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In this paper we look at some of the problems on free 
lattices and free modular lattices which are of an order 
theoretic nature. We review some of the known results, give 
same new results, and present several open problems. 

Every countable partially ordered set can be order embedded 
into a countable free lattice [6]. However, free lattices contain 
no uncountable chains [25],so the above result does not extend to 
arbitrary partially ordered sets. The problem of which partially 
ordered sets can be embedded into a free lattice is open. It is 
not enough to require that the partially ordered set does not have 
any uncountable chains. In fact, there are partially ordered sets 
of height one, which cannot be embedded into any free lattice [23].· 
The importance of these concepts to projective lattices is 
discussed. 

If a > b and there is no a with a > a > b we say a aoVerB b 
and write ar b. Covers in free lattices and free modular 
lattices are important to lattice structure theory. We discuss 
the connec~ion between covers and structure theory and give same 
of the inore important results about covers. Alan Day has shown 
that every quotient sublattice (i.e. interval) of a finitely 
generated free lattice contains a covering [9]. R.A. Dean, on 
the other hand, has some results on noncovers in free lattices. 
The analogous problems for free modular lattices are open. 

Suppose w(x , ... ,x ) is a lattice word and L is a lattice. 
1 n _ 

If we replace all but one of the variables with fixed elements 
from L we obtain a function f(x) = w(x,a2 , ••• ,an ) fram L to L. 
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Call functions of this form unary polynomials; they always pre­
serve order. For which lattices does every unary polynomial have 
a fixed point? We give some results on this new problem without 
completely solving it. 

The word problem for free modular lattices with five or 
more generators is unsolvable [22]. The solvability of the word 
problem for FM(4) is open. There is evidence that four generated 
subdirectly irreducible lattices form a much more restricted 
class than five generated ones [26J. However, we will give a proof 

Xo • • that there are 2 four generated slmple modular lattlces. We 
will also discuss Herrmann's result that the free modular lattice 
generated by two complemented pairs has a solvable word problem 
and the prospects for solving the word problem for FM(4). These 
problems are related to covers in FM(4) and various problems on 
covers in free modular lattices will be discussed. 

We also give Wille's classification of those partially 
ordered sets P such that the free modular lattice generated by 
P is finite [50]. 
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In this paper we examine some of the problems on free 
lattices and free modular lattices which are of an order 
theoretic nature. Many are combinatorial. We review some of the 
known results and show their importance to lattice structure 
theory. We also give some new results. Several open problems. 
both old and new. are scattered throughout the text. 

§l PARTIALLY ORDERED SETS IN FREE LATTICES 

If'X is a set, then the free lattice on X is a lattice. 
denoted FL(X). generated by X such that any set map from X to a 
lattice can be extended to a homomorphism. The free modular and 
distributive lattices are defined similarly and denoted FM(X) and 
FD(X). Free lattices have an interesting arithmetical and 
combinatorial structure as can be seen from the papers of Whitman. 
Dilworth. Dean. and Jonsson. Many of the important questions 
about free lattices have to do with their order theory. 

The definition of free lattices guarantees that every lattice 
is a homomorphic image of a free lattice. However. not all 
lattices can be embedded into a free lattice. Free lattices 
satisfy the following conditions [32]: 

(W) u = Au. ~ Vv. = V implies either u. ~ v for some 
1.- J 1.-

i or u ~ V. for some j. 
J 

(SD) u V V = U vw implies u V V U V (v 1\ w) 
u 1\ V U II W implies u II V U II (V V w). 

These are rather restrictive conditions. Very recently. 
J.B. Nation has shown that a finite lattice can be embedded into 
a free lattice if and only if it satisfies (W) and (SD). proving 
a long-standing conjecture of Bjarni Jonsson. The problem of 
characterizing infinite sublattices of free lattices remains open. 
A. Kostihsky does have a characterization of finitely generated 
sublattices (see [37]). 

If f: FL(X) + L is an onto homomorphism. then f-l(a) = 
{u E FL(X): f(u) = a} is a convex sublattice of FL(X) for each 

a E L; i.e •• if u. V E f-l(a) and u ~ w ~ V then W E f- 1(a). L 

is projective if there is a u E f- 1(a) such that the u 's form a 
a a 
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sublattice isomorphic to L. Call a map g: L + FL(X) a transversal 

for f if g(a) E f-l(a). Then L is projective if f has a trans­
versal which is a homomorphism. In particular, if L is 
projective, f has an order-preserving transversal. For which 
lattices does f: FL(X) + L have an order-preserving transversal? 
This property is important since it together with three other 
conditions form necessary and sufficient conditions for L to be 
projective. If L is countable, then f: FL(X) + L does have an 
order-preserving transversal (Crawley and Dean [6]). In fact if 
L = {ao' aI' a2, ... } then define 

