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On some identities valid in modular congruence varieties

RarLPH FreeSgE, CHRISTIAN HERRMANN, and ANDRAS P. HuuN

Freese and Jonsson [8] showed that the congruence lattice of a (universal)
algebra in a congruence modular variety is always arguesian. On the other hand
Jonsson [16] constructed arguesian lattices which cannot be embedded into the
normal subgroup lattice of a group. These lattices consist of two arguesian planes
of different prime order glued together over a two element sublattice (cf. Dilworth
and Hall [3]). In [11], Herrmann and Poguntke derived identities not valid in
those lattices but valid in all lattices of normal subgroups. In the present paper we
show that these (and more general) identities hold in the congruence lattice of any
algebra in a congruence modular variety. This implies, in particular, that the class
of arguesian lattices does not form a congruence variety in the sense of Jonsson
{17]. (This result has been proved by the first author and announced in [7]).
Moreover, one concludes as in [11] that a modular congruence variety cannot be
defined by finitely many identities provided it contains the rational projective
plane or two projective planes of distinct prime orders or a subgroup lattice of a
group Cs..

1. Definitions and main results

For subgroups the verification of the lattice identities to be constructed
reduces to the trivial observation that isomorphic abelian quotients have the same
exponent. Consequently, we introduce ‘‘projective” lattice relations which yield
for certain quotients:

I isomorphy
II “coordinate systems” allowing one to speak about “‘exponents”.

Ad L Projective quotients. If a and b are elements of a modular lattice such
that a=b then we write a/b={x|a=x=b}. We write a/b 7 ¢c/d as well as
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c/ld~alb if a+d=c and ad=b. Then, ¢px=x+d and ¢ 'y=ya define
isomorphisms between a/b and ¢/d which are inverse to each other we write
albAgc/ld. U alb=ay/by,, c/d=a,b, and a_,/b_; ", albj or
a;_1/bi_y1 N gai/b; for 1=<i=n then a/b is projective to c¢/d in n steps via the
a/b, - and we write a/=,c/d where ¢ =¢,°---° ;.

Ad IL ». Neumann frames. A sequence d=(ay,...,a,) of elements of a
modular lattice L is called independent if a,(ag+ -+ +a,_y)=1IId for 1=i=n.
Then, g;=aq; implies a;=q;=1Id and the q;# IId form the set of atoms of a
boolean sublattice of L with smallest element Ild. A sequence 4=
(agy - -+, Q> Qo1s - - - » Agn) fOrms a frame of order n+1 if (ay, .. -, a,) is indepen-
dent and if ag+ay = a;+ag = ag+a; and agay; = a;ay; = aoa; for 1=i=n. This
is, in essence, the definition of v. Neumann [18], cf [10], [5]. As a general
reference for lattice theory we use [1]. For arbitrary n and odd m let J,,, be the
modular lattice freely generated by

=(a0, --ram a017"'ya0n), I;:(bO,'--,bm bOl’---,bOn), E=(C17""Cm)’
=(dly"'7dm)

Qo

subject to relations expressing that 4 and b are frames of order n+1,
Zd/(a,+ -+ +a,) ¢/dy, ¢/d; /c.../di., for even and c¢/d, ¢, 1/dis, for
odd i (1=i=m~1), and ¢,/d,, = by/ITb.

PROPOSITION 1. J, . is a projective modular lattice.

Let W,,, and F, ,, the word algebra and the modular lattice with 4n+2m+2
free generators X, y, i, ¥ and ¢: W, —F,, and %:F,, —/J,,. the canonical
homomorphisms. By Proposition 1 there exists an embedding ¢:J,,,—F, ,, such
that 7o ¢ is the identity map on J,,. Choose terms d; etc. in W, ,, such that
a; = £a,, day; = £ag;, Ob = b, dby; = £by;, G = €¢;, Pd; = ed; (the proof of Prop.
1 indicates one particular choice). Then, for any lattice term w in 2n -+ 1 variables
let v, . (w) denote the following lattice identity:

(- (@ow(dy, - . . Aga) + 51)52' “ )t d—m = EOW(EO’ < EOn)‘
Define special lattice terms w, in variables z;, z;, z5, Zg1, Zo2 by induction:
Wo = Zo, Wier1 = (Wi + 220202+ 21) + (21 + 22)(Z01 + Z02) (20 + 21)

The identities v, ,,(w), whose intuitive meaning will be made clearer below,
give information on the characteristics of two rings which may be used to
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coordinatize certain modular lattices. The identity v, ,,(w,) in these lattices says
that if k is zero in one of the rings, it is zero in both.

