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Nearly twenty years ago, two of the authors wrote a paper on congruence lattices of
semilattices [9]. The problem of finding a really useful characterization of congruence
lattices of finite semilattices seemed too hard for us, so we went on to other things. Thus
when Steve Seif asked one of us at the October 1990 meeting of the AMS in Amherst what
we had learned in the meantime, the answer was nothing. But Seif’s question prompted
us to return to the subject, and we soon found that we had missed at least one nice
property: the congruence lattice of a finite semilattice is an upper bounded homomorphic
image of a free lattice. This strengthens the well-known fact that congruence lattices of
semilattices satisfy the meet semidistributive law SD∧.

It turns out that this result admits a striking generalization: if V is a variety of alge-
bras whose congruence lattices are meet semidistributive, then the congruence lattices of
finite algebras in V are upper bounded homomorphic images of a free lattice. The proof
of this theorem takes us into the realm of tame congruence theory, and with modest
additional effort we are able to find strong restrictions on the structure of the lattice
Lv(W) of subvarieties of an arbitrary locally finite variety W.

Stimulated by Viktor Gorbunov’s talk at the Jónsson Symposium in Iceland in July
1990, and the corresponding draft of [12] which he provided us, we went on to ask if this
type of result might apply to lattices of quasivarieties. It is known that the lattice Lq(K)
of all quasivarieties contained in a quasivariety K satisfies SD∨ [11], and the improved
(finite) version states that if K is a locally finite quasivariety of finite type and Lq(K) is
finite, then it is a lower bounded homomorphic image of a free lattice. There are natural
generalizations of this theorem for varieties which are not locally finite.

Perhaps an analogy with the modular and Arguesian laws provides a good way to
interpret these results. Dedekind devised the modular law to capture the permutability
of normal subgroup lattices, but the Arguesian law is now recognized to be a more
accurate reflection of this property. Similarly, congruence lattices of semilattices satisfy
SD∧, but (at least in the finite case) upper boundedness is a stronger property which
provides a better description of their structure. As the Arguesian law is not sufficient
to characterize normal subgroup lattices, neither does lower boundedness characterize
congruence lattices of finite semilattices. Nonetheless, the Arguesian law and upper
boundedness, respectively, play a significant role in refining our understanding of these
classes of lattices.

Since completing the draft of this paper, we learned of significant progress on the
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Siberian front. In particular, K. V. Adaricheva has found a characterization of subalgebra
lattices of finite semilattices [1], and her results imply some of our results. Likewise,
Gorbunov was aware of our elementary theorems on quasivariety lattices, as conse-
quences of his deeper work on the subject. The main new results in this paper are
in Theorems 23, 31 and 42. For purposes of exposition, we have decided to keep the
proofs of some of the overlapping results in this paper, but we will try to indicate when
these results were found independently.

1 Lower bounded lattices

Let us begin by reviewing the basic definition and properties of finite lower bounded
lattices. These come from [5], [16], and [21]; other fundamental results about this
class can be found in [10] and [24]. The dual notion is called upper bounded.

We need a series of definitions.
A lattice homomorphism h :K → L is called a lower bounded homomorphism if for

each a ∈ L, {x ∈ K : h(x) ≥ a} is either empty or else has a least element, denoted β(a).
Note that the domain of β is an ideal I of L, and β : I → K is a join homomorphism.

A subset C ⊆ K is a lower pseudo-interval if it is a union of intervals with a common
least element, C = ⋃

[a, bi]. If C ⊆ K is a lower pseudo-interval, the Day doubling
construction yields the lattice K[C] with universe K − C ∪ (C × {0,1}), endowed with
the natural order. Let LD denote the smallest class of finite lattices containing all finite
distributive lattices and closed under the doubling of lower pseudo-intervals.

If L is a finite lattice, let J(L) denote the set of (nonzero) join irreducible elements
of L. For subsets A,B ⊆ L, define A� B if for each a ∈ A there exists b ∈ B with a ≤ b.
Using this, for k ∈ω we define subsets Dk(L) ⊆ J(L) as follows. D0(L) is the set of all
join-prime elements of L. Given Dk(L), we define Dk+1(L) to be the set of all p ∈ J(L)
such that whenever p ≤ ∨B and p 6≤ b for all b ∈ B, then there exists A� B such that
p ≤ ∨A and A ⊆ Dk(L).

Closely related to the subsets Dk(L) is the dependence relation D on J(L). For
distinct elements p,q ∈ J(L), let pDq if there exists x ∈ L such that p ≤ q ∨ x but
p 6≤ q∗ ∨x, where q∗ denotes the unique lower cover of q. A D-cycle in L is a sequence
p0, p1, . . . , pn−1 of distinct elements in J(L) such that

p0Dp1D . . . Dpn−1Dp0 .

The dual of the dependence relation, defined on M(L), will be denoted by Dd.
With these definitions assembled, we can state the basic theorem.

Theorem 1. For a finite lattice L, the following are equivalent.

1. There exists a finite set X and a lower bounded epimorphism f : FL(X)� L.
2. For every finitely generated lattice K, every homomorphism h : K → L is lower

bounded.
3. L ∈ LD, i.e., L can be obtained from a distributive lattice by a sequence of doublings

of lower pseudo-intervals.
4. Dk(L) = J(L) for some k ∈ω.
5. L contains no D-cycle.