g(a) = (g (a) vV(g(a.): a. < a and i < n» n '0 n 1.- 1.- n 

II "(g (a .): a. > a and j < n), 
J J n 

where g (a ) 
o n 

-1 
is any element from f (a). On the other hand, if 

n 
L c0ntains an uncountable chain, then f has no order-preserving 
transversal. This follows from Galvin and Jonsson's theorem that 
FL(X) has no uncountable chains. Galvin and Jonsson gave the 
following ingenious proof. Let G be the group of those auto­
morphisms of FL(X) induced from permutations of X which move only 
finitely many elements. The orbits of G are antichains since if 

u < UG for G E G' then Gn = 1 for some n and hence 
2 n 

u < UG < UG < ••• < UG = u. Let X be a countable subset of X. 
o 

Each element W of FL(X) is a word in finitely many letters. 
Clearly we can find aGE G so that WG is a word in Xo. Since 
FL(X ) is countable, it follows that G has countably many orbits. 

o 
Thus FL(X) is a countable union of anti chains and thus contains 
no uncountable chain. These arguments work for every variety of 
lattices and also for Boolean algebras. 

The problem of when f has an order transversal is solved by 
the following theorem. 

THEOREM 1. Let f be a homomorphism from FL(X) onto L. Then f 
has an order-preserving transversal if and only if L satisfies 

(*) for each element a in L there is a finite subset Sea) 
of L such that if a ~ b in L then there is a 
c E Sea) n S(b) with a ~ c ~ b. 

If L satisfies (*), then L can be arranged into a well­
ordered sequence (a : a < K) such that each b E Sea) either comes a 
before a or at worst only finitely 
define g on a inductively. First 

a 
a. Then just as in Crawley's and a 

many places after a. We 
choose any inverse image u of a 
Dean's proof above, adjust u 

a 
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so that its order is correct with respect to those elements of 
Sea ) that come before a and the (finitely many) elements which a a 
directly precede a back to the last limit ordinal. It is easy 

a 
to see that g is an order-preserving transversal. 

The proof of the converse is based on the fact that each 
element of FL(X) is in a sub1attice generated by a finite subset 
of X. 

For an application of this theorem consider the ordinal sum 
of two free lattices FL(X) and FL(Y) (this is the lattice on 
FL(X) U FL(Y) with the additional order relation u ~ V for all 
u E FL(X) and V E FL(Y». We denote this lattice FL(X) + FL(Y). 
It is a little surprising that FL(X) + FL(Y) is projective if and 
only if either X or Y is finite. or they are both countable. To 
see that FL(X) + FL(Y) is not projective when Y is infinite and 
X is uncountable suppose it satisfied (*). Let 
X. = {x EX: Is(x) I ~ i}. Then X = .11 X. and since X is 

"Z- "Z-<w "Z-

uncountable there is a k with Xk infinite. 

An element in a free lattice can be below at most finitely 
many generators. Choose Y1 E Y. Since each a E S(Y,) n FL(Y) is 

below at most finitely many elements of Y. and S(Y1) n FL(Y) is 

finite. but Y is infinite. there is a Y2 E Y such that Y2 i. a for 

all a E S(Y1) n FL(Y). Continuing in this way we can find 

Y1' ...• Yk+1 E Y such that Yj i. a for all a E FL(Y) n i~j S(Yi ). 
For ,each x E Xk and for each i there is an element 

a E Sex) n S(y.) with x ~ a ~ y .• Again. since S(y.) 
xYi "Z- xYi"Z- "Z-

is finite. the dual of the above remark implies that a E FL(X) 
xYi 

for at most finitely many x E Xk . Since Xk is infinite. we can 

choose x E Xksuch that a E FL(Y) for i = 1 •..•• k + 1. 
xYi 

But for such an x the a must be distinct. Hence 
xYi 

Is(x) I ~ k + 1. a contradiction. 

A related but unsolved problem is: whiah paptiaZZy opdeped 
sets aan be opdep embedded-into a fpee Zattiae? All of the 
lattices FL(X) + FL(Y) are sub1attices of free lattices since 
they are sub1attices of FL(X) + 1 + FL(Y). which are in fact 
projective [23]. Thus the complete bipartite partially ordered 
set induced on X U Y can be embedded into a free lattice. 
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Since every partially ordered set can be embedded into a 
lattice, Crawley's and Dean's result can be used to show that 
FL(X) , Ixi = ~ , is an ~ -universal partially ordered set. That 

o 0 

is, every countable partially ordered set can be order embedded 
into FL(X). The same proof in fact shows that FD(X) is an 
~ -universal partially ordered set. On the other hand the result 

o 
of Galvin and Jonsson shows that if P contains an uncountable 
chain then it cannot be embedded into a free lattice. With a 
more involved argument one can show that the partially ordered 
set induced from the atoms and coatoms of the Boolean algebra of 
subsets of an uncountable set cannot be embedded into a free 
lattice [23]. Thus not every bipartite partially ordered set can 
be embedded into a free lattice. In fact the problem of which 
bipartite partially ordered sets can be embedded into a free 
lattice is open. 

