The reduced codes of ¢ and y are the same.

u
Proof. Let v be the common rightmost variable. Let VO} UpsUyeety be the

w
reduced code of ¢ and let VO} Wl aWge e oW be the reduced code of ¥ . Since ¢ is
singular and the variables of ¢ and Y are the same, we know that n < m. First

oV -4, 1s a proper initial segment of W e eV Thus LAY = for
some 1 < n. Assign c¢ to v, a to uj for j £1i and b to uj for j > i. Under this

suppose u

assignment ¢ 1is given the value a, while ¢ 1is given the value 0. So
u
. e 0 {s not
uglgeeeuy 1swnot a proper initial segment of WW e oW If v } upe.euis
the same as VO} wl...wm, then there must be a smallest i such that ui # wi. Say
PR By reasoning as under the first supposition we conclude that i < k.
Assign ¢ to v, a to uj for j < k, and b to uj for j 2 k. Under this assignment ¢

is given the value a while Y is given the value O. 0

In view of claims 1-4, PeA. Together with claim 4 itself this means that the
variety generated by W fulfills hypothesis (ii) of Theorem 8. Hence X is inher-
ently nonfinitely based. 0

The algebra M was constructed by Visin [19] in 1963. Visin proved that
is not finitely based. This was the second nonfinitely based finite algebra to be
discovered.

An element a of a groupoid Mis a zero of Uiprovided ab=ba=a for all b
in . An element u of Ol is a wnit of Ol provided ub=bu=b for all b in OL.

0\ is said to be absorptive provided Ol F x ® 8 where 8 is some term different
from the variable x.

On the basis of Theorem 8', Perkins proved the following theorem.

THEOREM 10. (P. Perkins [14]) Every finite groupoid with a zero and a wnit
which ie noncommutative, nonabsorptive, and nonassociative is inherently nonfinitely
based.

THEOREM 11. Bvery nonassoctative nonabsorptive finite groupoid with a zero and
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a wnit is inherently nonfinitely based.

Proof. Suppose 0L is a finite groupoid with a zero, denoted by 0, and a unit,
denoted by 1, which is nonassociative and nonabsorptive. In view of Theorem 10 we
can also assume that W is commutative. To prove that { is inherently nonfinitely
based, we invoke Theorem 9' taking A to be the set of all slender *-singular terms.

Evidently 93A < A, so we only need to verify the second hypothesis of Theorem 8',
Thus suppose n € A and N,F n = . We prove that xy = yx |-n=s u, verifying
U € A along the way.

Claim 0. n and u have the same variables.

Proof. Suppose x occurs in one of 1 and . Assign 0 to x and 1 to
all other variables. Then 1 and u must both be given the value 0 and hence x

occurs in both n and u. O
Claim 1. u is #*-singular.

Proof. n is #*-singular. Let X occur in n. By assigning 1 to all variables
other than x and invoking the fact that 1+b = b*l =b for all b in ¥ , we
see that 1 reduces to x and | reduces to some term W' which has the same
number of occurrences of x as U does and U&|= x % u'. Since WM is nonabsorptive

MU' must just be x. Hence | 1is *-singular. 0

Claim 2. u 1is slender.

Proof. Suppose not. Then yu has a subterm ¢y such that at least two vari-
ables occur in ¢ and at least two variables occur in . Say these variables are
X,¥,Z, and w. By using the unit to delete all other variables and recalling that

0 1is communicative, it follows that
0 n' =~ (xy)(zw)

where mn' is one of the following twelve terms:

x(y(zw)) y(x(zw)) z(x(yw)) w(x(yz))
x(z(yw)) y(z(xw)) z(y(xw)) w(y(xz))
x(w(yz)) y(w(xz)) z (w(xy)) w(z(xy))

If n' is in the first two columns delete w (using the unit) to obtain

0k xy)z = x(yz)
or

W E xy)zz yxe)

If n' is in the last two columns delete y (using the unit) to obtain
0 |= x(zw) = z(w)
or M x(zw) ® wixz)
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Thus, noticing the commutativity of 0l , we come to associativity. ]
Claim 3. n and © have the same code.

Procf. Let xy be the unique subterm of n such that x and y are variables.
Let z be any other variable in n. Now use the unit to delete all other variables.
To avoid associativity either =Xy or yx must be a subterm of 1. Thus the code of
-1 AARE Suppose uy # vy with

i as small as possible, but vy is u - By deleting all variables except XY and

. X R . X
n is y} Uy ey while the code of 1y 1is y} Voo

U] s We obtain
0‘. }= Xu.)u, ~ (Xu, )u

which yields associativity. 0

Now it is easy to see that two slender *-singular terms with the same code form
an equation derivable from the commutative law. Thus " is inherently nonfinitely

based according to Theorem 8'. 0

It is very easy to construct finite groupoids which fulfill the hypotheses of
Theorem 11. The appendix contains a number of such examples. It is interesting to
note that the hypotheses of Theorem 11 can be construed as a single first-order sen-
tence in the language of groupoids. In this view, the condition is simpler than the
condition of "varietal congruence distributivity" present in Baker's Finite Basis

Theorem that entails a kind of "inherent'" finite basis property.

§3, LYNDON'S GROUPOID IS NOT INHERENTLY NONFINITELY BASED.

Lyndon's groupoid [ has the following table:

o a b c d [ £
o o o o o o o o
o o o o o o o
o o o o o o o
c o! o o o o o o
I —
d o d e f o o L o
[ o e é-—rggﬂn_ o o _6
o £ £ f o o o

This, in all essentials, is the first nonfinitely based finite algebra to be dis-
covered. In 1954 Lyndon [4] proved that it is not finitely based. To see, on the
other hand, that it fails to be inherently nonfinitely based we will construct an 8
element groupoid Ul which is finitely based and has L as a subalgebra. O has

the following table:
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o o o o o o o o
a o o o o o o o o
b o o o o o o o o
c o o o o o o o o
d o d e £ o o o d
[ o e [ [ o o o

£ o £ f o o o £

Let I = {x(yz) ® ww, (xx)y ® zz, xy = (xy)y, (xy)z = ((xy)z)y}.
We will prove that I 1is a base for M . It is straightforward to verify that
¥ [= L. We will provide a proof that if (N.F ¢ = P, then Z[= ¢ =Y.
Call ¢ a =zero term provided ¢ has a subterm of theform =xx or one of the
form nm where T is not a variable. Every nonzero term 6 has a tree rendering

of the form

where x and yO are different. The weak code of 6 is obtained from yoyl...yn_1

by retaining only the leftmost occurrence of each varieble.

Claim Q. 0\[= ¢ = ¢ if and only if both ¢ anc. ) are zero terms or ¢ and

Y are both nonzero terms with the same leftmost variable and the same weak code.

Proof. Suppose ¢ and Y are both zero terms. It is easy to see that any
assignment from o gives both terms the value 0 and so UL F ¢ = Y. Now suppose
¢ and Y are both nonzero terms with the same leftmost variable and the same weak
code. The last two equations im X are enough to insure that Z[— ¢ = Y. But
W EZ, s0o OEo=y.

For the converse, we consider several cases.

Case a. ¢ 1is a zero term and Y is a nonzero term.

In this case assign g to the left most variable of Y and a to all other
variables. Under this assignment ¢ is given the value 0 while Y 1is given the

value d. Hence Ol Fo = .
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Case b. ¢ and y are nonzero terms with different leftmost variables.,

In this case assign g to the leftmost variable of ¥ and a to all other
variables. Under this assignment ¢ is given the value 0 while ¢ is given
the value d. Hence W} ¢ ~9.

Case c. ¢ and Y are nonzero terms with the same leftmost variables yet
different weak codes.

‘e i d
uOu1 U while the weak code
of Y 1is VoVt Vp1® (since U{ has a zero, it does no harm to suppose the codes

In this case, suppose the weak code of ¢ is

have the same length.) Let i be the least number such that uy # vy Assign g
to the leftmost variable, a to uj for all j < i, b to uss and ¢ to all other
variables. Under this assignment, ¢ is given the value c¢ while Y is given the

value f. Hence UL F ¢ sy and the claim is established. O

It remains only to observe that I entails all equations of the form described
in the claim. The first two equations in X handle the zero terms while the second
two handle the nonzero terms.

So W is finitely based and therefore its subalgebra [ is not inherently

nonfinitely based. 0

§4. OPEN PROBLEMS.

In this section we gather several open problems, some of which have been out-

standing for decades and others which are posed here for the first time.

TARSKI'S FINITE BASIS PROBLEM
Fix a finite sitmilarity type which provides at least ome operation of
rank more than one. Is the set of all finitely based finite algebras
(whose universes are sets of natural numbers) of this type recursive?
McKenzie [7] has recently reduced Tarski's Problem to the case of groupoids.
Otherwise nothing is known. It is not even known whether the set involved is re-

cursively enumerable or co-r.e.

TARSKI'S HIGH SCHOOL ALGEBRA PROBLEM

Is (w,+,*,4,0,1) finitely based?

Here w denotes the set of natural numbers and 4 denotes exponentiation (i.e.
xty is x”). Charles Martin [5] has shown the surprising result that (w,+,*,+,0)
is not finitely based. More generally, we might ask which reducts of
(W, +,+,%,0,1,1,( ),ZX) are finitely based, where (;) is the usual binomial co-

efficient. This algebra has a natural combinatorial appeal.
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THE LINEAR SEMIGROUP PROBLEM
Let F be a finite field and let F be the semigroup of nxn matrices over

Foo Is F) finitely based?

Perkins [13] found a six element subalgebra of GF(Z)2 which is not finitely

based. It is not known whether Perkins' semigroup is inherently nonfinitely based.

THE CHAUTAUQUA PROBLEM
Let A be a finite set with at least three elements. In the lattice of
clones over A, is there always an infinite ascending chain CO,Cl,...
of finitely generated clones such that (A,Ci) is finitely based when
i 1s even and not finitely based when i <s odd?
Another way to state this problem is to ask whether by adding more and more
operations to the set A one can make the resulting algebras alternate between being

finitely based and nonfinitely based.

THE CONGRUENCE MODULAR PROBLEM
Is there a finite algebra belonging to a congruence modular variety
which ts inherently nonfinitely based?
The known examples of nonfinitely based finite algebras in congruence modular

varieties all turn out, it seems by necessity, not to be inherently nonfinitely based.

THE REDUCTION PROBLEM

Is there a recursive function F such that F 0 is a finite groupoid

for every finite algebra W and F O\ is inherently nonfinitely based

if and only 1f W ig inherently nonfinitely based?

In particular, we ask whether McKenzie's construction in [7] gives a positive
answer to this question. In a related case, we also wonder whether the construction

put forward in Pigozzi [8] preserves the inherent nonfinite basis properties.

We conclude by asking whether the algebra constructed by Park [12] is inherently

nonfinitely based. (see the note added in proof.)

§5. APPENDIX: SMALL NONFINITELY BASED GROUPQIDS

This appendix lists all of the nonfinitely based groupoids of no more than four
elements currently known to the authors. We have omitted various groupoids on the
basis of isomorphism and dual isomorphism. Blank boxes mean that any element can be

used.
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INHERENTLY NONFINITELY BASED GRAPH ALGEBRAS

o a b o al b c o a b c
olofl of o olo|l o] olo ol o' ojolo
o alo]| a| a aloja ala
o b b b o b b b b o o
Murskii [8],[9] c|lof| of ¢ | ¢ clolecje]e
Shown nonfinitely Shown nonfinitely
based in Shallon [17] based in Shallon [17]

INHERENTLY NONFINITELY BASED FOUR ELEMENT GROUPOIDS GENERATING MURSKII'S GROUPOID

[¢) al b c o al b c o a b c
olof o] o o|lofl o] oo olo}lo o}o
a|o alo| o] a]|a alolo e

o b b b o b o b iib
c c| o cl{of o { c | o
The blanks may be The blanks may be
filled arbitrarily filled with any array

of b's and c¢'s
I
o a b c
o
a a The blanks may be filled
with any array of 0's
b [
and c's.
c

These groupoids exhaust the four element groupoids (L such that Murskii's

groupoid belongs to HS 0L .

APPLICATIONS OF THEOREM 8

o al| b c o 1 a b
o|lolojojo o oj o] o} o
a [¢) o o c 1 o 1 a b
b o a o a a o a a o
c [¢) o o o b o b a a
Shown nonfinitely Perkins [14]

based in Visin [19]
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o] o] o o]

1|o}1ljfa|b a,8¢{1l,a,b}
a o a o g

b b a a

Perkins [14]

o 1 a b
o] o] o] o]
1lofl1]ainb ae{0,1,a}
a o a o
b b

o 1 a|b
M
o] o o] a
1]o al|b ae{0,1,b}
1

[

[e]
=B I e

[e]

o 1 a b
o] o] o] o]
1|o|1falhb ae{0,1,b}
a o a o] o]
b b

o 1 a b
o o] o| o
1 }{o 17 ai|b
al|o al) o a
b b a

LYNDON'S GROUPOID

o a b c d e
o o o o o o o o
a o o o o o o o
b o o o o o o o
c o o o o o o o
d o d e £ o o o
e o e e e {o o o
£ o f £ £ o o o

Lyndon [ 4] showed that this
groupoid is nonfinitely based.
However, it fails to be
inherently nonfinitely based.

NONFINITELY BASED GROUPOIDS NOT KNOWN TO BE INHERENTLY NONFINITELY BASED

o a b c
o o o o o
a o a b o
b o b b c
c o o c c

Shown by Park [12]
to be nonfinitely based
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10.

11.
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o 1 a b c d
o|o| o o|lo| o]| o
771 o 1[afb c d
a [¢) a a b o o
b [¢) b o [¢) a b
c o c c d o o)
d [¢) d o [¢) c d

This semigroup was shown to be nonfinitely based by Perkins [13].
This is the semigroup of the following six matrices under multi-
plication.

9 T I F I Y B VO I
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Note Added in Proof:

By extending the methods discussed here for graph algebras, Kirby Baker has

been able to show that the algebra of PPy is inherently nonfinitely based.

In view of the reasoning in Theorem 4, most finite graph algebras turn out to be

inherently nonfinitely based. Baker has also proven that Park's groupoid is

inherently nonfinitely based.



TENSOR PRODUCTS OF BOOLEAN ALGEBRAS

R. S. Pierce

1. INTRODUCTION. For a Boolean algebra A, let [A] be the isomorphism class
of A. The set B of all isomorphism classes of countable Boolean algebras is a com~
mutative semiring under the addition induced by the direct product and the multiplica-
tion induced by the tensor product. The class of the one element algebras is a zero
in B, and the class of two element algebras is the unit in B. A basic problem in
the theory of Boolean algebras is this: what is the structure of B? Recently Vera
Trnkova proved in [5] that if t" = ™ in B with n < m, then t" = tn+1. An
alternative derivation of this result was given by Dobbertin in [1]. In this paper
it is shown that Trnkova's result is optimal: for each natural number n there exists
an element t € B such that t, tz, . tn-l, t" are distinct and t? = tn+1.

The element t with the desired property will be found in a particular multi-
plicative subsemigroup of B. Let S be the set of isomorphism classes of countable,
primitive Boolean algebras that are finitely structured. (See [2] or [3] for an elab-
oration of this definition.) It is shown in [3] that S 1is a subsemiring of B. A

non-zero element x £ S 1is pseudo-indecomposable if x =y + z implies x =y or

X = z. The set I of all pseudo-indecomposable elements of S 1is a subsemigroup of
the multiplicative semigroup of S. The unity element 1 of S belongs to I. So
does the class 0 of all free Boolean algebras. Note that 0 1is a multiplicative
zero of I, but it is not the zero element of S. The natural ordering of S (x <y
if y==x+ 2z for some z £ S) 1is a partial ordering. With this relation, I be-~
comes a partially ordered commutative monoid with a zero, that is, if x <y, then
xz < yz for all x,y, z € L.

Define I, = {x e€I: x+ x==x} and I, =1 - I, . The distributivity of

1 2 1

S implies that I1 is a semigroup ideal of I. The results in Section 6 of [3] show

that S can be reconstructed from the data in the pair (I, Il), or even from I

alone.

It is sometimes convenient to describe I1 by its characteristic function.
As in [3], define the mapping «k: I + {1, 2} by k(x) =1 if =x € L and k(x) = 2
if xeI_.

2

2. PROPERTIES OF I. The statement of the principal theorem in this section
uses notation that is applicable to any partially ordered set.
For x € I, denote &(x) = {y € I: y < x}. It is possible to show that the

ordered set &(x) 1is the structure diagram associated with the primitive algebras in
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the class x (see [2]). By the definition of 8, &(x) is finite for every x € I.
Define 7Y(x) to be the set of y € I such that x covers y. It follows that Y(x)
is a finite antichain in &(x). The height h(x) 1is defined as usual to be the maxi-
mum length of a chain below x. Thus, h(x) = 0 if and only if x is minimal in I.

For each set W CI let u(w) denote the collection of maximal elements in
W. This notation will generally be used when W is finite and not empty. In this
case, u(W) is a non-empty, finite antichain. For x, y € I define TI(x, y) =
ulxy(y) v yy(x)).

Let § denote the collection of all finite antichains in I. If W € §,

then Y-l(w) ={xeI: vy =w}.

2.1 THEOREM. The set 1 is a partially ordered, commutative monoid with 0,
and (I, Il) satisfies the axioms:

Al. 0 and 1 are minimal elements of 1 with «(0) =1 and k(1) = 2;

A2. if 0#x eI, then x > 1;

A3, 8(x) e finite for all x € I;

Ad. 1-{0} < distributive: if 0 # x < Y1y then there exists z; £y and
z, £y, such that x = z,z_;

2 172°

B. For each We§, if W=1{z}C1 then Yﬁl(w) = f; otherwise Y—l(w) =

n

1}
{xw, yw}, where k(x) =1 and K(yw) 2;
C. If T(x, y) ={z} C1

k(xy) = min{k(x), k(y)}.

1° then xy = z; otherwise vY(xy) = I'(x, y) and

Proof. Most of these properties of I were mentioned in [3]. The statement
that I 1is a partially ordered, commutative monoid with zero 0 and the axiom A2
are contained in [3; 10.6]. The first part of axiom Al was noted on page 55 of [3].
It is clear from the definition of addition in S that 0 + 0 =0 and 1+ 1 # 1,
so that «k(0) = 1 and k(1) = 2. Axiom A3 is a direct consequence of [3; 10.3]. A
careful examination of the definitions in [3] shows that axiom B follows from [3; 9.6,

9.7, 10.2, and 10.3]. Finally, axiom A4 follows from the other axioms by induction on
h(x) + h(y).

2.2 COROLLARY. (a) If xe I - {0} and y e I, then xy >y.

(b) If xeI- {0}, then 1<x< x2 < x3 < eees 4f & = for some m > n,

then x° = xn+1 =

(c) If x,yel satisfy Y&) = vy(y) and «(x) =«(y), then x=y.
These facts follow directly from the theorem.

2.3 COROLLARY. If x, y € I qre such that there 1s an order isomorphism
¢ S8(x) » 8(y) satisfying k(¢(z)) = k(z) for all z € 8(x), then x =y.

Proof. If h(x) =0, then x =0 or 1 by axiom A2. In this case, y =
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¢(x) = x by Al. Assume that the corollary is true for all =z € I with h(z) < h(x).
In particular, ¢(z) = z for all =z < x. It follows from Corollary 2.2(c) that y =
o(x) = x.

A more elaborate form of this argument shows that the axioms A, B, and C
characterize the relational system (I: -, <, Il). The proof of this fact is omit-
ted because the result will not be used here.

By Corollary 2.3, each element x € I 1is uniquely determined by the Hasse
diagram of &(x) together with a labeling of the vertices in the diagram to distin-

guish 8(x) NI, from &(x) NnI,. It is convenient to designate the vertices in

1 2
§(x) N I, by small circles and those in &(x) N I, by crosses. For example,
s y s and

represent all elements of height 1 in I.

3. TORSION ELEMENTS. Define the order of x &£ I - {0, 1} to be 0(x) =
sup{n < &1 x'}. By convention, 0(0) = 0(1) = 0. The element x ¢ I is a
torsion element if O0(x) < ®. The set of all torsion elements in I is denoted by
T.

It is clear from Corollary 2.2 that x € T if and only if there is an upper
bound on the heights of the elements x". This observation and the commutativity of

I imply the following result.

3.1 THEOREM. T <s an order convex submonoid of 1, that is, y <x € T im—

plies y € T.

An element e £ T - {0} is idempotent if 2= e, that is 0(e) < 1. Let
E be the set of all idempotent elements in T. Clearly, E 1is a submonoid of T.

Note that O ¢ E.

3.2 THEOREM. With the ordering inherited from T, E <8 a distributive lattice

in which the join is the semigroup product.

This theorem is a special case of Corollary 3.7 in [4], since I - {0} satis
fies the axioms 1.1 of that paper.

The main theorems of this section and Section 4 refer to the elements that
occur in the following Hasse diagram. The coverings that aren't shown in this figure

are: Y(pj) = {pj_l} for 2 < j < n+l, Y(ek) = } for 1 <k<n+ 2,

{r s €
k-1 k-1
Y(Si) = {pn+1, ei+1}, Y(fi) = {si, en+2} for i < n; moreover, K(pj) = 2 for

2 < j < n+l, K(ek) =1 for 0 <k <n+2, and K(si) = K(fi) =1 for i < n.
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P, e,
Py ©1
Py o
1 L)

FIGURE 1

3.3. LEMMA. Figure 1 is the diagram of a convex subset of 1. Moreover:

(a) pg = py> e2 = e

(b) Piey = € for i < n+l;

(¢) PiPy = €5, for 1 < i < n+l;

(d) P;P; = €isl for 1 <1i<j <n+l;

(e) &Py T eiy) for 1 <1i<j<n+l; and ePy = & for 0 < j <1i<n+2;
(£) eje; = e for 0 < ; < j < n+2;

(g) fi = Sipj = s, =s.= flpJ = fiek = f s; = £, for i<mn, j<n, and

k < n+2.

