A SIMPLE SEMIDISTRIBUTIVE LATTICE

RALPH FREESE
Department of Mathematics, University of Hawaii,
Honolulu, HI 96822, USA
ralph@math.hawaii.edu
J. B. NATION
Department of Mathematics, University of Hawaii,
Honolulu, HI 96822, USA
jb@math.hawaii.edu

Received (Day Month Year)
Accepted (Day Month Year)
Communicated by [editor]

Abstract

Under broad finiteness conditions, such as the existence of a greatest or least element, a semidistributive lattice has the two element lattice as a homomorphic image, and so, if it has more than two elements, is not simple. However, the existence of a simple, semidistributive lattice with more than two elements has remained in question. This paper constructs such a lattice.

Keywords: Semidistributive lattice.
Mathematics Subject Classification 2010: 06B05, 06B10

1. Introduction

The two element lattice is a simple, semidistributive lattice. Are there any others? If, for example, \mathbf{L} is a nontrivial semidistributive (or even just join semidistributive) lattice with a greatest element 1 , then an easy argument using join semidistributivity shows that if I is an ideal of \mathbf{L} maximal with respect to not containing 1 , then I and its complement are the blocks of a congruence of \mathbf{L}. Hence, every nontrivial join semidistributive lattice with a 1 has the two element lattice as a homomorphic image, and so is not simple unless it is the two element lattice. See [1,3] for the related notion of \mathbf{L} having join prime elements; in particular the canonical joinands of 1 .

Fred Wehrung observed that the lattice of finite convex subsets of the integers \mathbb{Z} is an infinite, simple, join semidistributive lattice. In this paper we give an example of an infinite, simple semidistributive lattice. We want to thank Ralph McKenzie for suggesting this problem to us.

We use the notation of [2]. If w is join irreducible and has a (necessarily unique) lower cover, we donote this lower cover by $w_{*} . \mathrm{J}(\mathbf{L})$ denotes the join irreducible elements of \mathbf{L}. If X is a subset of a join semilattice, X^{\vee} denotes its closure under finite joins. If a is an element of an ordered set, $\downarrow a$ denotes $\{x \in S: x \leq a\}$. We use $\mathrm{SD}, \mathrm{SD}_{\vee}$ and SD_{\wedge} to denote semidistributivity, join semidistributivity and meet semidistributivity. We say that a set $\left\{u_{1}, \ldots, u_{k}\right\}$ of join irreducible elements, each with a unique lower cover $u_{i *}$, is a minimal join cover of w if $w \leq u_{1} \vee \cdots \vee u_{k}$ and $w \not \leq u_{1} \vee \cdots \vee u_{i *} \vee \cdots \vee u_{k}$ for each i.

In the 1980's and 1990's the authors developed useful programs for doing calculations in lattices, primarily free and finitely presented lattices. We have used these to check the calculations in this paper. These programs, which are written in Lisp, are available from the authors or at https://github.com/UACalc/LatticeThyPrograms.

2. The Lattice K

Let

$$
X=\left\{a_{i}, b_{i}, c_{i}, d_{i}, e_{i}, f_{i}: i \in \mathbb{Z}\right\}
$$

We partially order X by defining the following order relations, for all $i \in \mathbb{Z}$:

- $\cdots<a_{-1}<c_{-1}<a_{0}<c_{0}<a_{1}<c_{1}<a_{2}<c_{2}<\cdots$
- $a_{i}<e_{i}<b_{i}$
- $c_{i}<f_{i}<d_{i}$

We also add the following join dependencies as relations or "rules" for all $i \in \mathbb{Z}$:
(1) $a_{i} \leq b_{i-1} \vee c_{i-1}$
(2) $b_{i} \leq e_{i} \vee a_{i+2}$
(3) $c_{i} \leq a_{i} \vee d_{i-1}$
(4) $d_{i} \leq f_{i} \vee c_{i+2}$
(5) $e_{i} \leq a_{i} \vee e_{i-1}$
(6) $f_{i} \leq c_{i} \vee f_{i-1}$
(7) $b_{i} \leq e_{i} \vee b_{i+1}$
(8) $d_{i} \leq f_{i} \vee d_{i+1}$

Let \mathbf{K} be the (join) semilattice freely generated by X subject to the order and join dependencies described above. We will see below that \mathbf{K} is a lattice. Each of the elements of $u \in X$ is join irreducible and u_{*} exists. We will use the relations (1)-(6) to show that all of the join irreducibles depend on each other, which implies $\operatorname{con}\left(u, u_{*}\right)$ are all equal. The simplicity of \mathbf{K} follows. The relations (7) and (8) are needed for semidistributivity. Combining these ideas we will prove the following theorem.