Excluded partially ordered sets playa role in Nation's 
proof of Jonsson's conjecture cited above. If a lattice L 
satisfies (W) and the following partially ordered set is embedded 

in L, then x i y V z and cyclically and dually. It follows from 
[49] that the sublattice generated by x, y, and z is free and 
hence infinite. Actually only five of the six relations of the 
form x i y v z are necessary to force L to be infinite. In fact 
if L contains 

then L must be infinite [35]. Ivan Rival has a similar result 
for lattices of breadth two which satisfy (W) [43]. 

§2 COVERS IN FREE LATTICES 

We say that a covers b in a lattice if a > b and there is no 
element c with a > c > b. We write a ~ b. If X is infinite 
FL(X) has no coverings. However, finitely generated free 
lattices have many coverings. Coverings in free lattices and 
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free modular lattices are particularly important to lattice 
theory. If a~ b in a lattice L, then by Dilworth's character­
ization of lattice congruences there is a unique maximal 
congruence t on L with (a, b) ¢ t. If L is a free lattice, then 
Lit is a finite, subdirectly irreducible lattice. Lattices of 
this form are called splitting lattices and were extensively 
studied by Ralph McKenzie [37]. By Jonsson's celebrated theorem, 
a subdirectly irreducible lattice cannot be in the join of 
finitely many lattice varieties without being in one of them. A 
splitting lattice cannot be in the join of an arbitrary collection 
of lattice varieties without being in one of them. Because of 
this property splitting lattices have played a very important role 
in lattice structure theory. Splitting modular lattices have even 
stronger structural properties (see §5). 

McKenzie has shown that one can recursively decide for 
lattice words u(xl' ... ,xn ) and V(xl, ... ,xn ) if U ~ v in 

FL(Xl, ... ,xn ) [37]. Perhaps the most important result on cover­

ings is that of Alan Day who shows that the finitely generated 
free lattices are weakly atomic. A lattice is weakly atomic if 
a < b implies there exist c and d with a ~ c~ d ~ b. Thus 
there is an abundance of coverings and thus of splitting lattices. 

The next theorem contrasts these results by showing that free 
lattices do not satisfy stronger atomicity properties. 

THEOREM 2 (R.A. Dean, unpublished). The element x v (y A z) of 
FL(x, y, z) has no cover. 

To prove this we define the length of a lattice word to be 
the 'number of JOln and meet signs which appear in it and length 
of an element of FL(X) as the minimum of the lengths of the words 
which represent the element. 

Now suppose x v (y A z) ~ w in FL(x, y, z). Then 
W = x V (y A z) V wand we can choose an element u of minimal 
length such that w = x V (y A z) V u. Since x V y does not cover 
x V (y A z), u cannot be y or z or x. By its minimality u must 
be join-irreducible. Thus u =Au. where each u. has smaller 

1.- 1.-

length than the length of u. Notice also that u ~ y and u ~ z 
cannot both hold. Thus we may assume u i y. Now 

x V (y A z) ~ x V (y A z) V (u A y) ~ x V (y A z) V u W. 

Since x V (y A z) ~ w, we must have one equality. If 
x V (y A z) V (u A y) = x V (y A z) V u = w, then 
u ~ x V (y A z) V (u A y). Applying (W) we get that for some 
i,u. ~ x V (y A z) V (u A y) = w. But u ~ u. and so 

1.- 1.-
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uj = X V (y 1\ z) V u., violating the minimality of u. 
7-
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If x V (y 1\ z) = x V (y 1\ z) V (u 1\ y), then, since x, y, 
and z are meet-prime, a few applications of (W) gives us u S z. 
Let a E Aut(FL(x, y, z)) be the automorphism with xa = x, ya = z, 
and za = y. Since u S z and u i y, ua I u and so ua and u are 
incomparable. However (x V (y 1\ z))a = x V (y 1\ z) and thus 
x V (y 1\ z) ~ Wa. (W) implies that x V (y 1\ z) is meet­
irreducible and hence can have at most one cover. Thus wa = w; 
that is, x V (y 1\ z) V u = x V (y 1\ z) V (ua). This implies 
u S x V (y 1\ z) V (ua). Since u i x or y 1\ Z or ua, (W) yields 
that for some i,u. S x V (y 1\ z) V (ua) = w, which again violates 

7-

the minima1ity of u. 