Proof. Inspection of the diagram in Figure 1 shows that it satisfies the

axioms Al, A2, A3, and B of Theorem 2.l1. Thus, it is the Hasse diagram of an order

convex subset of I. The equations (a) through (g) are obtained by successive appli-

cation of the axioms A, B, and C. For example, T(po, po) = {po} cI

1
0 Po%0 T %1
2.2. Hence T(pl, eo) = u{poeo, eg» Py 0} = {pl, el}, so that p e,

= {eO}E;Il imply (a). Also, T(po, eo) = {po, eo} yields

i S s o o T(p. = {p. ). H , e = £
ion on j > gives (pJ, eo) {pJ, eJ} ence pJeo or

ej+l

and T(eo, e
by Corollary

e_ . Induc-

2
J £ n+l.

similar argument proves (c). The equation (d) can be proved first in the case

by induction on j, then in general for 1 < i < j by induction on

equations of (e) follow from (a), (b), (¢), and (d): if i < j, then

2 . . .
= = = = . < < = . . =
pipj—leO eje0 pj—leO pj—leO ej, if 1 il i, then piej P;P:_ ¢

i+ J.

piej -

J

The

A

€410 = ©;,1+ The same argument gives (£). To obtain (g), note that T(si, po) =

0

)
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u{si, e;.1P0 pn+lp0} = {si, en+2} =T(s;, ey). Thus, sjpy = sjeg = £;. Hence,

F(si, pl) = u{sipo, ;0 P,1Pp ei+1p1} = {fi}, and s.p = fi' Induction on
] > i = . i ] > = s.P. =1, =
il _22 then gives Sipj fi Moreover, if j > 1, then Siej slpJ_leo fle0

0= %% " fi. Therefore, F(si, si) = U{Sipn+l’ Siei+1}= {fi}, which implies
= f_. The rest of the equations in (g) follow from the earlier results: fie

k

2
= f f.p. = . =s.e. = f, .8, = s, = f,
5 lpJ s &P s.e £f., f.s 5.e fle

e.e = s.e
j i)+l i ii i’0

ik
‘e5 = fie0 = fi'

This lemma shows that {e

0 = fi’ and

C =
n+2? fO’ fl’ v fn—l} C E. Clearly, fi A fj

e in E, so that {fo, fl’ vy £ 1} generates a finite Boolean subalgebra of
n-
E. 1Indeed, it follows easily from the distributivity of E (Theorem 3.2) that the

mapping Y - Hie is an injective lattice homomorphism from the Boolean algebra

f.
Y 1
of all subsets of {0, 1, ..., n-1} to E. This discussion proves the next result.

3.4 THEOREM. For each natural number n, E contains a sublattice that is

igsomorphic to the finite Boolean algebra with n atome.

3.5 COROLLARY. FEvery finite distributive lattice is isomorphic to a sublattice
of E.

The corollary follows from the theorem because every finite distributive
lattice can be embedded in a finite Boolean algebra.

As Hans Dobbertin has pointed out in a private communication, Theorem 3.4
already settles the question of the existence of a countable Boolean algebra A such
that Aei F Aaj if i, 3 <n and AGn = AG(n+1): let A be any algebra in the
class x = fo + f1 L fn—l € S. In_fact, since fi € E for 1i<mn, it follows

from Theorems 3.2 and 3.4 that x- # xJ if 1 <i<j<n, and X" = fof1 - fn—l
n+l
= x™

The construction in the next section yields an element in T that has the
same property.

4. THE MAIN THEOREM.

4.1 THEOREM. For every natural nwmber m there exists t € T such that

0(t) = m + 1.

For m =1 this result was established in Example 10.15 of [3]. Therefore,
assume that m > 2.

The explicit construction of the desired t € T is based on Figure 1 and

Lemma 3.3 with n = 2m. Denote X = {0, 1, ..., 2m -~ 1}. Define £(Y) = I ot (in
particular, f£(#) = 1) and g(¥) = £(X - Y) for each Y C X. Abbreviate g({ig,

- 1,1 by g(ig, aes 1 0. Let T = {g(0), g(1, 2), g(1, 3, &), ..., g(1, 3,

., 2i-1, 21), ..., g(l, 3, ..., 2m-3, 2m-2), g(1, 3, ..., 2m-3, 2m-1)}. By the

proof of Theorem 3.4, Tm is an antichain in T. Thus, by axiom B, there is a unique
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element t € I such that y(t) =T and K(t) = 1. The rest of this section is de-
voted to the proof that O0O(t) =m + 1.
The following useful observation is clear from Lemma 3.3 and the definition

of g.

4.2 LEMMA. If YCX and i€ X, then g(Y)fi =g(Y) 4f 1Y and g(Y)fi
=g(Y - {i}) 4if 1ie¥Y.
Let V = 5(f0f1'°'f2m_1). Plainly, V includes the elements in Figure 1,
so that Lemma 3.3 gives some information about the multiplicative structure of this

set. Somewhat more is needed.

4.3 LEMMA. (a) Sisj = Sifj = fifj for all i, j < 2m.
(b) If Y = {il,..., ik} with 0 < il << ik < m, k>2, then v(£(Y)) =
{f(y - {il}), oL, f(Y - {ik})}; moreover, if Y, Y' C X, then f£(Y) > £(Y') if
and only <f Y 2 Y'.
(¢) v={0, 1} U {pj: j<om}u {ek: k < 2m+ 1} v {si: i <om}u {£(Y):

Y ¢ X}.

Proof. The case 1 = j of (a) is contained in Lemma 3.3. Assume that

i # j. By Lemma 3.3, F(Si’ s.) = {fi, £.}. Hence, Y(Sisj) = {fi, £.} and K(sis.)

J
1. It follows that [(s,, f,) = {s,s,}, so that s.f. = s.s.. Moreover, L(f., f.)
1 1 1] 1 J

J 173

= {fisj, Sifj} = {Sisj}’ so that fifj = s.s. also. To prove (b), note that (a),
Lemma 3.3, and induction yield T(£(Y - {1 D, ) = {e(v - Lo h), ..., v - {4, b,
£(y - {ik})}. Thus Y(£(Y)) = y(£(Y - {ik})sk) = {f(y - {il}), eo., £(Y - {ik})},

since k > 2. The second part of (b) restates the remark that was made in the proof
of Theorem 3.4. Let U be the set on the right side of equation (c). Clearly,

U CV. On the other hand, if x € U, then Y(x) C U by (b)., Thus, U is order

convex, and since fOfl...me*l € U, it follows that V C U,
For each natural number r, define Vr = {trx: X € V} and let V0 =V.
The next lemma determines the order structure of Vl'

4.4 LEMMA. (a) t ¢ V.

(b) tpj =te =t for o1l j < 2m, k< 2m+ 1.

(c) ts, = tf, for all i < 2m.

() ef, = tf, ;-

(e) If Y, Y c {0, 1,..., 2m - 2}, then cf(Y) covers tf(Y') <if and only
if Y covers Y' (that is, Y2 Y' and |Y| = |Y'| + 1); moreover, tf(Y) > tf(Y")
if and only i1f Y 2 Y'.

(£) y(tH) = {tg(0), tg(1, 2),..., tg(l, 3,..., 2m-5, 2m-4), tg(l, 3,..., 2m-5,
2m-3)}.

Proof. By Lemma 4.3 and Figure 1, vY(x) # T for all x € V. Thus, ¢ ¢ V.
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Induction on j and k together with Lemma 3.3 yields T(t, pj) = T(t, ek) = {t}
for all j and k. Since K(t) =1, this observation proves (b). To prove (c),
note that by (b) and Lemma 4.3, T(t, si) = U{Tsi, t} = U{Tfi, t}. Hence, T(t, fi)

= U{Tfi, tsi} = {tsi}, and (c) follows by axiom C. It is clear from Lemma 4.1 and

the definition of I' that TI(t, SZm—Z) = u{rfzm_z, t} = {g(1, 3,..., 2m-3), t} =
r . - . R

(t, SZm—l)' Thus, Y(tfzm_z) Y(tszm_z) Y(tszm_l) Y(tfzm_l), which implies
that tfzm_2 = thm—l' More generally, Lemma 4.1 implies that [I'(t, SZi) = {g(1, 3,
vevy 28 = 1), t} for i <m and I(t, s ) = {t, g(1, 3,..., 2i - 3, 2i), g(1, 3,

2i-1

.y 2i =3, 2841, 28 % 2),...} for 1 <4 <m Thus, by (¢) tfy, tf , tf

R

are distinct elements that cover t. This observation starts the induction that leads

2m-2

to (e). 1In fact, let Y = {il,..., ik} with 0 < i1 <, ..< ik <2m -1 and k > 2.

By Lemma 4.2, 4.3, and the induction hypothesis (on |Y[|), T(t, £(Y)) N v, =
WCey(£(¥))) = {e£(¥ = {i;D),..., t£(Y - {§, D}, Thus, y(ef(V)) nvy = {ef(¥ - {1 D),
L., tE(Y - {ik})}, which is the first half of (e). Also, if Y and Y' are dis-

tinct sets of cardinality k, then tf(Y) and tf(Y') are distinct elements of

height k + h(t). It follows by induction that the mapping Y =+ tf(Y) is an order

isomorphism on the sets of cardinality at most k in {0, 1,..., 2m - 2}. Finally,
by (d), (e), and Lemma 4.2, Y(tz) = T'(t, t) = {tg(0), tg(l, 2),..., tg(l, 3,...,
2m - 5, 2m - 4), tg(l, 3,..., 2m - 5, 2m - 3)}.

This lemma shows that the mapping Y - tf(Y) is an order isomorphism from
the lattice of subsets of {0, 1,..., 2m - 2} to Vl. For 1 <r <m, the order

structure of V_ is similar. This will be proved by induction on r. More notation
r

is needed. For 1 < r <m, let Xr = {0, 1,..., 2m - 2r}.

4.5 LEMMA. Let 1 <r <m.
(a) t5¢v ..
-

(b) tszm—l trfz:n—z S Ty g T
(e) ¢ f2m—2r =t f2m—2r+1'
(d) If Y, Y'C Xr, then tT£(Y) covers t E£(Y') if and only if Y covers
Y'; moreover, tf(Y) > t'f(Y') if and only if Y 2Y'.
(&) v(t™*1) = {t%g(0), tTe(1, 2),..., t'g(l, 3,..., 2m - 2 -3, I 2 - 2),
m+

trg(l, 3,...,2m-2r-3,2m-2r - 1)} if r<m; and t = tmfo.

r
t .

n

Proof. Lemma 4.4 includes the case r = 1 of this lemma, since (b) is
vacuous if r = 1, Assume that r > 1 and the lemma is true when r - 1 replaces

r. Since r <m, the set X includes 0, 1, and 2. Thus, by the induction

r-1
hypothesis, t' covers t 1g(O) and tr~1g(1, 2). Therefore (by (d)r—l)’ tF
cannot have the form tr_lf(Y) for a subset Y of X ;. Consequently, ¢ v,

by Lemma 4.4 and the induction hypothesis. By Lemmas 4.2, 4.4, and (e)r—l’
r _ r.T r = . T = T .
ree”, £ ) = {t7"}, Hence, t fommorse - € fom-orsz - C - Together with the

-1

2m-2r+2
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induction hypothesis, this equation yields (b). The use of (e)r_ and Lemmas 4.2,
4,3, and 4.4 gives F(tr, s

r
Hence, t f

1
-1
—2r) = {tr, t* g(l, 3,..., 2m - 2r - 1)} = T(tr,
T

t'f

SZm—2r+1)
A similar argument shows that

2m

=t s =ts = N
2m-2r 2m~2r 2m-2r+1 2m=2r+1 r
the elements trfi, ie Xr’ are distinct and each of them covers t . The statement

(d)r then follows as in the proof of Lemma 4.4(e). If r < m, then {0, 1, 2} C Xr’
1
TRy = TR, 0) = {t%g(0), tTg(1, 2),..., tTe(1, 3,..., 2m - 2r = 3, 2m-2r-2),

tTg(1, 3,..., 2m = 2r = 3, 2m - 2r - 1)} by (e) ®_, (), and (O _. If r =m,
m+1

and vy(t

r-1’

m . . .
=t fo. The induction is complete,

The proof of Theorem 4.1 follows easily from Lemma 4.5. Indeed, this lemma

. 2
gives t <t <,,.< tm < tmf = tm+1, and tm+2 = tm+1f = tmf2 = tmf = tm+1. Thus,

0 0 0 0
0(t) = m + 1.

then T(t™, t) = {tmfo}; in this case t

4.6 COROLLARY. For each natural nwmber m, there ie a countable, primitive,
finitely structured, pseudo-indecomposable Boolean algebra A such that A81 # AQBJ

if 1<i<j<m+1 and Ae(m+1) = Ae(m+2).
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G-PRINCIPAL SERIES OF STOCKS IN AN ALGEBRA

Francisco Poyatos

Let A = (A,F) be an algebra. F 1is allowed to have both
finitary and infinitary operations. A subset T ¢ A 1is called a
stoek or trunk of A if for each f € F of arity a,
f(ai : 1 < a) € T whenever ag ¢ T for at least one 1 < q. The
empty set is @« stock and if F contains no nullary operations, then every
stock is a subalgebra of A. We say that =z € A 1is a distinguished
element of A if {z} is a stock of A. 1If F contains an operation
with arity at least two, then the distinguished element is unique, if

it exists.

PROPOSITION 1. The set of all stocke of A forms a complete sub-
lattice of the Boolean algebra of all subsets of A.

Proof., Trivial.

We associate with each stock T of A a congruence c(T)
defined by x C(T)y if and only if x =y or x,y € T. It is easy
to see that C(T) 1is a congruence, which we call the Rees congruence
generated by T [8]. The only quotient algebras that we consider in
this paper are of the form A/C(T). We write A/T for A/C(T) which
can be identified with (A ~T) U {2z} where =z 1is the distinguished
element of A/T.

The next two propositions are versions of the second and third

isomorphism theorems. Their proofs are omitted.

PROPOSITION 2. Let T be a stock of A and S = (S,F) a
subalgebra then
2) T = (TUS,F) is a subalgebra of A,
i) T <8 a stoeck of T and TNS <is a stock of S,
772) T/T % S/(TN S).

PROPOSITION 3. Let K be a stock of A and let h:A - A/K

be the natural isomorphism. Then h <induces a one-to-one correspon-
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dence between the lattice of all stocks of A whieh contain K onto
the lattice of all non-empty stocke of A/K. If P 2 K is a stock,
then (A/K)/(P/K) = A/P.

For x € A let J(x) be the stock generated by =x. Define an
equivalence relation J by xJy if J(x) = J(y). For r € A
define Jr = {x € A : J(x) = J(r)} and set I(r) = J(r) - Jr (note

C
Jr C J(r)).

PROPOSITION 4. (i) I(r) = {x € A : J(x) 9 J(r)} (4i) I(x)

18 a stoek of A maximal in J(r).

Proof. The proof of (i) is easy. To prove (ii) we need to show
I(r) 1is a stock., If it were not there would be a t € I(r) and
f € F with 2z = f(ai : i < a) ¢ I(r) for some {ai : i < a} such
that t = ag for some 1. Since t € J(r), =z € J(r) - I(r). Hence
J(z) = J(r), so t € J(z). Clearly =z € J(t). Therefore J(t) =
J(z) = J(xr), contradicting t € I(r).

Let B be a subset of A, We call J(x)/I(x), X € B a
prineipal factor of A over B. Let R and P be stocks of A

with P ; R. We call a finite strictly decreasing chain

(1) R = So o] Sl D e D Sk = P

of stocks of A a G-prineipal series of A from R ¢ill P 1if each

S, 1s maximal in S, . The algebras S, ./S, are called the
i i-1 i-1" "1
faetors or quotients of the series. If
= o) S e D =
(2) R To T1 Tn P

is another G-principal series from R till P we say that (1) and
(2) are isomorphic if k = n and there is a permutation T on

{0,1,...,k-1} so that Si/si+1 = Tﬂ(i)/Tﬂ(i)+l'

THEOREM 1. Let A = (A,F) be any algebra. Let (R,P) be a
pair of stocks of A whieh admits a G-prineipal series (l1). The
faetors of (1) are isomorphic (taken in a certain order) to the
prineipal quotients over R-P. In particular, any two G-principal

series from R till P are isomorphic.

Proof. We begin with any factor of (1), Si/S
i€ {0,1,...,k-1}. Let m ¢ $; - 8

i+l?
41’ then J(m) U Si+1 is a
trunk of A by proposition (1), so that m belongs to it and it
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contains S It contains strictly S, and is contained in Si’

i+1° i+l

so
u = - .
(3) J(m) Si+1 Si’ for all m € Si Si+1

We will now show

(4) I(m) < Sis1

Let p € I(m). If p were in Si - Si+1’ then by (3)

J(p) U Si+1 = Si and from this would follow J(p) = J(m), that is
p £ I(m), contradiction. So (4) is valid.

Let us prove that
(5) I(m) = J(m) N Si+1

From (4) it follows that I(m) € J(m) N Si+1' Let
c € J(m) N Si+l’ then J(c¢) € J(m), J(e) & Si+1’
J(c) ; J(m). By proposition 4 (i), ¢ € I(m), and we have proved (5).

and for this reason

We now apply the proposition 2, making T = Si+1’ S = J(m), and
obtain in combination with equalities (3) and (5)
Si/si+1 ~ J(m)/I(m), m € Si - Si+1'
We take in account this easy property of set theory: let B, C,
D subsets of the set A such that C < B and DN (B-C) = @, then
B-C=(BUD) - (cUD). As S, NJ =@ where m € 5, -8

i+1
calling B = J(m), C = I(m), D = §

i+1°
141 by the above property and
formulas (3) and (4), we get

(6) Jm = J(m) - I(m) = (J(m) U S ) = (I(m) U Si+l) = S, - S,

i+l

_ _ .. B - B . d
We call {So §158, =5, Sk} the partition of R-P originate

T Sk-1
by the G-principal series (1). It coincides with the classification of
R~-P modulo J by (6). This is valid for any other G-principal series
from R till P, as (2). We compare the partitions of R-P origi-

nated by (1) and (2), and obtain that k = n and
i € 1 1+1 ; 541 T Tocry T Toqay+re
So T must be a permutation of {0,1,2,...,k-1} and
Si/S.

i+l X J(mi)/I(mi) ~ Tﬂ(i)/Tﬂ(i)+1

for all i ¢ {0,...,k-1}.
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Given any algebra A = (A,F) and a pair of trumnks of it (R,P)
so that R ; P and admits a G-principal series such as (1), we define
KG(R,P) = k (length from R till ©P) (number of terms of the series
minus 1). We establish the convention KG(R,R) = 0, If (A,0#) admits
a G-principal series, then we say that A 1s of finite G-length, and
KG(A) = KG(A,Q). A 1is G-simple if and only if KG(A) = 1.

PROPOSITION 5. Let
(7) R, 2R, 2R, D2 +»++ >R > R

be a finite decreasing (not necessarily strict) chain of stocks of A.
) If (Ri’Ri+1
i¢ {0,1,...,p-1} ‘then (RO,RP) admits G-principal series.

) admits G-prineipal series for all

i) If (RO,RP) admits G-principal series, then (R;,R, ;)
admits G-prinecipal series for all i € {0,1,...,p-1}, and in both

cases:

p-1
11) KG(RO,RP) = 'Z Lo (RyHRy L)
i=0
Proof, Trivial, consequence of theorem 1,

PROPOSITION 6.
1) Every group with operatore (definition in [6]) is G-simple.
11) Every lattice with maximum (or minimum) 18 G-simple.

117) Every quasigroup (definition in [1]) is G-simple.
Proof., Trivial.

An algebra A = (A,F) is G-noetherian (G-artinian), iff the
lattice of all its stocks satisfies the ascending (descending, respec-

tively) chain condition [3].

PROPOSITION 7. If A 4is noetherian (artinian, of finite
G-length), then every homomorphic image of A 1is noetherian (artinian,

of finite length, respectively).
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ALGEBRAS OF FUNCTIONS FROM PARTIALLY

ORDERED SETS INTO DISTRIBUTIVE LATTICES

Anna Romanowska

In 1979, in a letter to J. D. H. Smith [10], I. G. Rosenberg pro-
posed as a possible example of a meet-distributive bisemilattice the
set of functions from a poset P into a distributive lattice L , with
join defined pointwise and a multiplication, called convolution, defined
as follows: for f : P+ L , g : P +L and p e P , p(feg) =

T [(pf)(gg)+(af)(pg)]l . (A related kind of convolution was considered
qsp
in I. G. Rosenberg [9].) This note is devoted to the investigation of

such algebras of functions in the case that P and L are finite. 1In
particular a condition is given for the convolution to be associative
(precisely in this case the algebras in question are meet-distributive
bisemilattices), and the structure of these algebras (both in the genera
and in the associative case) is described, using as a starting-point a
(join) retraction from the lattice of functions from P into L onto

the lattice of order preserving functions from P to L.

1. THE LATTICE (L|P|;+,-) OF FUNCTIONS OF P IN L AND THE
OPERATION OF CONVOLUTION. For a finite distributive lattice (L;+,-)
and a finite partially ordered set (P;g) , let LlPl denote the set

of all maps of P to L . Define f+g and fg by
(1.1) p(f+g) := pf + pg ,
(1.2) p(fg) := (pf)(pg)
It is well known that (L|P|;+,-) is a distributive lattice. We define
another binary operation - convolution - on the set LIPI
(1.3) p(feg) := 3 [(pf)(ag)+(af)(pg)]
a<p

For 1 ¢ L let 1 denote the constant map P - L with value 1

Some properties of convolution on LIP are collected in the following.

PROPOSITION 2.1. The operation ¢ is idempotent, commutative, dis-
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tributes over + , satisfies the identity

(1.4) (fogleg = fog

and feQ =0 for all f e LIPI

Proof. The idempotence of o follows from the following: p(fef)

= ¢ (af)(pf) = pf + I (qf)(pf) 2 pf and on the other hand (because
qsp q<p
of distributivity of L ) T (qf)(pf) = (pf) ¥ (gf) < pf . Hence fof
q<p gsp
-]

= f . The commutativity of is evident., Now we check the identity

(1.4):
p((feg)og)

Z [(a(feg))(pg)+(p(feg))(ag)]

= I [(pg) £ [(rf)(ag)+(af)(rg)l+(gg) L [(sf)(pg)+(pf)(sg)l]
gs<p r<gq s<p

= I (pg)(rf)(ag) + z (pg)(af)(rg) +
r<q<p r<qgsp

Z (agl)(sf)(pg) + I (aqg)lpf)(sg)
s,4<p s,q<p

= I (pg)(rf) + I (pf)(rg) = p(feg)
r<p r<p

the penultimate equality following from (pg)(sf)(gg) s (pg)(sf) and
(ag)(pf)(sg) < (pf)(sg) . We show that o distributes over =+

p(fol(g+h)) = % [(af)p(g+h)+(pf)qlg+h)]
qsp
= & [(qf)(pg+ph)+(pf)(qg+qh)]
asp
= I [(af)(pg)+(af)(ph)+(pf)(ag)+(pf)(qh)]
a<p
= I [(af)(pg)+(pf)(qg)l + I [(aqf)(ph)+(pf)(gh)]l
a<p qs<p
p(feg) + p(feh) = p(feg+foh)

(where, as usual, foeg+foh denotes (feg)+(feh) ). 0O

An algebra (A;+,0) satysfying the conditions of Proposition 1.1

with (A;+) a semilattice will be called a guasiring. 1In the case tha
it contains an element 0 with a+0 = a and a0 = 0 , it will be

called pointed. Thus, (L|P|;+,o,g) is a pointed quasiring.