THEOREM. For all n, odd m, and lattice terms w are the identities vy, ,,(w)
valid in all congruence lattices L of algebras in congruence modular classes which
are closed under finite subdirect powers. None of the identities v, ,,(w,) (m odd, n,
k =2) is a consequence of the modular or even the Arguesian law.

For the proof let : W, ,,—L be any evaluation in L. Then the elements
ay = Ydy, . . ., d, = d, satisfy the relations defining J, .. In particular, d and b are
frames of order n+1 and a,/I1d is projective to b,/ITb via the ¢;/d,. Denoting the
canonical isomorphism by ¢ the left hand side of +v,,(w) becomes just
¢ (ayw(a)). Thus, the proof of the first claim is immediate by the following

PROPOSITION 2. Let L be as in the Theorem, @ and b frames of order n+1, and
a_OIH& z‘,,_bo/HE. Then there is an is?morphism ¢ of Za/Ila onto Sb/Tb such that
dba; = b, day;=by; (1=i=n), and dx = ¢x for [ld <x=d,.

In addition, such a lattice is arguesian (Freese and Jonsson [8]) and for any of
its frames d the interval Xd/Ild can be embedded in the subgroup lattice of an
abelian group (see Prop. 12 below). One might ask whether these properties
suffice to characterize lattices embeddable in congruence lattices of algebras in
congruence modular varieties (lattices of normal subgroups of (abelian) groups)
We suspect that is not the case.

To prove the second claim of the Theorem consider a field F and let $ be the
lattice of F-linear subspaces of an n+ 1-dimensional F-vector space E with basis
€, ...,¢€, Let be a; and ag; the subspaces generated by e; and ¢ —e,, respec-
tively. Then d =(ay, ..., ao,) is a frame of order n+1 in S and w,(d) is the
subspace generated by ke, — e,—as is easily shown by induction. Thus, aow,(d) =
a, if and only if the characteristic of F divides k and ao,w,(d)= Ild, otherwise.

Now, for given k choose F, S, d and F', S, b = d’ such that char (F) divides k
and char (F’) does not. Let L be the lattice which one obtains identifying ¥d with
b, and a,+ - - - +a, with IIb (s. Fig. 1). This is an argeuesian lattice according to
Jénsson [16]. But it does not satisfy v, ,,(w,). To see this, substitute 4, b, & d for
the variables where ¢,/d; = b,/ IIb (1<i<m). Since @, b, & d satisfy the relations
of J, . G takes the value a; etc. whence the left hand side takes the value b, and
the right hand side the value ITb.
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2. The projectivity of J,_

In [5] it is pointed out that our concept of a frame (as a system of generators
and relations) is (for modular lattices) equivalent to that of v. Neumann [18].
Thus, it is also equivalent to Huhn’s [13] concept of an n-diamond (cf [9; 1.7])
and we have the following (cf [4]).

LEMMA 3. The modular lattice freely generated by a frame of order n+1 is a
projective modular lattice.

From Freese [5] we recall

LEMMA 4. Let d be a frame of order n+1 in a modular lattice and Ild =by=
ao. Define b, = (by+ ay;)a; and b =by+ - - - +b,. Then the following are frames of
order n+1:

(a) @' where a'=a;+b and al;=ay;+b
(b) d@" where a’=b; and ag; = bay,;

LEMMA 5. Let @ be a frame of order n+1 in a modular lattice and e, =
3(a; | j#1i), eo =aoi+eoe,. Then € is a dual frame of order n+1 with Ild =IIe,
3d=23¢ a,=I(e|j#i), and ay; = ey;(ay+ a;).

Proof of Prop. 1. Let ¢ be a homomorphism of M onto J,,,, M modular. In
several steps we choose inverse images a/, a’} of the g; etc. such that the relations
of J, . are satisfied, finally, whence there is a retraction map of J,,, into M (cf.
[2] [12])). See Fig. 2 for the case n+1=2.