A finite lattice is called lower bounded if it satisfies these properties, and upper
bounded if it has the dual properties. A lattice which is both upper and lower bounded
is called bounded. If L is lower bounded and p ∈ J(L), the D-rank of p is the least r
such that p ∈ Dr(L).
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It is not hard to see, using (1) and the fact that β is a join homomorphism, that a
lower bounded lattice inherits the property

x ∨ y = x ∨ z implies x ∨y = x ∨ (y ∧ z) (SD∨)

from free lattices. Likewise, an upper bounded lattice satisfies the dual property (SD∧).
The lattice of convex subsets of a four-element chain (Figure 1) provides an example

of a lattice which satisfies (SD∨) but is not lower bounded.

Figure 1: Co 4

At one point we get to use a beautiful result of Alan Day [5] (see [16], [23]).

Theorem 2. A finite lower bounded lattice which satisfies SD∧ is also upper bounded.

2 Congruence lattices of finite semilattices

The next lemma, from our old paper [9], provides a useful tool for working with con-
gruence lattices of semilattices. Note that if T = 〈T ;∧〉 is a finite meet semilattice
and a, b ∈ T are elements with a common upper bound, then they have a least upper
bound, which we will denote by a + b. Thus + is in general a partial operation on T ,
and T ∗ = 〈T ;+,0〉 is a partial algebra with a constant.

Lemma 3. If T is a finite meet semilattice, then Con T is dually isomorphic to the subal-
gebra lattice Sub T ∗.

Indeed, the +–subalgebra corresponding to a congruence θ is the set of all minimum
elements of θ-classes.

It is convenient to always work using this duality. In these terms, the old result is
that Sub T ∗ is a point lattice satisfying SD∨; this implies that it is dually semimodular.
The basic new claim (also in Adaricheva [1]) is the following.

Theorem 4. Sub T ∗ is a lower bounded lattice.

We will give two proofs, the first using property (5) of Theorem 1, and the second
using (3).

First Proof. It is easy to see that the join irreducible subalgebras ofT ∗ are exactly those
of the form a = {a,0} for 0 6= a ∈ T . Moreover, in Sub T ∗ we have a ≤ X ∨ Y if and
only if a = x + y for some x ∈ X, y ∈ Y . Hence aDb holds if and only if a = b + x
for some x ∈ T with b and x incomparable. In particular, aDb implies a > b, so there
are no D-cycles in Sub T ∗. By (5), Sub T ∗ is lower bounded.
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Refining this argument, one can show by induction that if a is an element of height
k in T , then a ∈ Dk−1(Sub T ∗), so that property (4) holds.

Second Proof. Let t be maximal in T . Then we can map Sub T ∗ onto Sub (T −{t})∗ by
ρ(A) = A∩ (T −{t}). It is straightforward to check, using the maximality of t, that ρ is
a homomorphism. A subalgebra B of T − {t} has one or two preimages, depending on
whether or not t is a join of elements of B. Thus Sub T ∗ is obtained from Sub (T −{t})∗
by doubling all the subalgebras B which are also subalgebras of (T −{t})∗, and this is a
union of ideals. (Note that every atom gets doubled!) By induction Sub (T −{t})∗ ∈ LD,
and hence Sub T ∗ ∈ LD.

Combining Lemma 3 and Theorem 4, we obtain the desired result for congruence
lattices of semilattices.

Corollary 5. If S is a finite semilattice, then Con S is an upper bounded lattice.

K. V. Adaricheva proved Theorem 4 independently [1], and added a partial converse:
every finite lower bounded lattice can be embedded into Sub S for some finite semilattice
S. Note that her theorem implies our result in [9] that congruence lattices of semilattices
satisfy no nontrivial lattice identity. Following this line of thought, V. B. Repnitzkii has
announced the following extended version of this result.

Theorem 6. The following are equivalent for a finite lattice L.

1. L is lower bounded.
2. L is embeddable in the subsemigroup lattice of a free semigroup.
3. L is embeddable in the subsemigroup lattice of a free commutative semigroup.
4. L is embeddable in the subsemigroup lattice of an infinite cyclic group.
5. L is embeddable in the subsemigroup lattice of a finite semilattice.
6. L is embeddable in the subsemigroup lattice of a finite nilpotent semigroup.

As mentioned earlier, Adaricheva also characterized those lattices which can be rep-
resented as Sub S with S a finite semilattice ([1], see also [2]). However, there are partial
join semilattices T = 〈T ;+,0〉 such that Sub T cannot be represented as Sub S for
any semilattice S, the simplest such example being the partial join semilattice given in
Figure 2. So her characterization of the subalgebra lattices of finite semilattices does
not automatically give a dual characterization of their congruence lattices. As far as we
know, this problem remains open, though it is quite likely that the same methods will
apply.

Figure 2:

Seif’s original question was prompted by his investigation of congruence lattices of
certain types of semigroups. In particular, he has found a nice description of Con S×G,
where S is a finite semilattice and G a finite group, and the product is regarded as a
semigroup [28]. Using this, we can extend Corollary 5 as follows.

Theorem 7. If S is a finite semilattice and G a finite group with Con G distributive, then
Con S × G is an upper bounded lattice.
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Perhaps more naturally, Corollary 5 can also be applied to the trace and kernel de-
composition of congruences of an inverse semigroup.
Corollary 8. If S is a finite inverse semigroup, then the lattice of normal congruences of
ES is an upper bounded lattice.
Corollary 9. Let Bn be the variety of all inverse semigroups satisfying xn+1 ≈ xn. For
each finite semigroup S ∈ Bn, Con S is an upper bounded lattice.

