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0. Introduction

A finite lattice may be regarded as a join semilattice with 0. In this paper, we
discuss certain semidistributivity properties of a finite lattice in terms of its join
semilattice presentation. This perspective allows us to prove some new results about
finite join semidistributive (JSD) lattices.

If we think in terms of constructing finite lattices with specified properties, then
join semilattice presentations are a good approach, but not the only approach.

• Formal Concept Analysis (FCA) practitioners would give very different answers
[21]; see e.g. [22–24, 37] for results related to semidistributivity.

• All but the simplest examples should be verified by computer. The discussion
following Theorem 13 relates an instance where this proved useful.
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For simplicity, we focus on the finite case, but there are infinite versions; see the
last section. Historically, many of the ideas in this paper originated with Alan Day
[12], Bjarni Jónsson [30] and Ralph McKenzie [33].

1. Preliminaries

Let L be a finite lattice. Then J(L) denotes the set of nonzero join irreducible
elements and M(L) denotes the set of non-one meet irreducible elements. The unique
lower cover of a join irreducible element x is denoted x∗. For subsets A, B ⊆ L we
say that A refines B, written A � B, if for every a ∈ A there exists b ∈ B such
that a ≤ b. Note A� B implies

∨
A ≤ ∨

B.
A join cover of an element a ∈ L is a subset B such that a ≤ ∨

B, and a join
cover is nontrivial if a � b for all b ∈ B. A minimal nontrivial join cover (mntjc) of
a is a join cover a ≤ ∨

B such that if a ≤ ∨
C and C � B, then B ⊆ C. A minimal

nontrivial join cover is an antichain of join irreducible elements, with the property
that a � b∗ ∨

∨
(B\{b}) for every b ∈ B. Every join cover in a finite lattice refines

to a minimal join cover.
For A ⊆ L, let A∨ = {∨B : B ⊆ A}; note 0 =

∨
∅ ∈ A∨. Thus A∨ is a join

semilattice with 0, and hence a lattice (as L is finite).
Define a binary relation D on J(L) by p D q if q ∈ Q for some mntjc Q of p. The

congruence relations on L are in one-to-one correspondence with D-closed subsets
of J(L). The congruence γ corresponding to a D-closed subset C has L/γ ∼= C∨.
This connection is explained more fully in Sec. 5.

A join decomposition of an element a ∈ L is a nonempty subset B ⊆ J(L)
such that a =

∨
B. A join decomposition a =

∨
B is minimal if it is minimal

as a join cover, i.e. no proper refinement of B joins to a. The decomposition is
irredundant if no element of B can be omitted: a �= ∨

B\{b} for all b ∈ B. If a has
a unique minimal join decomposition, a =

∨
B, then B is called the canonical join

decomposition of a.

2. Join Semilattices with 0

We think of a finite lattice as being given by a join semilattice presentation: L =
〈X∨ |R〉 where

• X = J(L),
• R is a collection of inclusions p ≤ r and (minimal) nontrivial join covers p ≤ ∨

Q.

Thus, we are treating the join as a closure operator on J(L). With respect to the
first item, you can tell from a presentation when some x ∈ X is join reducible, and
if so toss it out. Likewise, trivial or non-minimal join covers may be removed from
R in the presentation.

Different bases for a presentation are discussed in [4]. A reasonable choice for
the current application would be the D-basis, which includes the covering relation
from the order on J(L) and all minimal nontrivial join covers.
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3. Semidistributivity

The properties we are concerned with are lower boundedness, join semidistributiv-
ity, meet semidistributivity (MSD), and being a convex geometry.

The JSD law is

a ∨ b = a ∨ c→ a ∨ b = a ∨ (b ∧ c).
In terms of our semilattice presentation, the following characterization from Jónsson
and Kiefer [29] is especially useful.

Lemma 1. A finite lattice L is JSD if and only if every element of L has a canon-
ical join decomposition (i’.e. a unique non-refinable join decomposition).

The dual of JSD is MSD. A lattice is semidistributive (SD) if it is both JSD
and MSD.

A lattice homomorphism h : K → L is lower bounded if every congruence class
of the kernel kerh has a least element. A lattice L is said to lower bounded (LB) if
it is the image of a lower bounded homomorphism h : FL(X) � L where FL(X) is
a finitely generated free lattice.