Let € be the dual frame corresponding to a according to Lemma 5. By the dual
of Lemma 3 there is a dual frame &’ in M which is mapped onto é. Put cf= 3¢,
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Figure 2

dj=e}, and choose d/=c/ such that di{,;=d}, ¢/=d!,,+d! for i even and
cla=cl, dl =cld! for i odd.

For b choose inverse images =d’,, first, and pass by Lemma 3 to a frame b’
with ITb'=d’,. Put c/\_,=cl_1b}, dl_y=c',_IIF', d = IIb", ¢! = c',_, +d" and
choose ¢, d} such that di=di=ci=c] and cj/d; 7 c_,/d}_, if i is odd and
ct/diNciy/di ifiiseven (i=m—1,...,0).

Applying Lemma (4b) to b, and c” we get a frame b” with bj=c/ and
116" = d!.. Applying the dual of Lemma (4b) to & and dj we get a dual frame &"
with eg = dg and 3&"= c}. Applying the dual of Lemma (4a) to &” and ¢ we get a
dual frame €” with 38"/ey / ¢;/dg. Finally, we choose 4” as the frame corres-
ponding to & by Lemma 5. Then d”, b”, &, d" is an inverse image of 4, b, &, d
and satisfies the relations defining J, ..

3. More about frames

For the proof of Prop. 2 we need some results concerning isomorphisms in
frames (Lemma 7, 9) and glueing of frames (Lemma 10, 11). The context is
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modular lattices. The notations = (=.~’ =) in a proof indicate that modularity

(independence, definition of a frame) has been used. The following is well
known—cf [18].

LEMMA 6. Let d be a frame of order 3, ¢ = (a,+ a,}(a¢, + ag»). Then a,, a,, ¢
and ag,, Gg,, C are frames of order 2.

LEMMA 7. Let (ag, - .., ay,, by, ..., b,) be independent and for each i a;, b, ¢;
a frame of order 2. Then a, b, ¢, is a frame of order 2 where a=a,+ -+ +a,,
b=by+ -+ +b, c=¢c+ - +g,.

Proof by induction on n. Write u=ab=aqab; and let be n=1 and a'=
agt - +a,_q, b'=by+t -+ +b,_;, ¢'=cyt+ +++ +¢,_;. Then by the inductive
hypothesis it holds a’c’=b'c’=a’'b’ = u. We conclude

ac=(a+bYc=(a+b)c,+c

=(a+b)a,+b)c,+c' =a,c,+c'=ab, +c'=utc’'=c.

It follows ac=<ac’'=<a(a’+b’) =a'+ab’ = a'+u=a and ac=a'c’'=u.

COROLLARY 8. Let a be a frame of order at least 2n+2. Then for each
x=a=ay+ - +a, there are y and z such x+y=x+z=y+z and xy=xz=
vz = IIa.

Proof. In the case x=a let be b, =d,.11, Co=0gn+, and ¢=
(a; + b))(ag; + agn+i+1)- By Lemma 6 the hypotheses of Lemma 7 are satisfied and
we may choose y=1>b and z =c. For arbitrary x take y=(x+¢)b z=(x+b)c.

LEMMA 9. Let d be a frame of order at least 2n+2. Then there is an
isomorphism of ap+ + -+ +a,/Ild onto ay+a,.,+ - - +a,,/Ila which maps q
onto a,.; and ay; onlo ao,.; for 1<i=n and which is the identity on a,/Ild.

Proof. We write b, = a; ., bo; = Ggn+i, and c; =(a; + b;)(aq; +by;) for 1=i=n.
Moreover, put by=ay, Co=az,+;, A=dot -+ +a, b=by+---+b, c=
ot - +¢,a' =a;+:-+a, b’=b+--++b,and ¢'=¢,+ -+ +¢,. Lemma 6
and 7 give a’+c'=b'+c'=a’+c and a’'c’=b'c'=a’'b’=1Id. Thus, we get a+c =
ap+a'+c'+cg=ag+a’+b'+cg=a+b+c, and

ac=a'c=a'(a"+b")c' +co)=a'(c'+(a"+b)cy)=a'c’=I1a.
13 m 1}
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Therefore, we have a/Ild /" a+b+cy/c and, by symmetry, a+b+cy/c \b/IIa.
By modularity, ¢x =(x+c)b defines an isomorphism of a/ITd onto b/Ild. We
have to check that it has the additional properties. First, if x=ay,=b then

¢>x=(x+c)b"=1x+cb=x+Hii=x. Now, let be 1<i=n. Then

(a;+b)Z(¢; [ j# i) =(a,+b)Z(a;+ b; | j# )N (c; | j# 1))

=(Z(b | j# DN(E(g | j#i)=bc=Ta

whence

(a+c)b=(a+c)a+b)=a+cla+b)=a+c+(a+b)3(qlj#=a+q

and
¢éa;,=(a;+c)b=(a;+c)a;+c)b=(a,+¢)b=(a;+b)b T b;.

