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O n  s o m e  i d e n t i f i e s  va l id  in m o d u l a r  c o n g r u e n c e  var ie t i e s  

RALPH FREESE, CHRISTIAN HERRMANN, and ANDR,~.S P. HUHN 

Freese and J6nsson [8] showed that the congruence lattice of a (universal) 
algebra in a congruence modular variety is always arguesian. On the other  hand 
J6nsson [16] constructed arguesian lattices which cannot be embedded into the 
normal subgroup lattice of a group. These lattices consist of two arguesian planes 
of different prime order  glued together over a two element sublattice (cf. Dilworth 
and Hall [3]). In [11], Herrmann and Poguntke derived identities not valid in 
those lattices but valid in all lattices of normal subgroups. In the present paper  we 
show that these (and more general) identities hold in the congruence lattice of any 
algebra in a congruence modular variety. This implies, in particular, that the class 
of arguesian tattices does not form a congruence variety in the sense of J6nsson 
[17]. (This result has been proved by the first author and announced in [7]). 
Moreover,  one concludes as in [11] that a modular congruence variety cannot be 
defined by finitely many identities provided it contains the rational projective 
plane or two projective planes of distinct prime orders or a subgroup lattice of a 
group C~:. 

1. Definitions and main results 

For subgroups the verification of the lattice identities to be constructed 
reduces to the trivial observation that isomorphic abelian quotients have the same 
exponent.  Consequently, we introduce "projec t ive"  lattice relations which yield 
for certain quotients: 
I isomorphy 

II "coordinate systems" allowing one to speak about "exponents" .  

Ad L Projective quotients. If a and b are elements of a modular lattice such 
that a>-b then we write a/b={xl a>--x>--b}. We write a/b/~c/d as well as 
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ctdNta/b if a + d = c  and ad=b .  Then ,  c k x = x + d  and 4 ~ - t y = y a  define 
i somorph i sms  be tween  a/b and  c/d which are inverse to each  o the r  we  write 

alb ,~ ,c /d .  If  a/b = ao/bo, c/d = aJb ,  and a~_l/b,_l ,~ ,, adbl or  
a~_~/b~_~",a.,aJb, for  l<-i<-n then  a/b is projective to c/d in n s teps  via the 
a~/b~- and we write a / ~ - , c / d  where  4~ = ~b, o . . . .  4'1. 

Ad  II. v. Neumann frames. A sequence  ~i = (ao . . . . .  a , )  of e l emen t s  of a 
modu la r  lattice L is called independent if a , ( a o + ' "  + a , _ l ) = H ~ i  for  l<--i<-n. 
Then ,  a~ = a  i implies a, = a j  = H a  and the a ~  H~ fo rm the set  of  a toms  of a 
boo lean  sublat t ice of L with smal les t  e l ement  /-hi. A sequence  ~i= 

(a0, .  � 9  am, a 0 1 , . . . ,  a0,)  fo rms  a frame of o rder  n + 1 if (do . . . .  , a , )  is indepen-  
den t  and if a o + a o i  = a , + a o ,  = a o + a l  and aoao~ =a~ao~ =aoa~ for  l<--i<--n. This 
is, in essence,  the definit ion of v. N e u m a n n  [18], cf [10], [5]. As  a genera l  
re fe rence  for  lattice theory  we use [1]. F o r  arbi t rary  n and odd  m let J~,m be  the 

modu la r  lattice freely gene ra t ed  by 

a = (ao . . . . .  a , ,  a o l , . . . ,  ao , ) ,  /~= (bo . . . . .  b,, bol . . . .  , bo,),  g~ = ( C x , . . . ,  c,~), 
d -- (d~ . . . . .  am) 

s u b j e c t  to re la t ions express ing tha t  d and 6 are f r ames  of o rde r  n + l ,  
~d/(at  + "'" +a~)/~ c l /d l ,  ci/di.~ ci+l/di+l for  even and ci/di',aq+l/di+i for  
odd i (1 --< i --< m - 1), and c,,/d,,, = bo/1Jb. 

P R O P O S I T I O N  1. J~.,, is a projective modular lattice. 

