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1. Introduction 

If a covers b (denoted a > b) in a lattice L, we call this a singular cover (or the pair (a, b) 
a singdar covering pair) if a is join irreducible and b is meet irreducible. This note’ charac- 
terizes such covers in free lattices. Whenever a< b in a lattice L then, by Dilworth’s 
characterization of lattice congruences, there is a unique largest congruence $(a, b) not 
containing (a, b). Moreover in this situation L/J/(a, b) is subdirectly irreducible. When L 
is a free lattice, these subdirectly irreducible lattices are always finite and are called 
splitting lattices. Such lattices were extensively studied by McKenzie [ 131. Notice that 
if (a, b) is a singular covering pair, then the congruence generated by (a, b), f3(a, b), 
identifies only a and b. Thus if a subdirectly irreducible lattice has a singular covering 
pair (a, b) then this is the only critical quotient. (A critical quotient in a subdirectly 
irreducible lattice is one that generates the unique minimal nontrivial congruence.) 
Many important splitting lattices have singular covers for their critical quotients. For 
example, the congruence lattices of the finitely generated free algebras in Polin’s variety 
have this property [4]. Another such class of lattices is investigated in [3]. 

IfL =FL(X)/$( ) h W, v , w ere M’ Z V, is a splitting lattice with a singular cover, it does 
not follow that (w, V) is a singular covering in FL(X). However, the question of what 
are the singular coverings in FL(X) is still interesting. In their study of covers in free 
lattices, Freese and Nation needed to understand singular covers in free lattices which 
satisfied some additional assumptions. Those authors were able to show that if w > v is 
a singular cover satisfying these additional hypotheses, then either v is the join of two 
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atoms or w is the meet of two coatoms. They asked if there were other singular covers 
in free lattices. JeZek and Slavik were able to prove for any singular cover in a free 
lattice there is a generator comparable to both the elements of the pair. Using this they 
were able to prove that the only singular covers in FL(3) were those described above. 
Freese and Nation, using the results of [9] and [6], were then able to extend this result 
to all free lattices. 

THEOREM. If w > v is a singular cover in a free lattice, then either v is the join of two 
distinct atoms or w is the meet of two distinct coatoms. 

In FL (3) x (xy t xz t vz) > xy t xz is indeed a singular covering pair. Likewise, if we 
let ai denote the atom IIj+t I x.ofFL(n),(n>4),thenforeachi,jwithl<i<j<n, 

n (Ui+Uj+Uk)>Ui+Uj 

k#i,j 

is a singular covering pair in FL (n). Of course, the duals of these are also singular covering 
pairs. 

Our proof of the theorem will use quite a bit of the machinery developed in [9] and 
[6] for studying covers in free lattices. However, the argument for FL(3) involves some 
interesting and different techniques, so we will sketch some of the important ideas here. 

In [15] Whitman proved the free lattices satisfy the following continuity property. 
We write a, t a if {a, : n > 0) is an assending chain and a is the least upper bound for 
this chain. Whitman showed that if a, t a in FL(X) and uE FL(X) thena, * u t a * u. 
From this it follows that if a, t a and b, J- b, b <a, and b, $ a, for all m and n, then 
the interval [b, a] contains no singular cover. Indeed, if w > v were a singular cover in 
[b, a], then a,, l wPa*w=w. If a, *w<w then a, -wBv. Hence, for some n, 
a, * w = w, i.e., w <a,. By duality b, =G v for some m. Hence, b, <a,, , a contradiction. 

Let a be the meet of the coatoms and b the join of the atoms in FL(X). Let X = 
IX 1, ..a, x, } and for c E FL(X) define 

f(C) = iIfi (C * Xi + c ’ xj>. 

We define g(c) dually. Let bO = a and let b, + 1 = f(b,) and define a, dually. Then, with 
some work, one can show that a, b, a,, b,, n > 0, satisfy the hypothesis of the result of 
the previous paragraph. Hence [b, a] contains no singular cover. Notice that [b, a] is 
precisely the set of all elements which are not comparable with a generator. With the 
aid of this and some additional work one can show that the only singular covers in 
FL (3) are those described in the theorem. 

