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ABSTRACT. It is shown that the lattice of subspaces of a finite dimensional
vector space over a finite prime field is projective in the class of modular
lattices provided the dimension is at least 4.

In this paper it is shown that the lattice of subspaces of an n-dimensional
vector space over the field with p elements (i.e., a projective geometry of
dimension n — 1 over Z,) is a projective modular lattice for 4 < n < » and
p a prime. This answers problem 9 of [15].

Recall that a modular lattice L is a projective modular lattice if for any
modular lattices M and N and any lattice homomorphisms 4 of L into N and
f of M onto N, there is a homomorphism g of L into M such that
f(g(a)) = h(a) for all a € L. This is equivalent to the existence of a homo-
morphism f of a free modular lattice FM(X) onto L and a homomorphism g
of L to FM(X) such that f(g(a)) = a for all a € L. The map gofis a
retraction, i.e., it is an endomorphism of FM(X) which is point-wise fixed on
its image. Thus projective modular lattices are the retracts (images of retrac-
tions) of free modular lattices. In particular, every projective modular lattice
is a sublattice of a free modular lattice. Thus as a corollary to our result we
obtain that every finite planar modular lattice can be embedded into a free
modular lattice (in fact, into FM(4)), since all these lattices can be embedded
into the subspace lattices described above (cf. [3]).

The first section of this paper reviews the definition and important results
on von Neumann n-frames of characteristic r. It is shown in [4] the free
modular lattice generated by an n-frame of characteristic , which we denote
FM(P(n, r)), is a projective modular lattice for 3 < n < w and r > 1. In the
second section a review of von Neumann’s coordinatization is given. We
prove the main result in the third section by showing that FM(P(n, p)) is
isomorphic to the lattice of subspaces of an n-dimensional vector space over
Z, for4 < n < wand p a prime.

A subdirectly irreducible modular lattice L is a splitting modular lattice if
there is a lattice equation & such that each variety of modular lattices either

Received by the editors June 23, 1978.
AMS (MOS) subject classifications (1970). Primary 06A30.
This work was partially supported by NSF Grant No. MCS77-01933.

© 1979 American Mathematical Society
0002-9947/79/0000-0317/$04.50

329



330 RALPH FREESE

satisfies € or contains L, but not both (cf. [13]). The above results imply that
the lattice of subspaces of an n-dimensional vector space over Z,, L(Z}), is a
splitting modular lattice (see [2]). Moreover, the Hall-Dilworth example of the
second kind obtained by gluing L(Z;) and L(Z:) together over a one-dimen-'
sional quotient is a splitting modular lattice. Let ¢,, be the splitting equation.
In a subsequent paper this will be applied to congruence varieties. It will be
shown that if J is a variety of algebras with modular congruence lattices,
then those congruence lattices satisfy ¢,,, p # ¢q. Thus congruence modularity
implies identities strictly stronger than the arguesian law (cf. [5]).

1. Preliminaries. Let L be a modular lattice. We say that L contains an
n-frame if there exist a,, ..., a,, ¢;3, €13, . - ., ¢;, € L such that (i) the sub-
lattice generated by a,,...,a, is the Boolean algebra 2" with atoms
a...,a,and (i) a; + ¢; = a; + ¢; = a; + g; and a,c,; = g;c;; = a;a;. In
this situation we shall simply say that {a,, ¢,;} is an n-frame in L. We let 0
denote the least element of this Boolean algebra, i.e., 0 = @,a, and we do not
insist that O is the least element of L. We let P(n) denote an n-frame as an
abstract system of generators and relations and we let FM(P(n)) be the
modular lattice freely generated by a,,...,a, ¢y, ..., ¢, subject to the
relations described above which make {a,, ..., a, ¢y, ..., ¢,,} an n-frame.
A great deal of information about n-frames is contained in [9}{12], [14].