§3 LATTICES FREELY GENERATED BY PARTIALLY ORDERED SETS 

'The lattice freely generated by a partially ordered set P, 
denoted FL(P) , is defined by the property that any order 
preserving map from P into a lattice L can be uniquely extended 
to a homomorphism from FL(P) to L. The structure of these 
lattices was described by Dilworth [16] and Dean [11]. They are 
projective if and only if P satisfies (*) of Theorem 1. 
M.E. Adams and D. Kelly [1] have shown that if P has no chains of 
cardinality K then neither does FL(P) (K an infinite cardinal). 
Moreover this result holds in any variety of lattices. In 
particular it holds for modular and distributive lattices. 

R. Wille has shown that if P is a finite partially ordered 
set then FL(P) is finite if and only if neither 1 + 1 + 1, 2 + 2, 
nor 1 + 4 can be embedded in P. Here, for example, 2 + 2 is the 
partially ordered set consisting of two two-element chains. 

In a related problem I. Rival and R. Wille [45] characterized 
those P for which PL(P) can be "drawn." 

THEOREM 3. Let P be a finite partially ordered set. The follow­
ing are equivalent: 

(i) FL(x, y, z) is not a sub lattice of FL(P) ; 
(ii) FL(P) has breadth at most 3; 
(iii) neither 1 + 1 + 1, 2 + 3, nor 1 + 5 can be order 

embedded into P; 
(iv) FL(P) is a sub lattice of FL(H). 

Here H is the following partially ordered set: 
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One will readily agree that FL(X, y, z) cannot be drawn. 
For example FL(X), Ixi = ~ , is a sublattice of FL(x, y, z). To 

o 
show FL(H) is "drawable," they draw it. 

The lattices FL(2 + 2) and FL(l + 4) are both infinite but 
have nice diagrams given by H. Rolf in [46]. 

Wille has also characterized those partially ordered sets 
P with FM(P) finite. (FM(P) is the free modular lattice generated 
by P.) , 

THEOREM 4. 
equivalent: 

(i) 
(ii) 

(iii) 

For a partially ordered set P the following are 

FM(P) is finite; 
FM(P) is a subdirect product of copies of the two 
element lattice and of M3; 
neither 1 + 1 + 1 + 1 nor 1 + 2 + 2 can be embedded 
in P. 

In a similar vein, I. Rival, W. Ruckelshausen, and B. Sands 
have shown that a certain infinite partially ordered set they 
call the "herringbone" can be order embedded into every infinite, 
finitely generated lattice of finite width [41]. Dwight Duffus 
and lvan Rival have shown that if a distributive lattice D can be 
order embedded into a lattice L then D is a homomorphic image of 
a sublattice of L [18]. 

§4 FIXED POINTS FOR LATTICE POLYNOMIALS 

Let L be a lattice and w(xl, ..• ,xn ) a lattice word (or term). 

If we replace all but one of the variables in W with fixed 
elements of L, we obtain a function f(x) = w(x, a2, •.• ,an) from 

L to L. Such a function is called a unary algebraic function or 
unary polynomial on L. Although such functions will not in 
general be homomorphisms, they will always preserve order. . 
Recently there has been a great deal of interest-in order preserv­
ing maps on a partially ordered set which have a fixed point; 
i.e., an element x with f(x) = x. In this section we will address 
a similar, but new problem: for which lattices does every unary 
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algebraic function have a fixed point? Let F denote those 
lattices which have this property. We will not completely answer 
this question but will give some partial results which are 
intended to draw interest to the problem. Recall the result of 
Anne Morel and A. Tarski [8], [47]: every order-preserving map 
from a lattice L to itself has a fixed point if and only if L is 
complete. Thus F contains all complete lattices. Not all lattices 
in F are complete. For example, w E F (w is the natural numbers 
under their usual order). In fact every distributive lattice is 
in F. More generally, every locally finite lattice is in F. (A 
lattice is locally finite if every finitely generated sublattice 
is finite.) To see this result let f(x) = w(x, a2 , ••• ,an ) be a 

unary polynomial on a locally finite lattice L. Let Ll be the 

(finite) sublattice generated by a2 , ... , a . n Then f restricted 

to Ll is a unary polynomial on Ll and has a fixed point since Ll 

is finite. This will be a fixed point for L. 