3 A quick review of tame congruence theory

In order to generalize Corollary 5, we will need to make heavy use of tame congruence
theory. The primary reference for this is of course the book of David Hobby and Ralph
McKenzie [14]. In this section we will briefly review the parts of tame congruence theory
which we will need in the sequel; except where otherwise noted, everything in this
section comes directly from [14].

Throughout this section, all algebras are finite. Recall that given an algebra A and
a subset U ⊆ A, we can form the algebra A|U with universe U , whose operations are
all f ∈ Pol A with respect to which U is closed. Let E = {e ∈ Pol1 A : e2 = e}. The
following famous fundamental fact is from P. P. Pálfy and P. Pudlák [25] and, for later
reference, does not require thatA be finite.
Theorem 10. Let U = e(A) for some e ∈ E. Then the natural restriction map

ρ : ConA→ ConA|U
given by ρ(θ) = θ|U is a complete lattice epimorphism.

For α < β in ConA, let

U(α, β) = {f(A) : f ∈ Pol1 A and f(β) 6⊆ α}
and let M(α,β) denote the collection of minimal members of U(α, β) with respect to
set inclusion. These latter are called 〈α,β〉-minimal sets. Clearly, if U ∈ M(α,β) and f
is a unary polynomial with f(U) ⊆ U , then either f |U is a permutation or f(β|U) ⊆ α|U .

For our purposes, it is not necessary to recall the definition of a tame quotient, but
only to know that they are a generalization of prime quotients.
Lemma 11. Prime quotients are tame in ConA.

Let B, C be nonempty subsets ofA. We say that B and C are polynomially isomorphic
(B ' C) if there exist f ,g ∈ Pol1 A such that f(B) = C, g(C) = B, fg = idC and
gf = idB.
Theorem 12. Let 〈α,β〉 be tame. The following are true.

1. U,V ∈M(α,β) implies U ' V .
2. U ∈M(α,β) implies there exists e ∈ E with e(A) = U .
3. U ∈ M(α,β), f ∈ Pol1 A and f(β|U) 6⊆ α implies f(U) ∈ M(α,β) and f : U '
f(U).

4. For all f ∈ Pol1 A, f(β) 6⊆ α implies f : U ' f(U) for some U ∈M(α,β).
Tame congruence theory classifies the tame quotients of Con A into five types ac-

cording to the structure of their minimal sets. Types 1 and 2 are abelian: 〈α,β〉 has one
of these types if the algebra A/α satisfies the (β/α,β/α)-term condition. In terms of
the (nonmodular) commutator, this means [β,β] ≤ α. Types 3, 4 and 5 are nonabelian:
〈α,β〉 has one of these types if [β, β] � α. For our purposes, this distinction between
abelian and nonabelian quotients suffices.

We need to describe the structure of minimal sets for prime quotients of nonabelian
type. Recall that an 〈α,β〉-trace for a minimal set U ∈ M(α,β) is a set of the form
(x/β)|U which intersects more than one α-class.
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Theorem 13. If U is an 〈α,β〉-minimal set of type 3, 4 or 5, then it has a unique 〈α,β〉-
trace N and there exists p ∈ Pol2 A such that

1. N = {1} ∪O, where {1} and O are disjoint α|N-classes,
2. N is closed under p, and (N/α,p) is the two-element meet semilattice,

3. For all x ∈ U , p(x, 1) = p(1, x) = p(x, x) = x,
4. For all x ∈ U − {1} and z ∈ O, p(x, z) α x α p(z, x),
5. For all x,y ∈ U , p(x, p(x,y)) = p(x, y).
The polynomial p(x,y) in Theorem 13 is called a pseudo-meet operation for U .
Let s∼ be the equivalence relation on Con A generated by collapsing all abelian

prime quotients, i.e., s∼ is the reflexive, symmetric, transitive closure of {(α, β) : α ≺
β and typ(α,β) ∈ {1,2}. First, we note that s∼ collapses no more than it is supposed
to.

Lemma 14. For γ ≤ δ in ConA, we have γ s∼ δ if and only if for all γ ≤ α ≺ β ≤ γ, the
quotient 〈α,β〉 is abelian.

The next result explains our interest in s∼.

Theorem 15. For any finite algebra A, the relation s∼ is a congruence on the lattice
ConA, and ConA/ s∼ satisfies SD∧. If in addition 5 ∉ typ{A}, then ConA/ s∼ satisfies
both SD∧ and SD∨.

There are corresponding versions of this result for locally finite varieties.

Theorem 16. Let V be a locally finite variety. Then ConA satisfies SD∧ for everyA∈ V
if and only if typ{V} ⊆ {3,4,5}.
Theorem 17. Let W be a locally finite variety. Then ConA satisfies SD∨ for every finite
A∈W if and only if typ{W} ⊆ {3,4}.

Each of these two types of varieties can be characterized in several other interesting
ways, including by Mal’cev conditions (see Chapter 9 of [14]).

4 Congruence lattices of neutral algebras

In this section we will be studying an arbitrarily chosen finite algebra which we denote
A. All unspecified references to elements, congruences or operations are references to
elements, congruences and operations of the algebraA.