2. Preliminaries 

Before we begin the proof of the theorem we will need to review some basic facts about 
free lattices and their covers. In [lo] Whitman solved the word problem for free lattices. 
We assume the reader is familiar with his solution. Part of his solution is the condition 
ov: 
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ov v1 ...%a 
=OQU=Ui t*--tU, implies 

Vi < u for some i or V d Uj for somei. 
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which holds in FL (X). Note this implies that every element of FL (X) is either meet or 
join irreducible. We say that { wl, . . ., wk} refines { ul, . . ., urn }, and we write { wl, . . . . 
w,) g {Ul, . . . . urn }, if for each i there is a j such that wr G ui. Whitman also showed 
that for each w E FL(X) there is a term of minimal length representing w, unique up to 
commutativity and associativity. If w = w1 t .*. + wk is this representation, where each 
wi is not formally a join, and if w =ul + ***+u,, then (~1, . . . . w,) S (~1, . . . . urn}. 

We call {wl, . . . . wk} the canonical joinands of w. It follows from this that if a i b in 
FL(X) then there is a unique &ages? element c with c> a but c$ b. Namely, c is the 
unique canonical meetand of a which is not above b. In particular, if w is completely 
join irreducible, i.e., w is join irreducible and has a unique lower cover (always denoted) 
w*, then there is a unique largest element, denoted K(W), satisfying K(W)> w* and 
K(w)$ w, and K(W) is the unique canonical meetand of w* which is not above w. If 4 
is completely meet irreducible, we let ~‘(4) be the map dual to K. Note K and K’ are 
inverses of each other. 

Another consequence of this refinement property of canonical joins is the fact that 
FL(X) satisfies Jonsson’s semidistributive laws, (SD”) and @DA): 

(SD”) atb=atc impliesa+b=a+b-c. 

If w is a join, say w = C wi, canonically, then the following lemma shows that the 
lower covers of w are determined by the completely join irreducible canonical joinands 
ofw. 

LEMMA 1.1 (Corollary 2.4 [9]). Ler w = 2 Wi canonically in FL(X). If Wi is completely 
join irreducible then w > w * K(Wi). Conversely, if w > v and wi is the unique joinand 
not below V, then wi is completely join irreducible and Wie = v l wt. Moreover in this 
case every element below w is either below v or above wi. 

We will need several technical theorems about covers in free lattices from [9]. If w 
has the form 

W=II 
i 

(1) 

where the xk’s are generators, then J(w) is defined recursively to be (w ) if w is a meet 
of variables. and 

tIwl u U J(Wij) 

i, i 

otherwise. The set M(w), for w meet irreducible, is defined dually. 

THEOREM 1.2 (Theorem 4.3 [9]). Let w be a join irreducible element of FL(X), X 
jkite, and let 

~~=~{uEJ(w):u<w} and K(w)=(vEJ(w):wttv2w). 
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Then w is completely join irreducible ifand only if 
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(i) everyuEJ(w)-{ w } is completely join irreducible, and 
(ii) w $4 Z:K(w). 

Notice that in particular if w is completely join irreducible then so is every element of 

J(w). 

THEOREM 1.3 (Theorem 4.4 [9]). 1. w is a completely join irreducible element of 
FL(X) and has the canonical form (1) where each xk E X, then for each i there is exact- 
ly one j with wii Q w. 

By rearranging elements we can always assume that j = 1, so that we always have 
Wil G W. 

THEOREM 1.4 (Theorem 4.7 [9]). If w is completely join irreducible then the canonical 
meetands of w* are {K(W)) u { wi : Wi i# K(W)}. 

The next theorem gives a useful characterization of three element intervals in free 
lattices. 

THEOREM 1.5 (Theorem 10.2 [9]). Suppose w isjoin irreducibleand the middle element 
of a three element interval w,,, < w < u. Then w 4 X, u is join reducible, and if q is the 
canonical meetand of w not above u then w = q * u canonically and q is completely meet 
irreducible. 