In general neither of the operations o and - distributes over
the other. Take for example P =L = {0,1} , where 0 < 1 and the
functions 0, g, h ¢ LIPI with 1g = Oh = 1 and equal 0 otherwise.
Then geh = g , gol(gh) = go0 = 0 # (gog)(geh) = gg = g and gl(goeh) =
gg = g # (ggle(gh) = ged = 0

The algebra (LIP ;+5°,0) can be considered as a lattice ordered

groupoid (because f < g implies foh < geh for arbitrary f, g, h
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€ L|P| ) with zero 0 i.e. it is a groupoid-lattice as defined by 0.
Steinfeld [11]. (His representation for algebraic groupoid-lattices 1is

completely different from our approach.)
In general the operation of convolution is not associative. P 1is

a tree if 4p = {q € P | ¢ £ p} 1is a chain for each p ¢ P . A forest

is a disjoint union of trees.

PROPOSITION 1.2. The convolution o <s assoetative if and only
if the poset P <s a forest.

Proof. (<=) Let Tis £ fgyoc LIPI . Then

p((fiefy)ef ) = L [(a(fy0f,))(pry)+(p(f of,))(af;)]

q=p

= I I(pfy) Z [(rr,)(af,)+(ar )(rr,)] +
q<p r<q
(afy) £ (st )(pfy)+(pry)(sf,)1]
sS<p
= & (rr)ary)(pfy) + T (af)(rf,)(pry) +
r<q<p r<q<p
L (st )(pf,)(afy) + I (pf1)(sf2)(Qf3)

q,8<p q,s8<p

(1.5) = I z (rf.)(af.)(pf, ) ,
.. 1 J k

I‘Sq_Sp (laJak)ES?)
where Sy is the set of permutations of {1,2,3} . ©Now (1.5) does not
depend on the order of f1, fg, f3 proving the associativity.
(=>) Suppose P 1is not a forest. Then there are elements p, q, T €
P with p and q uncomparable and p <r , g <r . Let a, b eL ,
a <b . Let f, g, h ¢ LIPI satisfy pf = gqg = rh = b and take the
value a otherwise. Then feg = a , aeh =3a , foeh =h , goh =h
and (feg)eh = aoch = a # h = foh = fo(gsh) . O

Algebras of the form (Aj;+,o0) , where both reducts (A;+) and
(A;o) are semilattices and o distributes over + were studied, among

others, in 5], [6] and [7] under the name meet-distributive (or --dis-

tributive) bisemilattices. Thus the algebra (L{Pl;+,o) is a meet-

distributive bisemilattice if and only if P 1is a forest.

Let us remark that (L|P|; +#,7,°) gives a generalization of alge-
bras considered by B. H. Arnold [1] and later by J. Jakubik and M. Koli-
biar [2].

2. A CONSTRUCTION OF QUASIRINGS. 1In this section (L;+,*) 1is a

distributive lattice and & its +-endomorphism such that:

(i) each congruence class of X := kerf has a greatest element d
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and dg = d;

(ii) the set D of greatest elements of A-classes is a sublattice

of L
Note that a < af for a ¢ L . Moreover, 22 = 2 and each congruence
class of A 1is a +-subsemilattice of L . We define an additional

binary operation e on L as follows:

(2.1) aeb := a(bf)+b(al)
PROPOSITION 2.1. The algebra (L;,+,0) <& a quasiring.

Proof. Only (1.4%) and the distributivity of o over + need to

be checked. First, using b < bf , we have
(aob)ob = (a(bl)+b(al))eb
= (a(bL)+b(al))(br)+((aecb))b
= a(bl)+b(ag)+((aeb)l)b
Now it suffices to show that ((aeb)2)b < (al)b . First ((aeb)&)b =
((a(bl)+b(al))2)b = ((a(bl))L)b+((b(ak))2)b . From a(bl) < a we have

((a(b2))2)b < (af)b and from b(al) < al also ((b(af))2)b < ((af)L)b
(a)b

Now we prove distributivity:

ac(b+c) = a(b+c)l+(al)(b+c)

= a(bl)+al{ct)+b(al)+c(al)

= a(bl)+b(ag)

= (a(bR)+b(al))+(a(cl)+c(al))

= gob+aocc . 0

Note that for a, b € D , aeb 1is just equal to ab . Indeed, in

this case a = af , b = bl and aob = ab+ba = ab . If a, b are in
the same )\-class, i.e. af = bR , then aeb = a(al)+b(bl) = a+b . It
follows that (Dj3;+,0) coincides with (D3+,*) . The A-classes consi-

dered as algebras with fundamental operations + and e are semilatti-
ces (i.e. bisemilattices satisfying the identity x+y = xoy). Now we
can easily see that the algebra (Lj;+,e) 1s in the product class SxD ,
where S 1is the class of semilattices (considered as bisemilattices),
and D is the class of distributive lattices. (For the definition of

a product class see [4], and in the case of bisemilattices [T71].)

Note that in most cases (Dj;+,°) is not the only subalgebra of
tL;+,°) that is a lattice. In general, gquasirings, and particulary
gquasirings costructed by means of the construction described in this
section, have "many" subalgebras that are lattices or semilattices. To

get some hold on the problem, consider the free idempotent commutative
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groupoid satisfying (1.4) on two generators x, y and the free quasi-
ring on two generators x, y . By standard calculations one can show
that the first is a semilattice with 3 elements x, y, xoy , and the
second is a meet-distributive bisemilattice with 6 elements x, ¥,
X0y, X+y, x+xey, y+xey (see [5] and [6]). (In the proof, one uses the
identities =x+y = (x+y)o(x+y) = x+y+xoy and xeoy = (xoy)e(x+y) .)

Let a, b be elements of a quasiring. Define a <, b if and only

if aeb = a . Write a —<_ b if a <€ b

° © 4

a # b , and there is no
c # a, b such that a <, ¢ s b

LEMMA 2.2, Let a, b be elements of a quasiring. If a —<_ b
or b covers a , i.¢. a —< b , then ({a,b};+,e) <s a lattice or a

semilattice (Z.e. bisemilattice with xoy = x+y )

Proof. It follows from [6, Cor. 2.5], since the free gquasiring

on two generators is a bisemilattice. [J

Now consider once more the quasiring (L;+,9) constructed at the

beginning of this section.

LEMMA 2.3, Let a, b e L . If at least two of the conditions
a< b, az2b, al = bl hold, then all three are satisfied.

o

Proof. Let af = bf . As mentioned before we have aob = a+b
and therefore a < b <=>a 2b . Let a < b and a2 b . Since
b is a lower bound for both a and bR , we have ©b(al) = b < a(bg)
and a = asb = a(b)4b(al) = a(bl)+b = a(bL) < bL . Thus af < b2 =
bf and on account of b < a also bf < al proving af = bl . [

LEMMA 2.h4. Every convex sublattice of (L3+,*) <& a subalgebra
Of (L;+!.:°)

Proof. Apply ab < aeb < a+b . [J

LEMMA 2.5, Let a, b e L . If a—<b , then ({a,b};+,o) <s
(2) the two element lattice ({a,b};+,*) <Zf af # bg or
(i2) the two element semilattice ({a,b};+,+) <f ag = by

Proof., Lemmas 2.3 and 2.4% ., [

The relation £, may be described intrinsically as follows.

A

LEMMA 2.6. Let a, b e L . Then a < b if and only <1f al by

and (af)b < a
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Proof. (=>) From a = aeb = a(bf)+b(al) < bL+b < bL it follows
al < bkg = bl . Using a < af < by we get a = a(bg)+b(al) = a+b(al)
proving (al)b £ a
(<=) aob = a(bl)+b(al) = a+bl(al) = a . [

Note that if a < b , then ab = a(al)b = (al)b

o

LEMMA 2.7. Let a, b e L and a —<_ b . Then ({a,b};+,°) <s
(2) the two element semilattice ({a,bl;+,+) Zf al = bL or

(27) the two element lattice ({a,bl;+,-) <2f al # bR

Proof. If al = bR

, then by Lemma 2.3 a > b and hence a+b
aeb . Let af # b2 , By Lemma 2.6 af < bf , which implies a < b ,
since b < a would imply bR < al . [

Now suppose that the congruence )\ satisfies the following addi-
tional condition:
(iii) each element of D belongs to a maximal chain of (L;+,*) that

is entirely contained in D

LEMMA 2.8. If the condition (iii) is satisfied in the finite la-

ttice (Li;+,-) , then each A-class is closed with respect to the ope-

ration

Proof. Let a, b ¢ L and ag = bg . We only need to show that
for uncomparable a and b , (ab)g = af . Let us suppose that, on the
contrary, (ab)g # af . Then, evidently (ab)f < a2 . Now the elements
a+(ab)g, b+(ab)g and a+b+(ab)f are in the A-class containing a
Moreover (a+(ab)f)+(b+(ab)g) = a+b+(ab)g , and (a+(ab)p)(b+(ablp) =
ab+a(ab)f+b(ab)2+(ab)% = ab+(ab)f = (ab)f, . Hence, (ab)f, a+(ab),

b+(ab)f and a+b+(ab)f form a sublattice of L and are pairwise dis-
tinct.

Now, by the condition (iii), there is a d ¢ D such that (ab)2 <
d —< af . Next, (a+(ab)g)(b+(ab)e)d = (ab)ad = (ab)g and
(a+(ab)f)+(b+(ab)l)d = (a+(ab)i+b+(ab)e)(a+(ab)L+d)
(a+b+(ab)L)(a+d)
(a+b+(ab)p)ap
a+b+(ab)L.
Hence (ab)f, a+(ab)f, b+(ab)f, a+b+(ab)f and (b+(ab)e)d , if all

1

different, form a nondistributive sublattice of (L;+,«), a contradic-
tion. Hence, since (ab)f < (b+(ab)f)d < b+(ab)R , it follows that ei-
ther (ab)f = (b+(ab)g)d or (b+(ab)g)d = b+(ab)r. If (b+(ab)e)d =
b+(ab)f , i.e. b+(ab)® < d ~< a% , then d = df = af , a contradiction.
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Consequently (b+(ab)f)d = (ab)f . Similarly, considering the elements
(ab)2, a+(ab)2, b+(ab)t, a+b+(ab)ft and (a+(ab)f)d , one can show
that (a+(ab)f)d = (ab)f . Now, (ab)f, a+(ab)&, b+(ab)l, a+b+(ab)l,

af and d form a sublattice of (Lj+,-) . If a+b+(ab)f = af , then
(ab)f, a+(ab)R, b+(ab)f,, d and af form a modular (nondistributive)
lattice; if a+b+(ab)® # a% , then (ab)f, a+(ab)L, a+b+(ab)l, al

and d form a nonmodular lattice, Both cases give a contradiction. [

If all three conditions (i), (ii) and (iii) are satisfied, the
construction of the guasiring (Lj;+,¢) from the distributive lattice
(L3+,*) thus described will be called the G-construction (G for geome-
trical - the reason for the name will become clearer at the end of this
section). It will play an essential role in the description of the
structure of the algebra (L|P|;+,o) in section 3.

In the last part of this section, consider the case that (Lj;+,o)
is a bisemilattice. The next lemma gives a simple sufficient condition

for (Lj+,°o) to be a bisemilattice.

LEMMA 2,9. If the mapping & <s a o-homomorphism, then (L;+,0)

78 a meet-distributive bisemilattice.

Proof. 1Indeed, (aoblec = (a(bf)+bl(af)(cl)+(aeb)lc
= a(b)(ce)+blal)(el)+c(al)(bR)
= a(bec)+(al)(blcl)+(bl)c)
= a(boc)+(al)(bec)
= ae(boc) 0

In the case that all three conditions (i), (ii) and (iii) are satis
fied and (Lj+,e) is a finite bisemilattice, the ordering and covering

relations determined by o <can be characterized by means of the cove-

ring relation —< . Let

—< =< U (2_1(d))2
and deD

-—-<:L = —< A\ -—-<S

PROPOSITION 2.10. If all three conditions (i), (Zi) and (1i1) are

satisfied and (Lj+,°) s a finite bisemilattice, then —<_ Ts con-
taitned in the union of —<q and the convers > of —<q

Proof. Let a, b e L and a —<_, b . By Lemma 2.7, if af = ba,
then b —< a , and if af # b , then a < b , If both a and b are

in D , then it is easy to see that a —< b . Suppose at least one of
a and b is not in D , and af # ba . By Lemma 2.6 af < b . If
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af —< bQ , then a —< b . 1Indeed, in this case af+b = bl , and by

Lemma 2.6, af-b = ab =a . Since (L;+,+) is distributive, this im-
plies a —< b . Now only the case af +4< bf remains to be considered.
We will show that there is no ¢ such that a < ¢ < b . Let us suppo-

se, on the contrary, that such ¢ exists. First note that by (1.h4)

ao(coea)+asb = coa+a = (c+a)ea = coa . O0On the other hand coa < c+a < b
implies ao(cea+b) = aeb = a . Hence, by distributivity, a = coa ,
i.e. a <, c . This implies af # cf . Evidently af < cf < bg . Now
we consider two cases.

Case 1: ¢ # b . Since (Ljo) is a semilattice, a <, c and a —<_
b imply <ceb = a . Now <col(c+b) = cob = a and coec+cob = c+a = c #

a , a contradiction.
Case 2: «cf = bR . Because of the condition (iii), and since af +< bl
we can assume that there is a d € D such that af < d --< bf . Now

since each A-class contains only one element of D , both (cd)? and

(bd)2 are distinect from b . Suppose both (cd)f and (bd)g are
equal to af . Then bd < af and cd < af imply bd < af'b = a and

cd £ ak-c = a (see Lemma 2.6). O0On the other hand af < d implies a

= af+*b < db and a = af-c < dc¢ . Consequently bd =cd = a . Now since
d —< b , d+b = d+c = b . It follows that in the case b # bf , the
elements a, b, ¢, d, b2 form a non-distributive sublattice of (L3+,-),
a contradiction. If b = b , then af <, a—<_b and a < af < b

Hence a = ao(afl+b) = acal+acb = al+a = af and a = al <, d =< bL =

b , contradicting a —<_ b . It follows that (bd)g # af . Consequent-
ly af < (bd)f < bR , and we have the situation of case 1 . [J

Let Tr(-<1 U >—s) denote the transitive closure of the union of
< and the converse > of —< , Write a < b 1if a ¢ b and
1 s s ° °
a # b

PROPOSITION 2.11. Under the same assumptions as in Proposition

2.10, <, = Tr(—<l U >_S)

Proof. The relation < o T:r(—<:L U >—é) follows directly from
frool 0 2

Lemma 2.5. We will show that <« «c ’l‘r(—<:L U >«s) . Let a < b . Then
L=} - -]

a=a —< a, —<_ .,. —<_ a —< a_=b By Lemma 2.2, it follows

o ° 1 ° o “n-1 ° n
that there are i1, ig, such that a = ag < a; < ... < ai1 > ai1+1

< .
> L. > ai2 < ai2+1 < .. > a = b . Now 1if aj —<, aj+1 and aj <
it 1 — . —< . 5

aj+1 , then by Proposition 2.10, aj < aj+1 and hence aJ 1 aJ+1 H
if a. —< a. and a. > a. , then once more by Proposition 2.10,

J o J+1 J J+1
a. >— a, , and hence a., > a, . It follows that < ¢ Tr(—<_ u
J J+1 J s j+1 ° 1
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Proposition 2.10 gives a simple "geometrical" method of obtaining
the diagram of (Lje) from the diagram of (L;+,*) . First, the dia-
gram of (Dje) coincides with the diagram of (D3;+,-) . Moreover D
forms a convex subset in (Lj;e) . The A-classes are semilattices
(xey = x+y) , so their diagrams in (L;o) will be dual to those in
(Ly+,-) (i.e. drawn "upside down") . What other edges of the diagram
of (L;+,-) will be kept in the diagram of (L;e) ? To answer this
question, consider elements a, b, ¢, d ¢ L that are not all in the
same A-class, not all in D and moreover such that a —< b —< d and
a —< ¢ —< d . Because of Lemma 2.8, we can assume without loss of ge-
nerality that in this case we have just three possibilities:

1. c¢cf = d2 and al, bf, <cf are distinct;
2, cf =4d%2 , af = bR and afl # ck ;
3. all af, bR, c& and df& are distinct,

Now using Lemma 2.5, it is easy to see that in case 1, a < b < d —<

¢, i.e. a < ¢ but a #< ¢ ; in case 2, b ~<_ a < ¢ and b < d
—< ¢ 3 in case 3, a < b < 4 and a < ¢ < d . If x = x_ —<_ X
° o o o o (e} o 1
— —< —< = — it 1 2.1 one
SR R S o ¥y y and x —< y , then by Proposition o,
has x —< x, —< ... —< x. >— Xx. >~ ,., > x. =y for some 1 5 i < k
1 1 1+1 k

By Lemma 2.3, x4 £ = ... =34 , and for J, k < i , le # X, .

X,
141
It follows by the case analysis above that the diagram of (L;o) has
exactly the same edges as that of (L;+,*) , with the exception of edges
connecting elements a and ¢ belonging to a subbisemilattice

{a,b,c,d} described unter case 1

3. THE STRUCTURE OF (L|P|-,+,0) . In this section it will be
shown that the algebra (L|P|;+,o) can be obtained from (L|P|;+,-)
by means of the G-construction, As in section 1, P is a finite poset
and L a finite distributive lattice. Let L' denote the subset of
L‘PI containing all order preserving functions. Note that for order
preserving functions f, g « LP clearly feg = fg ¢ LP s SO (LP;+,°)
is a subalgebra of (L|P|;+,o) and of (L Pl;+,-) , and, as is well

known, is a (distributive) lattice. Many references for ¥ are for
example in [3].
|7} . o P
Let f e L . The function f := I{g e L | 8
<

v

f} 1is eviden-
tly the least order preserving function such that f f~ . Some pro-

perties of % are collected in the following:

LEMMA 3.1, Let f, g ¢ LIPl , p e P . Then
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() pf% = T qf
q<p
(21) fog = gfo+rg®

(i17) fog = £g°%(f+g)

Proof. (i) For each p ¢ P define ph := 3 qf . It is evident
. P a=p
that f < h . We will show that h ¢ L . Let s < p . Then sh =
Zaf £ L rf =ph , Thus f < £f° < h . Now, it is enough to show that
g<s r<p o o
h < £~ , Indeed since f is order preserving and f < f  , it follows
that q < p dimplies qf < qfo < pfo , whence ph = I qf < I qfo <
o o asp q<p
pf™ . Consequently h = f
(ii) Because of (i), we have the following: for any p e P , f, 8 ¢
P
LIl p(reg) = I C(af)(pg)+(ag)(pt)]
qsp
= (pg) I (af) + (pf) I (ag)
qsp q<p
= (pg) (pr°)+(pf) (pe®)
o
p(af®+rg”)
(iii) ©Follows from (ii) and £°f = f s gog =g . 0

LEMMA 3.2, The mapping . L|P| > ¥ s a surjective +-homomor-

phism. Moreover, it is also a eo—homomorphiem <f and only zf P 18

a forest.

Proof. Let f, g ¢ L|P| . Since f, g g f+g < (r+g)° , it follows
that £%+g° < (£+g)° . 0On the other hand from f+g < £°+g° ¢ 10 we
have (f+g)° < r%g° . Evidently ° 1is surjective.

Now, let P be a forest, f, g ulPl 5 p . Using £%g° =

fogo and Lemma 3.1 then p(foogo)

(p£°) (pg°)
(2 af)( ¢ rg)

Q<P r<p

= £ (af)(rg)
q,rsp

= ¢ [(af)(rg)+(rf)(qg)]
qQ<r<p

= [ 2 [(gf)(rg)+(rf)(ag)l]
r<p qsr

= g r(fog)
r<p

= p(feg)°

Hence £ eg® = (fog)°

If P 1is not a forest, it contains a, b, ¢ with a < ¢ and b
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< ¢ . Define f, g ¢ L‘P‘ by af = bg = 1 and equal 0 otherwise.

)° ©

Then fog = 0 whence (fog = 0 whereas from af® = ¢cg° = 1 we get

C(foego) = 1

Note that © need not be a +—~nomomorphism for a general poset

P . 1In the previous example (£g)° = 0° = 0 and %% = £%g° # 0 .

P

Next remark, that by Lemma 3.2, (L ;+) is a retract of (LlP‘;+),

P

and if P 1is a forest, then (L ;+,0) 1is a retract of (L|Pl;+,o)

THEOREM 3.3. For an arbitrary finite poset P and arbitrary fi-
nite distributive lattice L , the quasiring (L|P|;+,o) can be obtained

from the lattice (L|P|;+,-) by means of the G-construction.

Proof. For the lattice (L|P1;+,o) , take D = ¥ ana 2="°

The conditions (i), (ii) and (iii) of the definition of G-construction
can be easily checked using lemmas 3.1, 3.2 and elementary properties
or (uiFlu, .oy . O

In particular, if P 1is a forest, (L|P|;+,0) is a bisemilattice,
the ordering relation < implied by the o-semilattice structure of
L|P| is described by P;oposition 2.11, and the diagram of (L|P1;0)
can be obtained from the diagram of (L1P|;+,-) by the procedure des-
cribed after Proposition 2.11,

Let us note that there is another class of meet-distributive bi-
semilattices that have a structure similar to that described by the
G-construction (although (2.1) does not hold any more and the egquivalent
of (L3+,») is semimodular and not distributive in general)., This 1is
the class of bisemilattices of pointed subsemilattices of semilattices
(see [7] and [8]). 1In particular Propositions 2.10 and 2.11 hold also

in this case.
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GALOIS THEORY

FOR PARTIAL ALGEBRAS

I.G.Rosenberg

Most of the results need lengthy definitions and so cannot be adequately des-
cribed in the introduction. The paper essentially describes the subalgebra systems
of direct powers of partial algebras and the partial clones related to them and gi-
ves a solution to the joint concrete representation problem (subalgebras-congruen-
ces-endomorphisms) for partial algebras.