Let  W,.,,  and Fn.m the  word  a lgebra  and the modu la r  lattice with 4n  + 2 m  + 2  
free genera to rs  ~, ~, ~, ~7 and  ck:W,,,,---~F,,m and 7r:F,,,,---~J,,,, the  canonical  
h o m o m o r p h i s m s .  By Propos i t ion  1 the re  exists an e m b e d d i n g  e:Jn,,,-~F,,,~ such 
that  7r o e is the identi ty m a p  on J,,m. Choose  te rms  ~, etc. in W,.,,  such that  

rkgti = ca1, ckgtoi = ~aoi, ckb = ebl, 4)boi = eboi, ck~ = eq, rkdi = edi (the p roo f  of Prop.  
1 indicates one  par t icular  choice).  Then ,  for  any lattice t e rm w in 2n  + 1 var iables  
let ,&,,~(w) denote  the fol lowing lattice identity: 

( ' ' "  ( l~0w(ao . . . .  I~on)~ dl )C2 " ' "  )Cm-l ' t -  I~ra = b0w(b0 ,  " ' '  , /~0n)" 

Define special  lattice t e rms  wk in var iab les  z0, Zl, z2, z01, z02 by induct ion:  

Wo = Zo, wk . i  = ((wk + z2)(Zo2 + zl)  + (z,  + z2)(Zol + Zog)(Zo + zO 

The  identi t ies 3'n,m(W), whose  intuit ive meaning  will be  made  c learer  below,  
give in format ion  on the  character is t ics  of two rings which m a y  be  used to 
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coordinatize certain modular lattices. The identity 3',,m(wk) in these lattices says 
that if k is zero in one of the rings, it is zero in both. 

T H E O R E M .  For all n, odd m, and lattice terms w are the identities 3,n,,.(w) 
valid in all congruence lattices L of algebras in congruence modular classes which 
are closed under finite subdirect powers. None of the identities "yn,,.(wk) (m odd, n, 
k -> 2) is a consequence of the modular or even the Arguesian law. 

For the proof let ~:Wn,~----~L be any evaluation in L. Then the elements 
ao = Oao . . . . .  dn = ~dn satisfy the relations defining Jn,m. In particular, d and 6 are 
frames of order  n + 1 and ao/l-Id is projective to bo/lIb via the q/dv Denoting the 
canonical isomorphism by ~b the left hand side of 3'n.,,(w) becomes just 
ck(aow(d)). Thus, the proof of the first claim is immediate by the following 

PROPOSITION 2. Let L be as in the Theorem, d and 6 frames of order n + 1, and 
ao/Hd ~4, bo/IIg. Then there is an isomorphism ~ of .V.d/lid onto ~b/IIb such that 
q~a, = b,, q~ao, = bol (1 <-i < -- n), and Sx = ckx for l ld <-x <- do. 

In addition, such a lattice is arguesian (Freese and J6nsson [8]) and for any of 
its frames d the interval .,~d/Hd can be embedded in the subgroup lattice of an 
abelian group (see Prop. 12 below). One might ask whether  these properties 
suffice to characterize lattices embeddable in congruence lattices of algebras in 
congruence modular varieties (lattices of normal subgroups of (abelian) groups). 
We suspect that is not the case. 

To prove the second claim of the Theorem consider a field F and let S be the 
lattice of F-l inear subspaces of an n + 1-dimensional F-vector  space E with basis 
eo . . . . .  en. Let  be ai and aoi the subspaces generated by ei and e~-eo, respec- 
tively. Then d = ( a o  . . . . .  ao~) is a frame of order  n + l  in S and wk(t~) is the 
subspace generated by ke~-eo--as  is easily shown by induction. Thus, aowk(d)= 
ao if and only if the characteristic of F divides k and aowk(d)= Hal, otherwise. 

Now, for given k choose F, S, d and F' ,  S' , /~ = d' such that char (F) divides k 
and char (F') does not. Let  L be the lattice which one obtains identifying ,~d with 
bo and a~ + �9 �9 �9 + an with/-//~ (s. Fig. 1). This is an argeuesian lattice according to 
J6nsson [16]. But it does not satisfy ~/n.,, (wk). To see this, substitute d,/~, ,~, d for 
the variables where q/di = bo/IIb (1 --< i --< m). Since d, b, 6, d satisfy the relations 
of Jn, m d~ takes the value a~ etc. whence the left hand side takes the value bo and 
the right hand side the value /-//~. 
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ci=b 0 b 2 

aOWk(~) =ao ~ al § az-- di=b OWk C~-*) --rI~ 

Figure 1 

2. The projectivity ot J . , ,  

In [5] it is pointed out that our concept of a frame (as a system of generators 
and relations) is (for modular lattices) equivalent to that of v. Neumann [18]. 
Thus, it is also equivalent to Huhn's  [13] concept of an n-diamond (cf [9; 1.7]) 
and we have the following (cf [4]). 