Lemma 2. If K is a JSD lattice and h : K � L is a lower bounded, surjective
homomorphism, then L is JSD.

The proof is straightforward; see [18, Theorem 2.20]. Thus a lower bounded
lattice inherits JSD from the free lattice.

Corollary 3. If L is lower bounded, then it is JSD.

Since any homomorphism between finite lattices is lower bounded, the same
argument gives that finite JSD lattices are closed under homomorphic images.

Corollary 4. If K is a finite JSD lattice and h : K � L is a surjective
homomorphism, then L is JSD.

Moreover, there is an easy criterion for a finite lattice to be lower bounded [12].

Lemma 5. A finite lattice L is lower bounded if and only if it contains no D-cycle
x0 D x1 Dx2 . . . xn−1 Dx0.

Sometimes it is easy to see that a semilattice presentation contains no D-cycle.
However, not every finite JSD lattice is lower bounded; for example, the lattice
of convex subsets of a 4-element chain is JSD but not LB. Therefore, we pursue
another criterion, which with variation will apply to MSD and SD lattices as well.

Standard arguments give
⋃

x∈J(L)K(x) = M(L). Now, let X = J(L), so that
L = X∨. For x join irreducible, define x† =

∨{y ∈ J(L) : y < x}, and define

K(x) = {a ∈ L : a is maximal with respect to a ≥ x†, a � x}.
Both x† and K(x) are easily computed from a semilattice presentation. Of course,
x† is the computed value of x∗. Once we have checked that x† < x, then x† = x∗ and
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no separate notation is needed. The next theorem gives the connections between
the map K and semidistributivity.

Theorem 6. Let L be a finite lattice.

(1) L is JSD if and only if x �= x′ implies K(x) ∩K(x′) = ∅.
(2) L is MSD if and only if |K(x)| = 1 for all x ∈ J(L).
(3) L is SD if and only if K is a bijection between J(L) and (one-element subsets

of) M(L).

Theorem 6 originated in antiquity, as lattice theory goes, and the proof is ele-
mentary. It is given in [18, Theorems 2.54–2.56], see also [15, 16, 19, 20].

Finite JSD lattices form a proper subclass of UC-closure systems, introduced in
[3]. UC stands for closure systems with unique critical sets, and they are easy to
recognize in specific join semilattice representations. On the other hand, determin-
ing whether a lattice is JSD from its canonical basis [28] is an open problem, see
[3, Problem 51(B)].

4. Convex Geometries

There are many equivalent characterizations of a finite convex geometry. These are
surveyed, and shown to be equivalent, in [5, Secs. 5-2], or [8, Proposition 2.1], or
[39, Theorem 7.2.27]. Let us choose as the definition the most lattice theoretic
characterization: a finite lattice is (the lattice of closed sets of ) a convex geometry
if and only if it is JSD and lower semimodular (LSM). We want to relate this
definition to the original version due to Dilworth [13], which is directly related to
semilattice presentations.

Theorem 7. A finite lattice L is a convex geometry if and only if every element
of L has a unique irredundant join decomposition.

Having unique irredundant join decompositions is a stronger property than hav-
ing canonical join decompositions, which by Lemma 1 is equivalent to JSD. The
pentagon is a natural example of a lattice that is JSD but not a convex geometry,
since its largest element has 2 irredundant decompositions. While a convex geome-
try can contain many pentagon sublattices, the next result restricts how they can
occur.

Lemma 8. Let L be a finite JSD lattice. Then L is a convex geometry if and only
if it has no mntjc p ≤ ∨

Q with p ∈ J(L) and q < p for some q ∈ Q.

In particular, you can tell from its D-basis whether a finite semilattice presenta-
tion gives a convex geometry. Note that [40] provides an algorithm for recognizing
a join semilattice representation of a convex geometry based on the anti-exchange
property of its associated closure operator.
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Proof. First, suppose L contains such a mntjc. Then
∨
Q is canonical for that

element, and we have two distinct irredundant decompositions:
∨
Q = p ∨

∨
(Q\ ↓p).