As a background and to provide an easier introduction to this not widely known
topic, we start with a brief review of Krasner's abstract Galois theoryv for permuta-
tion groups, his endotheory for monoids of selfmaps and the polytheory for clones of
finitary operations. Here we have a fixed universe A and an index set I and the
concept of preservation of a relation (subset of AI) by a permutation of A, selfmap
of A and finitary operation on A and the groups, monoids and clones are just the
closed sets in the Galois connection., For the operations the closed sets of rela-
tions are the subalgebra systems of the I-th direct power of algebras.

In this paper we study the Galois connection for partial algebras. This seems
to be a natural step in the hierarchy of Galois theories which began with the "abs-
tract" theory for permutations [12,13,14,16] followed by the 'endotheory" for fini-
tary (finite and infinite) universal algebras [3,7,37] and infinitary universal

algebras,

The closed sets of partial operations are partial clones containing all sub-
operations of its members. On the relational side the subalgebra systems of the
I-th direct power of partial algebras can be reasonably well described as algebraic
closure systems on AI closed under special operators called surjective mutations.
Such a closure generated by S C AI can be built in three steps: first we take
all the surjective mutations of members of S; then just close under all intersec-
tions and finally under all directed unions. For full algebras and |I| < |A|
a similar closure is obtained as a projection from a closure on A". This is not
necessary for partial algebras and so the closures are muech simpler to construct.
Thus without much trouble we solve the joint concrete representation problem for

subalgebras, congruences and partial endomorphisms of partial algebras.
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Some of the results were known earlier [4,7,9] but, in spite of their possible
importance, seem to have received only scant attention, Also the situation may be
more complicated than it seems at first sight; for example in the very interesting
particular case of heterogeneous algebras (touched but far from solved in [22,24,
34}) we lack an explicit Galois theory. Although individual concrete characteriza-
tions are known for algebras the analogue of Theorem 3.11 for full algebras remains
unknown.

The paper is intended to be self-contained as much as it is possible. As
often the case in this field it is somewhat heavy on the terminological and nota-
tional side.

The author is grateful to I,Fleischer for many interesting conversations. The
partial financial support provided by the NSERC~Canada operating grant A-9128 and
FCAC Québec 'subvention d'équipe’ E-539 is gratefullv acknowledged.

1. PRELIMINARIES,

I
1.1. Let A be a fixed nonemptv universe, I a nonempty index set and A

I

the set of maps from I to A (for I finite we identify A~ with the set A|I|).

A subset p of AI is called an I-relation on A. Let SA denote the set of all
permutations of A. We say that f € S, preserves o C Al if for ¢ p for all
r € p i,e. if f is an automorphism of p. In the Galois connection between SA

and QKAI) induced by the correspondence "f preserves p'" the closed subsets of

SA are the sets of the form

Aut R = {f € SA: f preserves all p € R}

R < g(AI)). The sets Aut R are clearly permutation groups on A and if |I| = |A]
they comprise all permutation groups on A (M.Krasner 1935 [12-14,16,18]).

1.2. The closed subsets of gﬂAI) are
: f preserves p for all f € F}

(F ¢ SA). We describe intrinsically the sets InvIF. First observe that for a

permutation X of T and p € InvIF the relation
poX = {reX : r € p}

also belongs to InvIF. More generally, we not only can permute coordinate places
but also mav keep certain coordinates and free the others in the following sense.
Let X be a partial selfmap of I with domain K and p ¢ AI. The mutation poX 1is

the relation
poX = {f € Al : £IK = roX for some r € p}

(where f[K is the restriction of f to K and (roX)k = r(X(k)) for all k € K).
For example, if I =K = {1,2} and X(1) = 2, X(2) =1, then poX is the inverse

o = of the binary relation p. On the other hand, if X :{1} » {1,2} is defined
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by X(1) = 1, then p°X = D(p)xA where the domain D(p) of p is defined by
D(p) := {x € A: (x,a8) € p for some a € A}.

Thus the mutations encompass both permuting of coordinates and allowing the values
in specific coordinates to become unrestricted. M.Krasner [16] showed that the
sets of the form InvIF are exactly the mutation closed complete boolean subalge-
bras of (g(AI); ). In other words, the sets InvIF are exactly the subsets of
g(AI) closed under all mutations, the complementation and arbitrary set-theoretical
intersections and unions. The above characterizations of the sets Aut R and

InvIF is the essence of Krasner's abstract Galols theory.

1.3, Some thirty years later Krasner [15~17] studied the same problem for
selfmaps of A. 1In this Galols endotheory "f preserves p'" means that f is an endo-

morphism of p, i.e. fer € p for all r € p. For R C gﬂAI) put
I
End R := {f € A" : f preserves all p € R},

I
The sets of the form End R are submonoids of the symmetric monoid <A ;o> and
I
for |I| = |A| they comprise all submonoids of <A j;e>. For F C AI define InvIF

in the same way as above., This time InvIF need not be closed under complementa-~
tion and the sets of the form InvIF are exactly the mutation closed complete

sublattices of (P(AD); © [16].

1.4, The next step is to replace selfmaps by finitary operations. This was
done for finite algebras by Bodnar¥uk et al.[3] and quite independently of Krasner's
work by Geiger [7] (the relational constructions were already effectively applied
in [28-30]).

Let N denote the set {0,1,...} of non-negative integers. For n ¢ N let
n = {0,1,...,n~1} and let O(n) stand for the set of all n—~ary operations on A
(i.e. maps Al - A). Put @ := UnEN O(n) and for X CO and n € N write
X(n) = XN O(n). We say that f ¢ O(n) preserves p C Al (or is a polymorph

of p, stable or admissible with respect to p [19]) 4if fr. ...r € p whenever

0 n~-1

all rj € p (here r = fr....r € AI is defined by ri = f(roi)...(rn_li) for

every 1 € I), i.e. if p gs a Zu%algebra of the direct power <Aj;f>". (For n=0

the zero operation f preserves p if the constant map with value f belongs to p.)
For example let |I| = 2 and let < be a partial order on A. Then f preserves = iff
f is monotone (isotone) with respect to =<, i.e. fal...an =< fbl...bn whenever

ay = bi for all i=l,...,n. Similarly f preserves an equivalence & on A iff 6 is

a congruence of <A3f> and f preserves {(a,pa) : a € A}, ¢ selfmap of A, iff

¢ 1s an endomorphism of Ajf>.
1.5, For R C g(AI) set
Pol R := {f €© : f preserves all p € R}.

In other words, Pol R 1is the largest subset F of O such that R is a subalgebra of
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<A;F>I. Each set Pol R is a clone (or polynomial or term class, Post algebra or
iterative algebra with identity) i.e. a composition closed subset of @ containing
all projections (for a more detailed definition see 2,2). Moreover, for |I| = |A|
> NO each clone i1s of the form Pol R for some R C g(AI) [37] (in fact, of the
form Pol p for some p € AI [31]). For A finite it is preferable to use simul-
taneously relations of all finite artities, e.g. each clone is of the form Pol R
where R is a set of finitary relations. For simplicity and because it is closer
to the partial case we stick to the case of A infinite.

The set L of clones ordered by C is known to be an algebraic lattice whose
infinitary meets are the set-theoretical intersections. Relatively little is known

otherwise (e.g. for A infinite both L and the set of dual atoms of L have cardina-

lity 2exp 2exp|A| [35]).
1.6. On the relational side the closed subsets of gﬂAI) are

InvIF = {pc¢ al : f preserves p for all f € F}

(F C@®) called subdirect closure systems on Al [37]. 1In other words, InvIF is
the subalgebra system Sub<A;F>I of the direct power <A;F>I, and as such an al-
gebraic closure system on AI (i.e. a family of subsets of AI closed under arbitrary
intersections and unions of (up)~-directed families [8,p.24]). For their intrinsic
description we start with |I| > |A|. In this case the subdirect closure systems

N . I
are exaetly the mutation closed algebraic closure systems 7 on A~ such that every

f €NZ 1is a constant map. For 0 < |I| < |A|, choose J > I such that |J| = |A|
and for p € AJ put p := {f € AI = ng for some g € p}. The subdirect clo-
sure systems on AI are exactly the restrictions (projections) S~ := {o : p € S}

of a subdirect closure system S on AJ [37].

1.7. TFor Y ¢ gﬂAI) let [Y] denote the least subdirect closure system on AI
containing Y. Subdirect closure systems play a role in concrete representation
problems. For example, consider selfmaps of A as binary relations on A (i.e. iden-
tify f € A% with its digraph {(a,fa): a € A}) and set I = 2. Then a subset

AAﬂ[X]. To construct

I

X of AA is the endomorphism monoid of an algebra on A iff X
[X] we must extend the binary relations of X into |A|-ary relations, form the sub-
direct closure system and then project back into binary relations (these construc-
tions are discussed in [38]). The difficulties involved in performing this indi-
cate a reason why the characterization of endomorphism monoids is a hard problem
(see e.g. [41]).

Perhaps we could mention now why we think that the above relational approach
to clones is not useless. Except for a few very simple cases it is not easy to
describe explicitly the clone F of term operations of <A3F> (i.e. the least clone
containing F), and so a description in the form Pol p or Pol R seems to be
reasonable, Moreover, some clones are naturally given in the form Pol p. This

happens for most maximal clones for A finite [28,29,36]; e.g. it would be diffi-
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cult to define the clone of monotone operations (1l.4) in another way. For clones

Xi = Pol Ri (i=1,2) we have X1 c X2 iff R2 c [Rl]' This observation gives a
natural way to construct superclones of a given clone (e.g. the 8 proper super-

clones of the square of a primal algebra [39] or submaximal clones [40]).

1.8. 1In this paper we extend the above Galois polytheory to partial operations
which is the next step in the hierarchy of Galois theories. For a finite A and I
this has already been done in [7], for I finite in [9], for operations with finite
domains in [26] and some of the results of this paper are in [4]. A natural adapta-
tion of "f preserves p" gives a Galois connection whigh on the side of partial
operations has strict partial clones that are the composition closed sets of partial
operations containing all projections and closed under the formation of subopera-
tions. On the relational side we have subsets of gﬁAI) which we call weak subdirect
closure systems (wscs). They are still algebraic closure systems but are closed
only under special mutations (called surjective). Thus in the hierarchy of Galois
theories this time the order properties (in EXAI), €) remain unchanged but much
less is required for mutations., Concretely for I = 2 we have algebraic closure
systems Z on A2 containing p—l, o* = {(xl,xz) € A2 : (xl,xl) € p} and p N idA
whenever p € £ . The mutation D(p)xA (1.2) is missing and there are no projec-
tions from systems on A with |J| = ¥A|. To underline this difference consider

the relational product oo of two binary relations given by the usual

pog = {(xl,xz) € A2 : (Ju) (xl,u) € D, (u,xz) € agl.

It is well known and not difficult to prove that for a full algebra <A;F> the
subdirect closure system InVZF contains poo whenever it contains both p and o .
This 1s not guaranteed for partial algebras. For example, let A be a partial alge-
bra and ¢ a selfmap of A such that ¢ € Sub éz. Then the equivalence

-~ 2
ker ¢ := ©@o® 1 = {(xl,xz) € A" ¢ px

1= 0%,
may not be a congruence of A (e.g. take <3;f> where the unary operation satisfies
fO0 = 0, fl1 =2 and f2 undefined and ¢0 = ¢1 = 2, ¢2 = 0). Similarly oo

may not be a subalgebra of éz.

1.9. For S ¢ AI we build the wsecs generated by S 1in three steps. First
we close up S wunder all surjective mutations, then under arbitrary intersections
and finally under directed unions. We use this special feature of wsecs's for a
concrete representation problem for partial algebras discussed in section 3. There
we completely characterize the triples G,H,K such that G = Sub A, H = Con A
and K = P-end A for a partial algebra on A (K is a subset of the set Q of
partial selfmaps of A and P-end A = Q N Sub éz). The fact that this was obtained
in a relatively straightforward way underlines the difference between full and
partial algebras. Another interesting feature is that the partial endomorphisms

need not compose.
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2. PARTIAL CLONES.
2.1. As usual, for n € N an n-arv partial operation on A is a map from a

subset D of A" (called the domain of f) into A. The set of partial operations

is denoteg P(n) and P stands for U e P(n). We say that £ ¢ P(n) is a sub-

operation of g € p(n), in symbols fn_< g» if glp, = f i.e. if D € D, and

fx = gx for all x € Df. For X € P the palr <A;X> 1is called a partial algebra
and we write X(n) for XN P(n) (n €N,

2.2. Even for full algebras the composition of operations has been formally
defined in many wavs. Our description of the composition of partial operations is
a variation of Mal'cev's preiterative algebras [20] which seems to be as good as any
other description. First we define three unary operations ¥, T and A on P. For

n>1 and f € P(n) put

(ZDx = fx,...x % for x € D¢ i= (v s¥ysevesy ) 3 v €D},
(tf)x = fx2x1x3...xn for x € D ¢ i= {(yz,yl,y3,...,yn): y € Df},
(Af)x = fx %) gee X g for x € DAf = {(yl,...,yn_l)

(ylsylsy29--- ,Yn§l) € Df}'

For n<1 and f ¢ p™

we set Zf = 1f = Af = f. An appropriate successive ap-~
plication of ¥ and T to f will get us any operation which differs from f only by
the order of variables. Similarly, %, T and A can produce any fusion (identifica-

tion) of variables.

The composition e is defined as follows. Let f € P(m) and g € P(n). Put
r :=m-1, for x € AT set x' := (xl,...,xm) and if x' € D put x" :=
' = " = r ot
(gx ,xm+l,...,xr). Put (feg)x := fx" for all x ¢ Df.g = {x € A ; x' € Dg,

x" € Df}. Denote bv e: the i-th n-ary full projection (i.e. e?x =% for all
2

x € An) and e, the zero or nullary operation on P with value e A subuniverse

1 1
of <P;&,T,A,ei,o> is called a partial clone. It is easy to see that a partial clo-
ne contains all projections. The set of partial clones, ordered bv inclusion, is

clearly an algebraic lattice.

' which is a natural member of the

2.3, We introduce a "partial Galois theorv'
hierarchy of such theories. For n ¢ N, n>0, f € P(n) and p ¢ AI we sav that
f preserves p if frl...rn € p whenever TisesesTy € p are such that r, :=

(rli,...,rni) belongs to Df for all i € I. A zero operation f preserves p if the
constant map A » I with value f belongs to p. The closed sets in the Galois con-
nection induced by "f preserves o" are

Polp R := {f €PP : f preserves all p ¢ R}’
Invp [F := {pc At s preserves p for all f € F}

T
(R CP(A), F CP). Clearly, Inv pIF is the subalgebra of the direct power él
of the partial algebra A := <A;F>, Out of the several subalgebra concepts [8,

p.80], we are using the following. A subset S of A is a subalgebra (more



263

)

precigely the carrier of a subalgebra) of <A;X> if fx € S whenever £ € X(n and
x € Df n Sn. The direct power is defined in the standard wav with the provision

that the domain of the operation f' on AI corregponding to f € X(n) is
~ I.n . . .
Dfl L {(gla-OOsgn) E (A ) . (glla"'!gnl) E Df Vl E I}'

2.4, It is easy to see that the sets Polp R are partial clones. TIf f €
Polp R and g a suboperation of f then g € Pol R. Partial clones with this
property will be called strict. (For a single relation p if F C Polp p 1is direct-
ed in (P,<) , then Polp p contains the operation g with Dg t= U{Df:f € F}, and
gx := fx for each x € Dg and any f € F with x € Df). The following is essen-~
tially a restatement of [4, Thm 1] and an extension of similar results for A finite
or I finite [7,9,26].

2.5. PROPOSITION. For R S Al the set Pol PR 18 a striet partial clone.

Moreover, for {I| = |A| = N each strict partial clone C is of the form Pol pR

0
for some R C Al of cardinality |R| =< 2|A|.

Proof. For n € N~{0} and D c An fix a surjection XD of A onto D and put

op 1= Afex € ™ ana D, =D}, R = {o :n €NM0}, DC A"y,
Using }An| = |A| and |C(n)| = 2|A| it is easy to see that ]R| < 2|A|.
(m)

We prove that C € Polp R. Let g €C and D ¢ An. To show that g pre~

serves p. let r, € p_ (i=l,...,m) be such that (r,a,...,r a) € D_ for all a € A.
D i D 1 m )
D 5 €C with Df =D

By the definition of op we have T, = inX for some f
(i=1,...,m). Define h ¢ p° by setting hx = g(flx)...(fmx) for every T x e

h

:= D. The operation h is correctly defined becausz for each x € D with x = XDa
we have

(flx,...,fmx) = ((f1°XD)a,...,(fmoXD)a) = (rla,...,rma) € Dg (1)

Clearly h belongs to the clone C and therefore hOXn € fp+ By the definition and
(1) we have the required

8T ee.r = g(floxD)...(fmoXD) = hOXD € Ppe

It remains to show that Polp R C ¢, Let f € Pol pR be n-ary, Let " €
satisfy D, = D := Df and mX =X for all x € D (i=1,...,n). The
partial projectio%s " belong to C, hence ﬁiOXD € £p (i=1,...,n) and from f €

P(n)

Polp QD
o = ] .o oX
foxp = £(mpeXp) e (meXp) € gy
proving anD = g°XD for some g € C with Dg = D, Since XD maps A onto D we

have the required f =g €C, 0o

2.6. REMARK, Everv clone C of full operatiors may be easily turned into a
strict partial clone C' by adding all suboperations of operations from C. The
condition |I| = |A| in Prop. 2.5 cannot be weakeried because there are clones

requiring it [37]. What are conditions for strict partial clones to be of the form



264

Polp p? (Cf. [31,44] for infinite clones.)

2.7. We turn to a characterization of the subsets of E(AI) of the form InvaF.
Observing that InvaF = InvIF if F is a set of full operations, clearly R :=
InvaF should be an extension of subdirect closure system. It should still be a
closure system and therefore we should restrict mutations. Note that f € PZ pre-—

serves trivially every p € AZ\D but not necessarily D(p) xA. However, if f € P

£
preserves a binary relation p, then it preserves p—l, pNid, and p* := {(Xlsxz)

€ AZ : ((xl,xl) € p} (indeed for x € Df with (Xi’xi) € p ?i=l,...,n) we have
(fx,fx) € p proving (fx,fv) € p* for every y € Df). This leads to the following
definition:

For I fixed let E denote the set of equivalences on I. For ¢ € E the rela-
tion A5 = {f € AI: ker £ 2 e} 1is said to be diagonal. For & € E, X map of

K <I onto L CTI such that L meets each block of ¢, and p € AI the relation

po X = (pMB)eX = {f € A" : £]K = roX for some T € oNa_}

is called a surjective mutation of p. An algebraic closure system 7 on AI closed
under all surjective mutations and such that each f € & 1is a constant map is
called a weak subdirect closure system (wscs).

For F CE put AF t= UEEFAE' If F is a subsemilattice of <E;fl> the relation
AF is called ¢rivial. (Note that ¢ is trivial.) It is known [32] and not difficult
to prove that Polp =@© if and only if p is trivial. First the terminology is
justified by:

2.8. FACT., Every subdirect closure system is a weak subdirect closure system.
Every weak subdirect closure system contains all trivial relations.

Proof. Let % be a subdirect closure system and ¢ € E. It is known that
A5 € % [32]; hence for p € 2 we have p N A5 € 7% and (pﬂAE)oX €5 .

Let 7 be a weak subdirect closure system on AI and E' a subsemilattice of
<E3M>,For ¢ € E' we have A5 = (AIﬂA5)°idI € 3 and in view of {AE:E € E'} di-
rected finally AE' 1= U{As:s € E'} ey . o

We need also:
2.9. FACT. Let X and v be partial selfmaps of 1 and p ¢ AI. Then
pe(Xet) = (p°X)eoT,
For a fixed closure system 7 on AI and p € AI put <g> = N{oc € 5: o 2 p} .
We relate surjective mutations and < > :

2,10, LEMMA. Let 5 be a weak subdirect closure system on Al , X amap of
KclI onto LCI and p¢C AI. Then <p>°X C <poX=> If, moreover, L meets each
block of € := Urepker r, then <peX> = <p»°X,

Proof. Set Z = <poX> and choose ¥: L + I so that Xoy = idL. Since poidL =
{f € al . flL = r|L for some r € p} 2 p , applying Fact 2.9 we get
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peid = po (XeW) = (peX)eu € Zov. (2)

Put 71 = ker X. We have poX C Aﬂ € %, hence % C Aﬂ and ZoVv = (ﬁﬂAn)°W = ﬁonw
€ 2 because im ¥ meets éach block of m. From (2) we get <p> C Loy, On account

of ¥ € A we can write Z = AoX for some X\ C AI. Using XeYy = id , the fact

L’
that XoidL agrees with A on L, and Fact 2.9 we obtain the required

<p>oX C (Z°¥)oX = hoXoyoX = XOidLOX = \oX = Z,

Suppose that L meets each block of ¢, From p C A5 € 2 again <p> € A5 and there-
fore poX C <p»oX = <p>e X € % shows 2 C<moX, O

Note that if 7 is a subdirect closure system, then <p>°X = <peX> for every
mutation [37]. Borrowing the main idea from [2] (see also [37]) we prove the main

result of this section.

2.11. THEOREM. A subset 3 of g(AI) is the subalgebra system of the I-th di-
rect power of a partial algebra on A if and only if 2 is a weak subdirect closure
system on AI.

Proof. For n € N\ {0} and (rj,...,r) € (AD)" define #:1> A" by ?i s
(rli,...,rni) for all 1 € I and denote (rl,...,rn) by r.

Necessity: Let X C P and. Z = Sub<A;X>I. It is well known that 2 is an al-~
gebraic closure svstem, Llet 0 €2, g ¢ A5 and ¥ a surjection from K ¢ T onto
L c I such that L meets each block of e.