L E M M A  3. The modular  lattice freely generated by a f rame of  order n + 1 is a 

projective modular  lattice. 

From Freese [5] we recall 

L E M M A  4. Let  ~t be a f rame of  order n + 1 in a modular  lattice and  I Id  <-- bo <- 

ao. Def ine  bl =(bo + aoi)ai and b =  bo + " ' "  + b,. Then the fol lowing are f rames  of  
order n + 1: 

(a) d' where a[ = a~ + b and a~  = aoi + b 
(b) d" where a'; = bi and a'di = baoi 

L E M M A  5. Let  d be a f rame  of  order n + l in a modular  lattice and e i= 

~(aj  Ij~=i), eo~ =ao~+eoe~. Then  ~ is a dual frame of  order n + l  with I I~ t=H~,  

Z d  = ,~,, ai = II(ei I j7 L i), and aoi = eoi(ao + ai). 

Proof of  Prop. 1. Let 4, be a homomorphism of M onto Jn,m, M modular. In 
several steps we choose inverse images a ' ,  a'~ of the a~ etc. such that the relations 
of J,,,~ are satisfied, finally, whence there is a retraction map of J,,,, into M (cf. 
[2] [12]). See Fig. 2 for the case n + 1 = 2. 

Let ~ be the dual frame corresponding to 5 according to Lemma 5. By the dual 
of Lemma 3 there is a dual frame ~' in M which is mapped onto ~. Put c6 = ~ ' ,  
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Figure 2 

/ ~  1 ! I ? - -  ! f d~=e~, and choose dl--c~ such that di+l>d~,_ c~-d~§ for i even and 
c~+l-<c~, d~+~=C~+ld~ for i odd. 

t For /~ choose inverse images _dr . ,  first, and pass by Lemma 3 to a frame b' 
t l  t p t l  _ _  ! ~ l  i i  _ _  with Hb '>  Put c,.-1 = Cm-lbo, d=-l - Cm_ll-Ib , d = -  II1)', c . , -  c~-1 + d=" and 

I t  I I  ~ I t  ~ is ~ I t l  t !  I t  choose ci, di such that d I - d l - c i - c i  and c i /d i /~c i -1 /d i - i  if i is odd and 
c'/d'[ ",a c~[_l/d'[_l if i is even (i = m - 1 . . . . .  0). 

Applying Lemma (4b) to b, and c "  we get a frame /~" with bd= c "  and 
H/~" = d~. Applying the dual of Lemma (4b) to g,' and dd we get a dual frame ~" 

. . . . .  ~ . . . .  with eo - do and -- c~. Applying the dual of Lemma (4a) to ~" and Co we get a 
dual frame ~" with Xg"/e};',2' c~/dg. Finally, we choose d" as the frame corres- 
ponding to ~" by Lemma 5. Then ~i", /~", ~", d" is an inverse image of & /~, ~, d 
and satisfies the relations defining J,,,,. 

3. More about frames 

For the proof of Prop. 2 we need some results concerning isomorphisms in 
frames (Lemma 7, 9) and glueing of frames (Lemma 10, 11). The context is 
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modular  lattices. The  notations ~ ( T ,  ~ ) in a proof indicate that  modulari ty 

(independence, definition of a frame) has been used. The following is well 

known- -c f  [18]. 

L E M M A  6. L e t  d be a f r a m e  o f  order 3, c = (al  + a2)(am + ao2). T h e n  ax, a2, c 

and  aol, ao2, c are f rames  of  order 2. 

L E M M A  7. Le t  (ao, . �9 �9 an, bo, . � 9  bn) be independen t  and  for  each  i a~, b,, c~ 

a f r a m e  o f  order 2. T h e n  a, b, c, is a f r a me  of  order 2 where a = ao+  �9 �9 " + a , ,  

b = b o + " "  +bn, C = C o + " "  +%.  