On the other hand we can ask if there are any lattices not 
in F. The answer is yes. In fact f(x) = ««(x A b) V c) A a) 
V b) A c) V a has no fixed points in FL(a, b, c). This is proved 
using some lemmas of Whitman [49]. We shall forego this proof 
and present instead a modular example. Let L1 and L2 be the 

modular lattices diagrammed in Figure 1. Let f(x) = 
««x A a) V b) A c) V d) A a. Clearly if f(x) = x, then x ~ a. 
In Ll one 'easily checks that f(O) = ° and this is the only fixed 

point. In L2 f(a) = a and this is the only fixed point. Let L 

be the sublattice of Ll x L2 generated by (a, a), (b, b), (c, c), 

and (d, d). The unary polynomial f acts on Ll x L2 by f(x, y) = 

(f(x), fey)) for (x, y) E Ll x L2. Thus (0, a) is the only fixed 

point for Ll x L2. The proof is completed by showing (0, a) ~ L. 

Since L is generated by (a, a), (b, b), (c, c), and (d,d) , 
(0, a) E L if and only if there is a lattice word w(a, b, c, d) 

Ll 
b, d) = ° 

L2 
b, d) where of such that w (a, c, and w (a, c, a, 

L. 
course w b(a, b, c, d) is the evaluation of w(a, b, c, d) in L .. 

b 

In order to prove that this is not possible we need a lemma. 
In FL(a, b, c, d) define inductively a., b., c., d. by a = a 

b b b b 0 ' 

b = b, c = c, d = d and a.+l = a. A (b. V c.) A (b.· V d.) A 
000 b b b b b b 

(c. V d.) with b.+l , c.+l ' and d.+l defined similarly. We claim 
b b b b b L2 

that if u(a, b, c, d) E FL(a, b, c, d) and u (a, b, c, d) ~ a 
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holds in L2 then u(a, b, c, d) ~ ai holds in FL(a, b, c, d) for 

some i and that similar statements hold for b, c, and d. We 
prove this lemma by induction on the length of u. Suppose 

L2 
u ~ a and suppose u = ul V u2 where 

L2 
length than u. If either u l ~ a or 

u l and 

L2 
u > 

2 

u 2 have shorter 

a holds, it is easy 

to complete the proof. So we assume neither is above a. By 
examining L2 we see that this implies that one of them contains b 

and the other c, or one of them contains b and the other d, or 
one of them contains c and the other d. Assume the former. Then 
by induction ul ~ bi and u 2 ~ c j for some i and j. Letting 

k max{i,j} we have ul ~ bk and u2 ~ ok and hence, 

u = ul V u2 ~ bk V ck ~ ak+l . The cases where u is a generator 

or a'meet are easier and left to the reader. 

Now if 
L2 

= a in L2 then ~ a. for some i. But then w w 
1--

LI LI 
It is easy to see that 

LI 
> ° for all i. Hence w ~ a. a. 

1-- 1--
LI 

" 0, showing that (0, a) ~ L. w 

It is possible to draw L. However it has a strange twist 
which makes its diagram awkward. 

In summary, F does not contain all lattices but does contain 
all complete lattices and all locally finite lattices. A common 
generalization of these last two classes is the class of locally 
complete lattices; i.e., those lattices such that every finitely 
generated sublattice is a complete lattice. Clearly this class 
is contained in F. Does F contain any other lattices? 

§S MODULAR LATTICES 

Problems in the theory of modular lattices are usually more 
difficult than the corresponding 'problems for the class of all 
lattices or of distributive lattices. Free modular lattices are 
much less understood than free lattices. In this section we 
discuss some of the results and problems concerning free modular 
lattices which are related to order. 

For free lattices we have Whitman's algorithm for deciding 
if two lattice words are equal. We now know that there is no 
algorithm to decide if two lattice words are equal in the free 
modular lattice. It follows that the variety of modular lattices 
is not generated by its finite members. These results depend on 
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the "projectivity" of certain partial modular lattices. We will 
briefly outline the main ideas of the proofs. 

The classical von Stadt coordinatization of projective 
geometries of dimension at least three shows how to define a ring 
from the geometry. Von Neumann showed how to extend these ideas 
to obtain a ring from any modular lattice which contains a 
certain partial lattice known as a 4-frame (here we shall use the 
term frame). A frame in a modular lattice is a set of seven 
elements {a1, a 2, a 3, a4, c 12 ' c 13 ' c 14 } such that 

a1 A (a 2 v a3 v a4 ) = a1 A a 2 A a3 A a4 and symmetrically 

a1 V c1j = a1 V aj = aj V c1j and a1 A C1j = a 1 A aj = aj A clj 

for j = 2, 3, 4. This says {a 1 , a 2 , a 3 , a4 } generate a 16 element 

Boolean algebra with a1, a 2, a 3, a4 as atoms and a1 , aj , c1j 
generat~ M3 • In a modular lattice containing a frame we let 

RL = {x E L: x V a2 = a1 V a2, x A a 2 

and define for x, y E RL 

(*) 

where 

Von Neumann shows that with these operations RL is a ring with 1. 