Let {@, cy;i=1,...,n,j=2,...,n} bean n-frame in a modular lattice
L. Let ¢; = ¢); and for 1, i, j distinct let ¢; = (¢y; + ¢;;)(a; + a). In Lemma
5.3 of [14, p. 118], it is shown that, for distinct i, j, k,

C = (Cij + Cjk)(ai + a,). (1.1)
In the definition of an n-frame the index 1 plays a special role. However, by
(1.1), we see that this apparent lack of symmetry is only illusionary.

Let {a;, ¢|;} be an n-frame in a modular lattice L, n > 3. Then for 4, j, k

distinct we have the following projectivity
a+a/0 7a;+a+a/aq \ct+a/0 1
2a+a+a/c\a+ a0 (12)
This projectivity defines an automorphism a;; of a; + a;/0 given by
a;(x) = ((x + a)(cy + @) + ci)(a; + a). (1.3)

If {4, c\;} is an n-frame, n > 3, in a modular lattice L and r is a positive
integer, we say that it is an n-frame of characteristic r if

afy(a) = a;. (1.4)
Here aj, is a,, iterated r times. We let P(n,r) denote an n-frame of

characteristic r as an abstract system of generators and relations, and we let
FM(P(n, r)) denote the modular lattice freely generated by P(n, r). That is,
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FM(P(n, r)) is the modular lattice freely generated by a,, ...,
a,, i - - -, C;, Subject to the relations which make it an n-frame and the
additional relation (1.4).

It is shown in Theorem 1.6 of [4] that if f is a homomorphism from a
modular lattice M onto L and L contains an n-frame {a, c,;} of characteris-
tic r, then M contains an n-frame {a, ¢;;} of characteristic r such that
f@) = a; and f(¢);) = cj;. The next theorem follows from this and the
definition of FM(P(n, r)).

THEOREM 1.1. For n > 3 and r a positive integer, FM(P(n, r)) is a projective
modular lattice.

2. A review of von Neumann’s coordinatization. We shall require some of
von Neumann’s results on coordinatizing modular lattices, {14], [7], [12]. Von
Neumann begins with a complemented modular lattice L containing an
n-frame, n > 4, and uses this n-frame to define a ring with 1, R,, called the
auxiliary ring. He then uses R, to coordinatize L. In defining R, and showing
that it is a ring von Neumann does not use the hypothesis that L is
complemented. Thus every modular lattice that contains an n-frame, n > 4,
has an auxiliary ring R, (which depends on the n-frame as well as L). Let {q;:
i=1,...,n}U{c;:j=2,...,n} beann-framein L. Let

L,.j={xEL:xaj=0andx+aj=ai+aj}-

Here 0 = a,a, and need not be the least element of L. Let i, j, k be distinct.
Since

4+ a/0 7 a +a+a/c N a + afo,

there is a projective isomorphism

P(J): 4+ a,/0>a, + a,/0 (2.1)
given by
x> (x + ey )a, + a). (2.2)
Similarly we have
P(5): a + a/0—a, + a,/0, 23)

x> (x + ¢p)(a; + a).

If i, j, k, h are distinct, set
P(%) = P(}) © P(c%)-
An L-number is an ordered n(n — 1)-tuple

B=(Byi#jij=1,...,n)
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such that
B; € Ly, (2.4)
B = B;P(i%) alli #j, k+#h. (2.5)

By (2.5) an L-number is determined by any one of its components.
Conversely we have the following.

Lemma 2.1 ([14, p. 130)). If b; € L,

;> then there is a unique L-number B
whose (i, j)th component is b.

Suppose B, y are L-numbers and that i, j, k are distinct indices. Set
Oy = (By + ij)(ai + a). (2.6)

von Neumann shows that §, € L, and thus uniquely determines an L-num-
ber § by Lemma 2.1. Moreover he shows that the L-number thus obtained is
independent of the choice of i, j, k [14, p. 131}, and (2.6) holds for all choices
of distinct 7, j, k. Multiplication of L-numbers is now defined by y8 = & (cf.
[7, p. 289)).