We will quasi-order prime quotients of ConA in the following way: say that

〈α,β〉 v 〈γ, δ〉

if some 〈γ, δ〉-minimal set contains an 〈α,β〉-minimal set. If some 〈γ, δ〉-minimal set
contains an 〈α,β〉-minimal set, then by Theorem 12(1) and 12(3) every 〈γ,δ〉-minimal set
contains an 〈α,β〉-minimal set. Hence v is indeed a quasi-order. We will write 〈α,β〉 ≈
〈γ,δ〉 and say that 〈α,β〉 and 〈γ, δ〉 are equivalent if 〈α,β〉 v 〈γ, δ〉 and 〈γ, δ〉 v 〈α,β〉.
We will write 〈α,β〉 @ 〈γ, δ〉 if 〈α,β〉 v 〈γ, δ〉, but 〈α,β〉 6≈ 〈γ, δ〉. The following two
lemmas summarize some elementary properties of the relations v and ≈, respectively.

Lemma 18. For prime quotients 〈α,β〉 and 〈γ,δ〉 in ConA,

1. 〈α,β〉 v 〈γ, δ〉 holds if and only if α|U < β|U for some (hence every) U ∈M(γ, δ);
2. Cg(γ, δ) ≤ Cg(α, β) in Con ConA implies 〈α,β〉 v 〈γ, δ〉.
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Proof. The “only if" part of (1) is obvious. Conversely, let U ∈ M(γ, δ) and suppose
α|U < β|U . By Theorem 12(2), U = e(A) for some idempotent e ∈ E. Now Theorem
12(4) applies to yield that e : V ' e(V) for some V ∈ M(α,β). Of course e(V) ∈M(α,β)
and e(V) ⊆ e(A) = U , so 〈α,β〉 v 〈γ, δ〉.

To see (2), let U ∈M(γ, δ) with say U = e(A) where e is idempotent. The restriction
map ρ : ConA� ConA|U is a lattice homomorphism with ρ(γ) = γ|U < δ|U = ρ(δ).
Hence also ρ(α) 6= ρ(β), i.e., α|U < β|U . Thus by (1) we have 〈α,β〉 v 〈γ, δ〉.

Lemma 19. 1. Perspective prime quotients in ConA are equivalent.

2. If ψ ≤ α∧ γ, then the following are equivalent.

(i) 〈α,β〉 ≈ 〈γ, δ〉.
(ii) M(α,β) =M(γ, δ).

(iii) M(α/ψ,β/ψ) =M(γ/ψ,δ/ψ) inA/ψ.
(iv) 〈α/ψ,β/ψ〉 ≈ 〈γ/ψ,δ/ψ〉 in ConA/ψ.

Proof. (1) is an immediate consequence of Lemma 18(2); it is also a special case of
Exercise 2.19 (3) in [14]. (2) is straightforward using the definitions.

The next lemma provides the crucial technical part of our argument.

Lemma 20. Assume that 〈0,ϕ〉 and 〈γ, δ〉 are prime quotients in ConA. If typ(0,ϕ) ∈
{3,4,5} and 〈0,ϕ〉 ≈ 〈γ, δ〉, then 〈0,ϕ〉 and 〈γ,δ〉 are perspective.

Proof. Choose U ∈ M(0,ϕ) = M(γ, δ). Since typ(0,ϕ) ∈ {3,4,5}, U has exactly one
〈0,ϕ〉-trace and we label it N. By Theorem 13, N has exactly two 0-classes, I = {1} and
O = {0}. Let p(x,y) be the pseudo-meet operation of U with respect to 〈0,ϕ〉.

Now U ∈ M(γ, δ), so there exists a pair (x,y) ∈ δ|U − γ|U . We would like to show
that (1,0) ∈ δ−γ. Let f ∈ Pol1 A be given by f(t) = p(0, t). Then f(0) = 0 = f(1), so
f |U is not a permutation, and hence f(δ|U) ⊆ γ|U . On the other hand, f(t) = t for all
t ∈ U − {1}. Thus the only possibility for (x, y) ∈ δ|U − γ|U is with either x or y = 1;
w.l.o.g. say x = 1. Then

1 = x (δ− γ) y = f(y) γ f(x) = p(0, 1) = 0.

Thus (1,0) ∈ δ because γ ≤ δ, while (1,0) ∈ γ would imply (x,y) ∈ γ, a contradiction.
Therefore we have (1,0) ∈ δ− γ as claimed.

Now (0,1) ∈ϕ−0 and 0 ≺ ϕ, soϕ = Cg(0,1). Hence ϕ∨γ = Cg(0,1)∨γ = δ and,
since (0,1) 6∈ γ, γ ∧ϕ = 0. Thus the quotients are perspective.

As a corollary, using Lemma 19, we have a slightly more general assertion.

Corollary 21. Assume that 〈ψ,ϕ〉 and 〈γ, δ〉 are prime quotients in ConA with ψ ≤ γ.
If typ(ψ,ϕ) ∈ {3,4,5} and 〈ψ,ϕ〉 ≈ 〈γ, δ〉, then 〈ψ,ϕ〉 and 〈γ, δ〉 are perspective.

We want to show that the lattice L = Con A/ s∼ is upper bounded. To do this, we
need to establish the connection between v and the dual dependence relation Dd on
the meet irreducible elements of L.

Lemma 22. Let L = Con A/ s∼. Assume p,q ∈ M(L) with qDd p. Let α,γ be the
unique maximal members of the s∼-class corresponding to p, q respectively. Then α,γ ∈
M(ConA) and

〈α,α∗〉 @ 〈γ, γ∗〉.
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Proof. Clearly α and γ are meet irreducible in ConA. Since qDd p, there exists x ∈ L
such that q ≥ p ∧ x and q � p∗ ∧ x. Let χ be the maximal congruence in the s∼-class
corresponding to x. It is easy to see that γ ≥ α∧ χ while γ � α∗ ∧ χ, and thus γ Dd α.
This in turn implies Cg(γ, γ∗) ≤ Cg(α,α∗) in Con ConA, and hence 〈α,α∗〉 v 〈γ, γ∗〉
by Lemma 18(2). It remains only to show that 〈α,α∗〉 and 〈γ, γ∗〉 are not equivalent.