Finally, observe that a,; +¢; = ay; + by; by Lemma 6 whence
dag; = (ag; + )b =(ag; + bo; + 2(c; | j# 1))b(a; + b)

=(ag; + by, +(a; +b)Z(c; | j# )b

= (ag; +bo:)b = agib + by; = ag;(bo+ ;)b + by, = agibo+ bqa T by;.

LEMMA 10. Let d and b be frames of order n+1 and m+1, resp., such that
Ha=1IIb and (2d)(Zh)=a,=b,. Then E=d *b with c,=a, (0<i=n), c,,;=b,
Coi =ag (1=i=n) and cy,.i =by; (1=i=m) is a frame of order n+m+1.

Proof. It suffices to check the independence of cg, ..., Ciim, i.€. G (Co+ -+ +
G-1)=IIc=1la for 1sk=n+m. For k=n this follows from the independence
of ag,...,a, trivially. Let be k>n, j=k—n. Then it holds

aleot - -+ )=c(Zd+b + --- +b,'—1)5(25)(25+b1 cer+bily)

ﬁ(za)(25)+bl+ e +bj_1=b0+ R +b"_],

whence ¢ (co+ * -+ + 1) =bi(bo+ - - - +b,-_1)=iH5=HE.



Vol. 12, 1981 On some identities valid in modular congruence varieties 329

4. Congruence amalgamation

The key for the proof of Prop. 2 lies in a special amalgamation property for
congruence lattices which has been investigated in Freese and J6nsson [8].
Namely, given an algebra A and a congruence « on A we can consider « as a
subalgebra of A X A. Then, the two natural projections of o onto A induce
(according to the Isomorphism Theorem) two lattice embeddings of the congru-
ence lattice of A into the congruence lattice of a. Thus, if & is a class of algebras
closed under the formation of finite subdirect powers (which includes such
““congruences as algebras”’) then the class £ of congruence lattices of algebras in
& has the following property (see [8] and [9; 1.3]):

For every L in & and a in L there exists M in £ and embeddings ¢,,¢, of L
in M such that

(*) ¢ox=d¢x for all x=a in L

box + P1x = ¢poa for all x=<a in L
&y +doxdpx=¢;x forall y=xin L and i=0, 1,.

LEMMA 11. Let £ have the above property and consist of modular lattices. Let
be L in £ and d a dual frame of order n+1 in L. Then for each m=n there is a
lattice M in &, an embedding ¢ of L in M, and a dual frame b of order m+1 in M
such that ¢a;, = b; and Pay; = by; (0=<i=n).

Proof. For m =2n choose M, ¢,, and ¢, as above with a = a,—see Fig. 3. Then
dolld + ¢, I1d = a, and b= dod * P, d yields a dual frame of order m +1 by the
dual of Lemma 10. Take ¢ = ¢,. For arbitrary m =n use iteration and restriction.

wozé’ = @123
T -
®odp = ©1%

wol'l?i> (pln?a’

Figure 3

Proof of Prop. 2. We prove the dual statement first: If & and d are dual frames
of order n+1 and 3¢/c, =, 3d/d,, then there is an isomorphism ¢ of 3&/II¢ onto
3d/Id with gc; = d,, @cy; =d,, and gx = Px for ¢;=x=3¢ We consider the
special case 3¢ =3d and c,=d,. Choose M, ¢, and ¢, such that (*) is satisfied
with respect to L and a=cy=d,. Then ¢olI¢+ ¢;I1d = Ppoco= d,d, Whence
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&= ¢yl * ¢,d forms a dual frame of order 2n+1 in M by the dual of Lemma 10.
By Lemma 11 there is an extension M’ of M and a dual frame f of order 2n+2 in
M’ which extends é. Thus, according to Lemma 9 there is an isomorphism x of
S¢oé/ Hoé onto S, d/ I, d. Let be x, the restriction of ¢, to Z¢/I1¢ and x; the
restriction of ¢, to Zd/IId. Then x7'e X ° Xo is an isomorphism with the proper-
ties we want.