If B and y are L-numbers, then the sum is the L-number 8 whose (i, j)th
component is given by

89' =[(By + ‘-'ik)(aj + a)+ ('Yij + ak)(aj + cik)](ai + aj)' 2.7
Furthermore, von Neumann shows that if L-numbers 8, vy, 8 satisfy (2.7) for
one distinct triple i, j, k, they satisfy it for all such triples. In particular the
above formula for §; is independent of the choice of k # i,j. Using this we
obtain additional independence in the definition of addition.

LemMMA 2.2. If B, v; € L and ¢, € Ly, N Ly, then
[(Bu + cik)(aj +aq)+ (Yij + ak)(aj + cik)](ai + aj)

= [(.BU + Ci/k)(aj +aq)+ (Yij + ak)(aj + c;k)](ai + aj)' (2.8)

PROOF. Define aj = a,, I =1,...,n, ¢, = ¢, for I #1i, k, and let ¢/, be the

element given in the lemma. For i # A,/ let
cu = ¢ = (¢ + ci)a + a)).

Using Lemma 5.3 [14, p. 118], the reader can show that {qj, c¢};} forms an
n-frame. Since n > 4, choose / # i,j,k. By the above remarks the left side of
(2.8) is unchanged if k is replaced by / and the right side also unchanged if k
is replaced by /. But since ¢; = ¢, the resulting expressions are equal. Hence
(2.8) holds. [

With the above operations the L-numbers form a ring R; with 1 [14, p.
157). The 1 of this ring is the L-number whose (i,/)th coordinate is ¢; and
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whose 0 is the L-number whose (i,j)th coordinate is a;. We let 1 and 0 denote
these L-numbers so that (1); = ¢; and (0); = @;,. (1 and 0 also denote the
greatest and least elements of the n-frame; no confusion should arise.)

At this point we take L = FM(P(n, p)), where n > 4 and p is a prime. Let
a; be the automorphism of a; + a,/0 given by (1.3), and let 8 be an
L-number. Checking the definition of 1 ® B (we use @ for the addition in
R;) and comparing it with the definition of a;; we see that (1 @ B); = a;( B).
Since af,(a,) = a, holds in L = FM(P(n, p)) by definition,

0D1IB1ID---D1I=0 (p Is)
holds in R,. Thus R, has characteristic p. Consequently there is an embed-
ding of Z, into R, given by
to(af(a): 1 <ij<mi#j), t=0l...,p—1L (2.9)
For t € Z or Z, we abbreviate the L-number (a,.j-(a,-): 1 <ij<ni+#j)byt
Thus #; = a;(a;). Formula (2.6) for multiplication yields for r,s € Z,

(ry + spd)(a + a) = (r9)ae (2.10)

LEMMA 2.3. An L-number B has a two-sided multiplicative inverse if ‘and only
if B; € L; for some (and hence for all) i #j. If v is the inverse of B, then
Yy = B for all i #j.

PROOF. Let ¥ be an L-number such that y8 = By = 1. Then, by (2.6),

Ci = C; = (:Bik + ij)(ai + aj)'
Thus
¢i + Bu = (B + vg)a; + a; + By)
and
By = (ci + Bu)(a + @)

= (Bi + v)(a + a)(a + a; + By)

= (;ij + Bula; + a.))(a; + a + Bic)

= (ij + By(a; + ak)(aj + ak))(ai +a + .3,1()

= ('ij + Bikak)(ai +aq + Bik)

= ij(ai + g + Bi)

< Yy

A similar argument gives v,; < B;. Thus B, = v,; € L,;. A proof of the
converse is given in Anmerkung 3.1 of [12, p. 208]. O

If r 2 0 (mod p), it is invertible in Z, and hence R;. As a corollary, we
obtain the following formula, which will be used later.
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(1/r); = (r); forr=0 (modp). (2.11)
Here 1/r is the inverse of r in Z,. (Recall that r; = aj(a), etc.)