Theorem 1. K is semidistributive, simple lattice.

Fig. 1. Schematic of the order on the set X of join irreducible elements of \mathbf{K}.

First note there is an order isomorphism from X onto itself respecting the relations which induces an automorphism of \mathbf{K} :

$$
\begin{aligned}
a_{i} & \mapsto c_{i} \\
b_{i} & \mapsto d_{i} \\
c_{i} & \mapsto a_{i+1} \\
d_{i} & \mapsto b_{i+1} \\
e_{i} & \mapsto f_{i} \\
f_{i} & \mapsto e_{i+1}
\end{aligned}
$$

and we can use this symmetry.
Also observe that in $\mathbf{K}=X^{\vee}$, the elements in Figure 1 are completely join irreducible with their lower covers as indicated in the diagram, that is, $b_{i *}=e_{i}$ and $e_{i *}=a_{i}$, etc.

3. K as a Directed Union of Finite Sublattices

We identify some finite subsets of the set X of join irreducibles. Let $m, n \in \mathbb{Z}$ with $m<n$ and $n>0$.

$$
\begin{aligned}
X_{n} & =\left\{a_{i}, e_{i}, b_{i}, c_{i}, f_{i}, d_{i}: 0 \leq i<n\right\} \cup\left\{a_{n}, c_{n}, e_{n}, f_{n}\right\} \\
X_{m n} & =\left\{a_{i}, e_{i}, b_{i}, c_{i}, f_{i}, d_{i}: m \leq i<n\right\} \cup\left\{a_{n}, c_{n}, e_{n}, f_{n}\right\}
\end{aligned}
$$

Then let $\mathbf{S}_{n}=X_{n}^{\vee}$, and $\mathbf{S}_{m n}=X_{m n}^{\vee}$. In view of the shift automorphism, we will work with the X_{n} and \mathbf{S}_{n}.

The next lemma is a straightforward calculation using the order on X and the relations (1)-(8).

Lemma 2. $\downarrow\left(b_{0} \vee \ldots \vee b_{n-1} \vee d_{0} \vee \ldots \vee d_{n-1}\right) \cap X=X_{n} \cup\left\{a_{j}, c_{j}: j<0\right\}$
It turns out that $b_{0} \vee \cdots \vee b_{n-1} \vee d_{0} \vee \cdots \vee d_{n-1}=b_{0} \vee b_{n-1} \vee d_{0} \vee d_{n-1}$, but this is not needed.

Corollary 3. Each \mathbf{S}_{n} is the interval $\left[a_{0}, b_{0} \vee \cdots \vee b_{n-1} \vee d_{0} \vee \cdots \vee d_{n-1}\right]$ in \mathbf{K}.
Thus $\mathbf{K}=\bigcup_{m<n} \mathbf{S}_{m n}$ shows that \mathbf{K} is a lattice and expresses it as a directed union of finite interval sublattices. In particular, it is locally finite, and to show that \mathbf{K} is semidistributive it suffices to show that each \mathbf{S}_{n} is so.

4. Semidistributivity

To see that \mathbf{S}_{n} is semidistributive, we can use the following characterization [2]. For a finite lattice \mathbf{L} and $p \in \mathrm{~J}(\mathbf{L})$, let $\mathrm{K}(p)=\left\{x \in L: p \not \leq p_{*} \vee x\right\}$. We say that \mathbf{L} has κ 's if each $\kappa(p):=\bigvee \mathrm{K}(p)$ is in $\mathrm{K}(p)$.