We prove that ooX € 7, Consider first £ € X(O). Then the constant map
¢:I » {f} belongs to NI Co and whence to o°X., Let n > 0, let r, € geX (i=1,
vee3n) and f € X(n) satisfy Im % cD .

Then rifK = sioX for some s, €0,

A A £ A A i A
hence (f°r)TK = fogoeX, Since each block of ¢ meets L and r = soX, we have Im s
c Im ﬁ‘g Df whence f°8 ¢ o (on account of o subalgebra of <A;X>I and f € X)
and fof € goX.

Sufficiency: Let Z be a weak subdirect closure system. We construct a partial

algebra (A;X» as follows. For each g € 12 we define a nullary operation y where

v 1s the value of the constant map g. Let X(O) be the set of all these nullary
operations. Let n € N\ {0} and L SEREETLN € AI. Put ¢ := ker £ and choose X ¢ II
so thatmlker X = ¢ and (i,Xi)Nf e for all i EII. Now rj = (j=1l,...4n)
shows r C A5°X € Z proving <r> C AEOX and <r> = poX for p < As' For
each b ¢ <;; define a partial n-ary operation f := fg by setting Df = Im 7%
and fx = bi whenever x € Df satisfies x = ri for some i € I (due to b € <r>
and ker r = ¢ = ker X C ker b this definition is consistent). Let X(n) be the
set of all such operations fE and X := Ef(n)'

by ne

We prove I C Sub<A;X>I. By the definition each o € Z 1is closed under the

()

nullary operations X . Let n >0 and let rl,...,rn,b,sl,...,sn € AI be such

A ~

that Ims ¢ Im ? and b € <r». Taking into account that 2 is an algebraic closure
system it suffices to show that h := fg°s € <> Fut J := Imt and choose p:J » I

so that QOp = id By its definition h = bope§. Setting X := poé by Lemma 2.10

I
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~ ~ A A

we have h € <r>°X C <r°Xy», Now from é°X = rop°s = idJog = Q we obtain rjoX = sj
(§=1,...,n) i.e. r°X = s and finally h € <s>.

It remains to prove Sub<A;X>I cZ., For C gAI let C# stand for the subalge-

bra of <A;X>I generated by C. By definition é# = N2 = <¢>., Next let

{rl,...,rn} be a finite subset of AI. For each b € <;; we have b = f
proving <T> C r'.

Since both 2 and Sub<A;X>I are algebraic,it follows that <C> C C# for all
#

I I
C <A, in particular, C C<C> € C = C for every C € Sub<AjX>", [u]

2,12, In the next section we shall need the wscs [S] on AI generated by a

subset S of AI. The set [S] can be constructed in three steps: (i) Let S con-~

¢h)
sist of all surjective mutations U°5X with o € S and of diagonal relations, (ii) let

S(Z) consist of all intersections of subfamilies of S(l)’ and (1ii) 1let S(3) be

the set of directed unions of subsets of S We have:

(2)°

2,13. PROPOSITION, For S C AI the set S 18 the weak subdirect clo-

(3

sure system [S] generated by S.
Proof. Clearly S c S

N

I - S(Z) c S(3) [S] and therefore it suffices to
show that S(3) is a wses. Since AIZ € S(l) C S(3)

map. It is relatively simple matter to show that for any S

N

each f ¢ ﬂS(3) is a constant

the set S is a

€H) (3)

closure system, By its definition it is also algebraic and therefore it remains to
show that 5(3) is closed under surjective mutations, First we show that S(l) is

closed under surjective mutations. Consider (oo X_ )o X, where X,: K, » L,
51 1 €y 2 i i i

(i=1,2). 1In each block B of 52 intersecting K, select and element b, Let K be

1
the set of k € K2 such that the block B of €y 2k intersects Kl. If to

1b where b is the preselected element of B we obtain a map X:K -+ L

such that (ge X_)o X_ = go X,
51 1 52 2 £y
Now we prove that S(Z) is closed under surjective mutations. Let X be a map
from K CTI onto L CI and € an equivalence on I such that L meets each block of

(1 €I) and p:=0N

containing X

k we assign X 1

B i €
€ Consider pi S(l) 1€T

oX) which together with p N A5 =N

o A direct check shows that

1

oX < N
per = fly i€1

€1 (pi (piﬂAE) gives poEX -

niEI(piosx)' For the converse let f € niEI(piosx)' Then there are T € piﬂA5
such that er = rioX for all 1 € I. Since L meets each block of ¢, there is an
r such that .= for all i € I, Clearly r € niEI(pinAs) = pﬂA5 proving
f ¢ chX.

Let 2 be the directed union of {pi:i €1} ¢ It presents no difficulty

S(Z).
to show that pOEX = UiEI(piosx) where {piOEX: i € I} 4is directed. Thus p°5X

€ 5(3) completing the proof. s}

3. CONCRETE REPRESENTATION.
3.1, We apply the Galois connection to concrete representation problems for

partial algebras. For simplicity we consider only unary and binary problems. (The
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results are therefore already a consequence of [9]). The problems considered are
the following:

(1) Under what conditions is a subset G of P(A) the subalgebra system of a partial
algebra on A?

(ii) Let E be the set of equivalence relations on A. Under what conditions is a sub-
set H of E the set of congruences of a partial algebra on A?

(iii) Let M be a set of partial selfmaps of A. Under what conditions is a subset

K of M equal to M N P-end A (defined in 1.8 and discussed in 3.5)?

For simplicity of exposition we consider the problems first separately and then
together (joint representation problem). Note the following almost immediate fact.
If G = Sub<Aj;F>, then G = Sub<A;L> where L is the strict clone generated by F and
the same holds for (ii) and (iii). Thus without loss of generality we can study
concrete representation via wscs's (e.g. if [G] denotes the wscs on A generated by

G, then an answer to (i) is G satisfving G = P(A) N [G]),

3.2. Consider the case (i). For |I| = 1 the mutations are trivial and [G] =
G(3) is just the algebraic closure system on A generated by G. Thus we have the
well known result ([8], §16): G = Sub A 1iff G is an algebraic closure system on A.
As a curiosity note that Polp G 1is the strict partial clone generated by Pol G.

2
3.3. In (4i) and (iii) we have weak subdirect closure systems on A", If we
consider the 8 partial selfmaps of 2 with nonempty domain and the two equivalences

on 2 we cbtain the following 5 surjective mutations of a binary relation on A:

2

-1 -1
= : = . * i=
Py P : {(xz,xl) : (xl’XZ) € pl, p* s {(xl,xz) € A" 2 (xl,xl) € pl, p ’ pid :

o N idA.

3.4, Recall that 6 € E is a congruence of partial algebra A 1= <AjF> if

8 € Sub éz (i.e. if for f € F(n), a,b € Df with (ai’bi) € 6 we have (fa,fb)
€ 0).

Let H € E. Observing that 6—1 = 0, eid = :'LdA and 6% = A2 for every 6 € E,
we have H(l) =H U {idA,AZ} and [H] = H(3) is the algebraic closure system in

(E,£) generated by H(l)' Thus we have the result from [9] Thm.gz H = Con A for

a partial algebra on A iff H is an algebraic closure system on A  and idA € H. Note
that in this case not only H = E N [H] but even H = [H], Also Polp H is an
analogue of finite hemi-primal algebras. Observe also that the result was obtained
without exhibiting a single partial operation, e.g. we have no knowledge about their
domains (if H is not the congruence lattice of a fyll algebra Polp H must contain
partial operations that are not full). For full algebras the situation is far more

complex [45].

3.5, For the ease of expression we consider partial selfmaps of A also as bi-
nary relations on A. This is used mainly in the construction while we use the

standard notation when dealing with morphisms.
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Let Q denote the set of partial selfmaps of A, If we wish to apply the wscs's
we mugt define a morphism as ¢ € Q N Sub éz. This leads to the following defini-~
tion [43}: Far ¢ € Q and a = (31,...,an) with Blaenesd €D := Dom ¢ put
pa = (wal,...,man). We say that ¢ is a partial endomorphism of <A3;F> if for each
f ¢ F(n) we have fa € D and ofa = fpa whenever a ¢ Df n p" and ¢a € Df.

The set of partial endomorphisms of A is denoted P-endA., A partial endomorphism is
more general than the more usual quomorphism (cf. [47] for various other names) in

which a € Df n o® implies ¢a € D fa € D and o¢fa = fpa (i.e. ¢ maps each D

£’ £
into itself).

In general we have no a priori knowledge of the domains of f € Polp R (cf.
3.4) and so are unable to treat quomorphisms in this way.

For K € Q denote the common fixed points of K by Fix K := {x € A ¢ (x,x) € k

for all k € K}. Further let K° denote the set of all

. -1
(Fix K, x Fix KZ) n ﬂK3 n ﬂK4 (3)
where Kl""’KA C K satisfy
K, 4 ¢ = K, = K, = |Fix K2| =1, 4)

The following characterization of partial endomorphism sets of partial algebras may

seem surprising because it involves no composition of endomorphisms.

3.6. PROPOSITION, Let idA eMcQ If KEM, then K=MN P-endA jfor a
partial algebra A on A if and only <if id, €K and K contains every u € M that is
the directed wunion of a subfamily of K°,

Proof. We have

P 2 —1 » . 1 . .
K = {idA,A }JUKRKUK ~ U {mFix W € K} U {Fix wxA: » € K} U {AxFix x: x € K}.

(5)

(1)

It is not hard to see that Q NN K = K°. Indeed note that

(2)

Fix Kl x Fix K2 = nKEKl(le wxA) n nKEKZ

(AxFix %),

Choosing K. or K2 equal to {idA} we can obtain AxFix K. or Fix K, xA. The maps

1 1 2

id are obtained by setting K, =K, = K, = {idA}, K

Fix K3 1 2 4

(4) guarantees that (3) always belongs to Q. Finally QN K(3) contains every

= ¢, The restriction

o0 € Q which is the directed union of a subfamily of QN K(Z)’ s}

3.7. REMARK. Let I be the set of partial injective selfmaps of A. For M CI
the condition (4) simplifies to

= = - = |Fi = 1. 4t

Ky=K, =¢ }FixKl| |F1xK2| 1 4"

3.8. Among the various choices for M in P.3.6 we look at AA and SA. For sim-
plicity call a partial endomorphism f € A® (f ¢ SA) of A a weak endomorphism (au-

tomorphism) of A (it is called full-homomorphism in [43] but this term is usually
reserved for a special type of quomorphisms and denote the respective sets by

W~endA (w~autA). From P,3.6 we obtain:
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3.9. COROLLARY. A subset K of At (SA) is the set of weak endomorphisms (au-
tomorphisms) of a partial algebra on A 1if and only <if id, €K and K contains every
u € AA (u € SA) that 1is the directed wnion of a subfamily of K°.

For A finite the directed unions are trivial:

3.10. COROLLARY. For A finite a subset K of AA (SA) is the set of weak en-

domorphisms (automorphisms) of a partial algebra on A if and only if id, € K,

A
Now we can formulate a joint concrete representation result., For G QIE(A),

HCE and K £ Q put

AGHK i= {idY: v € G} U {6NK:6 € H, x € K}, (6)

3.11. THEOREM. Let G be a family of subsets of A, H a set of equivalence re-

lations on A and K a set of partial selfmaps of A, Then
G = SubA, H = Cona, K = P-endA

Jor a partial algebra A on A if and only if
(i) G is an algebraic closure system on A containing all sets Fix w» (x € K),
(ii) B 4s an algeébraiec closure system on A" containing 1d,, A2 and every equi-

valence on A that is the directed union of a family {Yiﬂii: i €1} with

Yy € G and &i €H forall i€1I, and
(iii) id, € K and K contains each partial selfmap of A that is the directed wrion

of a subfamily of AEHK'

The statement remains true if partial selfmaps are replaced by selfmaps (per-
mutations) and P-endA by W-endA or (W-auth).

Proof. The proof will be simpler if we replace G by G' := {idY: Y € G}, This
is quite legitimate and allows us to work entirely within Az. Thus we assume that we
have H CE and K' := K UG'., The closure of L :=H UXK' under the surjective

mutations is

2 ' —1 ' . ' it
= H H :uékK' .
L(l) {idA,K } UHUK'" UK U {idFixx x € K"} U {FixuxA:x € K'} U {AxFixw:x€K'}
(N
Consider the set QﬂL(Z) (of intersections of subfamilies of L(l) which are
partial self-maps of A), Comparison of (7) and the definition of AGHK shows
QﬂL(Z) = AGHK . (8)
It is not difficult to prove from (7) and (3) that for B C A
1d, € Loy = B = Fix K, (9)

for some Kl c k',
Necessity: From 3.5 we know that H is an algebraic closure system on A2 con-
taining idA. We have Yzﬂ& € L(Z) for vy € 6 and % € H (in (3) choose Kl =

K2 = {idY} and K3 = K4 = ¢ ) and therefore (ii) holds. ©Next (iii) follows di-

rectly from (8). For (i) use (9) and observe that P := {C: idc €L 3)} forms a

(

algebraic closure system on A

Sufficiency: From (8) we have QN L(3) = K. For the proof of EﬂL(3) = H let
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6 be the directed union of T cL . First we show that 6 is the directed union

2
f ' c ~Q. ~ -
of some T' ¢ T~Q. Let (al,az) €8 idA Then (al,az) € 2 and (az,al) € Ty
for some T.,T, € T. Let T be an element of T containing T, U 7,. It is
1’2 aja, 1 2
easy to see that T' := {7 : (a,,a,) € 6~id, } 1is the required set. Now it
a,a, 1’72 A

suffices to observe that each T ¢ L(Z) Q is of the form T = (Fix K xFix KZ) ny
with Kl,K2 CK' and % € H (use (3) where K3 = K4 = ¢), From (ii) it follows
that 6 € H, [m]

For finite algebras we obtain:

3.12., COROLLARY. Let A be finite, G a fanily of subsets of A, H <is a set
of equivalences on A and K a set of selfmaps on A, Then
G = Subé, H= Coné, K= W—endé
for a partial algebra A on A if and only if

(1) G 1is elosed under intersections and contains all Fix x (x € K),

(i7) H <s closed under intersections and idA, a2 ¢ H,

(i21) K contains idA and each constant map with value a where {a} = Fix L for
some L C K.
A similar statement holds for K ¢ S, with W-autA  iustead of W-endA and

(121 *) 1d, €K instead of (iit).
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EVERY FINITE ALGEBRA WITH CONGRUENCE LATTICE M7

HAS PRINCIPAL CONGRUENCES

N. Sauer, M.G. Stone and R.H. Weedmark

1. INTRODUCTION. Each finite lattice is known to be isomorphic to the
congruence lattice of some algebra; it is not known however if this algebra itself
can be chosen to be finite. The recent solution to Whitman's problem by Pudldk
and Tuma ([6]) shows that each finite lattice can be represented as a 0,l~sub-~
lattice of the lattice of equivalence relations of a finite set. For many lattices
at least some of those representations fail to be the congruence lattice of any
algebra ([12]). The only finite lattices for which every such representation is
the congruence lattice of an algebra are the finite distributive lattices (cf.[5],
[71.

If L is a finite lattice and A is a finite set then LA = <A,l> is a finite
representation (FR) of L on A iff L is a 0,1-sublattice of E(4), the lattice of all
equivalence relations on A4, and L is isomorphic to L. If LAis a FR of L on 4 and
L is also the tongruence lattice of some algebra with base set A, we say LA is a
finite algebraic representation (FAR). Thus every finite lattice has a FR, and
it is unknown whether every finite lattice has a FAR. Among those finite lattices
not known to have FAR's perhaps the M%'s (modular lattices of length two with =

atoms) provide the most natural class of examples. Some Mn's (viz. M X with p
p+l

prime) are known to have FAR's. The lattice M7 is the smallest M% not of that type,

and the existence problem (cf. [3]) remaing® unsettled for M An earlier paper

7
[9] explores the general structure of FAR's of M%‘s; here we investigate M7 and
prove the title result (Theorem 6.0). Theorems 3.2, 4.0 and 5.0 were presented
1

at the IVth U.A. and L.T. Congress (Puebla, 1982) in a talk "On representing Mn s

by congruence lattices of finite algebras".

2, BACKGROUND. Before proceeding to the proof of our result, we recall
enough of the definitions and facts from [9] to be able to place the theorem in a
meaningful context. We view each relational structure LA = <4,l> which is a FR
of an M% as a colored graph; that is each of the equivalence relations which

represent an atom of M% is interpreted as a partial edge coloring of a graph whose
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vertices are 4, (cf. fig. (i)) and whose edges are the pairs in that equivalence
relation. Thus homomorphisms of similar FR's are edge (color) preserving maps.
A non-trivial homomorphic image is an image which does not consist of a single
point.., The set of all homomorphisms from LA into LA is denoted by Hom LA' We
denote the least and greatest elements of a FR LA by OA and 1A (the diagonal
and universal relations on A) respectively. If B C 4 then FB denotes the sub-
graph of L, gemerated by B, that is L, = <B, {050 € L, 0, = 6 NB2}>.

A characteristic subgraph of a finite representation of M% is a subgraph of
LA obtained in the following way: among all non-trivial homomorphic images of LA
in LA’ {aAIa € Hom LA} choose those of minimal (vertex) cardinality; from these
od with |aA| minimal select a subgraph LaA generated by 04 which contains a largest
(maximal) number of "colored edges" (edges which belong to relations used to
represent atoms). Clearly such a subgraph contains no non-trivial proper homo-
morphic images of itself, and we say it is Zrreducible. It is less obvious that
this characteristic subgraph of LA is also a FR of M%, that it is uniquely deter-
mined up to isomorphism, and that the characteristic subgraph of a FAR of M% is also
a FAR of M%. These facts are established in [9]. In particular we will make use of

(Proposition 3 of [9]):

THEOREM 2.0 If LA 18 a FAR of M (n = 3) then the characteristic subgraph
of LA is an irreducible FAR of M.

Each irreducible FAR of M% will be called an IFAR. The IFAR's provide a
means of classification for FAR's of Mh: two FAR's of Mh are equivalent if they
have isomorphic characteristic subgraphs. The known FAR's of M%'s for n = 4 are
easy to describe in this way, since their characteristic subgraphs are of one of

only two types:

(<) For Mpk+l(prime) let L be the congruence lattice of the two dimensional
vector space over GF(pk); LA = <A,L> 28 an IFAR of Mpk+1 on
A = GF(p") x GF(p").

(17) For Mp+l (p prime) let A = {al,...,ap,bl,...bp} |a] = 2p, and let

L= {el,...,ep+l,oA,1A} where ep+l has exactly two equivalence classes
{al,...,ap}, {bl,...,b } and 0, has two-element classes (k#p+l), {ai,bj},
with j-1 = k mod p. LA = <A,Ll> 7s an IFAR of Mp+1'

and k = 1 that (i) and (1) are non-equivalent FAR's of Mp+ Further in

Observe for p fized

1
this same direction we will need to make use of the following (Proposition
7 0of [9]).

THEOREM 2.1 If LA 18 an IFAR (irreducible finite algebraic representation)
of M and some two atoms are represented by partitions with two-element equi-

valence classes, then n = p+l for some prime p and LA 18 of type (it) above.
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figure (i) figure (ii)
Type (1) IFAR of M, ©On |A| = 3x3 Type (ii) IFAR of M, on 4 = 2-3

Each of the IFAR's known to the authors for M has the property that every edge
is eolored by some atom. We say a FR of M oon A 18 complete provided every
edge (x,y) € A2 belongs to one of the relations used to represent some atom.
Thus the known IFAR's of M are complete. It is possible thot every IFAR of
an M ig complete, but that appears far from being settled.

PROBLEM 1. Does there exists an IFAR for some M%(n > 4) which is not
complete? Our result shows that if M; has a finite algebraic representation,
then there must be at least ome (and it follows a great many'!) edges in 42 which
are not used in the representation of atoms. If it can be shown that every IFAR
of M; is complete, then of course our result would show that no finite algebraic
representation is possible for M;. The result in the title states that M; has no
complete FAR.

The proof that M; has no complete FAR is essentially combinatorial. We will
make heavy use of the high degree of regularity established for IFAR's of M% in
Proposition 4 of [9] (See also [2]):

THEOREM 2.2. If LA 18 an IFAR of M (n = 4) then LA satisfies
(i) (vertex transitivity) For each a,b € A there is an automorphism
o € Hom LA with a(a) = b.
(ii) (uniformity) For each 8 € L there is a number ¥, so that every

8~class has exactly ke elements.

3. COMPLETE FAR's OF Mn's. Our first step toward showing there are no

complete FAR's of M; depends essentially on the following combinatorial fact:

THEOREM 3.1. (ef.[1]) There are no two orthogonal Latin squares of
order six.

The goal of this section is to prove:

THEOREM 3.2. If LA = <A,l> s a complete FAR of M, then either:
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(i) The seven non~trivial partitions of L all have five blocks of
three elements; or
(iz) six of the non-trivial partitions of L have five blocks of four

elements and one has ten bloecks of two elements.

We break the proof of Theorem 3.2 into a series of Lemmas which appeared

originally in [11], with some minor modifications.
LEMMA 3.3 For n = 3, each complete FAR of Mn is an IFAR of M%.

Proof. Consider LuA a characteristic subgraph of LA’ where LA is any
complete FAR of Mn (n = 3). Since LuA is an IFAR of Mn, it suffices to see
od = A. Suppose faA| < ]Af, thus for some x,y € A4 with x # y we have ox = ay = a.
Since LA is complete, there is some atom 6 with (x,y) ¢ 6. Next fix Z ¢ 4 with
(Z,x) # 6. Again using the completeness of LA select atoms 7 and y with (Z,x)€ w
and (Z,y) € y. Thus (aZ,ox) = (aZ,a) € 7w and (aZ,o0y) = (aZ,a) € y. From
(aZ,a) € m N v we conclude either aZ = g or m = y. But ¢ = y yields (x,y)€ =
and (x,y) € 6, thus m = 6 and (Z,x) € 6 contrary to the choice of 7. Hence
aZ = a. It follows that all of ad is contained in the 8~class of g. But LuA
is (by Theorem 2,0) in IFAR of Mn’ so 7 N (ad)? is not the diagonal relatiom,
and this coatradicts 7 N (ad)? € 6. Thus |aAf = fA|, ad = A and LA is itself
an IFAR of Mn. o

Now we may assume in Theorem 3.2 that LA is an IFAR of M;, and hence (by
Theorem 2.2) that LA is vertex transitive, and for each 8 ¢ L that there is

a uniform blocksize for the f~classes.