Let ψ = α∧ χ, and choose ϕ ∈ ConA such that ψ ≺ ϕ ≤ α∗ ∧ χ. Note that 〈ψ,ϕ〉
and 〈α,α∗〉 are perspective, and hence equivalent by Lemma 19(1).

We claim that either ϕ ≤ γ or γ ≤ α must hold. For otherwise, using the meet
semidistributivity of ConA/ s∼, we would have

α∧ϕ = ψ = γ ∧ϕ s∼ ϕ ∧ (α∨ γ) =ϕ,
a contradiction.

Now suppose that 〈α,α∗〉 ≈ 〈γ, γ∗〉(≈ 〈ψ,ϕ〉). If ϕ ≤ γ, then the quotients 〈ψ,ϕ〉
and 〈γ, γ∗〉 violate Corollary 21 since they are equivalent, nonabelian and not per-
spective. Similarly, if γ ≤ α, then 〈γ, γ∗〉 and 〈α,α∗〉 violate Corollary 21. Hence
〈α,α∗〉 6≈ 〈γ, γ∗〉, and thus 〈α,α∗〉 @ 〈γ,γ∗〉.

It follows immediately from Lemma 22 that ConA contains no Dd-cycle, and hence
we have the desired conclusion.
Theorem 23. For any finite algebraA, the lattice ConA/ s∼ is upper bounded.

Combining this with Theorem 2 and the second part of Theorem 15, we obtain the
following.
Theorem 24. If A is a finite algebra A with 5 ∉ typ(A), then the lattice Con A/ s∼ is
both upper and lower bounded.

Recall that an algebra A is neutral if it satisfies the commutator equation [θ,ϕ] =
θ∧ϕ for all θ,ϕ ∈ ConA. Thus a finite algebra is neutral if and only if s∼ is the identity
relation on ConA, i.e., when every prime quotient of ConA is nonabelian.
Corollary 25. IfA is a finite neutral algebra, then ConA is an upper bounded lattice.

By virtue of Theorems 16 and 17, applied to each subvariety V(A) withA finite, we
have the following versions for varieties.
Corollary 26. If V is a congruence meet semidistributive variety, then the congruence
lattices of finite algebras in V are upper bounded.
Corollary 27. If W is a congruence join semidistributive variety, then the congruence
lattices of finite algebras in W are both upper and lower bounded.

As an example of Corollary 26, we can consider the variety of directoids introduced by
J. Ježek and R. Quackenbush in [15]. These are algebras with a single binary operation,
denoted by multiplication, satisfying the following equations:

xx ≈ x
(xy)x ≈ xy
y(xy) ≈ xy

x((xy)z) ≈ (xy)z .
It is an elementary exercise to show that a directoid D can be partially ordered by
letting x ≤ y iff xy = x (equivalently yx = x). With this ordering, the product xy is
the smaller of the two elements if they are comparable, and otherwise xy is a common
lower bound of x and y . This last property implies that the order on D is downward
directed. Conversely, any downward directed partially ordered set endowed with a
multiplication with these properties yields a directoid.

Using these facts, it is not hard to see that directoids form a variety D with typ{D} =
{5}. Consequently, we have the following generalization of the result for semilattices.
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Corollary 28. If D is a finite directoid, then ConD is an upper bounded lattice.

A non-congruence-distributive example of Corollary 27 is Polin’s variety P from [27].
This is a finitely generated variety of type {3} (Exercise 9.20(6) of [14]). Thus the con-
gruence lattices of finite algebras in P are bounded. This was originally proved by Day
and Freese in [6]; in fact, they showed that for each n ∈ ω, Con FP(n) is a splitting
lattice!

5 Lattices of equational theories

In this section we will show that Theorem 23 has structural consequences for the lattice
of subvarieties of any 2-finite variety. These restrictions represent a strengthening of
Bill Lampe’s “zipper condition" for the 2-finite case. While there have been several
refinements of Lampe’s condition (see [8], [18]), let us recall the basic version [17].

Theorem 29. Let V be a variety of algebras. Then the lattice of subvarieties Lv(V) sat-
isfies, for each n ≥ 2,

[&0≤i<ny ∨ xi ≈ z & x0 ∧ . . .∧ xn−1 ≈ 0] =⇒ y ≈ z. (Zn)

This can be interpreted as a kind of join semidistributivity at 0. As is often the case,
we will find it more convenient to work dually with lattices of equational theories rather
than lattices of subvarieties.

If V is a variety, let TV denote the equational theory of V and let L(TV) denote the
lattice of equational theories in the language of V which extend (contain) TV. Both V and
TV are called 2-finite if the free algebra FV(2) is finite. Any equational theory extending
a 2-finite theory is 2-finite. It is well-known that L(TV) is isomorphic to the lattice of
fully invariant congruences on FV(ω). Therefore, if we expand FV(ω) to an algebra
F on the same universe which has for its basic operations the operations of FV(ω)
along with all endomorphisms of FV(ω) as additional unary operations, we will have
an algebra with Con F � L(TV). It was shown by Ralph McKenzie in [20] that there is
a well-defined binary operation ∗ on F which is compatible with the congruences of F .
It is defined in the following way. If {xi : i ∈ω} is a free generating set for FV(ω) and
s(x0, . . . , xn), t(x0, . . . , xn) ∈ F where s and t are terms, then

s(x0, . . . , xn)∗ t(x0, . . . , xn) = s(t(x0, . . . , xn),x1, . . . , xn).