To get an idea of how these definitions arise let R be a ring 

with 1 and let L be the lattice of submodu1es of R4 as a left R 
module. Let a1 {(x, 0, 0, 0): x E R}, ... , a4 = 
{(a, 0, 0, x): x E R}, c 12 = {(x, -x, 0, 0): x E R}, .•. , C 14 
{(x, 0, 0, -x): x E R}. The reader can check that 
R(-l, 1", 0, 0) E RL and that R(-l, 1", 0, 0) + R(-l, 8, 0, 0) 

R(-l, 1"+S, 0, 0) where the first "+" is defined by (*). 

Frames are projective in the class of modular lattices. 
This means that if we map a free modular lattice, FM(X), onto the 
lattice L of submodu1es described above, we can find a frame 
a1 , a2 , a 3 , a4 , c12 ' c13 ' c14 in FM(X) which maps to aI' a2 , a 3 , 

a4 , c12 , c13 ' c 14 in L. In particular we get a ring in FM(X). 



368 R.FREESE 

Unfortunately it need not be R. In fact it is probablyll in 
most cases. 

Now let K p 
and K 

q 
be countable fields of distinct finite 

characteristics P and q. The lattice L of subspaces of a four 
p 

dimensional vector space over Kp has a frame aI' ... , c14 similar 

to the one defined above for L. Also L , the lattice of subspaces 
q 

of a four dimensional vector space over Kq , has a frame ai, ai' 
aj, a~, ciz' ci3' ci4' In Lq the lattice of all subspaces of 

ai V ai .is just the lattice of subspaces of a two dimensional 

vector space over K . 
q 

It is easy to see that this lattice is M, 
w 

the lattice with 0, 1, and countably many atoms. Similarly 
quotient sublattice 1/a3 V a4 of L is M . Form "the lattice 

the 
L , p w 

from Land L by identifying these two copies of M. This is a p q w 
modular lattice by the results of R.P. Dilworth and M. Hall [15], 
[Z8] • 

Consider a homomorphism of FM(X) onto L. We can find frames 
aI' ... , c14 and ai, ... , ci4 in FM(X) which map to the corre-

sponding frames in L. These frames determine two rings Rand 
p 

Rq , and by choosing aI' ... , c 14 properly, Rp has characteristic 

p and R has characteristic q. Furthermore the two frames can be 
q 

lined up so that there is a natural bijection from R onto R . 
P q 

If there was a lattice homomorphism g from FM(X) to a finite 
lattice such that g(a l ) f g(a l A a Z)' then g is one-to-one on the 

frames and these frames would determine two nontrivial finite 
rings Sand S of characteristics p and q with Is I = Is I. But 

P q P q 
this is clearly impossible since a finite ring (with 1) of 

characteristic p must have order pn. This implies that the 
variety of modular lattices is not generated by its finite 
members. By using some ingenious skew-field constructions of 
A. Macintyre and P.M. Cohn, it is possible to extend these ideas 
to show that the word problem for the free modular lattice on 
five or more generators is unsolvable. 

The free modular lattice on three generators is finite [14]; 
however, FM(4) is infinite and it is an open problem to determine 
whether it has a solvable word problem. In the remaining part of 
this section we review some of the important problems for free 
modular lattices and their connection with the word problem for 
FM(4) . 
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As we pointed out earlier, covers in free modular lattices 
are particularly important in structure theory. If U r V in 
FM(n) , then by Dilworth's characterization of lattice congruences 
[17] there is a unique largest congruence t(u, v) not containing 
(u, v). Thus associated with every cover, U rV, of FM(n) is a 
subdirectly irreducible modular lattice, namely M = FM(n)/t(u, v). 
If xl' ... , xn are the generators of FM(n) and a l , ... , an are 

their images in M, then since (u, v) ~ t(u, v), u(al, ... ,an ) ~ 

v(a l , ... ,an). Thus the relation u = v fails in M for a l , ... , an' 

Now the modularity of FM(n) implies that 8(u, v), the smallest 
congruence identifying u and v, is an atom of the congruence 
lattice of FM(n) ([7] 10.3 and 10.5). Hence 8(u, v) A t(u, v) = 0 
in this congruence lattice. This says that FM(n) is a subdirect 
product of M and FM(n)/8(u, v). Of course FM(n)/8(u, v) satisfies 
the relation u = v. In fact it is not hard to show that if L is 
any modular lattice generated by n elements then either L 
satisfies the relation u = v for its generators or L is a sub­
direct product of M and a lattice Ll which satisfies the relation 
u = v. 