Proof  by  induct ion on n. Write u = a b = a , b ,  and let be n >- 1 and a ' =  
ao+ - ' '  +a ,_~,  b ' = b o +  ' ' '  +b~_~, c ' = c o + ' " + C , _ l .  Then by the inductive 
hypothesis it holds a ' c ' =  b ' c ' =  a ' b ' =  u. We conclude 

a c < _ ( a + b ' ) c ~ ( a + b ' ) c n  + c  ' 

= (a + b ! ) ( ~  + bn)c,  + c' = c~c,, + c' = a,,b,, + c' = u + c' = c'. 
i 

It follows ac <-- ac'  <-- a ( a ' +  b') ~ a '  + a b ' .  a ' +  u = a' and ac <-- a ' c '  = u. 

C O R O L L A R Y  8. Le t  a be a f r a m e  o f  order at  least 2n  + 2. T h e n  for  each 

x <- a = ao + " " +a n  there are y a n d  z such x + y = x + z = y + z a n d  x y  = x z  = 

y z  = Fld. 

Proof. In the case x = a  let be b~=a,+~+x, co=aon+l ,  and q =  
(a~ + b~)(ao~ + ao , .~ .~) .  By L e m m a  6 the hypotheses of L e m m a  7 are satisfied and 
we may choose y = b  and z = c .  For a r b i t r a r y x  take y = ( x + c ) b  z = ( x + b ) c .  

L E M M A  9. L e t  g~ be a f r a m e  o f  order at least 2 n + 2 .  T h e n  there is an 

i somorphism o f  ao+ " "  +an /Hg t  onto a o + a , + l + " "  + a 2 J I I g t  wh ich  m a p s  a~ 

onto a~+~ and  ao~ onto aon+~ for  1 <---i <--n a n d  which  is the identi ty  on  ao / I Id .  

Proof. We write b~ = a~+~, bo~ = aon+~, and c~ = (th + b~)(ao~ + bo~) for 1 <- i -< n. 
Moreover,  put bo= ao ,  co=a2,+1,  a = a o + " "  +an,  b = b o + " "  +bn, c =  
C o + " "  +c , ,  a ' = a l + ' " a n ,  b ' = b ~ +  . . .  +bn, and c' = c l +  . ' .  +cn.  L e m m a  6 
and 7 give a ' +  c ' =  b ' +  c' -- a ' +  c '  and a 'c '  = b ' c ' =  a 'b '  = Hgt. Thus, we get a + c = 

a o + a ' + c ' + c o  = a o + a ' + b ' + c o  = a + b + c o  and 

ac = a ' c = a' ( a '  + b ')( c' + Co) = a'  ( c ' + ( a ' + b ')co) ~ a' c ' = H &  
i m t  



328 R. FREESE, C. HERMANN, AND A. P. HUHN ALGEBRA UNIX- 

The re fo r e ,  we have  a/  Ilgt .~ a + b + Co/ C and ,  by  symmet ry ,  a + b + Co/ C ~ b/  IIiL 
By modu la r i t y ,  4~x = ( x + c ) b  def ines  an i s o m o r p h i s m  of a / I I 5  o n t o  b/Ha.  W e  

have to  check tha t  it  has  the  add i t i ona l  p rope r t i e s .  Firs t ,  if x<.ao<--b t h e n  

4 ) x = ( x + c ) b ~ x + c b = x + I l g l = x .  Now,  le t  be  l<--i<--n. T h e n  

(a, + b ) ~ ( q  I j7 ~ i) = (a, + b)~(aj  + b i 117 ~ i))(.~(ci [ J~ i)) 

7 ( ~ ( b i l J ~  i ) ) ( Z ( q  I J ~  i))----- bc = H 5  

whence  

(a~ + c)b <- (ai + c)(a, + b) = a~ + c(a ,  + b) = ch + c, + (a~ + b )~ (c  i 117 ~ i) = a~ + c, 
m m 

and 

ckai = (ai + c)b = (ai + c)(ai + q )b  = (a~ + ci)b = (a, + bi)b 7 b,. 

Final ly ,  obse rve  tha t  ao, + c~ = ao, + boi by L e m m a  6 whence  

~baol = (ao, + c )b = ( ao, + boi + ~ (  cj I J ~ i) )b( ai + b) 

~ (ao, + bo, +(a, + b)Y.(cj I]7 ~ i))b 

= (ao, + bo~)b ~ ao~b + bo~ = aoi(bo+ a~)b + boi 7 ao~bo+ bo~ 7 bo~. 