LEMMA 3.4, Let LA = <A,L> be a complete IFAR of Mn (n = 3). Suppose
® € L has the maximum block size of all the non-trivial ej € L, Then
|A| = (n-7) + (n-1) (n~7-1)-r where (n-7), 1 =7=<n-2, is the block size of 6

and r < (n-7) satisfies r = (n-1) n~i-1) (mod(n~7)).

Proof. This holds for L = E({1,2,3}). So assume L # E({1,2,3}). Suppose
6 has k blocks of (n-7) elements. Then for any a € 4, there are (k-1)(n~7)
elements of 4 not related to a by 6. g must get related to each of these elements,
individually in each of the remaining (n-1) non-trivial partitions of L (otherwise
the join of these non-trivial partitions would be something less than Az).
Therefore (k-1) (n-7) = (n-i-1) (n-1). Hence (k-1)(n-7) + (n-1) = (n~i-1)(n-1) +
(n-7). Therefore |A| = k(n-%) = (u-7) + (n~1) (n-i-1). Hence, as it must be the
case that (n-7) devides |A|, |A| <(m~-1) + (n-1) (n-7-1)-r where » = (n-1) (n-i-1)
(mod(n-72)) and r < (n-1). o

Let 6 € L be an atom whose block size is maximal for all the block sizes
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of atoms in L. Observe that this block size can be at most six, otherwise an
element of one 6-block must be related to some two elements in another 8-block
by one of the other six colors (recall that every edge belongs to one of the
seven atoms), and by transitivity it would follow that some edge belongs to two
atoms. We next distinguish five cases according to whether the maximal block
size for & above is 6, 5, 4, 3, or 2, and we derive Theorem 3.2 by eliminating

all of the other possibilities below.
LEMMA 3.5. The block size of 6 is not 6.

Proof. If the block size of 6 is six then |A| =6 + (6x5) = 36 (by
Lemma 3.4). Hence one has the following possibilities:
a) |4] = 36.

Then 6 = (a1,..+506) (Brsevvshg) (ClsvvvsCp) (1. sde) (@1 286) (F1s---sS6)-
Let the remaining non-trivial partitions of L be denoted by ¢j,...,05. Consider
a; .- As L is complete, a; must be "paired" with 30 other elements in aj,...,%g.
The maximum number of new elements g can be paired with in each o, is 5. There-
fore each ar must pair a; with exactly 5 elements, and each o must have 6 blocks
of 6 elements.

Label the blocks of . B.,, B in such a way that a,e B., for
7 771 k™ Tik

1200 0B
k =1,...6 for each 7 = 1,...6. Form the 6x6 array of blocks whose ¢j entry
is the block Bij' Observe that the derived 6x6 array compOsed of elements

t1,--.,bg whose 7j entry is the unique b, with bke Bij is in fact a Latin

square. Moreover the 6x6 array composed Ef elements {¢1,...,C¢} whose 7j entry
is the unique ey with eE Bij is likewise a Latin square. Now since bi = bj iff
7 = J and e, =c; iff ¢ = j, we can produce two Latin squares on the set
{1,2,...,6} simply by suppressing the letters p and ¢ in each of the Latin
squares above, retaining only the "subscript' as entries. It is moreover

easy to see that the two 6x6 Latin squares obtained in this way are distinct

and orthegonal. Given any pair (x,y) with {x,y}e{l1,2,...6} and x#y we have
(bx,cy)é 8; since the IFAR is complete we have (bx,cy) in exactly one block Bij
of some partition a, and it follows that x is the 7j entry and y is the ij

entry for the two Latin squares for precisely one row 7 and one column /.

The resulting orthogonal Latin squares contradict Theorem 3.1, and hence we

cannot have |4| = 36.

Then 6 = (a1,...,a6) (P1s:-esbg)(C1s...506)(d1s...,dg)(€1,5...,€¢).
a) must be paired with 24 other elements, at most 4 at a time (no a, can have a

6 element block). Therefore each of the remaining atoms o1,...,4g must have
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6 blocks of 5 elements.

The construction in a) above again produces a pair of 6x6 orthogonal Latin

squares and shows we cannot have [4| = 30.

c) 4| = 24.

Then 6 = (qy1s...5a6)(b1s.--sbs)(C145-..526)(d1,.-45ds). a) must be paired
with 18 other elements at most 3 at a time. Therefore for the remaining atoms
each ¢1,...,0 must have 6 blocks of 4 elements.

The construction in a) above again suffices.

Then 0 = (@15...,a8)(b1s...5bg)(P1y-..b6) - @) must be paired with 12
other elements at most 2 at a time. Therefore it is paired with exactly two
at a time and each ai1,...,00¢ must have 6 blocks of 3 elements.

The construction in a) above again suffices.

e) |A| =12,

Then 6 = (q1s...,a8)(b1s...,bs). Hence each a1,...,0¢ has 6 blocks of 2
elements. Therefore by Theorem 2.1, | must be a FAR of some Mb+1 where p is a
prime. But 7#p + 1. This i1s a contradiction, hence it is not the case that
|4] = 12.

Therefore a, b, ¢, d, e combine to show that the block size of 6 could

not be 6. o
LEMMA 3.6 The block size of 6 is not 5.

Proof. If the block size of 6 is five then |A| = 5+ (6x4) - 4 = 25 (by Lemma
3.4). Hence one has the following possibilities:

Then € = (a1,...,a5)(b1y...5b5)(C15...5¢5)(d1,...,d5)(€1,...,€6). Each
O1,..4,0p must have 5 blocks of 5 elements. Therefore a) gets paired with
24 other elements. Hence @) must get paired with some element twice by

Q1s.+0505. This is a contradiction. Therefore it is not the case that |A| = 25,

Then 6 = (A154..,88) (P1y...5b6)(C1y...,C6)(d15...5de). Each Qi1,...,08
has at most 4 element blocks (but not 3 as 3x20). Therefore each oy has
either 2 or 4 element blocks. Let X = number of ai's with 4 element blocks

and Y = number of ai's with 2 elem~nt blocks. As @, must be paired with exactly 15
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elements by 01,...,%5, the following equations must be satisfied by X and Y:

X+Y=6 and 3 + Y =15.

But this gives the contradiction that X = 9/2. Therefore it is not the case

that |4| = 20.

c) 4| = 15.

Then 8 = (a1,...,a5)(b1,...5b5)(e15.--5C5). O1,...,0g must all have
5 blocks of 3 elements. Therefore o; is paired with 12 elements by aj,...,0g .
Hence g] must get paired with some element twice, a contradiction. Therefore

it is not the case that |A| = 15.

a) |4] = 10.

Then 6 = (a1,...,a5)(b1s...,b5). Each aj,...,ag must have 5 blocks of 2
elements. Hence a; is paired with some element twice. Therefore it is not the
case that |A| = 10.

Therefore a, b, ¢, d combine to show that the block size of 6 could not

be 5. [u}

LEMMA 3.7. If the block size of 6 is 4, then six of the atoms have five

blocks of four elements and one of the atoms has ten blocks of two elements.

Proof. We have |A| < 4 + (6x3) -~ 2 = 20 (by Lemma 3.4). Hence one has the

following possibilities:

a) |4| = 20.

Then 6 = (ay,...,ay)(b1,..- b)) (@150 .5e4)(d15-..5dy)(e15...,e,). Each
®1,...50g mMmust have either 2 or 4 element blocks. Let X = number of ui's with
4 element blocks and Y = number of ui's with 2 element blocks. As a must be
paired with exactly 16 elements by aj,...,05, the following equations must be

satisfied by X and Y:
X+Y=6 and 3X + Y = 16.
Therefore X = 5 and Y = 1. Hence five ui's must have 5 blocks of 4 elements and

one o, has 10 blocks of 2 elements.

b) 4| = 16.
Then 6 = (ai,...,ay)(B1,.--,by)(€1,...504)(d15...,dy). Each aj,...,a¢ has
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either 2 or 4 element blocks. Let X = number of ui's with 4 element blocks and
Y = number of ui's with 2 element blocks. Then the following equations must be

satisfied by X and X:

X+y=6 and 3 + Y =12.

Therefore X = 3 and Y = 3. Hence three ui's have 4 blocks of 4 elements and three

of the ui's have 8 blocks of 2 elements. Therefore by Theorem 2.1, L must be a

FAR of some M +1 where p is a prime. This is a contradiction, hence it is not
the case that [4| = 16.
o) lal =12,

Then 6 = (ay,...,ay) (by1,...,by)(e15.++5ey). Each oy,...,ag has either 2-
or 3-element blocks. Let X = number of ui's with 3-element blocks and Y = number
of ui's with 2-element blocks. Then the following equations must be satisfied

by X and Y:
X+Y=6 and 2¥ +Y=28.

Therefore X = 2 and Y = 4. Hence two ui's have 4 blocks of 3 elements and four

of the ui's have 6 blocks of 2 elements. By Theorem 2.1, this results again in

a contradiction and it is not the case that |A| =12,
d) |4| = 8.
Then 6 = (ay,-..,ay)(®1s...,by). Clearly one cannot form the required
@ 1,...505. Therefore it is not the case that |A| = 8.
Thus only (a) remains as a possibility when the block size of 6 is four. o

LEMMA 3.8. If the block size of § is 3, then all seven atoms have five blocks

of three elements.

Proof. Note |[A|=3 + (6x2) = 15, using Lemma 3.4. We then have the followlng

possibilities:

a) |A] = 15.
Then 6 = (a1,az,a3)(bl,bz,b3)(01,02,03)(dl,dz,d3)(el,ez,e3). Hence aj1,...,0¢

must also have 5 blocks of 3 elements.

b) |A]| = 12.
Then 6 = (ay,az,a3)(b1.by,b3)(e1,¢95¢3)(d15dr,d3). Each ay,...,a has either
2- or 3-element blocks. Let X = number of ui's eith 3-element blocks and Y = numbe

of o.'s with 2-element blocks. Then the following equations must be satisfied by
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X and Y:

X+Y=6 and 2X + Y = 9.

Therefore X = 3 and Y = 3, Hence three ui's have 4 blocks of 3 elements and

three ui's have 6 blocks of 2 elements. By Theorem 2.1, this results again in

a contradiction and it is not the case that |A| =12,
c) 4] = 9.
Then 8 = (aj,as,23)(b1,by,b3)(e1,¢5,¢3). Clearly one cannot form the
required a;,...,ag. Therefore it is not the case that |A| = 9.
dy 4] = 6.

Then 8 = (a1,a5,a3)(b1,bsy,b3) and one cannot form the required ay,...,ag
Therefore it is not the case that |4| = 6.

Thus only (a) remains as a possibility when 6 has block size three.
LEMMA 3.9. The block size of 8 is not 2.

Proof. Suppose the block size of 6 is two. Then each possible L must
have at least two partitions with 2-element blocks. Hence by Theorem 2.1,
L must be an IFAR of M N contradiction. o
Therefore the only possible configurations for a complete FAR of M; are
those given by conditions (1) and (2) of Theorem 3.2. Each of these possibilities
will be disposed of separately in §4, and §5, thereby crmpleting the proof of the

result stated in the title of this paper.

4. KIRKMAN'S SCHOOLGIRL PROBLEM. Kirkman's schoolgirl problem (cf. [4],[8])
can be phrased as follows: "Fifteen girls are to march in five rows, three abreast,
in such a way that no girl marches in the same row as another on more than one day
of the seven days of the week".

Observe that an IFAR of M; on a fifteen element set in which each of the seven
atoms in represented by five blocks of three elements each is in fact a vertex
transitive solution to Kirkman's schoolgirl problem. We show that there is no IFAR

of the type described in (1) of Theorem 3.2 by proving:
THEOREM 4.0. No solution to Kirkman's schoolgirl problem is vertex transitive.

Proof. For any solution to Kirkman's schoolgirl problem the five rows for a

given day partition the set of girls into classes of three. The seven partitions
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obtained in this way have pairwise trivial intersections, since each girl marches
with two different girls on each of the seven days. Moreover clearly each girl
marches with every other girl exactly once. It is also easy to argue that the
pairwise join of any two of these partitions is the universal relation on all
fifteen girls (left as an exercise to the reader). Thus each solution to
Kirkman's problem is in fact a FR of M;. Suppose that LA = <A,L>, one of these

solutions, in a vertex transitive FR of M;. It suffices to consider three of

the atoms whose partition relations we will represent by the '"colors" 01 .
6o and 83 . We have without loss of generality for some a,b,c € A
0 gy

the configuration , and we label the other elements

of the ei classes by:

Za. 4 Y
b c
x

we distinguish the two cases (¥,y) € 61 and (x,y¥) # 61 and argue in each case

that vertex transitivity produces a contradiction.

CASE 1. (x,y) € 91.

Thus we have

where a, b, ¢, w, 2, y, 2 are all distinct points. We shall use vertex transiti-
vity in the following way: since each point can be sent to every other point by
a suitable automorphism, each colored graph located at any one point must occur

somehow in the representation located at each other point. Thus the colored graph

that sits on p = ¢ must also sit on the representation when p = Y, since

the automorphism which maps ¢ to y must take
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a b
y @
to an isomorphic subgraph:
aa $ ab
oy ¢ O

Note if aa and ox are both new points (different from a, b, ¢, w, ¥, 2) then
an edge or
a ab a oax

is forced, which is impossible. Hence at
least one of the points ab or ox belongs to {a,b,c,w,y,z}. Inspection reveals
that 2 is the only possibility and that ab or ax equals z and the other of them

must be a "new" point v. Thus we have

The same diagram

with p = a forces by similar reasoning the configuration

where u is a new point as well. This last configuration is a proper subset of

the fifteen element set whose 6] and 6, classes are entirely within the subset.

This shows that 6;, 6, (as equivalence relations) have join less than one,
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contradicting the fact that two atoms in a solution to Kirkman's schoolgirl problem

= 1. This disposes of Case 1.

must join to yield 61 v 62

CASE 2. (a,y) F 61.
Thus we have new points w, v related to abexyz as follows:

(If either of w or ¥ were z or x, the argument in Case 1 applies interchanging
the roles played by 081, 6,; moreover it is mnot possible that w or v equals

a, b, ¢, or y).
Observe further that we have the following "exclusion principle" forced on

the representation by Case 1: T
{ e \
\ \
\ |
\ J //
N
\‘_—

can be colored so as to form a triangle

None of the dashed edges @—--——e

(otherwise we can apply the argument of Case 1). A similar exclusion principle
applies to any such figure for other colors as well, since the argument in Case 1

could again be applied to those colors.

Now from

if we map a to ¥ by an automorphism «, we force

and it is easy to see that the third point u in the 0, class of y and w must be new
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Thus we have as a subgraph of the representation the graph:

Next using the exclusion principle (applied to triangles efg = abe and efg = ywa)

it is easy to see that the 6, class of y and the 6; class of ¢ must be points

JAN

other than those we already have. Also since g lies on a triamngle

¢ must lie on such a triangle

CI;
and it follows that the 6; class of ¢ and the 6, class of y share exactly omne

element. Thus we have the subgraph

w

Using the exclusion principle again it is easy to see that the 63 class of z must
include either (z,u) or (z,w), the 83 class of v must include either (v,%) or
(v,8), and the 63 class of r must include either (r,x) or (»,b).

If any one of (z,u), (w,t) or (r,x) belongs to 63 then they all do, since
the subgraph

can be located at one of the points p = a, y or ¢ and hence at all of them.

Let us first investigate the situation of none of (z,u), (w,t) or (r,x)

belong to 63 . Then we have the diagram:
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But this is impossible since it remains to place two 8] classes of three elements
each and one 63 class of three elements among the remaining six points which

do not have a 63 edge of the representation in the diagram presented here.

Thus we may assume that all of (z,u), (v,t) and (r,x) belong to 63 and

the situation is pictured in the following diagram:

Now edge (w,c) is colored by some atom 8, # 61, 62, 63, and

where we have colored 6, by e-——e . Since we could argue as in Case 1 on
01,63,0, otherwise, we may assume that Case 2 obtains for these colors as well.

Arguing as we have for 0],0,03 we obtain a subgraph of the representation of

the form J zorb borz
-
l‘//’,
4 Y p ¥
A Sl r or s
~
\\l |
7 sorr

The 6] and 03 classes are fixed, enabling one to label the graph. Clearly 4, kX, 7

are not among @, b, ¢, P, 8, 2 and we can only have j, k,l mnew points or possibly
I =x,0ork=uordJd=¢t., Infact = 2z, k= u, g =1t each lead to a contradic~

tion: 7 = x = (IL,c) € 6y and (L,e) = (x,c) € 033 K =u = (u,a) € 62 N 843

J=t= (y,t) € 62N 6. Thus j, k, 7 are all new elements.



287

Observe that the 63 class of v is {v,¢,7} . Thus the 63 class of w cannot
contain j or a, u, y, v, ¢, 2, ¢, L because of other colorings, and camnot
contain b or s because of the exclusion principle. Hence the 83 class of w can

contain only elements z, r or k.

But w cannot be 83 related to » (as can be seen from the last diagram employing
the exclusion principle). Hence w cannot be 63 related to x either, and thus the
83 class of w includes at most {k,w }, contradicting the fact that it must contain
three elements. This concludes the argument for Case 2 and the proof that no

solution to Kirkman's schoolgirl problem is vertex transitive. [u]

5. THE REMAINING CASE.

THEOREM 5.0. There is no complete FAR of My on a set of twenty elements such
that one of the seven atoms is represented by ten two-element blocks and the other

six are each represented by five four-element blocks.

PROOF. From Lemma 3.3 we conclude such a FAR is actually an IFAR of M;.
Thus, assume to the contrary that <4,M;> 1is such an IFAR and let us agree to
color the ten two-element blocks by color 1 and the pairs in the other six equi-
valence relations consecutively by colors, 2, 3, 4, 5, 6 and 7. Denote the
automorphism group of <4,M;> by G and for each a € 4 let f(a) # a be that element
of A for which (a,f(a)) is l-colored. Now if {x,y,u,v} is one of the 7 > 2 colored
blocks, then note that f({x,y,u,v }) = {fx), f), fw, fw)} is disjoint from
{z,y,u,v } and that the Z-colored edges induce an equivalence relation on
FUz,y,usv}). Also f({x,y,u,v }) can not be an Z-block, otherwise the join of
1 and 7 would not be Az. Using vertex transitivity then, we deduce that
Fxsy,usv}) contains either exactly 2 non-adjacent i-colored edges (case 1) or

no i--colored edges at all (case 2).

CASE 1: In order to dispose of case 1 we need to make the following more
general observations. ( acts on the set Si of blocks of any color 2 . 1If
T c Si is a primitive block, that is G(T) =T or G(T) N T = P, then UT is also
a primitive block of A . This means that the sets G(UT) form a ¢ invariant

equivalence relation on A. Hence T consists either of a single block or T = Si'

Now if {@y,u, v } is an i-block with exactly 2 non-adjacent edges within
Fz,ysu,v}) then, because of vertex transitivity, each i-block B has exactly 2
1~colored edges in f(B). If we define a graph on the Z-blocks as vertices by
stipulating that the Z~blocks B,( are connected by an edge iff |f(B)f]C| = 2,

then this graph consists of disjoint circles. 1Indeed it can only be one circle,
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2
otherwise the atoms 1 and < would not join to A . So the diagram for the colors

1 and 7 looks as follows.

'
[ ——
—
-
Pamang
< o
p—=
gy
Sal

Figure 5.1

Now observe that if {x,y,u,u} is an 7-block and (ang,fxy)) is {-colored then
{z,y, f(0),f(y)} is a primitive block of the automophism group H of the graph in
colors 1 and % shown in fig. 5.1. Because G ¢ H, {my, f(2),f(y»} is also a
primitive block of ( and thus we can conclude that case 1 does not occur for

any color 7 .

CASE 2. The number of l-colored edges between any two ¢-colored blocks
for any © > 1 is at most one and because the complete graph on five vertices has
ten edges this number must be exactly one. This means that the 1 and Z-colored
blocks within 4 looks like a complete graph on five vertices whose vertices are
the five i-colored blocks and whose ten edges are the ten l-colored blocks (see

figure 5.2). (’

=4 U U =t

LEMMA 5.1. If {e,y,z,u}is an ¢-block and f({g,y}) has color j, then
f{zsu}) has also color ;.

PROOF. x,y,f(x),f(y) form a quadrilateral whose edges are colored as indicated:

Fiz) g £y

Because of vertex transistivitythere must exist an identical colored quadrilateral

containing z (x can be mapped to z). So either
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Frz) J £ou) Fla)——9  rla)
1 1 or 1 1
a2 u a2 X
7 7
J
flz2)—————fry)
or 1 1
2 5 y

In the final case (f(2),f(u)) has color j as desired. Neither of the other
cases in fact can arise.

In the second case, by transitivity, {f(x),f({),f(2)} 1is part of j-colored
block. But then the fourth vertex of that block has to be f(y) which can be seen
by applying an automorphism from ¢ which maps 2 to y. Similarly the third case

can be seen to produce a contradiction in the edge coloring. o

LEMMA 5.2. If {z,y,zsu} 1is an Z-block then f({x,y,z,u} ) is a block for

some color j.

PROOF.  Let (f(x),f(y)) be j-colored, then we know from Lemma 5.1, that
(f(2),f(u)) is also j-colored. Each j-colored block contains four elements.
Let g,b be the other 2 elements such that {f(z),f(u),asb} is a j-colored block.
1f {a,b} N {x,y,u,v} # @ then we can assume without loss of generality that a = g
That means that x is contained in a j-block Bx such that |B N fUx,y,u,v})| = 2.
By vertex transitivity there exists such a block By’ Bz’ Bu for each of y,z and
u. But then two of them must have a point in common, hence be equal and then
intersect {x,y,z,u} 1in at least two elements.