(The second join is irredundant because Q� R whenever
∨
Q =

∨
R.) So L does

not have unique irredundant join decompositions.
Conversely, suppose that in L we have a =

∨
Q canonically and also a =

∨
P

irredundantly. Then Q � P . If p ∈ P\Q, then there exists q0 with q0 < p and
q0 � s for all s ∈ P\{p}. (Every q ∈ Q is below some p ∈ P and Q �� P\{p} by the
irredundancy of a =

∨
P .) So q0 < p ≤ ∨

Q nontrivially. Refine the cover of p to a
mntjc: p ≤ ∨

R with R � Q. Now, a =
∨
R∨∨

(P\{p}) whence Q� R∪ (P\{p}).
Thus q0 ≤ r for some r ∈ R by the choice of q0. As R � Q and Q is an antichain,
this implies q0 = r. Thus, the mntjc p ≤ ∨

R has r = q0 < p.

This immediately gives a well-known consequence.

Corollary 9. A finite atomistic JSD lattice is a convex geometry.

Lemma 8 has a geometrical interpretation via a result of Kashiwabara et al. [32],
see also [38]. Finite convex geometries can be represented as convex sets of points
in some space Rn, extending some convex set of points S. There is a one-to-one
correspondence between join irreducibles and points in the configuration outside S
and q < p in such representation means that point q is in the convex hull of S∪{p}.
For p ≤ ∨

Q to be a mntjc means that p is in the convex hull of S ∪ Q and all
points in Q are extreme points of the configuration S ∪Q. Clearly, q cannot be an
extreme point if q < p.

Lemma 8 provides a companion for other lattice-theoretic characterizations of
convex geometries. Recall that JSD for finite lattices is characterized by the exclu-
sion of 5 sublattices, one of which is M3 [31].

Theorem 10. The following are equivalent for a finite lattice L:

(1) L is a convex geometry.
(2) L is LSM and JSD.
(3) L is LSM and does not contain M3 as a sublattice.
(4) L is LSM and does not contain a covering M3 as a sublattice.
(5) L is JSD and does not contain N5 as a sublattice with its critical quotient being

[p∗, p] for some p ∈ J(L).

Note that a covering pentagon is not an option in an LSM lattice.
The history of the equivalences in Theorem 10 is recounted in Monjardet [35];

see also [14, 34]. Condition (3) is in Dilworth’s original paper [13], while (2) is in
Crawley and Dilworth [7], and (4) in Avann [6]. Condition (5) is a consequence of
our Lemma 8.

Question. Is there a K(x) version of convex geometries?
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5. Congruence Lattices of Finite JSD Lattices

The congruence lattice of a lattice is distributive, and every finite distributive lattice
is the congruence lattice of a finite lattice. In the 1990s, the authors observed that
not every finite distributive lattice is the congruence lattice of a lower bounded lat-
tice, and somewhat later Grätzer noticed the same thing for slim, planar, semimod-
ular lattices (which are MSD) [26]. We strongly suspect there are similar results that
we don’t know about. In this section, we tie these together into one nice package.

Recall that a finite distributive lattice D is isomorphic to the lattice of order
ideals of its join irreducible elements, D ∼= O(J(D)). Moreover, since join irreducible
elements are join prime in a distributive lattice, J(D) ∼= M(D) as ordered sets, via
the map p �→ κ(p) =

∨{a ∈ D : a � p}. This is of course the map K of Sec. 3.
Let us recall some basic notions, which will be applied with X = J(L) and

δ = D. Given a binary relation δ on a set X , the reflexive, transitive closure of δ
yields a quasi-order δ. We then form the equivalence relation ≡= δ ∩ δ−1

, so that
x ≡ y if and only if xδy and yδx. Thus δ becomes a partial order on X/≡.

Given a quasi-ordered set Q = 〈Q,≤〉, a subset I ⊆ Q is an ideal of Q if x ≤ y

and y ∈ I implies x ∈ I. We allow the empty set as an ideal. The set of all ideals of
Q, ordered by set inclusion, forms a (completely distributive) lattice, traditionally
denoted O(Q). Dually, F ⊆ Q is a filter if x ≤ y and x ∈ F implies y ∈ F . Again
the empty set is allowed. The set of all filters of Q, ordered by reverse set inclusion,
forms a lattice F(Q). Moreover, F(Q) ∼= O(Q) via the set complementation map.
Note that O(Q/≡) is the usual lattice of order ideals of an ordered set.