L E M M A  10. Let  gt and l) be frames of order n + 1 and m + 1, resp., such that 
115 = 116 and ( Z t i ) ( Z r )  = ao = bo. Then  ~ = g~ * 6 with ci = ai (0 <- i <-- n), c.+i = hi, 

Co~ = ao~ (1 <- i <-- n) and Co,+~ = bo~ (1<-- i <- m) is a frame of order n + m + 1. 

Proof. I t  suffices to check  the  i n d e p e n d e n c e  of C o , . . . ,  Cn+m, i.e. Ck(C0+ " " " + 

CU-1) = H~ = Hg~ for  1 <-- k <-- n + m. F o r  k <- n this  fol lows f rom the  i n d e p e n d e n c e  

of ao . . . . .  a , ,  t r ivial ly .  L e t  be  k > n, ] = k - n. T h e n  it ho lds  

Ck (C0 + " " " + Ok-1)  = Ck ( ,~ t i  + b 1 + - �9 �9 + bj_l)  __. ( ~ 6 ) ( Y . I ~  + b I �9 �9 �9 + b . /_ l )  

~ ( ~ t ~ ) ( ~ / ~ ) +  b l +  " ' "  + b j - 1  = bo+  " ' "  + b i - 1 ,  

whence  ck(co+ �9 �9 �9 + ck- t )  = bj(bo+ �9 �9 �9 + bj_l) 7- [ / b  = /-/C. 
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4. Congruence amalgamation 

The key for the proof  of Prop. 2 lies in a special amalgamat ion  proper ty  for 
congruence lattices which has been investigated in Freese and J6nsson [8]. 
Namely,  given an algebra A and a congruence a on A we can consider ct as a 
subalgebra of A • A. Then,  the two natural projections of ct onto  A induce 
(according to the Isomorphism Theorem)  two lattice embeddings of the congru- 
ence lattice of A into the congruence lattice of a. Thus, if ~r is a class of algebras 
closed under the formation of finite subdirect powers (which includes such 
"congruences as algebras") then the class .~ of congruence lattices of algebras in 
~r has the following proper ty  (see [8] and [9; 1.3]): 

For every L in ~ and a in L there exists M in LP and embeddings 4'o,~bl of L 
in M such that 

( * ) (boX = ~btx for all x - a in L 
~box + 4'1x = ~b0a for all x <--- a in L 
4~,Y + CkoXCklx = 4"~x for all y -< x in L and i = 0, 1,. 

L E M M A  11. Let ~ have the above property and consist of modular lattices. Let 
be L in ~ and ~t a dual frame of order n + 1 in L. Then for each m >-- n there is a 
lattice M in ~,  an embedding 4) of L in M, and a dual frame b of order m + 1 in M 
such that 4"ai = bi and 4,ao~ = boi (0 <- i <-- n). 

Proof. For m = 2n choose M, 4'0, and 4'1 as above with a = ao - - see  Fig. 3. Then 
4"oH?t+4"1II~ = ao and /~= 4,oa "4,1a yields a dual f rame of order  m + 1 by the 
dual of L e m m a  10. Take  4' = 4'0- For arbitrary m --- n use iteration and restriction. 

%z~ = (plz~" 

~ ~ 0 0 a 0  =~la0  

~llIa 

Figure 3 

Proof of Prop. 2. We prove the dual s tatement  first: If ~ and d are dual frames 
of order n + 1 and 2~/Co ~ ,  ~d/do, then there is an isomorphism ~ of ~ / I I ~  onto 
s  with tkci = d,, @c0, = do,, and ~x = ~bx for Co<--x<--~. We consider the 

special case , ~  = ~ d  and Co = do. Choose M, 4,0, and 4,1 such that (*)  is satisfied 
with respect to L and a = c o = d o .  Then dPoH6+4,11-ld=cboCo=4,1do whence 
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e =  4,oC * 4,1d forms a dual frame of order  2 n +  1 in M by the dual of Lem m a  10. 
By Lemma 11 there is an extension M'  of M and a dual frame f of order  2n + 2  in 
M' which extends ~. Thus, according to Lemma 9 there is an isomorphism X of 

,~4,o~/I-I4,o~ onto 24,1d/l-I4,1d. Let  be Xo the restriction of 4,0 to ~,~/II~ and Xl the 
restriction of 4,1 to s Then X~ 1 o X ~ Xo is an isomorphism with the proper-  
ties we want. 