LemMA 2.4. Let i, j, k be distinct and B, y be L-numbers. Then
(a, + By)(a, + vu) = (a + By)(a + (—¥B)u)-

ProOF. This is Lemma 10.6 of [14, p. 172]. Although at this point, von
Neumann has begun to use complemention, this lemma does not require it.

O
3. The main result. In this section we prove the following theorem.

THEOREM 3.1. Let V be a vector space of dimension n, 4 < n < w, over Z,p
a prime. Let L(V) be its lattice of subspaces. Then L(V) is a projective modular
lattice.

By Theorem 1.1, the above result will follow from the next theorem.
THEOREM 3.2. Let V be as above. Then L(V) = FM(P(n, p)).

ProoOF. We take V to be n-tuples of elements from Z, lfvo=(v,...,0,)
€ V, we define the support of v to be {i: v; # 0}. If v € ¥, let v® be the
vector obtained from v by setting the ith component equal to 0. Throughout
this section we let L = FM(P(n, p)).

Define a map c: V' — L by

c(0) =0, 3.1)
c@©,...,0,70,...,00=q ifr+0, rez, (3.2)

where r is in the ith place,
c©,....,r,...,8...,00=(~s/r);, rs€Z, r+*0, (33)

where r and s are in the ith and jth places, respectively, and inductively if the
support of v has at least three elements, i and j among them, define

c(v) = (a; + c(v))(a; + c(v?)). (3.4)

Recall that (—s/r); = a,j's/ "(a) = a;j(a) where ¢ is an integer such that
—s =tr (mod p). Since af(a;) = a;, a;(a;) does not depend on which ¢ is
chosen. By equation (2.11), (—s/r); = (—r/s); if s # 0 in Z,. Thus (3.3) is
well defined.

We shall now show that (3.4) is independent of the choice of i and j in the
support of v. First suppose that the support of v is exactly {i,/, k} and that
v, = r, v; = r;, and v, = r, with r,, r;, ;. all nonzero in Z,. Since i and k are
in the support of v,

c(v) = (a; + c(V))(a, + c(v®)).
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Now c(v?) = (=1, /r); and c(v®) = (=r,/r), by (3.3). Thus, since
= (=n/r)(=n/r) = —r/r
Lemma 2.4 yields
c(v) = (& + (= r/n)ac + (=1,/1),)
= (ac + (=r;/r); )@ + (= e/ 1)ie)-
Proceeding by induction, assume that the support of v contains at least

four indices and that i, j, k are among them. We abbreviate the vector (b))
by v, It suffices to show that

(@ + c(v))(a; + c(vP)) < g, + c(v®).

Since (3.4) holds for v@, c(v?) < a, + c¢(v®®). Thus

a, + c(v?) < g + a, + c(v®9)
and

g + c(v?) < g + g, + c(v9P).
Let S be the support of v. The reader can show by induction that

a; + c(v®®) < S(a,: h € S, h #k).
Thus
(@ + c()(a; + c(v9)) < (g + g, + c(v¥?))(a, + g, + c(v9))

=a + (a + c(v(i”‘)))( hgsah)(aj + g, + c(v9Y))

h+#k

a + (a; + c(v“”"))(ai + c(v¥P) + q, hzk ah)

a + (a; + c(v("")))(czj- + c(v("")))

= a, + c(v®).

LemMA 3.3. (i) If i is in the support of v € V, then a; + c(v) = a, + c(v?).

@) If u,o € V and u; # 0 # v; and v; = y; for all j except possibly i, then
a; + c(u) = a; + c(v).

(iii) If r # 0 in Z,, then c(rv) = c(v).