Now assume 3&/c, ™\ 3d/dy. Choose M, ¢,, ¢, such that (*) is satisfied with
respect to L and with a=co. In M, ¢o(2d)+ $,(IT¢) = ¢o(3¢). Tt follows that
¢1(6)¢0(2‘-j)=(¢1(CO)¢O(Z£{),-"a¢1(cn)¢0(2a)’ ‘bl(COlZ(bO(Ea)’---"bl(COn)‘bO(Ea))
is an n+1 frame in M and clearly the map x— x¢(3d) induces an isomorphism
of ¢,(3) to ¢(E)Po(Zd) of the type we desire. Moreover ¢,(co)do(Zd)=
bo(Co)o(Zd) = do(coZd) = do(d,). Now the proof for this case follows by applying
the special case to the frames ¢o(d) and ¢,()do(2d). Of course, the case when
3é/cy 7 2d/d, is handled symmetrically. With the aid of the special case, longer
projectivities may be handled by iteration of the above procedure.

Finally, to derive Prop. 2 from its dual consider d, b, ¢ and let & d the dual
frames corresponding to @ and b according to Lemma 5. Define an isomorphism
¢ of 3&/c, onto 3d/dy by ¥x =dy+ dasx and let § = be the extension of ¢
given above. 'Looking at the statements of Lemma 5 more closely we get ¢a, = b,
d-’am +by; and <£x = d;(ao(x +Co)) o d.)aoq;(x + co) = bo(W(x + ¢) = by(dy+ Px) - éx
for [la=x=a, since ao/I1d / 3¢/ c, and bo/IIb / 3d/d,.

5. Odds and ends

Let & be a class of algebras which is closed under finite subdirect powers such
that the class £ of congruence lattices of algebras in & consists of modular
lattices.

PROPOSITION 12. For any frame d in a lattice L in £ there is an embedding
of the interval sublattice 2d/I1d into the subgroup lattice of an abelian group.

PROPOSITION 13. &£ consists either of distributive lattices, only, or there is a
D, p prime or zero, such that for each m there is an L in &£ containing the
m-dimensional projective geometry over the prime field of characteristic p as a
sublattice.

Proofs. Let @ be a frame of order n+1 and put L, = L. By Lemma 11 there
exist lattices L, S L,,; S L,..< --- in & and elements a,.;, dgns; in L,,; (i=1)
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such that for m=n (ay, . . ., do,,) is a frame of order m+1in L,,. Let M,, be the
interval sublattice ag+ - - - +a,,/Ild of L,, and M the union of the M,,. Due to
Corollary 8 the dual of M is an abelian lattice in the sense of Hutchinson [14] and
can be embedded into the subgroup lattice of an abelian group. Thus, M itself can
be embedded, too, as was shown by Hutchinson [15].

To prove Prop. 13 observe that if £ contains a nondistributive lattice then
there is a lattice L, in & containing a nontrivial frame d of order 2. Since L, is
algebraic a,/IId contains a prime quotient. Thus, by Lemma 4 one may assume
that a,/IId is a prime quotient, already. Choose L,,, 4,,, do. as above. Then all
quotients a;/IId are isomorphic whence ay+ - - - +a,,/IId is an atomistic modular
lattice of length m+1. Thus, the sublattice generated by ay,..., dg, is the
m-dimensional projective geometry over a prime field of characteristic p,,—cf

"{10]. Evidently, p,, = p, for all m=2.

A modular congruence variety is a lattice variety generated by a class £ as
above. Let ¥, and ¥, (n# 0) denote the quasivariety of all lattices embeddable in
rational projective geometries and subgroup lattices of abelian groups of exponent
n, respectively. Then HV, is the congruence variety generated by ¥, and for n#0
HY, < HV (V,<c%,) if and only if m divides n.

The variety HV, is generated by the subgroup lattices of the finite powers of
the cyclic group of order n if n#0 and by the finite dimensional rational
projective geometries if n = 0. This is due to the fact that every algebraic lattice is
in the variety generated by its sections ¢/0 with ¢ compact. From Prop. 13 we get
(cf Freese [6]).