Now assume s ~ .~d/do. Choose M, &o, 4,1 such that ( * )  is satisfied with 
respect to L and with a=co. In M, 4,o(~d)+~b~(H~)=4,o(,~). It follows that 

4 ,da )~o (2a )= (~ (c o )~ ,o (~a )  . . . . .  ~,(c.)4,o(.~a),  ~l(CO,)6o(.~a) . . . . .  ~,1(co.)4,o(.~a)) 
is an n + 1 frame in M and clearly the map x---~x$o(Y.d) induces an isomorphism 

of 4,1(~) to $1(3)4,o(2~d) of the type we desire. Moreover  4,~(Co)4,o(,Ed) = 
~bo(Co)4,o(2~d) = 4,o(Co,~d) = $o(do). Now the proof for this case follows by applying 
the special case to the frames 4,o(d) and 6t(3)6o(2fg). Of course, the case when 
2~/Co ~ ~d/do is handled symmetrically. With the aid of the special case, longer 
projectivities may be handled by iteration of the above procedure.  

Finally, to derive Prop. 2 from its dual consider ti, g, 4' and let a, ~ the dual 
frames corresponding to a and g according to Lemma 5. Define an isomorphism 

of Z~/Co onto ~d/do by ~bx=do+4'aox and let ~b=4' be the extension of 6 
given above. Looking at the statements of Lemma 5 more closely we get ~a~ = b~, 

<~ao, + bo, and ~x = dp(ao(x + Co)) ~ ~ao~(X + Co) = boOk(x + Co) = bo(do + 4,x) ~ 4,x 
for H8 --- x - ao since ao/II6 2' .~/Co and bo/Hb ~ Zd/do. 

5. Odds and ends 

Let ,~ be a class of algebras which is closed under finite subdirect powers such 
that the class ~ of congruence lattices of algebras in ~ consists of modular 
lattices. 

P R OP OS I TI ON 12. For any frame d in a lattice L in ~ there is an embedding 
of the interval sublattice ~d/ H~t into the subgroup lattice of an abelian group. 

PROPOSITION 13. ~ consists either of distributive lattices, only, or there is a 
p, p prime or zero, such that for each m there is an L in ~ containing the 
m-dimensional projective g, eometry over the prime field of characteristic p as a 
sublattice. 

Proofs. Let d be a frame of order  n + 1 and put L,  = L. By Lemma 11 there 
exist lattices L,  c_/-~+l-q L,+2-q " " " in ~ and elements a.+i, ao.+i in L,+i (i >- 1) 
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such that for m -> n (a0 . . . . .  a0m) is a frame of order m + 1 in Lm. Let  M,~ be the 
interval sublattice ao + " '"  + am/Ilgt of L,, and M the union of the M,,. Due to 
Corollary 8 the dual of M is an abelian lattice in the sense of Hutchinson [14] and 
can be embedded into the subgroup lattice of an abelian group. Thus, M itself can 
be embedded,  too, as was shown by Hutchinson [15]. 

To prove Prop. 13 observe that if 2g contains a nondistributive lattice then 
there is a lattice L1 in ~ containing a nontrivial frame ~ of order  2. Since L1 is 
algebraic ao/l-Igt contains a prime quotient. Thus, by Lemma 4 one may assume 
that ao/ l ld  is a prime quotient, already. Choose L,,, am, aom as above. Then all 
quotients ai/ Flgt are isomorphic whence a o + �9 �9 �9 + a,,/  I-ld is an atomistic modular 
lattice of length m + l .  Thus, the sublattice generated by a0 . . . .  , a0m is the 
m-dimensional projective geometry over a prime field of characteristic pm--cf 

" [10]. Evidently, Pm= P2 for all m-----2. 
A modular congruence variety is a lattice variety generated by a class ~ as 

above. Let  ~ and o//. (n ~ 0) denote the quasivariety of all lattices embeddable in 
rational projective geometries and subgroup lattices of abelian groups of exponent  
n, respectively. Then H:F~ is the congruence variety generated by ~ and for n ~ 0 
HOg, ._ /_~n(~, .  ~_ oF) if and only if m divides n. 

The variety H~ is generated by the subgroup lattices of the finite powers of 
the cyclic group of order n if n ~ 0  and by the finite dimensional rational 
projective geometries if n = 0. This is due to the fact that every algebraic lattice is 
in the variety generated by its sections c/0 with c compact. From Prop. 13 we get 
(cf Freese [6]). 