Proor. (i) If (3.2) applies to v, then (i) holds. If (3.3) applies with s # 0,
then

a+c(v)=a+(=s/r)y=a+ (—r/s);
=a, + g = a; + c(v?),
since (—r/s); € L.
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Now suppose v has support with at least three elements, with i and j among
them. Then by induction g, + c(vY) = g, + c(v?) and by definition c(v®)
< g; + c(v™)). Thus, by (3.4),

g+ c(v) =a + (a + c(”(i)))(aj + C(DU)))
= (a; + c(v(i)))(a, +a + c(v(/)))

= (g + c(v))(q; + a; + c(v™))

=g, + c(v?).

Part (ii) of the lemma follows immediately from part (i). Part (iii) follows
easily from the definition of c. [

Part (iii) of the above lemma shows that ¢ may be viewed as a map from
the one-dimensional subspaces of V into L. We wish to extend ¢ to all of
L(V). First we require some knowledge of the automorphisms of L =
FM(P(n, p)).

Recall that GL(n, p), the general linear group of degree n over Z,, is the
group of all nonsingular n X n matrices with entries in Z,. We wish to show
that GL(n, p) can act on FM(P(n, p)) as a group of automorphisms. Recall
that n > 4. Let E,; be the element of GL(n, p) obtained from the identity
matrix by multiplying the ithrowby r,r €Z,,r #0,i=1,...,n Let E;,
be the matrix obtained from the identity by interchanging the ith and jth
rows. For i # j let E;, ,(, be the matrix whose main diagonal entries are all 1
and whose (i, j)th entry is r and whose other entries are all 0. These matrices
are called elementary matrices.

LEMMA 3.4. GL(n, p) is generated by Ey,, j =2,...,n, B, r €Z, -
{O}, E(3)—r(4)’ r e Zp.

PRrOOF. Since the symmetric group on {1, 2, ..., n} is generated by trans-
positions of the form (1, ), the E,, ;, generate all permutation matrices. Now
E, = PEP " where P = E, and E;_,, = PE;,_, P~ where P =
E 4y ;E 3)iy Thus we obtain all the elementary matrices and these are known
to generate GL(n, p). [

Consider the result of letting E 5, _, 4, act on

e¢=(@,...,0,1,0...,0) (1 in the ith place)
and

e,; =(-10,...,0,1,0,...,0) (1 in the jth place).
e, is mapped to (0, 0, —r, 1, ... ) and the other ¢; are fixed. e 4 is mapped to
(—1,0, —r, 1,...). In analogy to this we define
ay, = ry = a5(a,), a =a; fori+4,
cla = (a; + rg)(a; + cyy), cy=cy JjF4

(cf. (3.3) and (3.4)).
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LemMA 3.5. The {da], c|;} defined above form an n-frame of characteristic p.

PROOF. Since ay = ry3 < a3 + a,, a/(2,; a)) = 0if i + 3 or 4. Moreover

a;( 23 aj’) =aj(as+a)a taytry+-)=ar,;=0
j*
and
aft( > a,/) = "43( > aj) = ryla; + 04)( > aj)= Ta3a3 = 0.
j*4 j#4 j*4
Hence a), . . ., a, are independent.

Now we shall show that aj, ¢4, a; generate a copy of M;:
ajciy = ay(az + ¢14) = 0,
acls = rag(as + 1) = rs(a; + a)(a; + cyy) = rya, = 0,
aj + ciy = ay + (ay + rg)(as + cy)
= (a; + ry)(a; + a; + ¢yy)
=a,+rys=a;+ a,
ay+ ¢y =ry+ (a + ry)(a; + c)
= (a, + r)(rgs + as + ¢yy)
=(a, + rg)a; + as + ay)
=a,+ry=a)+ a,
Thus {a], ¢|;} is an n-frame. Let a;, be defined as a;, using the primed
elements. Notice
¢y = (cla + cp3)(ay + a3) = (cp2 + c3)(ay + a3) = ¢y
Now aj, only uses the elements aj, a;, aj, ¢},, €}3, C3;. Since each of these
elements is equal to the corresponding unprimed elements, o}, = a,,. Thus
ay(ay) = afya)) = a, = a, i.e., the frame {a], c|;} has characteristicp. [
It follows from the defining properties of FM(P(n, p)) and from the above

lemma that there is an endomorphism f of FM(P(n, p)) such that f(a,) = a;
and f(cy) = cj;. Let 4 = E)_ .