Theorem 4. Let \mathbf{L} be a finite lattice.
(1) \mathbf{L} satisfies SD_{\wedge} iff \mathbf{L} has κ 's.
(2) \mathbf{L} satisfies SD_{\wedge} and SD_{\vee} iff it has κ 's and the map $p \mapsto \kappa(p)$ is one-to-one.

Proof. (1) is Theorem 2.56 of [2]. One can adopt the argument for Theorem 11.20(2) of [2] to prove (2).

Lemma 5. Every element of X_{n} has a κ in \mathbf{S}_{n}, and the map $p \mapsto \kappa(p)$ is one-toone.

Proof. Recall $X_{n}=\left\{a_{i}, e_{i}, b_{i}, c_{i}, f_{i}, d_{i}: 0 \leq i<n\right\} \cup\left\{a_{n}, c_{n}, e_{n}, f_{n}\right\}$.
$\operatorname{Ad} \kappa\left(a_{i}\right)$: note a_{0} is the least element of \mathbf{S}_{n}. For other i 's, $a_{i *}=c_{i-1} . \kappa\left(a_{1}\right)=$ $e_{0} \vee d_{0}$ and, for $i>0, \kappa\left(a_{i}\right)=b_{0} \vee \ldots \vee b_{i-2} \vee e_{i-1} \vee d_{0} \vee \ldots \vee d_{i-1}$.

Ad $\kappa\left(c_{i}\right)$: note $\kappa\left(c_{0}\right)=b_{0}$. By symmetry, with adjustments for missing elements at the top and bottom of \mathbf{S}_{n}, for $0<i<n$ we have $c_{i *}=a_{i}$ and $\kappa\left(c_{i}\right)=b_{0} \vee$ $\ldots \vee b_{i} \vee d_{0} \vee \ldots \vee d_{i-2} \vee f_{i-1}$. For $i=n$, this becomes $c_{n *}=a_{n}$ and $\kappa\left(c_{n}\right)=$ $b_{0} \vee \ldots \vee b_{n-1} \vee e_{n} \vee d_{0} \vee \ldots \vee d_{n-2} \vee f_{n-1}$.

Ad $\kappa\left(b_{i}\right)$: note $b_{i *}=e_{i}$. For $i=0$ we have $\kappa\left(b_{0}\right)=d_{0} \vee d_{1} \vee e_{0} \vee e_{1}$. For $0<i<n-1$ we get $\kappa\left(b_{i}\right)=b_{0} \vee \ldots \vee b_{i-1} \vee d_{0} \vee \ldots \vee d_{i+1} \vee e_{i} \vee e_{i+1}$. For $i=n-1$ it is $\kappa\left(b_{n-1}\right)=b_{0} \vee \ldots \vee b_{n-2} \vee d_{0} \vee \ldots \vee d_{n-1} \vee f_{n} \vee e_{n-1} \vee e_{n}$.

Ad $\kappa\left(d_{1}\right)$: note $d_{i *}=f_{i}$ and, by symmetry for $i<n-1$, we have $\kappa\left(d_{i}\right)=$ $b_{0} \vee \ldots \vee b_{i+2} \vee d_{0} \vee \ldots \vee d_{i-1} \vee f_{i} \vee f_{i+1}$. For $i=n-2$ this becomes $\kappa\left(d_{n-2}\right)=$ $b_{0} \vee \ldots \vee b_{n-1} \vee e_{n} \vee d_{0} \vee \ldots \vee d_{n-3} \vee f_{n-2} \vee f_{n-1}$. A similar adjustment gives $\kappa\left(d_{n-1}\right)=b_{0} \vee \ldots \vee b_{n-1} \vee e_{n} \vee d_{0} \vee \ldots \vee d_{n-2} \vee f_{n-1} \vee f_{n}$.
$\operatorname{Ad} \kappa\left(e_{i}\right)$: note $e_{i *}=a_{i}$ and $\kappa\left(e_{i}\right)=\bigvee\left(X_{n} \backslash\left\{b_{j}, e_{j}: j \leq i\right\}\right)$.
Ad $\kappa\left(f_{i}\right)$: similarly, $f_{i *}=c_{i}$ and $\kappa\left(f_{i}\right)=\bigvee\left(X_{n} \backslash\left\{d_{j}, f_{j}: j \leq i\right\}\right)$.