C O R O L L A R Y  14. Every nondistributive modular congruence variety contains 
one of the varieties I-~p, p prime or zero. 

PROPOSITION 15. Let ~r be any class of lattices which is contained in a 
modular congruence variety and contains a class ~Fn, n not prime. Then ~r cannot be 

defined by finitely many first order axioms. 

In the proof we construct a sequence of lattices not in 9r an ultraproduct of 
which belongs to 5g. To show the first we use the following immediate consequ- 
ence of the Theorem. 

C O R O L L A R Y  16. Let L be lattice in a modular congruence variety and ~t and 

b frames of the same order in L such that ao/I-Id and bo/IIb are projective. Then the 
sublattices generated by d and b, respectively, are isomorphic. 

Proof of Prop. 15. n = 0: Use the lattices referred to in the introduction--cf .  
[11]. 
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Let n have different prime factors p and q. Let Lp and Lq be arguesian planes 
of order p and q respectively. For m---1 let M,, be the lattice which arises from 
Lp, Lq, and S,, (see Fig. 4) by identifying a line of Lp with u, the top of Lp with xl, 
the bottom of Lq with Ym, and a point of Lq with v. Then xl/u ~ v/y,,, whence Mm 
is not in ~. Let M be a nontrivial ultraproduct of the Mm. Then M can be 
decomposed into a linear sum in the following way: At the bottom (top) there is a 
plane over a field of characteristic p(q) and an upward (downward) infinite 
"snake" glued to an upper (lower) edge of the plane and in the middle there are 
several upward and downward infinite "snakes" one at top of the other. Since the 
"snake" parts are in 'Irk for any k the lower plane together with the attached 
"snake" is in ~p and the remainder in ~q. Since M is a subdirect product of these 
two parts M is in ~ and in ~ .  

F i g u r e  4.  S,,~ ( m  = 3)  

Let n be a proper power of the prime p. Then let U be the subgroup lattice of 
the abelian group C~,~ Cp~C~,2 where Cp2 is the cyclic group of order/7 2. Let V 
be the lattice of submodules of the R module R ~ R ~ R  where R = Fp[x]/(x 2) 
with Fp the field of order p. Observe that U is generated by its canonical frame of 
order 3--[cf. 10; 3.2J---while the sublattice generated by the canonical frame of V 
is isomorphic to a plane of order p since V is in ~p--see [10; 2.3]. Now, let M,~ 
be the lattice which arises from U, V and T,. (see Fig. 5) by identifying u with 
O~Cp~Cr,~, z with oCp2~Co~Co~, xl with the top of U, y,, with the bottom 
of V, w with xR~O~O,  and v with R ~ 0 ~ 0 .  Again, M,, is not in ~ since 
xl/u ~ v/ym but an nontrivial ultraproduct is in ~ since it is a subdirect product 
of its bottom belonging to ~/,'p~ and the remainder belonging to ~p. 

We say that a class ~ of lattices has exponent p, p prime, if every lattice in 5~ 
which is generated by a frame of order n + 1-----3 is an n-dimensional projective 
geometry of order p. 
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Figure 5. Tm (m = 3) 

C O R O L L A R Y  17. A nondistributive modular congruence variety not having a 
prime exponent cannot have a finite equational base. 

Proof. Let 8( be generated by ~ as above. Clearly, if ~ would have exponent  
p so would have 8(. Now, look at the lattices in 8( which are generated by a frame 
of order 3. By Corollary 12 the subdirectly irreducibles have to be in the list given 
in [10]. Therefore,  as sublattices of lattices in ~ have to occur ei ther a rational 
projective plane or two planes of different prime orders p and q or a subgroup 
lattice of a group C32. In the first case let d be a generating frame of order 3 for 
the plane. -As in the proof of Prop. 12 for each m -  2 there is a lattice Lm in Sg 
and a frame /~ of order  m + 1 in Lm which extends d. Let  S be the sublattice 
generated by b. Since S can be embedded in the subgroup lattice of an abelian 
group the subdirectly irreducible factors Si appear in the list given in [10]. But in 
Si the image of a generates the rational plane (since this is a simple lattice). 'Thus, 
Si has to be the m-dimensional projective geometry for every i and S has to be 
so, too. One concludes that/-FV o is contained in 8(. By similar arguments one gets 
that H~ and H~ (whence/-FVpq) is contained in 8( in the second case and H~ 

in the third. Thus, in any case Prop. 16 implies. 
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