LEMMA 3.6. f(c(v)) = c(Av) for all v € V.

Proor. If v, = 0, then Av = v and an easy induction shows that f(c(v)) =
¢(v). Since if s # 0, ¢(sv) = ¢(v) and sdv = Asv, we may assume v, = 1. If
v; = 0 for all i but 4, then ¢(v) = a,, f(c(v)) = a, and

c(Av) = ¢(0,0, —r, 1,...) = ry = a,.
Now suppose v = (0,0, —s, 1,0, ...). Then
c(v) = ag(ay) = 543, Av(0,0, —r — 5, 1,0,...).
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Hence c(4v) = a3 "(a,) = (s + r),;. We shall show that f(c(v)) = f(s43) = (s
+ r);3 = c(Av) by induction on s. The case s =0 was handled above.
Assume the result for s — 1. First note that a; + a; = a; + r,; = a; + aq,
since r,; € L,; and

as + ¢y =as+ (a; + ry)(a; + cyy)
=(a;+a +rp)as+cy)=a3+cy=a;+cy.

Now using the addition formula (2.7) (recall 1; = ¢;) and induction we
obtain

fe(v)) = f(s43)
= f((c13 + ((s = Das + a,)(a; + c4))(a; + a,))
= (c13 + (((s = Daz) + a))(a; + c4))(a; + a,)
= (ci3+ ((s + r = Doz + a;)(a; + ¢4))a; + a)

= (S + r)43.
In the case s = 1 we obtain f(c,;) = (r + 1),5.
Now assume v, =1 and v, = — s # 0 and v; =0 for j # 4,k, where

k # 3,4. Then
(Av); = —r, (Av), =1, (Av), = —s,
and
(Av); =0, j#3,4,k.
By (3.4) and (3.3) and (2.6),
c(v) = sy = (a3 + sy )(as + a).
Thus
fle(v)) = ((r + Dz + 53 )(rg3 + @)
By Lemma 2.3, sy, € Ly N L4 Thus we can apply Lemma 2.2 with ¢}, =
54 to obtain
(r+ Do =[(r + @ )(s4 + a3) + (C43 + sy )(a; + @) ](a; + ay).

Since cg3 = ¢34, (C43 + S )(a; + @) = s5,. Thus

(r+ D+ 53=[(rs3 + @ )(sa + a3) + 53 )(a; + a4 + 53)
= ((rgs + a)(sg + a3) + sy )(a; + a, + a)
= (r + a)(sq + a3) + 53
Hence,
fle(v)) = ((ra3 + @ )(sax + a3) + 55 )(ras + @)
= (rs + @ )(sq + a3) + s3(rg3 + @)

= (r + q)(s4 + a3) = c(Av),
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since
3 (rgs + ak) = sy.(a; + ak)("43(“3 + a,) + ak)
= sy (@ + asry) = sy.a4, = 0.