Now, let us apply these ideas to the set J(L) of join irreducible elements of
a finite lattice and the relation D. Let D be the reflexive, transitive closure of D
and ≡ the induced equivalence relation on J(L). Thus, 〈J(L),D〉 is a quasi-ordered
set. Now, consider the map σ : Con L → P(J(L)) given by σ(θ) = {p ∈ J(L) :
(p, p∗) /∈ θ}. The crucial observation is that σ(θ) is a D-closed set: if p ∈ σ(θ) and
p D q, then q ∈ σ(θ). On the other hand, if C is a D-closed subset of J(L), then
C = σ(ker h) for the homomorphism h : L → C∨ with h(x) =

∨
(↓ x ∩ C). Thus

Con L ∼= F(J(L)) ∼= O(J(L)), where J(L) is quasi-ordered by D. The details are
given in [36, Chap. 10], especially [18, Theorems 10.5 and 3.11 to Corollary 3.16];
see [17] for computational aspects.

In view of the above connection, for p ∈ J(L) let ψp denote the largest congru-
ence separating p and p∗. The associated D-closed set is {q ∈ J(L) : pD q}. Every
join irreducible congruence relation is of the form ψp with p ∈ J(L).

We need a couple of facts about JSD lattices.

Lemma 11. (1) In a finite JSD lattice, the canonical joinands of 1 are join prime.
(2) More generally, in any JSD lattice with a largest element 1, a maximal ideal

not containing 1 is prime.

Part (1) is from [29]; see also [2]. Part (2) is from [25]; its proof is an elementary
exercise. Note that a lattice has a proper prime ideal if and only if it has 2 as a
homomorphic image.
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We are now in position to prove a characterization of congruences of finite JSD
lattices.

Theorem 12. The following are equivalent for a finite distributive lattice D. Let
D ∼= O(P) for an ordered set P (isomorphic to J(D)) and let M denote the maximal
members of P

(1) D ∼= Con L for a finite JSD lattice L.
(2) D ∼= Con S for a finite lower bounded lattice S.
(3) D ∼= Con G for a finite convex geometry G.
(4) D ∼= Con A for a finite, lower bounded, atomistic convex geometry A.
(5) For all x ∈ P\M, | ↑x ∩M | ≥ 2.

Proof. Of course (4) implies (2) and (3), each of which implies (1).
Assume (1), that D ∼= Con L with L JSD and |L| > 2. Then P ∼= J(L)/ ≡

where ≡ is the equivalence relation associated with the quasi-order D. If ϕ is a
maximal meet irreducible congruence on L, then ϕ = ψp for some join irreducible
element p. Moreover, ϕ is a coatom in Con L, which means that L/ϕ is a simple
JSD lattice by Corollary 4. Since every finite JSD lattice has 2 as a homomorphic
image, L/ϕ ∼= 2, whence p is join prime.

Now, let μ = {p} � S = ν in J(L)/ ≡. We want to show that ν has another
upper cover besides {p} in J(L)/≡. Suppose not. Then for every s ∈ S, s ≤ ∨

T a
mntjc implies T ⊆ S ∪ {p}. In other words, S ∪ {p} is a D-closed subset, whence
(S ∪ {p})∨ is a finite JSD lattice with only one join prime element. But in a finite
JSD lattice the canonical joinands of 1 are join prime; and if 1 is join irreducible
then the canonical joinands of 1∗ are join prime. Every finite JSD lattice except 2
contains at least 2 nonzero join prime elements. So this would be a contradiction
unless ν has another upper cover, giving (1) implies (5).

Finally let P be an ordered set with the property of (5). We will construct a
finite, lower bounded, convex geometry A = P∨ such that Con A ∼= D. Define the
lattice P∨ with the antichain order on P and mntjc’s x ≤ ∨{y ∈ P : y � x} for
x /∈ M , unless x has only one cover in P. If x has only one upper cover y, then
y /∈ M , so choose z � y and add the join cover x ≤ y ∨ z. There are no cycles,
as x D y implies x ≤ y in P. So the lattice with this presentation is atomistic
and lower bounded, whence P∨ is a convex geometry by Corollaries 3 and 9. By
construction, the D-closed sets are filters of P. Thus Con P∨ is isomorphic to the
lattice of filters of P ordered by reverse set inclusion, which is isomorphic to the
lattice of order ideals O(P) ordered by inclusion. Therefore (5) implies (4).