There are several important open questions about these ideas. 

(1) If u r v in FM(n) is FM(n) N(u, v) finite? 

(2) Is FM(n) weakly atomic? 

In the case of free lattices both of the above questions can 
be answered yes [37], [9]. For modular lattices we only know 
that at least one of them has a negative answer. As pointed out 
abo~e, the elements al > a l A a 2 in FM(5) become identified under 

any homomorphism of FM(5) into a finite lattice. If FM(5) were 
weakly atomic there would be elements u, v with 
a l :0> u r v :0> a l A a2• But then the natural map from FM(5) to 

M = FM(5)lt(u, v_)_does not identify u and v and thus does not 
identify a l and a l A a2 • Hence M must be infinite. That is 

either weak atomicity fails for FM(5) or there is an infinite 
lattice of the form FM(5)/t(u, v), u :>-v. 

A subdirectly irreducible modular lattice L is called a 
splitting modular lattice if there is a lattice equation E which 
fails in L such that every variety of modular lattices either 
satisfies E or contains L. For example, M3 is a splitting 

modular lattice since we can take E to be the distributive law. 
Also every lattice of the form FM(n) /t(u, v) for u :>- v is a 
splitting modular lattice with E: u = v. 

(3) Is every splitting modular lattice of this form? 
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Although these concepts are not well understood, we do have 
several examples. In [19] infinitely many lattices of the form 
FM(4)/~r(u, v), for u>- v, are given. In [21] it is shown that 
the lattice of subspaces of an n-dimensional vector space over 
a finite prime field is a splitting lattice if 4 ~ n < 00. On the 
other hand, M4, the six element lattice of length two, is not a 

splitting lattice [10]. 

Although we do not know if the word problem for FM(4) is solv­
able, C. Herrmann has shown that the free modular lattice generated 
by two complemented pairs does have a solvable word problem [29]. 
In fact he lists all subdirect1y irreducible modular lattices which 
can be generated by two complemented pairs. Most of these lattices 
are of the form FM(4)/t(u, v) for u >-v in FM(4). In his proof he 
assumes L is a subdirect1y irreducible modular lattice generated 
by two complemented pairs but not on his list. Then L must satisfy 
all ~he relations u = v. Herrmann uses these relations in an inge­
nious way to eventually show that 0 = 1 in L; i.e., L is trivial. 

There is some hope this sort of technique can be applied to 
FM(4). Indeed there is some evidence that four generated sub­
directly irreducible modular lattices are a much more restricted 
class than five generated ones. Representation theorists have 
considered endomorphisms of vector spaces which preserve four 
given subspaces. These lead to algebras of "tame representation 
type" whereas with five subspaces one gets algebras of "wild 
representation-type" [3], [4], [26]. 

On the other hand the class of four generated subdirect1y 
irreducible lattices is not too restrictive, as the next theorem 
sl;1ows. 

IX 
THEOREM 5. There are 2 0 projective planes generated by four 

IX 
points. Thus there are 2 a simple~ complemented modular lattices 
which are four-generated. 

In order to prove this result we need to recall 
Marshall Hall's free plane construction [27]. We view a projec­
tive plane TI as a set of points and set of lines and an incidence 
relation between them (which says whether or not a given point is 
on a given line.) The axioms are: (i) each pair of distinct 
points are on a unique line, (ii) for each pair of distinct lines 
there is a unique point which is on both, (iii) TI contains a 
quadrangle (four points, no three on a line). Projective planes 
may be viewed as modular lattices with the points as atoms, the 
lines as coatoms and p ~ t if and only if p is on t. 

A collection TI of points, lines, and an incidence relation 
o 
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between them is a partial plane provided each pair of distinct 
points is on at most one line. It follows that each pair of 
lines has at most one point on both. If TI is a partial plane 

o 
containing a quadrangle, it can be completed toa plane as 
follows. For each pair of distinct points PI and P2 in TIo with 
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no line containing both, we add a new line tand extend the 
incidence relation by saying PI and P2 are on t. The result is a 

new partial plane TIl' TI2 is formed by a dual process from TIl' 

Thus we obtain a sequence TIo ~ TIl ~ TI2 ~ We call TIn the 

n-step free extension of TI. Then it is easy to see that TI = UTI. 
o ~ 

is a projective plane extending TI . 
o 

IX 
We shall construct our 2 0 planes by modifying the above 

construction. In each case TI will consist of four points and no 
o 

lines. Then TIl' TI2 , ..• shall be constructed so that 

(i) TI. C TI. if i < j (this implies that both incidence and non­
~ - J 

incidence is preserved); (ii) TI is a partial plane generated by 
n 

TIo; (iii) if n is even, TIn+l - TIn has only lines and every pair 

of points in TIn lies on a line in TIn+l , and dually for n odd. If 

x E TI - TI I' we say x has rank n and write p(x) = n; note lines n n-
always have odd rank and points even. Note that these conditions 
imply TI = UTI will be a projective plane generated by four points. 

n 
Also note that these conditions imply that each line t of TI 
contains only finitely many points with rank le'ss than p(t) and 
that all but at most one of these points must have rank p(t) - 1. 