So we can assume that {a,b} N {x,y,u,z} = #. If we now define a graph on
the ¢ and j block as vertices and we say that the 7-block B and the j block C
form an edge in this graph just when |f(B) N ¢| = 2, then this graph consists of
a set of disjoint circles. Because of vertex transitivity, each of those circles
contains the same number of 7-blocks and j-blocks as any other such circle. This
means that this number is either one or five. If the number is one, we get the
desired result. If it is five, the diagram contains the following sub-diagram

on 12 elements:
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But this produces the following contradiction in the coloring of the blocks:
Each of {x,y,u,v } is a distinct j block different from those above, but there

are only three j-blocks left. This establishes Lemma 5.2. o

*
LEMMA 5.3. To each color 7 with ¢ > 1 there corresponds a color © , the dual

R kK . . Lk
of 7, such that (¢ ) =4 and if B is an i~block, then f(B) is an 7 block.

PROOF. Because case 1 has been disposed of for every color Z > 1, each 1
and i diagram looks like figure 5.2. If B is an Z-block then by Lemma 5.2 there
is a § such that f(B) is a j-block. BY vertex-transitivity then the same is true
for every other i-block. Of course the color j is the dual of 7.

Let us assume without loss of generality that 2* = 3, 4* = 5 and 6* = 7.
Observe now that if (x,y) is 1 colored and (u,2z) is 1 colored, and two elements from
{x,y,u,2 } are i-colored then the other two are iicolored (Lemma 5.1). This means
that for any two l-colored edges (x,f(x)), (¥,f(y)) exactly two of the dual pairs
of colors are present on the edges between them. We will say that ¢ is in
@,f(®)), @,f@)) if one of the four not l-colored pairs of x, f(x), ¥y, fy) is
i-colored and 7 < i*. Each Z~block produces six such pairs of l-colored edges which
contain 7 and no two Z-blocks have such a pair in common, hence there are thirty
l-colored pairs which contain Z. Because there are ten l-colored edges, there are
ﬁ? = 45 pairs of L~colored edges. Thirty of them contain Z, so fifteen contain
the other two dual pairs of colors only. We conclude that for any two dual pairs,
there are fifteen pairs of l-colored edges which contain them. On the other hand,
each of the six pairs of 1-colored edges associated with any particular 2-block
contains exactly one other pair, either a 4-5 or a 6-~7 pair. Assume r of those
six pairs include 4-5 and s include 6~7. Because of vertex—-transitivity this
distribution holds for every other 2-block. So 5P = 15 = 58 and ¥ = & = 3., 1If
{x,¥, %2} 1s a 2-block, define a graph by stipulating that its vertex set is &,y,u,3
and two vertices a,b are connected by an edge if (a,f(a)) and (b,f(b)) include
the pair 3-4. This graph contains three edges and four vertices and must be regular
because of vertex~transitivity. But no vertex-transitive graph with three edges on
four points exists. This contradiction shows that 2 can not be realised either.

This completes the proof of Theorem 5.0. o

6. CONCLUSION. If Utis a finite algebra with congruence lattice M; then
<Ay Eon W > is a FAR of M;. By Theorems 3.2, 4.0 and 5.0 there are however no
complete FAR's of M;, thus <4, Gbn.UL> is not complete. Hence for some pair a,b € 4
the edge (a,b) fails to belong to any atom and the principal congruence eab is 42.

Since each of the other congruences is principal we have established:
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THEOREM 6.0. Every finite algebra with congruence lattice M7 has principal
congruences.

Indeed, the vertex transitivity of IFAR's for Mn implies that 42 = eab for a

great many pairs g,b € 4 in any FAR of M7, and places thereby some serious

constraints on the nature of any potential such representation.

*4Added in proof: A recent private communication from P, Pilfy assures us that

Walter Feil has exhibited a FAR for M, on a very large set.
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NILPOTENCE IN PERMUTABLE VARIETIES

M.R. Vaughan-Lee

In this paper we show how a commutator calculus can be developed in any variety
{L of unital algebras with permutable weakly regular congruences. (This class of
algebras includes groups, rings, Lie rings, and lcops.) We show how abelian algeb-
ras, centralizers, milpotent algebras, and solvable algebras can be defined in this
setting. We show that the abelian algebras in 4“ form a finitely based subvariety
which is definitionally equivalent to a variety of modules. We also prove that if
A is a finite nilpotent algebra in '{(, , and if A is a direct product of algebras of
prime power order, then A has a finite basis for its laws.

We show how the commutator of two congruences can be defined in this setting
and confirm that the definitions we give for abelian algebras, centralizers, nilpot-
ent algebras, and solvable algebras are equivalent in {( to the definitions given by
Freese and McKenzie (1982) for modular varieties.

I am indebted to Ralph Freese for indicating how the results on nilpotent alge=
bras can be extended to modular varieties. He showed me how in a modular variety
solvable algebras have permutable congruences, and finite uilpotent algebras have
regular congruences. The addition of extra constants to the language makes no dif-
ference to any of the proofs, though some of the theorems have to be restated sligh-
tly. For example the congruence class of 0 is no longer a subalgebra if there are
extra constants. He has even shown how the existence of an equationally defined
idempotent constant is unnecessary, but rather different arguments are needed with-
out this assumptionm. The main result in this paper is Theorem 7.6, and this can be

generalized as follows.

THEOREM. Let {{l be a variety of algebras with a finite set of finitary operat-
tons and an equationally defined idempotent constant. Suppose also that the algeb-
ras in U have modular congruence lattices. If A is a finite nilpotent algebra in
£l , and if A is a direct product of algebras of prime power order, then A has a fi-

nite basis for its laws.

This theorem generalizes well known results for groups and rings, and also pro-
vides new information about nilpotent loops. (Any finite nilpotent group or ring

is a direct product of algebras of prime power order.)
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We give an example of a nilpotent loop of order 12 which illustrates the diffi-
culty of extending this theorem to arbitrary finite nilpotent algebras. We also
give an example of a locally finite variety of loops of mnilpotency class 3 which does
not have the finite basis property. These loop examples grew out of many fruitful
discussions I had with Trevor Evans at Emory University in 1977.

Several of tha results obtained here are similar to results obtained by Gumm
(1980) and Gumm (1982).

We will use upper case letters to denote sets and algebras, and lower case let-
ters to denote elements and term functions. The letters EINFETE IS STRREIN ST SYTRRE
ZsZgsee will be reserved for free generators in relatively free algebras. We will
use the notation %,3,b to denote sequences of elements and if t is a term function we
will sometimes demnote

t(al,...,am,b],...,b )

T
by t(3a,B) and so on.

2. DEFINITIONS AND HIGMAN'S LEMMA. Let € be a finite set of finitary operat—
ions containing a single nullary operation (constant) O. Let 24 be a variety of Q-
algebras with the property that if A € é(then

(1) A is unital, that is {0} is a subalgebra of 4,

(2) A has permutable congruences,

(3) A has weakly regular congruences, that is every congruence of A is determined
by the congruence class of 0.

Condition (1) is equivalent to the condition that f(0,0,...,0) = 0 is a law in
‘Cl for all f € Q.

Mal'cev (1954) showed that condition (2) is equivalent to the existence of a
ternary term function p such that p(x,y,y)=X, p(X,X,y)=y are laws in {Z. In rings
p(x,y,z)=x~y+z, and in groups p(x,y,z)=xy_lz.

We will show that condition (3) is also a Mal'cev condition, but first we prove

the following lemma.

LEMMA 2.1. If A€ U and R < A then the congruence of A generated by R consists
of the set s of pairs
(t(a],az,...,an),t(bl,bz,...,bn))

where t is a term function and (a;,b;)E R or a;=b, for i=1,2,...,n.

Proof. S is certainly a subalgebra of A2 containing R and contained in the
congruence generated by R. Furthermore S is clearly reflexive, and so it suffices
to show that S is symmetric and transitive. So let (t(a),t(B)) € S. Then

(e(®),e(@)) = (p(c(a),t(a),c(®)),p(t(a),t(B),t(B)))
which is an element of S, and so S is symmetric. Suppose also that (u(&),u(d)) € S,
where t(B) = u(é). Then

(£(a),u(@) = (p(t(d),u(@),u(E)),p(t(®),u(&),u(d@))
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which is an element of S. It follows that S is transitive and this completes the

proof of Lemma 2.1.

Now consider condition (3) again. Let A be the'{(—free algebra generated by x
and y, and let o be the endomorphism of A which maps x to X and maps y to X. Then o
induces a congruence on A containing (x,y). If A satisfies (3) then this congruence
is determined by the congruence class of 0 and so there are elements Qysdgs-eeady € A
(with qi(x,x)=0 for i=1,2,...,k) such that (x,y) lies in the congruence generated by
(ql’o)’(qZ’O)""’(qk’O)' Using the result above this implies that there is a temm
function r such that

(x,y) = (r(x,y,ql,qz,...,qk),r(x,y,0,0,...,O)).

This proves the following lemma

LEMMA 2.2. Condition (3) ie equivalent to the existence of binary term funct-
ions Qpadgs-eesqy and a (k+2)-ary term function r such that
qi(x,x) = 0 for 1=1,2,...,k,
r(%,¥,q) (X5¥)59, (%,¥),. 0,9, (X,y)) = x
r(x,y,0,0,...,0) =y
are laws in Z(

We define commutators as follows. Let F be the {Y—free algebra with basis X

Koyseon For each subset S of the positive integers we define an endomorphism 65 of
F by
xiés =0 1f i1 €5,
x,6, =x, if i € S.
18 1
We also denote é{i} by éi. An element w € F is said to be a commutator if there is
a finite set 8§ of positive integers such that
(1) w is in the subalgebra of F generated by {xi : i €8},
(2) wéi = 0 for all i € S.

We then say that w involves the variable X for all i € S. In rings for example,

2
Xy X X, x1x2x3+2x3x1x2x2 are commutators. In groups %, [xz,x3], [XI’XZ’XZ] are
commutators. In loops the associator ((xlxz)x3)/(x1(x2x3)) is also a commutator.

(Note that in groups and loops the idempotent element is usuallydenoted by | instead
of 0.)

The following result provides an extremely powerful tool for calculating in var-
ieties oftY—algebras. The result is well known in groups and rings, and I shall call

it Higman's Lemma as that is what it is called in group theory after Higman (1959).

HIGMAN'S LEMMA. If u,v are elements of F then there is a finite set C of comm-
utators with the property that if S is any set of positive integers then

(1) the law udy = V8 implies the law cég = 0 for all c €C,

(2) (ug,Vv84) is contained in the congruence gemerated by {(cdg,0) : c € Cl.
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Proof. If w € F then we define wéi* = p(w,wéi,O) and if S = {i,j,...,m} is
a finite set of positive integers with i < j < ... < m then we define
wl ¥ 1= wS_ %S %, .0 %,
S 1 ] m

Now let C be the set of elements of the form qi(u,v)éKéL*, i=1,2,...,k, K,L disjoint
sets of positive integers such that L is finite and K W L = {1,2,...}. We show that
C satisfies the conditions of the lemma

It is easy to see that if S and T are any sets of positive integers then SSST =

* = § % i % = 0 i
STSS and hence that SSST éT 65. It is also easy to see that 6T 65 0if SN T

is non~-empty. Clearly qi(u,v)éKéL* is contained in the subalgebra of F generated by
{xj : j € L} and, by the above remarks qi(u,v)éKéL*éj = 0 if j € L.  So the elements
of C are commutators. If S is any set of positive integers then the law ués = vés
implies the laws qi(ués,vés) = 0 for i=1,2,...,k, and hence implies the laws

5§ 8 % = i * = *§ g )
qi(USS,VSS)OKSL 0. Since qi(ués,vés)éKéL qi(u,v)éKéL és it follows that the

law udy = v implies the laws {wés =0 :we€C}

S
To show that (ués,vés) is contained in the congruence generated by the elements

{(WSS,O) : w €C} it is sufficient to show that the elements (qi(u,v)és,O) lie in this
congruence, To do this it is sufficient to show that if u € F then (u,0) is contai-
ned in the congruence generated by the elements (uéKéL*,O). Let u lie in the sub-

algebra generated by the elements XX Then uéKéL* = 0 unless L is contai-

cee X .
27 *“n

ned in {1,2,...,n}, and if M = K N {1,2,...,n} then uéK = uéM. So it is sufficient

to show that (u,0) is contained in the congruence o generated by the elements

(uéKéL*,O), where K U L = {I,2,...,n}, KN L=¢@. We show by induction on r that o

contains the elements (ué 6 *,0) where K UL = {1,2,...,n-r}, KN L= ¢, for r=0,1,...,

KL ?
n. The case r=0 follows from the definition of o and the case r=n is what we want
to prove. So suppose that the result is true for r, and let K UL ={1,2,...,n~r~11},

KNL=p. Then if M = K U {n~r} and if N = L U {n-r} we have (uéMéL*,O) € a, and
* % = * = * * = * o=
(USKSN ,0) € a. Now uéMéL uaKén—réL USKSL én—r and USKSN USKSL én—r

* * * * *
p(uéKéL ,uéKéL én_r,O). So (uéKéL én_r,O) € o and (p(uéKéL ,uéKéL én_r,O),O) € a

which implies that (ué 0) € o as required.

5. *
KL ?
This completes the proof of Higman's Lemma.

3. ABELTAN ALGEBRAS. An algebra A € {Y is said to be abelian if w=0 is a law

in A whenever w is a commutator involving at least two variables.

THEOREM 3.  The variety of abelian algebras in 4( is definitionally equivalent

to a variety of modules.

Proof. If A is an abelian algebra in.{z we define a binary operation + on A by
atb := p(a,0,b),
and a unary operation - by
-a := p(0,a,0).
We show that these operations turn A into an abelian group (with additive identity 0).

First, it follows immediately from the properties of the term function p that
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at0 = O+a = a
for all a € A, Next, consider the pair of words x1+x2, x2+x1. By Higman's Lemma
there is a set C of commutators such that the law (x1+x2)6S = (x2+x})6S is equivalent

to the set of laws {wés =0 : w €C} for all subsets S of the positive integers.

Taking S = {1} we see that the law X, = x, is equivalent to the set of laws {wél = 0},
and so w must involve x, for all w € C.  Similarly taking S = {2} we see that w inv-
olves both X and Xys and so w= 0 is a law in A for all w € C. This implies that

X X, = Xytx, is a law in A. Similarly the law (x}+x2)+x3 = x]+(x2+x3) is equiv-

alent to a set of laws of the form w =0 where w is a commutator involving LIFE N
and 5. So + is associative on A. Finally a similar argument shows that the law
p(x],xz,O) = x}+(—x2) holds in A, and so x+(~x) = 0 is a law in A. This shows
that A is an abelian group under +.
Now let f € @ and apply Higman's Lemma to the law
f(xl’XZ""’xn) = f(x},0,...,0)+f(0,x2,0,...,0)+...+f(0,...,0,xn).
Let D be the set of commutators associated with this law and let
§s=1{1,2,...,i-1,1+1,...,0}. Then the law
f(xl,...,xn)(SS = (f(x],O,...,0)+...+f(O,...,O,XH))(SS
is trivial, and so wés = 0 for all w € D. This means that each commutator in D must

involve at least one of the variables x X Since this is true

EERER U SRR
for all i=1,2,...,n it follows that each commutator in D involves at least two varia-
bles, and so if w € D the w = 0 is a law in A. So
f(x],...,xn) = f(x],O,...,0)+...+f(0,...,0,xn)

is a law in A. This means that every term function on A can be expressed as a comp-
osition of unary term functioms and +. We turn the set R of unary term functions
into a ring by setting

(f+g) (a) = £(a) + g(a),

(fg)(a) = f(g(a)).

All the ring axioms for R except for one of the distributive laws follow immediately

from the fact that A is an abelian group under +. This distributive law follows
easily from another application of Higman's Lemma. This completes the proof of
Theorem 3.

Another characterization of Abelian algebras is obtained in Section 5.

4. NORMAL SUBALGEBRAS. If Ais an algebras in'(( , and if o is any congruence
on A then the congruence class of 0 is a subalgebra of A. Subalgebras which arise
in this way are called normal subalgebras. Because of the regularity of congruences
of A there is an isomorphism between the lattice of congruences of A and the lattice
of normal subalgebras. The following result characterizes normal subalgebras and

follows immediately from Lemma 2.1.

LEMMA 4. If B is a subalgebra of A then B is a normal subalgebra if and only 1f

£(ajy..5a ,b,...,b ) € B

1
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whenever CETERTL N € A and bl""’bn € B and f 18 an (mn)-ary term function such
that f(a],...,am,O,...,O) = 0,

5. CENTRALIZERS. If M is a normal subalgebra of an algebra A €'£L we define
the centralizer of M to be the set of elements ¢ € A such that
w(a],az,...,an,c) =0

whenever w is a commutator involving at least two variables and a, € M, a -a € A.

I
In particular the centre of A is the set of elements c € A such that

gt

w(a],az,...,an,c) =0

for all al,az,...,an € A, whenever w is a commutator involving at least two variables.

LEMMA 5.1. IfM is a normal subalgebra of A then the centralizer of M is also
a normal subalgebra.

Proof. Let C be the centralizer of M. First we show that C is a subalgebra

of A, Let f be an m~ary operation in Q and let ¢psc <sCh € C. We need to show

g
that f(c],...,cm) lies in C. So let w be a commutator involving n+l variables where

n > 0, let a, €M, and let Bgseensd € A, By Higman's Lemma we see that the law
w(x],xz,...,xn,f(yl,...,ym)) =0

is equivalent to a set of laws of the form u = 0 where u is a commutator involving

KiseeesX) and at least one of Y sYoseeesVye Furthermore
(w(xl,...,xn,f(y],...,ym)),O)

is in the congruence generated by the elements (u,0). If we substitute asenesd s

STETERTLN for xl,...,xn,yl,...,ym then all the elements u take value 0, and so
w(a],...,an,f(c],...,cm)) = 0.

This proves that C is a subalgebra. To show that C is a normal subalgebra it is

sufficient by Lemma 4 to show that

w(al,...,a st(c, 5. a5c ,d)) =0
n ] m’ o
whenever t is a term function such that t(0,...,0,d) = 0. We apply Higman's Lemma

to the law
w(x],...,xn,t(y],...,ym,é)) = w(xl,...,xn,t(O,...,O,Z)).
An argument similar to the one used to prove that C is a subalgebra shows that C is

a normal subalgebra.

LEMMA 5.2. The following eonditions on an element c € A are equivalent

(1) c € ¢(a),

(2) t(a],...,ai_],ai+d,ai+1,...,an) = t(al,...,ai,...,an)+t(0,...,0,d,0,...,0)
for all term functions t, all aj,---ra €A and all d in the subalgebra of A gener—
ated by c.

(3) f(a],...,ai_l,ai+d,ai+1,...,an) = f(a],...,ai,...,an)+f(0,...,O,d,O,...,O)
whenever £ € Q, or £ = +, for all 8lseeesa) € A and all d in the subalgebra of A
generated by c.
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Proof. First we show that (I) implies (2). Let u be a unary term function,

and consider the law

t(x],...,xi_l,xi+u(xn+1),xi+l,...,xn) = t(xl,...,xi,...,xn)+t(0,...,0,u(xn+1),0,...,0).
By Higman's Lemma there is a set C of commutators each of which involves LS and at
least one of the variables LITERRTE St such that this law is equivalent to the set of
laws {w = 0 : w € C}. Furthermore

(t(x],...,xi+u(xn+]),...,xn),t(xl,...,xn)+t(0,---,u(xn+1),...,0))
is in the congruence generated by the set {(w,0) : w € C}. If apse s € A, c € 2(4),
and we substitute a,,...,a ,c for x, ,...,Xx ,X then the commutators in C all take

I n I n’ nt+l

value 0. Hence

(t(al,...,ai+u(c),...,an),t(al,...,an)+t(0,...,u(c),...O))
is contained in the trivial congruence. This proves that (1) implies (2). Clearly
(2) implies (3), and a straightforward induction shows that (3) implies (2). To show
that (2) implies (1), let c satisfy (2), let w be a commutator involving n+! variables

where n > 0, and let a 8, € A, Then

[reee
w(al’...,an,c) = w(al,...,an,0)+w(0,...,0,c) = 0,

and so c € 7 (A).

COROLLARY 5.3. An algebra A € U is abelian Zf
f(a],...,ai+a,...,an) = f(al,...,an)+f(0,...,a,...,O)

for all 881500058 € A whenever f € Q or f = +.

LEMMA 5.4. If T 18 a trawsversal for ¢ (A) in A then every element of A can be
written uniquely in the form t+c, t € T, c € g(A).

Proof. By a transversal we mean a set of representatives in A for the congru-
ence classes of A under the congruence determined by the centre of A. Let o be this
congruence. If a € A then (a,t) € o for some t € T. So by Lemma 2.1 there is a

term function t and sequences E,E of elements of A andz(A) respectively such that
(a,t) = (£(b,8),t(b,0,...,0)).
Now by Lemma 5.2,
£(by&) = t(b,0,...,0)+£(0,...,0,8).
So a = t+c where ¢ = t(0,...,0,8) € £(A). To show that this representation is unique
suppose that t+c = u+d, where t,u € T and c,d € z(A). Now t = t+c mod o and u=u+d
mod o and so this implies that t=u. So suppose that t+c=t+d. Then by Lemma 2.2,
qi(t+c,t+d) = 0 for i=1,2,...,k. But since ¢ and d are central
q; (ttc,e+d) = qi(t,t)+qi(C,d) =q (c,d),
and so qi(c,d) = 0 for i=1,2,...,k. This implies that c=d.

6. THE COMMUTATOR OF TWO CONGRUENCES. If M,N are two normal subalgebras of an
algebra A € 4J»then we define [M,N] as the normal subalgebra generated by the set of

elements of the form w(a],a ,an) where w is a commutator involving at least two

gre e
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variables and a €M, a, € N. If M,N correspond to the congruences o,B respectively

then we show that [M,N] corresponds to the congruencel[a,B] as defined by Smith (1976).
By Proposition 4.4 of Freese and McKenzie (1982), [a,B] is the smallest congruence Yy
of A with the property that if t is any term function and if 3,3’ ,’g,’g' are sequences
of elements of A such that a=a' mod o and g=g' mod B then t(é,g) = t(é,g') mod vy
if and only if £(&',5) = t@"',5") mod v.

First we show that [M,N] = {0} mod [a,B8]. Let w be any commutator involving at

€ N, and

least two variables and take t=w, é=a1€ M, &'=0, b=(a2,...,an) with a,

|»-++28 ) which is a typical generator of [M,N].