Czédli and Kurusa [11] observed that finite slim, planar, semimodular lattices
(in short, SPS lattices) are precisely the duals of convex geometries G with convex
dimension cdim(G) ≤ 2. Czédli and G. Grätzer found additional properties of
congruence lattices of SPS lattices [9, 10, 27], which by Theorem 12 do not hold
in congruence lattices of all convex geometries. On the other hand, the convex
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geometries constructed in the proof of the theorem are lower bounded lattices. This
class of convex geometries is well-behaved. In particular, a finite convex geometry
without D-cycles has a tractable optimum basis [1].

6. A Simple Semidistributive Lattice

Lemma 11 shows that every JSD lattice with 1 has 2 as a homomorphic image. The
dual applies to any MSD lattice with 0. In particular, there is no finite, simple JSD
lattice (or MSD lattice) except 2. So Ralph McKenzie asked: Is there a simple SD
lattice besides 2?

In an earlier paper [20], the authors were able to adapt the methods discussed
here to construct such an example, using the following notion. A lattice L is strongly
locally finite if every interval [u, v] is finite. Every strongly locally finite lattice is the
union of a directed set of finite interval sublattices, and the methods described here
apply to each of these. The final result is given as an infinite semilattice presentation
〈X∨ |R〉.
Theorem 13. There is an infinite, simple SD lattice.

Without reproducing the details, let us mention a couple of features of the
construction. The lattice constructed for Theorem 13 is a union of intervals [ui, vi]
(i ∈ ω) with ui+1 < ui < vi < vi+1. There are 6 types of join irreducible elements in
X and besides order relations on X , 8 types of mntjc’s in R, generating multiple D-
cycles. Theorem 6 allows us to check that each interval [ui, vi] satisfies SD without
calculating the entire interval: we need only find K(x) for each join irreducible x in
the interval. The calculations are complicated, but our lattice programs allow us to
verify that the claimed values for K(x) are correct, at least for “small” intervals.

For finite lattices, JSD is equivalent to the Jónsson–Kiefer Property [29]: every
element a of a finite JSD lattice is a join of elements that are join prime in the
ideal ↓ a. The paper [2] gives an example of a dually algebraic, JSD lattice that
contains no join prime nor meet prime element, and gives sufficient conditions for
the Jónsson–Kiefer Property to hold in an infinite JSD lattice.
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Cham, 2016), pp. 153–179.

[6] S. Avann, Application of the join-irreducible excess function to semi-modular lattices,
Math. Ann. 142 (1961) 345–354.

[7] P. Crawley and R. P. Dilworth, Decomposition theory for lattices without chain
conditions, Trans. Amer. Math. Soc. 96 (1960) 1–22.

[8] G. Czédli, Coordinatization of finite join-distributive lattices, Algebra Univ. 71 (2014)
385–404.

[9] G. Czédli, Lamps in slim rectangular planar semimodular lattices (2021),
arXiv:2101.02929v1, appeared as Acta Sci. Math. (Szeged ) 87 (2021) 381–413.

[10] G. Czédli and G. Grätzer, A new property of congruence lattices of slim, planar,
semimodular lattices, to appear in Categories and General Algebraic Structures with
Applications.

[11] G. Czédli and A. Kurusa, A convex combinatorial property of compact sets in the
plane and its roots in lattice theory, Categ. Gen. Algebr. Struct. Appl. 11 (2019)
57–92.

[12] A. Day, Characterizations of finite lattices that are bounded-homomorphic images of
sublattices of free lattices, Canad. J. Math. 31 (1979) 69–78.

[13] R. P. Dilworth, Lattices with unique irreducible decompositions, Ann. of Math. (2)
41 (1940) 771–777.

[14] R. P. Dilworth, Background for Chap. 3, in The Dilworth Theorems: Selected Papers
of Robert P. Dilworth, eds. K. Bogart, R. Freese and J. Kung (Birkhäuser, Boston,
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