Now let v be a vector with support at least three, i and j in the support,
i # j #+ 4 # i. Now using induction

fle(0)) = fla, + c(v))(a; + c(v9))

= (g, + c(A(D))(q; + c(4(v?)))
and, if i,j # 3,

c(Av) = (a; + c((Av)(")))(aj + c((Av)U))).
Furthermore for {i,j} N {3, 4} = &, (40)? = A(v?), (4v)? = 4A(v?) and
thus f(c(v)) = c(Av). Assume now that i = 3. We can assume the support of v
is 3, 4, and j for if there were another element in the support we would use
that for i. If (4v); # O, then

c(4v) = (a5 + c((Av)m))(aj + c((Av)U))).
By Lemma 3.3,
a; + c((40)®) = a; + c(4v) = a; + c(4(v®)).
Thus f(c(v)) = c(4(v)) holds in this case. In the one remaining case we have

vy=1lLov;=r,y,= —sandy, =0 otherwise. Then (4v), = 0 and Av agrees

with v in the other coordinates. Thus c(4v) = s,;. Now
fle(@) = f((4; + (= )as)(s4; + a3))

= (g + a)(a; + (r3 + a)(sy + as))

= (g + a))(a; + a; + r4)(sy; + a3)

= (aj + a,)(a3 + a, + ‘1,')(54,' + ay)

=54 + (q, + a)a; = 5, = c(4v). O

Let r€Z, r#0 and let B= E_, so that (Bv), =v; for i #4 and

(Bv), = rv,. Definea; = a,i=1,...,n,and ¢}, = c,; if j # 4and ¢}, = ry,.
Since r # 0, Lemma 2.3 implies that r,, € L,;. From this it follows that
{4/, ¢};} is an n-frame. Furthermore this n-frame has characteristic p since the

elements defining af,(a,) are the same in the primed frame. Hence there is an
endomorphism g of FM(P(n, p)) such that g(a,) = g/ and g(c)) = ¢},

LemMmA 3.7. For all v € V, g(c(v)) = c(Bv).

PrOOF. If v, = 0, then it is easy to see that g(c(v)) = c(v) = c(Bv). Thus,
as above, we may assume v, = 1. If all the other components are zero, the
result holds. Suppose v; = — s 5 0 and v, = 0if k # 4,j. Also supposej # 1.
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Then since ¢,; = ¢, and ry, = (1/7),4, by (2.11),
g(c(v)) = g(s4j)
=g(cqy + slj)(a4 + aj) =(r+ slj)(a4 + aj)
= ((1/r)a + sy)as + @) = (s/r)s; = c(Bv).
If j = 1, choose k # 1,4 then using the above,

g(c(v))= g(s41) = 8((sar + cu)(as + ay))
= ((s/r)ax + ci)(as + ay) = (s/r)ay = c¢(Bv).
Since (Bv)® = B(v?), the case when v has at least three nonzero compo-

nents is easily handled. []

We now consider E, ;. We let j =2; the other cases are similar. Let
C=Epandleta) = ay, ay=aj, a; = a, j > 2, ¢}, = ¢; =y, €} = ¢
J > 2. It is easy to check that {a], c;} is an n-frame of characteristic p. Let A
be the endomorphism of FM(P(n, p)) satisfying h(a)) = a], h(c;)) = c};.

LEMMA 3.8. For all v € V, h(c(v)) = ¢(Cv).

ProOF. The result holds if v has only one nonzero component. Suppose
v, = 1 and v, = — 5 and v, = 0 otherwise. Assume j # 2. Choose k #* 1,2,/.
Note that

h(ckj) = k((clk + clj)(ak + aj))
= (e + Czj)(ak + aj) = Gk
For v as above, ¢(v) = s5,;. We shall show by induction that h(s)) = s, =
c(Cv):
h(slj) = h((((s - 1)lj + ak)(aj +cp) + ij)(al + aj))
= (((S — 1)y + ak)(aj + cy) + ckj)(aZ + aj)

= S2ju

Since h? is the identity, h(sy) = sy;.
Now suppose v, = 1, v, = — s and v, = 0 for k > 2. Then, forj > 2,
h(c(v)) = h(s12) = h((sy; + cp)(a, + a)))
= (s2j + cjl)(al + a,) = S = c(Cv).
Note that (Co)®? = C(v®?) if i > 2 and (Cv)P = C(v®). With the aid of this
it is easy to complete the proof. [J