,g') = t(é',g') = 0 and so w(al,...,an)=t(é,g)=0

g'=(0,a3,...,an). Then t(é,E) = w(a
It is easy to see that t(a',b) = t(a
mod [a,B].
Conversely we show that if t is any term function and &=3a' mod o , Ab’=‘g' mod B

then t(&,b) = t(a,b') mod [M,N] if and only if t(a',b) = t(a',b') mod [M,N]. 1If a
is a member of the sequence &, and if a' is the corresponding member of the sequence
a' then by Lemma we can find a term function v and sequences of elements g,é in M,A
respectively such that a=v(g,é), a'=v(5,é). Similarly if b i1s a member of the
sequence i\/ and if b' is the corresponding member of the sequence Z' then we can find
a term function w and sequences of elements 'fv,g in N,A respectively such that b=w(g,g)
and b'=w(5,g). Combining these results we can find a term function u and sequences
f,fi,& of elements in M,N,A respectively such that

£(a,b) = u(@,i,8),

t(@,5") = u@,D,e),

t@',b) = u(@,a,e),

t@',b) = u@,0,0).

Gonsider the law
~o N landl ad A~
p (u(0,¥,2),u(0,0,2),u(%,0,2)) = u(X,¥,%).
By Higman's Lemma this is equivalent to a set of laws of the form w=0 where w is a

commutator involving at least one variable from the sequence % and at least one var—

iable from the sequence ¥. Furthermore
~ N ~ Ay ~
(p (u(0,¥,2),u(0,0,2),u(%,0,2)),u(%,¥,2))
lies in the congruence generated by the elements (w,0). If we substitute #,fi,& for
%,¥,%2 respectively then each commutator w takes a value in [M,N]. So

P(U(a’ﬁ@’U(E,H,E),u(ﬁm,ﬁ',a)) = u(,f,&) mod [M,N],
that is
p(c@',b),t@',b"),c(@,b")) = t(a,b) mod [M,N].
(a',5') mod [M,N] then
p(t@',5), e, 5"),t(a,5")) mod [M,N]
p(t@',b),c@',b),c(a,b')) mod [M,N]
t(z,b').

So if t(a',b) =

T
~ T
e
M
o
~
n

Similarly
p(t(ﬁ,g'),t(é,g),t(é',g)) = t(a',b") mod [M,N]
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and this implies that if t(3,b) = t(é,g') mod [M,N] then t(a',b) = t(é',g') mod [M,N]

This completes the proof that [o,B] is the congruence determined by [M,N].

It follows immediately from this that the definitions of abelian algebras, cent—
ralizers, and centre given in this paper are equivalent to the definitions given for
modular varieties in Freese and McKenzie.

If A is any algebra in-&we define the lower central series Yi (A) inductively
by setting v, (A) = A and Vi ) = [yi (A),A]l. A is nilpotent of class k if yk(A)
is non-zero and Yiea] (A) = {0}. Note that if A is nilpotent of class k then yk(A)
is contained in the centre of A.

We define the derived series A(i) ©)
A @) @)

) _ {oy.

inductively by setting A = A, and defining

We say that A is solvable of derived length k if A(k_}) is

non-zero and A

7. NILPOTENT ALGEBRAS. If A is an algebra in ’a then we define the ascending
central series gr(A) by setting E} (A) = £ (A) and setting Erﬂ (A) equal to the inverse
image in A of the centre of A/gr(A). A is nilpotent if and only if some term of the

ascending central series of A equals A.

LEMMA 7.}. Let A be a nilpotent algebra in '& and let M be a normal subalgebra
of A If T is a transversal for M in A then every element of A can be written uniq-

uely in the form t+m for some t € T and some m € M.

Proof. We define a series M = Mg > M > > M = {0} of normal subalgebras

inductively by setting Mi+} = [Mi’A]' (The series terminates since A is nilpotent.)
We prowe the lemma by induction on r. If r=1 then M is contalned in the centre of
A, and the proof is as in the proof of Lemma 5.4. By induction suppose that the

lemma holds for the normal subalgebra M/Mr—} of A/Mr . The image of T in A/Mr— is

- ]
a transversal for M/Mr-} , and so by induction every element of A can be written in

the form t+m mod Mr_] for some t € T and some m € M. As in the proof of Lemma 5.4

this implies that every element of A can be written in the form (t+m)+c for some

t €T, mEM, c € Mr Since c € Mr— which is contained in the centre of A

1
(t+#m)+c = t+ (m+c) = t+d

_]'

where d = m+c € M. The uniqueness of this representation follows by induction on r

just as in the proof of Lemma 5.4.

Before stating the next lemma we introduce a left normed notation for repeated
summation. As before we let a+b := p(a,0,b) and we let

aj*at...ta = (... ((a]+a2)+a3)+. .. )+an.

LEMMA 7.2. If A is a relatively free nilpotent algebra then the elements of A

can all be written in the form c +c, +.. ren where ClaenesCp are commutators.

12
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Proof. The proof is by induction on the class of A. If A is abelian then
every element of A can be written in the form
rl(x1)+r2(x2)+...+rm(xm)

where r_ ,r .,T_are una term functions. This representation is of the required
1 ’'m y P

yoe
form. Sozsuppose that A has class ¢ (c>]) and that every element in the relatively
free algebra A/yC(A) can be written as a sum of commutators. Then by Lemma 7.1 every
element of A can be written in the form c]+c2+...+cm+d where cl,...,cm are commuta—
tors and where d € yC(A).

Now suppose that d lies in the subalgebra generated by the free generators X
b4 .,xn of A and consider the element
woi= X (—l)lslchS

where the sum is taken over all subsets S of {1,2,...,n}. All the elements dés where

950t

S # P lie in a subalgebra of A generated by a proper subset of {x],x .,xn} and by

g
induction these elements can all be written as sums of commutators. If S =0 then
dés = d and so d-w can be written as a sum of commutators. (Note that the order and

bracketing of this sum is irrelevant since all the summands are central.) It is

easy to see that w is a commutator involving x EEOYRERRE S in fact w = dé{l 2 n}*'
Sod = (d~-w)+w is a sum of commutators, d +d +. +dk say.
So every element of A can be written in the form
(c1+. . .+cm)+ (d1+. . .+dk)
where cl,...,cm are commutators and where dl""dk are commutators in the centre of
A. But since dl""’dk are central this sum equals
c1+ +c +d +, +dk
and this completes the proof of Lemma 7.2.
If Ais an algebra in’{Z and a € A then we define Pyt A - A by Xp, = x+a.
LEMMA 7.3. If A is a finite nilpotent algebra and if a € A then Py is a perm-
utation of A, and the order of o, divides the order of A.
Proof. The proof is by induction on the class of A, The result is trivial if
A is abelian, since then A is an abelian group under +. First we show that o, is
one~one. Suppose that b+a = c+a for some b,c € A. Then by induction, b = ¢ modz(4)
and so by Lemma 5.4, ¢ = b+d for some d € z(A). But then

b+a = c+a = (b+d)+a = (b+a)+d
(since d is central), and by Lemma 5.4 again this implies that d = 0, and hence that
b =c. So G is one-one, and since A is finite this implies that Py is a permutation
of A. Now let |A/¢(A)| = m and let [¢(A)| = n. Then |A| = mn by Lemma 5.4. By
induction if ¢ € A then
cp, " = c mod £(A)
and so

cpam = c+d for some d € z(A).
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Now if b € A then
(b+d)pa = (b+d)+a = (bta)+d = bpa+d
So
2m _ m _
ep = (c+d)pa = ct+d+d
and by repeated application of this argument
mn
cp =c +nd =c,
a
This proves that the order of fa divides the order of A.

If A is a finite nilpotent algebra we let R(A) be the subgroup of the symmetric

group on A genmerated by {pa : a € A},

LEMMA 7.4. If A is a finite nilpotent algebra then R(A) is a solvable group,
and if A is of prime power order then R(A) is nilpotent.

Proof. The proof is by induction on the class of A. If A is abelian then
R(A) is isomorphic to A as an abelian group. So let A have class greater tham 1,
and let T be a transversal for the centre of A, Then by Lemma 5.4 every element of

A can be written uniquely in the form t+c, t € T, c € z(A). As we saw in the proof
of Lemma 7.3, if a € A then (t+c)pa = tpa + ¢ and it follows that if p is any element
in R(A) then (t+c)p = tp + c. So there is a natural projection from R(A) to

R(A/z(A)) which maps G to p(a+§(A))'

in R(A) which map each element t of the transversal T to an element of the form t+c

The kernel of this map is the set of elements

where ¢ € z(A). Clearly these elements all commute with each other and have orders
dividing the order of z(A). So the kernel of the projection from R(A) to R(A/z(A))
is an abelian subgroup of R(A) whose exponent divides the order of z(4). By induct-
ion R(A/z(A)) is solvable and so R(A) is solvable. If A has prime power order then

this argument also shows that R(A) has prime power order, and so R(A) is nilpotent.

This lemma points to a fundamental difference between nilpotent algebras of prime
power order and nilpotent algebras which do not have prime power order. In Section 8
we give an example of a loop of order 12 which is nilpotent of class 2 but for which

R(A) is not nilpotent.

THEOREM 7.5. If A is a finite nilpotent algebra in {2 and if A has prime power
order then A has a finite basis for its laws. In addition there is an integer M
sueh that 1f w 18 a commutator involving more than M variables then w = 0 is a law

in A.

M

Proof. The proof is by induction on the order of A . If A

)]

has order 1
then A is abelian and the result is immediate since the variety generated by A is
definitionally equivalent to a variety of modules generated by a finite module.

So suppose that A has order pk (p a prime) and class ¢ (c > ). Let C be a

minimal normal subalgebra contained in yC(A). Then C is an elementary abelian p-
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group ahd by induction A/CxC is finitely based. In addition there is an integer K
such that if w is a commutator involving more than K variables then w=0 is a law in
A/CxC. Let w}=0, v, gy
W oare commutators. If } £ 1 £ m then any value of v in A must lie in C, and so

=0, ..., wm=0 be a basis for the laws of A/CxC, where WysW

must be central in A and of order p. The one variable laws of A follow from a finite
set of one variable laws (since the free algebra of rank 1 in Var(A) is finite), and
these laws imply that one generator algebras are finite. So, by Lemma 5.2, there is
a finite set of laws which (together with the one variable laws) implies that values
of WysWos. .o, W are central and of order p. There is no loss in generality in ass-
uming that these are all laws inf{y. So the {?Lfree algebra F with basis Xy X

greee

is nilpotent of class c or c+} and Wy sW eV all lie in the centre of F and all

.
have order p. Now let w € F and suppoze that w=0 is a law in A/CxC, Then w is

contained in the fully invariant normal subalgebra generated by Wy aWgs e oW . Since
these generators all lie in the centre of F (which is a fully invariant subalgebra of
F) and since it follows from Lemma 4 that any central subalgebra is normal this imp-
lies that w = X rj(vj) where (for each j) rj is a unary term function and Vj is of

the form wi(a},az,...,an) for some a;,a N €F. By Lemma 7.2, the elements

TR
a],az,...,an can all be written as sums of commutators. We will prove later that

there is a finite set of laws of A which imply the following two technical results.

(1) If u=0, v=0 are laws of A/CxC then u(a}+v,a2,...,an) = u(a],az,...,an)

for all 81585500058 € F.

2
(2) There is an integer N such that 1f 1 < i € m then any image of v, under an
endomorphism of F can be written as a sum of elements of the form + wi(a},...,an)

Mwe%““ﬁnmewmofwmwtNmeMW&

We assume that the finite set of laws which imply (1) and (2) is contained in the
laws of {Y . Let P be the maximum number of variables involved in any of the commut—
ALOTS W Wy, ooy W and let M = PNK. We show that if w is any commutator involving
more than M variables then w=0. (This means that w=0 is a consequence of the finite
set of laws of A which we have added to the laws of'{y.) So let w be a commutator
involving more than M variables. Then w=0 is a law in A/CxC (since M » K) and so by
the remarks above w can be written as a sum of terms of the form r(wi(a},az,...,an))
where r is a unary term function and where 8),85,...,8, are sums of commutators. By
(1) we may assume that no commutator in any of these sums involves more than K varia-
bles, and by (2) we can assume that these sums are all sums of at most N commutators.
Since n < P this means that w is a sum of terms each of which lies in an M generator
subalgebra of F. Let

w = u +u, +,..+u

1 72

where uy,u su_ are all central and each is contained in a subalgebra of F genera-

gsees
ted by at most M variables. Let w involve the variables X for 1 € S. By hypothesis

}S} > M, and so
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W= wés* = u}65*+u265*+...+ur65* =0,
since ués* = 0 whenever u is contained in a subalgebra which does not contain X, for
all 1 € sS. So if w is a commutator which involves more than M variables then w=0.
By Higman's Lemma, the laws of A are equivalent to a set of laws of the form w=0,
where w is a commutator. So the laws of A are equivalent to a set of M variable
laws together with the finite set of laws which we have already added to the laws of

1. Hence the laws of A are finitely based, and, as shown above, if w is a commuta-

tor involving more than M variables then w=0 is a law in A.

We now prove (1). Let u=0, v=0 be laws of A/CxC. Then v is contained in the

centre of F and so
u(a]+v,az,...,an) = u(al,az,...,an)+u(v,0,...,0).
So it is sufficient to prove that there is a finite set of laws of A which imply that
u(v,0,...,0)=0. Any value of v in A lies in C, and u=0 is a law in C, and so
u(v,0,...,0) = 0 is a law in A. Since u=0, v=0 are laws in A/CxC both u and v can
be written as sums of terms of the form r(w) where r is a unary term function and
w is the image of vy for some i under some endomorphism of F. It follows that the
law u(v,0,...,0) = 0 is a consequence of the laws
wi(O,...,O,r(WB),O,...,0) =0

where r is a unary term function and ! € 1,j € m. (Note that these laws are all
trivial except when W involves only one variable.) Now there are only finitely

many unary term functions in Var(4), and so this proves (1).

Finally we prove (2). This is the key to the proof of Theorem 7.5 and it is at
this point that we use the fact that that A is of prime power order. By Lemma 7.4,
R(A) is a finite p—group and this implies that the radical of the group ring ZpR(A)
is nilpotent. For each p € R(A), p~] is in the radical and so there is an integer
N such that if PysPgseresPy € R(A) then (p}—})(pz—})...(pN—l) = 0. This product is
a sum of terms of the form

N

where the sum is taken over all subsets {i,j,...,k} of {},2,...,N} with i < jJ < ... <k

If 3,585, ... ,8 are elements of A and we let Py =0, for i=1,2,...,N then pipj...pk

29
is the element of R(A) which takes a to a+ai+a.+...+ék. In particular it takes 0 to

ai+aj+...+ak. If S={i,j,...,k} is a subset of {1,2,...,N} withi < j < ... <k

S

let a, = ai+aj+...+ak and let Pg = pipj...pk. If p € R(A) then p can equal g for
many different subsets S. But the fact that (p}—])(pz—l)...(pN—l) = 0 implies that

the number of even subsets S such that p = is equal (modulo p) to the number of

Ps

odd subsets S such that p = Pg- This implies that if a € A then the number of even
subsets § such that a = ag is equal modulo p to the number of odd subsets S such that
a = ag. So if w is an element of order p in the centre of F then

x (—1>|S|w(as,b2,...,bn> =0

where the sum is taken over all subsets S of {1,2,...,N}, and where b2,...,bn are any
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elements of A. This means that A satisfies the finite set of laws of the form
s| -
T ( 1; wi(x},...,xj_},ys,xj”,...,xn) = 0.
One term in this sum has VYot oty in the j~th place, and this law enables us to

express this term as a sum of terms in which the j—th entry is a sum of fewer than N

terms. This proves (2).

This completes the proof of Theorem 7.5.

THEOREM 7.6. If A is a finite nilpotent algebra in {Z, and if A 28 a direct
product of algebras of prime power order, then A has a finite basis for its laws.
In addition there is a finite integer M such that if w is a commutator involving more

than M variables then w=0 is a law in A.

Proof. Let A= A xA X. ..XAk whe re A > A
by Theorem 7.5, A}’AZ"
M such that if w is a commutator involving more than M variables then w=0 is a law in

2,...,Ak have prime power order. Then,

..,A.k have finite bases for their laws, and there is an iuteger

Ai for i=1,2,...,k. It follows that w=0 is also a law in A. We prove that the laws

M

of A are finitely based by induction on the order of A as in the proof of Theorem
7.5. We let C be a minimal normal subalgebra of A contained in the centre of A.

We let w],wz,...,wm be a set of commutators such that w}=0,w2=0,._.,wm=0 is a basis
for the laws of A/CxC. The proof uses (1) and (2) just as in the proof of Theorem
7.5, and (1) is proved as before. However (2) (with N=M) follows immediately from
the fact that

x (_1)ISIWi(Xl""’xj—}’ys’xjﬂ""’xn)
(with the sum taken over all subsets S of {1,2,...,M+1}) is a commutator involving

more than M variables.

8. EXAMPLES.

EXAMPLE 1. There is a non~finitely based variety of loops which are nilpotent
of elass 3, which has the property that finitely generated loops in the variety have

order oK for some k.

We first let { be the variety of non-distributive rings determined by the laws
(x+y)+z = x+(y+z),

X+y = yix,

x+0 = x,
x+x = 0,
(xy)z = 0,
x(yz) = 0,
x.0 = 0,
0.x =0,

x(y + z(t+u)) = x(y + zt + zu),
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x(y + (z+t)u) x(y + zu + tu),

(x + y(z+t))u (x + yz + yt)u,

(x + (y+z)t)u = (x + yt + zt)u,
It is easy to see that if A € Y: and 1.f a,b,c € A then
(atb)c ~ ac ~ bc and a(b+c) - ab - ac
lie in the centre of A, and that A/Z(A) is an associative distributive ring satisfying
the law xyz = 0. In our notation this implies that A/z(A) is nilpotent of class 2,
and hence that A is nilpotent of class 3. Rings iu (j are elementary abelian two-—

groups under addition, and it is easy to see that [ is locally finite. We show that
the subvariety of Tz-determined by the laws (x}2 + x22 + ...+ X 2)2 =0 for n=1,2,...
n

is not finitely based by constructing (for any N) a ring A €.(i which satisfies these
laws for n & N but does not satisfy these laws for all n.

A 1s constructed as follows. A is generated by a As an elementary

LV TEETE

abelian 2~group under addition A has a basis consisting of the generators 81,8550 05
the products aiaj for all positive 1,j,and one extra basis element ¢ in the centre of
2

A, We also let d = a}2+a2 +...+an2 where n is some integer to be determined later.

We define the product of two elements in the span of 8158550 by linearity. We

29
denote general elements in the span of 85895 .e by a,a', general elements in the span
of the products aiaj by b,b', and general elements in the span of c by e,e'. Thus

every element of A can be written uniquely in the form a+b+e. Finally we define the
product of two elements of A by the rule

(atb+e). (a'+b'+e') = aa' unless b =b' = d,

(atd+e). (a'+d+e') = aa' + c.
(Remember that the product aa' is defined by linearity.) It is straightforward to
verify that A is a ring in.Tz. In fact A/<c> is an associative distributive ring
satisfying the law xyz = 0. If we choose n so that d cannot be expressed as a sum

of N squares then A satisfies the law (x 2+x 2+ X 2)2 = 0, but A does not satisfy

2.2 2.2 2 - N
the law (x} oy Fe X )7 = 0. This proves that the subvariety of ?5 de termined

by all these laws is not finitely based
We define derived binary operators *,/,~ in TZ by
x¥y 1= X + y + xy
x/y 1= x + y + (x+y+xyryy)y,
XY 1= X + y + X(X+y+xR+xRy).
It is straightforward to verify that these operations turn any ring in T: into a loop
(with 0 as identity). This loop will also be nilpotent of class 3 as a loop. Since

X*X = XX = x2 and since x*(yz) =x + y2 it follows that (x]2+x 2+...+xn2)2 can be

2
},x% coes X using only the loop operatiom *. It follows that
the laws (x}2+x2 ... = 0 determine a non-finitely based subvariety of the
variety of loops which are nilpotent of class 3 and satisfy the law (x*x)* (x*x) =

expressed as a word in x

This law together with the nilpotency condition imply that finitely generated loops

in this variety have order 2k for some k.
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EXAMPLE 2. Let A be the loop of order 12 with the following multiplication
table.

2 3 2 2 2 2 32
1 a a a c ac a’c a’c c ac a’c a’c
2 3 2 2 2 2 32
1 1 a a a c ac a’c a’c c ac a’c ac
2 3 2 2 2 2 32
a a a a c ac ac a c c ac ac 1
2 2 3 2 2 2 32 2 2
a a a 1 a ac a’c c ac c c c ac
3 3 2 2 32 2 2 2
a a c a a a’c c ac a’c ac 1 ac c
2 2 2 2 2 32 2 3
c c ac a c a c c ac c c 1 a a a
2 2 2 2 32 2 3
ac ac a’c ac c ac ac a’c 1 a a a c
22 3 2 2 2 2 3
a“c a’c a’c c ac a’c c c ac a a 1 a
3 2 2 3 2 2 2 2 3 2
ac a’c c ac ac a 1 ac ac a c a a
2 2 2 2 2 32 2 3 3
c c ac ac 1 a a a c ac ac ac
2 2 2 2 32 2 3 2 3 2
ac ac c c 1 a a a c ac ac ac c
2 2 22 32 2 2 2 3 2 3
ac ac ac c ac a a 1 a ac a“c c ac
32 32 2 22 3 2 2 2
a’c a“c 1 ac ac c a a a’c c ac ac

. . . 2 . . .
Note that A 1s commutative. The centre of A is {l,c,c”} which is a cyclic

group of order 3, and A/z(A) is a cyclic group of order 4. So A is nilpotent of
class 2. A is not associative since if we set (x,¥,z) = ((xy)z)/(x(yz)) then

2 ~ B 22, 2 2
(a”,a,a) = c. Let W= ((...(x} Xy )x3 )...)xn and let

- *
v (wn’xn-"} ’xn+2)6{],2,...,n} :

Then w is a commutator involving KysXgs X o but w =} is not a law in A, as can
be seen by substituting a for X for i=1,2,...,n+2, So although A is a finite nil-
potent loop, there is no integer M such that if w is a commutator involving more than
M variables then w=! is a law in A. It follows that Theorem 7.6 cannot be extended
to arbitrary finite unilpotent algebras. It is also straightforward to verify that

R(A) (as defined in Section 7) is not nilpotent.
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