COROLLARY 14. Every nondistributive modular congruence variety contains
one of the varieties HV,,, p prime or zero.

PROPOSITION 15. Let ¥ be any class of lattices which is contained in a
modular congruence variety and contains a class V,, n not prime. Then ¥ cannot be
defined by finitely many first order axioms.

In the proof we construct a sequence of lattices not in ¥ an ultraproduct of
which belongs to ¥. To show the first we use the following immediate consequ-
ence of the Theorem.

COROLLARY 16. Let L be lattice in a modular congruence variety and d and
b frames of the same order in L such that a,/I1d and b,/ ITb are projective. Then the
sublattices generated by d and b, respectively, are isomorphic.

Proof of Prop. 15. n=0: Use the lattices referred to in the introduction—cf.

[11].
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Let n have different prime factors p and q. Let L, and L, be arguesian planes
of order p and g respectively. For m=1 let M,, be the lattice which arises from
L, L, and S, (see Fig. 4) by identifying a line of L, with u, the top of L, with x,,
the bottom of L, with y,,, and a point of L, with v. Then x;/u =v/y,, whence M,,
is not in ¥. Let M be a nontrivial ultraproduct of the M,. Then M can be
decomposed into a linear sum in the following way: At the bottom (top) there is a
plane over a field of characteristic p(q) and an upward (downward) infinite
“snake” glued to an upper (lower) edge of the plane and in the middle there are
several upward and downward infinite “‘snakes” one at top of the other. Since the
“snake” parts are in ¥, for any k the lower plane together with the attached
“snake” is in ¥, and the remainder in ¥. Since M is a subdirect product of these
two parts M is in ¥, and in V..

s
7

Figure 4. S, (m =3)

Let n be a proper power of the prime p. Then let U be the subgroup lattice of
the abelian group C,:® C,-®C,: where C,: is the cyclic group of order p?. Let V
be the lattice of submodules of the R module R®R@R where R = F,[x]/(x%
with F, the field of order p. Observe that U is generated by its canonical frame of
order 3—{cf. 10; 3.2}—while the sublattice generated by the canonical frame of V
is isomorphic to a plane of order p since V is in ¥,—see [10; 2.3]. Now, let M,
be the lattice which arises from U, V and T,, (see Fig. 5) by identifying u with
0D C,-BC,:, z with ,C,2DC,2DC,2, x, with the top of U, y,, with the bottom
of V, w with xR@®0®H0, and v with RP0DO. Again, M,, is not in K since
x,/u=1v/y, but an nontrivial ultraproduct is in ¥, since it is a subdirect product
of its bottom belonging to 9,: and the remainder belonging to ¥.

We say that a class ¥ of lattices has exponent p, p prime, if every lattice in ¥
which is generated by a frame of order n+1=3 is an n-dimensional projective
geometry of order p.
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\Ym

N

%X/O/\O(/ ZE

LN KN AN

Figure 5. T,, (m=3)

COROLLARY 17. A nondistributive modular congruence variety not having a
prime exponent cannot have a finite equational base.

Proof. Let % be generated by £ as above. Clearly, if £ would have exponent
p so would have ¥. Now, look at the lattices in % which are generated by a frame
of order 3. By Corollary 12 the subdirectly irreducibles have to be in the list given
in [10]. Therefore, as sublattices of lattices in & have to occur either a rational
projective plane or two planes of different prime orders p and g or a subgroup
lattice of a group Cs.. In the first case let d@ be a generating frame of order 3 for
the plane. -As in the proof of Prop. 12 for each m =2 there is a lattice L,, in £
and a frame b of order m+1 in L, which extends d. Let S be the sublattice
generated by b. Since S can be embedded in the subgroup lattice of an abelian
group the subdirectly irreducible factors S, appear in the list given in [10]. But in
S; the image of a generates the rational plane (since this is a simple lattice). Thus,
S; has to be the m-dimensional projective geometry for every i and S has to be
s0, too. One concludes that HY is contained in X. By similar arguments one gets
that HY,, and HY, (whence HY,,) is contained in ¥ in the second case and HV 2
in the third. Thus, in any case Prop. 16 implies.
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