We will let F∗ denote the algebra F expanded to include the operation ∗. It is shown
in [22] that

Con F∗ � Con F � L(TV).

The most decisive results on the structure of lattices of equational theories have been
obtained by studyingF∗ and closely related algebras. Observe that for any s(x0, . . . , xn) ∈
F we have

x0 ∗ s(x0, . . . , xn) = s(x0, . . . , xn) and x1 ∗ s(x0, . . . , xn) = x1.

Thus ∗ is a binary operation on F which has a left unit element and a left absorbing
element, viz.,x0 andx1 respectively. A well-known result from basic commutator theory
covers this situation.

Lemma 30. If A is an algebra with a binary operation ∗ which has a left zero and left
one, then Con A satisfies the commutator equation [1, θ] = θ. In particular [1,1] = 1,
so ifA is finite and ϕ < 1, then (ϕ,1) ∉ s∼.
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Now we are ready to prove our theorem on equational theories. To explain the
wording, a lattice homomorphism h : L →K is 1–separating if h−1 ◦ h(1) = {1}.
Theorem 31. Let V be any 2-finite variety. If L = L(TV) is the lattice of equational
theories extending the theory of V, then L has a complete, 1-separating homomorphism
onto a finite, upper bounded lattice.

Proof. We need to show that Con F∗ has a complete, 1-separating homomorphism onto
a finite, upper bounded lattice. Let e be the endomorphism of FV(ω) determined by
e(x0) = x0 and e(xi) = x1 for all i > 0. Let A = e(F) and defineA = F∗|A. Notice that
A is finite since it is exactly the smallest subuniverse ofFV(ω) containing {x0, x1}. The
operations of A are all f ∈ Pol A under which A is closed, which includes ∗.

Observe also that since A is the image of an idempotent polynomial of F∗, by The-
orem 10 the restriction map

|A : Con F∗ → ConA
is a complete, onto lattice homomorphism. We claim that this homomorphism is 1-
separating. For this, note that any congruence θ ∈ Con F∗ is a fully invariant congru-
ence on FV(ω). Hence if θ < 1F , then x0/θ ≠ x1/θ. That is,

θ < 1F → x0/θ ≠ x1/θ → θ|A < 1A → θ < 1F .

Thus θ < 1F if and only if θ|A < 1A, and |A is 1-separating.
We can finish the proof by showing that ConA has a 1-separating homomorphism

onto an upper bounded lattice. For then the composition of this homomorphism with
|A would be a complete, 1-separating homomorphism from Con F∗ onto a finite, upper
bounded lattice. The homomorphism we seek is the natural map

σ : ConA→ ConA/ s∼ .
By Theorem 23, this is a homomorphism onto an upper bounded lattice. ButA = F∗|A
is a finite algebra with a binary operation ∗ which has a left zero and left one, for which
case Lemma 30 immediately yields that σ is 1-separating.

Corollary 32. Let V be any 2-finite variety. Then the lattice of subvarieties of V, Lv(V),
has a complete, 0-separating homomorphism onto a finite, lower bounded lattice.

In the case when Lv(V) is finite, we can make use of a theorem from the folklore on
bounded lattices.
Theorem 33. If L is a finite lattice, then there exists a least congruence λ ∈ Con L such
that L/λ is lower bounded.

This is because finite lower bounded lattices are closed under finite subdirect prod-
ucts. It is useful to have a description of λ. Recall the sets Dk(L) ⊆ J(L) defined in
Section 1. For any finite lattice L, let D(L) be the join subsemilattice of L generated by⋃
k∈ωDk(L) ∪ {0}. This is of course a lattice in its own right. Moreover, D(L) satisfies

the hypothesis of Theorem 3.1 of [10], so the mapping h : L� D(L) by

h(x) =
∨
{u ∈ D(L) : u ≤ x}

is a lattice homomorphism. Using the arguments in say [16], one can easily show that
kerh = λ.

Clearly, L admits a 0-separating homomorphism onto a lower bounded lattice if and
only if 0/λ = {0}. Using the description of λ given above, this translates as follows.
Theorem 34. A finite latticeL admits a 0-separating homomorphism onto a lower bounded
lattice if and only if every atom of L is in Dk(L) for some k ∈ω.

For example, two of the atoms in the lattice of convex subsets of a four-element
chain (Figure 1) are not in D(L), and hence this lattice is not isomorphic to Lv(V) for
any 2-finite variety V.
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6 Finite lattices of quasivarieties: the locally finite case

An old problem of Garrett Birkhoff [4] asks which lattices can be represented as the lattice
Lq(K) of subquasivarieties of a quasivariety K (cf. Mal’cev [19]). Let us note that, for
historical reasons, it is customary to talk about varieties of algebras, but quasivarieties
of relational systems (allowing both functions and relational symbols in the type). Surely
this distinction is for the most part artificial, but the reader should be aware of it. As
an example of where it does make a difference, if we allow infinitely many relational
symbols, then the least element 0 of Lq(K) need not be dually compact.