Corollary 6. K is semidistributive.

5. Simplicity

The join dependency relation D is defined on join irreducibles by $x \mathrm{D} y$ whenever y is a member of some minimal nontrivial join cover of x. Originally defined for finite lattices, this makes sense whenever \mathbf{L} has the minimal join cover refinement property, which \mathbf{K} does. When that property holds, the transitive closure of D is a quasi-order on $\mathrm{J}(\mathbf{L})$, and if $x \mathrm{D} y$, then $\operatorname{con}\left(x, x_{*}\right) \leq \operatorname{con}\left(y, y_{*}\right)$. Every proper congruence collapses some join irreducible to its lower cover, and indeed the congruence lattice $\operatorname{Con} \mathbf{L}$ is isomorphic to the lattice of order filters of (X, D). See $[2,4]$.

Lemma 7. Rules (1)-(6) are minimal nontrivial join covers.
Certainly these are not all of them: besides (7) and (8), there are other join covers obtained by composing the given ones.

Proof. By symmetry we check (1), (2) and (5). For clarity, let us use subscripts $0,1,2$.
$\operatorname{Ad}(1): a_{1} \leq b_{0} \vee c_{0}$. Note $a_{1} \not \leq e_{0} \vee c_{0}$ (no rules apply) and $a_{1} \not \leq b_{0} \vee a_{0}=b_{0}$.
Ad (2): $b_{0} \leq e_{0} \vee a_{2}$. Now $e_{0 *}=a_{0}$ so e_{0} cannot be lowered, while $a_{2 *}=c_{1}$; then $e_{0} \vee c_{1} \geq e_{1}$ but after that no rule applies.
$\operatorname{Ad}(5): e_{1} \leq a_{1} \vee e_{0}$. Now $a_{1 *}=c_{0}$ and no rule applies to $e_{0} \vee c_{0}$, while $e_{0 *}=a_{0} \leq a_{1}$.

Lemma 8. For any two distinct $x, y \in \mathrm{~J}(\mathbf{K}), x \mathrm{D}^{n} y$ for some n.

Proof. Using Lemma 7 we see that $a_{i} \mathrm{D} b_{i-1} \mathrm{D} a_{i+1}$ by (1) and (2). On the other hand, $a_{i} \mathrm{D} c_{i-1} \mathrm{D} a_{i-1}$ by (1) and (3). So we need to show that the other join irreducibles are connected to some a_{i}.

Now $a_{i+1} \mathrm{D} b_{i} \mathrm{D} e_{i}$ by (1) and (2), while $a_{i+1} \mathrm{D} c_{i} \mathrm{D} d_{i-1} \mathrm{D} f_{i-1}$ by (1), (3) and (4). Meanwhile $b_{i-2}, c_{i}, e_{i} \mathrm{D} a_{i}$ directly by (2), (3) and (5), and d_{i-2}, $f_{i} \mathrm{D} c_{i} \mathrm{D} a_{i}$ by (4), (6) and (3).

Corollary 9. K is simple.

Proof. Every nontrivial conguence of \mathbf{K} collapses some (x, x_{*}) with $x \in X$, whence by Lemma 8 every nontrivial congruence collapses every (x, x_{*}), including (b_{i}, e_{i}) and $\left(e_{i}, a_{i}\right)$ and $\left(a_{i}, c_{i-1}\right)$ and $\left(c_{i-1}, a_{i-1}\right)$, and symmetrically. So \mathbf{K} is simple.

References

[1] K. Adaricheva, M. Maroti, R. Mckenzie, J. Nation and E. Zenk, The Jónsson-Kiefer property, Studia Logica 83 (2006) 111-131.
[2] R. Freese, J. Ježek and J. Nation, Free Lattices, 42 of Mathematical Surveys and Monographs (Amer. Math. Soc., Providence, 1995).
[3] B. Jónsson and J. Kiefer, Finite sublattices of a free lattice, Canad. J. Math 14 (1962) 487-497.
[4] J. Nation, Notes on lattice theory, available at /math.hawaii.edu/~jb/, (1990).