LEMMA 3.9. The endomorphisms f, g, h given above are in fact automorphisms
of FM(P(n, p)).
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PROOF. Recall 4 = E)_, 4 A ~! = Eg), 4 has the same form. Thus there
is an endomorphism f’ such that f'(c(v)) = c(4 ~'v). It follows that ff(a) =
f'&) = a; and ff'(c);)) = f'f(c);)) = ¢y;. Thus f’ is the inverse of f. Similarly g
and A are automorphisms. []

THEOREM 3.10. Let A € GL(n, p). Then there is an automorphism f of
FM(2P(n, p)) such that f(c(v)) = c(Av) for allv € V.

PROOF. Let A = A, - - - A, where each A, is an elementary matrix of the
form described in Lemma 3.4. For each i there is an automorphism f; of
FM(2(n, p)) such that f(c(v)) = c(4,v). Let f= f, - - - fi. It is easy to see
that f(c(v)) = c(4v). O

LEMMA 3.11. Let U be a subspace of V and let u,, . . . , w, be a basis of U. If

u € U, then c(u) < c(u) + - - - +c(uy).

ProOF. Choose 4 € GL(n, p) such that Ade, = u; where ¢ =
@©,...,0,1,0,...,0). Let w=A""u; then w € (e, ..., ¢. It follows
easily from the definition of c(w) that

c(w)y<a + - +ag,.=cle) + -+ +c(e).

Let f be the automorphism of FM(P(n, p)) associated with 4. Then

c(u) = c(Aw) = flc(w)) < flc(ey) + - - - +f(c(e)
=c(de) + - - - +c(de) = c(u) + - -+ +c(w). O
If U is a subspace of V with basis u, . . ., &, we now define c(U) = c(u))

+ + -+ +c(u). Thus ¢ maps L(V) into FM(P(n, p)) and by Lemma 3.11 the
definition of ¢(U) is independent of the choice of basis of U.

LeMMA 3.12. ¢ is a lattice homomorphism.

PrOOF. Let U, W be subspaces of ¥ and choose v,, ..., v, a basis of
UNW, v,...,0,U,...,u a basis of U, and vy, ..., 0w, ..., W, a
basis of W. Then c(U) + c«(W) = ¢(U + W) follows immediately from the
definition.

Suppose x,, . . ., x, are independent vectors in V. Then there is an 4 €
GL(n, p) such that Ae =x;, i=1...,t Since {c(e),...,c(e)} =
{a,,...,a} is an independent set in FM(P(n, p)) and since there is an

automorphism of FM(P(n, p)) corresponding to A4, ¢(x,), . . . , ¢(x,) are inde-
pendent in FM(P(n, p)). Thus {c(v)), ..., c(vy), c(uy), ...,
c(u,), c(wy), . . ., c(w,)} is independent. Hence
c(U)e(W)=[c(v)) + -+ +c(g) +c(u) +- - +c(u,)]
X[e(v) + - -+ +e(v) + clw) + - -+ +ec(w)]

—c(o) + - +e(y)=c(Un W). 0O
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It is now easy to complete the proof of Theorem 3.2. The homomorphism
¢: L(V)— FM(P(n, p)) is onto since the generators of FM(P(n, p)) are in its
image. It is one-to-one since L(V') is a simple lattice. Alternately c splits the
natural map from FM(P(n, p)) onto L(V). [

We close with two corollaries. First it is shown in [8] that each of the
lattices L(Z)) is 4-generated. Thus L(Z;) is a sublattice of FM(4). Since every
finite planar modular lattice can be embedded into L(Z;) for large enough n
and p, we have the following corollary which improves the results of [3].

COROLLARY 3.13. Every finite planar modular lattice can be embedded into
FM®). O

Splitting modular lattices are defined in the introduction. We leave the
proof of the next corollary to the reader.

COROLLARY 3.14. For 4 < n < w and p a prime, L(Z;) is a splitting modular
lattice. []
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