Viktor Gorbunov, Wiesław Dziobiak and K. V. Adaricheva have made considerable
progress in this area, including as a special case the following nice representation the-
orem from [12] and [2].

Theorem 35. If K is a locally finite quasivariety with only finitely many relations and
Lq(K) is finite, then Lq(K) can be embedded into Sub T for some finite meet semilat-
tice with one, T = 〈T ;∧,1〉. Conversely, for every finite semilattice S, there exists a
quasivariety K of finite rings such that Sub S � Lq(K).

Applying Theorem 4, they then obtain the following corollary (which can also be
proved directly).

Corollary 36. If K is a locally finite quasivariety with only finitely many relations and
Lq(K) is finite, then Lq(K) is a lower bounded lattice.

While finite lower bounded lattices do not satisfy any nontrivial lattice equations [9],
we do have the following result.

Theorem 37. For all n ≥ 2, every finite lower bounded lattice satisfies the following
quasi-identities, where i+ 1 and i+ 2 are taken modulo n:

&0≤i<n[xi ≤ xi+1 ∨yi & xi ∧yi ≤ xi+1] & x0 ∧ . . .∧ xn−1 ≤ y0 ∧ . . .∧yn−1

=⇒ x0 ≈ x1. (Sn)

Proof. If xi ≤ xi+1 for all i, then x0 = x1 = xj for all j. So let us suppose xi 6≤ xi+1 for
some i, and seek a contradiction. Let

P = {a ∈ J(L) : a ≤ xj, a 6≤ xj+1 for some j}

and let a0 be an element of minimum D-rank, say r , in P .
Now a0 ≤ xj ≤ xj+1 ∨ yj and a0 6≤ xj+1. Also a0 6≤ yj else a0 ≤ xj ∧ yj ≤ xj+1.

Hence there exists B ⊆ Dr−1(L) with B � {xj+1, yj} and a0 ≤
∨
B. Since a0 6≤ yj , at

least one b0 ∈ B is not belowyj , and hence below xj+1. Now b0 � xk for some k because∧
xk ≤ yj , so for some m we have b0 ≤ xm and b0 � xm+1. Thus b0 ∈ P , while the

D-rank of b0 is at most r − 1, contradicting the choice of a0.

Combining this with Corollary 4.3 of [12] (which is a more general version of Theo-
rem 35 above), we obtain another result of Gorbunov.

Theorem 38. If K is a locally finite quasivariety with only finitely many relations, then
Lq(K) satisfies (Sn) for every n ≥ 2.

On the other hand, Gorbunov also shows that these quasi-identities do not hold in
arbitrary subquasivariety lattices Lq(Q); in fact, Tumanov has shown that the quasiva-
riety Q generated by all lattices of quasivarieties is the class of all lattices satisfying
SD∨ [29]. Nonetheless, we do not know of any finite lattice which is representable as
Lq(K), but not with K locally finite and of finite type.

Problem . If Q is a quasivariety and Lq(Q) is finite, is Lq(Q) necessarily lower bounded?
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7 Lattices of quasivarieties: the general case

In this section we will consider lattices Lq(K) where the quasivariety K is no longer
assumed to be locally finite. Gorbunov and Tumanov have an analogue of Theorem 35
for the general case (see [13], [12]), but they also have examples which show that it will
not suffice to yield the results we want. So we will have to resort to other methods to
prove the corresponding versions of Corollary 36 and Theorem 38.

Let us recall the closure operator η on Lq(K) introduced by W. Dziobiak in [7], de-
fined by η(X) = H(X) ∩ K, where H denotes the closure under homomorphic images.
This turns out to be a wonderful tool for investigating the structure of quasivariety lat-
tices. Its properties have been abstracted by Gorbunov and Adaricheva [3]; we say that
η is an equaclosure operator on the complete lattice L if it has the following properties.

1. η is a closure operator on L.

2. η(0) = 0.

3. If η(x) = η(y) then η(x) = η(x ∧ y).
4. η(x)∧ (y ∨ z) = (η(x) ∧y)∨ (η(x)∧ z) for all x,y, z ∈ L.

5. η(L) = {x ∈ L : η(x) = x} is a dually algebraic lattice in which an element is
dually compact iff it is dually compact in L.

Note that (1) and (5) immediately imply a property which we will need later.

(6) If {xi : i ∈ I} is a chain in L, then η(
∧
xi) =

∧
η(xi).

(In [2], equaclosure operators are required to satisfy one additional condition, which we
do not need here.)

The original use of equaclosure operators is simply that any quasivariety lattice
Lq(K) has Dziobiak’s operator naturally defined on it. Thus for example the lattice
Co 4, which does not admit an equaclosure operator, is not isomorphic to Lq(K) for
any quasivariety K (see [3]).

Lemma 39. LetL be any finite lattice admitting an equaclosure operatorη. Ifx,y ∈ J(L)
and xDy , then η(x) ≥ η(y).

Proof. Let z ∈ L be such that x ≤ y ∨ z but x 6≤ y∗ ∨ z. Then

x ≤ η(x)∧ (y ∨ z) = (η(x)∧ y)∨ (η(x)∧ z) ≤ (η(x)∧y)∨ z

whence η(x) ≥ y , and thus η(x) ≥ η(y).

Theorem 40. Let L be any finite lattice admitting an equaclosure operator η. If

x0Dx1D . . . Dxn−1Dx0

is a D-cycle in L, then
∧
xi > 0.

Proof. Given a D-cycle in L, by Lemma 39 and property (3) of the definition we obtain
η(xi) = η(xj) = η(

∧
xk). Since η(z) = 0 iff z = 0, this implies

∧
xk > 0.