Let PI' P2, P3' be a set of prime numbers, with Pi ~ 5. 

Let p. be a projective plane coordinatized by the field with p. 
~ ~ 

elements, i I, 2, 3, .•.. Recall that every quadrangle in p. 
~ 

generates it. We shall construct TI with p. C TI, i = I, 2, 3, •.• 
~ -

Let TIo have only four points and let TI6 be the 6-step free 

extension of TI . 
o 

The reader can check that TI6 has 8 points with 

no two joined by a line. Use 4 of these points to generate a 
subplane isomorphic to Pl' We shall denote this subplane Pl' 

This construction differs from the free plane construction in 
that, for example, if p, q, p E PI are points in TIn with no two 

on a line in TIn' in TIn+1 we can add one line which contains all 

three provided that p, q, p are collinear in Pl' All other lines 
are added freely. 
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In TI12 the other four points will have again created 8 points 

no two on a line. In TI18 four of these points will have created 

8 new points, no two on a line. Now PI C TI for some n and it - n 
is clear that there are 8 points of rank greater than n with no 
two on a line. Four of these points are used to generate P2• 

Continuing in rhis way we obtain a plane TI with p. C TI, 
'/..-

i = 1,2, ... Notice that if x E p. and yEp., i:f. j, then 
'/.. J 

rex) :f. r(y). Also notice that if ql' ... , qk are points on l 

with r(qi) < r(l), i = 1, ... , k and k > 2 then land ql' ... , qk 

are in some Pi' 

Now suppose Po is the plane over GF(p ) where p ~ 5 
o 0 

is a 'prime with p :f. p., i = 1, 2, ..•• We claim P is not a 
o '/.. 0 

subplane of TI. Suppose P C TI. Pick an element of highest rank 
0-

in P ; say it is a point q. In P there are Po + 1 lines 
o 0 

ll' ... , l +1 containing q and all but at most one of these must 
Po 

have rank r(q) - 1. By the dual of the above remarks, q, 
ll' ... , l +1 must lie in some Pt' Choose one of these lines, 

PQ 
say ll' with r(ll) = r(q) - 1. Then every point of Po on II has 

rank less than r(ll) or rank equal to r(q). If II contains 

exactly two points of P of lower rank, then, since p ~ 5, II 
o 0 

contains ql' q2 E Po with ql :f. q :f. q2 and r(ql) = r(q2) = r(q). 

Clearly ql' q2 E Pt' If there is another line, say l2 with this 

same situation, we obtain q3' q4 on l2 with q3' q4 E Pt' But 

ql' q2' q3' q4 form a quadrangle arrd so generate Po' Hence 

P CPt' which is impossible. 
0-

Thus for all but possibly t\lTO of the lines ll' .... , l + l' 
Po 

all points except q and 
than r(l.) = r(q) - 1. 

J 
hence l. and all points 

J 

possibly one other must have rank less 
There are more than two such points and 

of P of lower rank on l. must lie in 
o J 

some p. but l. E Pt so the points of lower rank must also be in 
'/.. J . 

Pt' It is now easy to see that there is a quadrangle of Po in'p t , 

which is impossible. 
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~ ~ 
Since there are 2 o. subsets of the primes, we have 2 0 

nonisomorphic projective planes generated by four points. 

This result improves the theorem of I. Rival and B. Sands 
~ 

[42] that there are 2 0 four-generated simple (nonmodular) 
lattices. They, however, show that every countable lattice can 
be embedded into a four-generated simple lattice. Is this true 
in the modular case? The author conjectures it is not. 

~o 
The existence of 2 simple four-generated modular lattices 

means serious modifications of Herrmann's techniques will be 
required in order to solve the word problem for FM(4). On the 
other hand these lattices do not rule out a positive solution. 
In fact, since every partial plane can be extended to a plane, 
it is easy to show that one can algorithmically decide whether or 
not two lattice terms are equal in all projective planes. 
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ADDENDUM 

In §4 the proof that (O,a) ~ L may be simplified as follows. 
It is easy to see that there are homomorphisms ~.:L. ~ M , 

1- 1- 4 
i = 1,2, where M4 is the length two lattice with atoms a,b,c,d, 