If follows from Theorem 40 that in a finite lattice admitting an equaclosure operator,
no atom can be in a D-cycle. Thus we can apply Theorem 34.

Corollary 41. Every finite lattice which admits an equaclosure operator has a 0-separating
homomorphism onto a lower bounded lattice.
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Thus the property of having an equaclosure operator implies a sort of lower bound-
edness at 0. (Adaricheva and Gorbunov observed in [3] that the lattice of convex subsets
of the poset in Figure 3 is lower bounded, but does not admit an equaclosure operator.
Hence admitting an equaclosure operator is a strictly stronger property than having
a 0-separating homomorphism onto a lower bounded lattice.) Obviously it imposes a
strong restriction on the structure of quasivariety lattices. On the other hand, it does
not eliminate any lattice L which is an ordinal sum 1 +K, where K is a finite lattice
satisfying SD∨, from being a quasivariety lattice. Indeed, for comparison one should
recall that, despite Lampe’s restrictions and McKenzie’s additional restrictions in the
locally finite case [22], Don Pigozzi has shown that for any dually algebraic lattice M,
the ordinal sum 1+M is isomorphic to Lv(W) for some variety W [26].

Figure 3:

Next we want an analogue of Theorem 38 not requiring local finiteness. As in that
result, we now allow Lq(K) to be infinite, but for the next theorem we will need that its
least element 0 be dually compact. This will of course be true whenever the type of K
has only finitely many relational symbols.

Theorem 42. If the least element 0 of Lq(K) is dually compact, then Lq(K) satisfies the
following quasi-identities for all n ≥ 2, where i+ 1 is taken modulo n:

&0≤i<n[xi ≤ xi+1 ∨ yi & xi ∧yi ≤ xi+1] & x0 ∧ . . .∧ xn−1 ≈ 0 =⇒ x0 ≈ 0. (Tn)

(Gorbunov proved Theorem 42 under the slightly stronger hypothesis that K has
finite type [12].)

Proof. Let xi,yi (0 ≤ i < n) satisfy the hypothesis of condition (Tn) in a complete lattice
L which admits an equaclosure operator η and has its 0 element compact. Suppose
x0 > 0, and we seek a contradiction. For convenience, we can form infinite cyclically
repeating sequences xi,yi (i ∈ ω) with xi = xj and yi = yj iff i ≡ j mod n. The
original sequence satisfies

(i) xi ≤ xi+1 ∨ yi for all i ≥ 0,
(ii) xi ∧yi ≤ xi+1 for all i ≥ 0,
(iii) x0 > 0.

We want to transform this sequence, inductively replacing xi by x′i , obtaining se-
quences of the form 〈x′0, . . . , x′i, xi+1, . . . 〉. Meanwhile, the sequence of yj ’s remains
fixed. Assume that after i+ 1 steps we have a sequence 〈x′0, . . . , x′i, xi+1, . . . 〉 satisfying

1. x′i ≤ xi+1 ∨yi and xj ≤ xj+1 ∨ yj for j > i,
2. x′i ∧yi ≤ xi+1 and xj ∧yj ≤ xj+1 for j > i,
3. x′i > 0,
4. η(x′0) ≥ η(x′1) ≥ ·· · ≥ η(x′i),
5. j < k ≤ i and j ≡ k mod n implies x′j ≥ x′k.
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Let x′0 = x0. Certainly these conditions hold after this one step (i = 0).
To get x′i+1, we observe that (1) implies

x′i ≤ η(x′i)∧ (xi+1 ∨yi) = (η(x′i)∧ xi+1)∨ (η(x′i)∧yi)
≤ (η(x′i)∧ xi+1)∨yi.

(†)

Let x′i+1 = η(x′i)∧xi+1. Since x′i+1 ≤ xi+1, properties (1) and (2) hold with i replaced by
i + 1. Also x′i+1 ≤ η(x′i) implies η(x′i+1) ≤ η(x′i), whence (4) holds. Property (4) along
with the method of construction yields (5): if j < k ≤ i + 1 and j ≡ k mod n, then
xj = xk, so for j = 0 we have x′0 = x0 ≥ η(x′k−1) ∧ xk = x′k, and for j > 0 we have
x′j = η(x′j−1)∧ xj ≥ η(x′k−1)∧ xk = x′k. To prove (3), suppose x′i+1 = 0; then using (†)
and assumption (ii) we get x′i ≤ xi ∧yi ≤ xi+1, and hence x′i ≤ η(x′i)∧ xi+1 = x′i+1 = 0,
contrary to the induction hypothesis. Thus x′i+1 > 0.

Now consider the sequence with all primes 〈x′0, x′1, . . . 〉. For 0 ≤ k < n, we form the
elements

zk =
∧

j≡k mod n

x′j .

By the dual compactness of 0, zk > 0 for all k. Moreover, we have

η(zk) =
∧

j≡k mod n

η(x′j)

and therefore, by property (4), η(zj) = η(zk) =
∧
i≥0 η(x′i) for all j, k. Hence η(zj) =

η(
∧
zk) = η(0) = 0 since

∧
zk ≤

∧
xk = 0. But this implies zj = 0, which is a contradic-

tion. We conclude that x0 = 0, and in fact by symmetry xj = 0 for all j.

The authors would like to thank Professors Adaricheva, Dziobiak and Gorbunov for
their correspondence, and for providing us with early drafts of several papers.
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