If we define an equivalence relation - by a - b if there is a sequence a = ao, al, . . . , 
a, = b such ai covers or is covered by ai+l. then the connected components (of the 
covering relation) of the free lattices are the equivalence classes of this relation, thought 
of as subpartially ordered sets of the free lattice A complete description of all these 
connected components is given in [6]. We present those parts of this description that 
we require below. 

For n > 4 the connected component of the least element, 0 = II Xi, of FL(n) consists 
of 0. the n atoms, their (2) pairwise joins, and (“2) elements covering each of these pair- 
wise joins. This component, for n = 4, is diagrammed in Figure 1. The connected com- 
ponent for n = 3 is also given by the diagram below. In both diagrams the singular covers 
are labelled. In the first, ai = Iii + i Xi is an atom. 

Note that the join of any two atoms of a free lattice iS the lower element of a singular 
pair. 

3. The Proof 

Now we are ready to begin the proof of the theorem. We begin with two lemmas. From 
now on we shall assume that w > v is a singular cover in FL(X) and that the canonical 
form of w is given by (l), where, as before, xk E X and for each i, wil $ v. 
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(ct  1 +a2+a 3) �9 ( a ~ §  4 ) 

a l + a  2 
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o 

/ o / ~  \ o ~ 1  " ( x l  x 2 § x3 + x2 x3 ) 

~ 
n = 3 

Fig. 1. 

LEMMA 2. I.  F o r  al l  L wi t ,  <-" v. 

Proof. Suppose that for some i, Wil , -~ v. Then since v* = w we have 

I l w i  "II Xk --w--< Wil, +V. 
i k 

By (W) this implies that for some L w i <<-Wil, + v,  or for some k, x k <~ Wil , + v. Since 
w i l ,  + v <~ w i, the first case must hold with ] = i, and thus wi t  , + v = w i. By the refine- 
ment  property of  the canonical joinands described in the last section {w  t l ,  w i 2 , . . . }  

{ w i t  , ,  v }. However, Wi l ~ ) v i i ,  and wi l ~ v. This contradiction proves the lemma. 
[] 

LEMMA 2.2. E i t h e r  w has  an  u p p e r  cover  o r  v has a lower  cover. 

Proof. Suppose not. Then, by Lemma 1 .I, no generator is a canonical meetand of w, 

i.e., w = I I i Z i w i j ,  and dually v = F~rlIsvrs.  

Since, by Theorem 1.3, all the canonical joinands of  w i, except Wil , lie below w, 
wi = wi i + v = wi l + F~vr. It follows that 

{Wi2, Wi3, . . .  } "~ ( V l ,  O2, . . .  } (*) 

for all i. 
For any pair i, r we have 

1-1 vr, = vr < wi = ~ wii. 
s i 

We wish to apply (W) to this inclusion. Suppose vr <'< wl i for s o m e ] >  1. By ( , )wt ]  <,< v t 
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for some r, whence I = I and V, = Wij E J(W). Thus, by Theorem 1.2, V, is completely 
join irreducible and v > v l K(v,), contrary to our assumption. Hence v, 6 wrj for 
j > 1, and dually or8 C Wi for s > 1. We conclude by (W) that for any pair i, I either 
Vpa1QWiOrVfaGWi1. 

Assume that V, < Wir. Then V, # wir, since V, < W, SO V, < wir *. On the other 
hand, wir* Qv, by Lemma 2.1. Hence, w *wir =w~~*Gv=~~v~. Applying (W), we 
find that wi r * d Z+ for some t. It follows that t =r and Wir* = v,. By duality, if vrl < 
Wi then v,I* = wi. Thus, we have that for any pair i, r either 0,1* = wi or wir * = v,. 

Now let i = 1 and let r vary. Clearly wll* = v, for at most one r, so there exists ri 
such that v,t* = wl for r#t,. Likewise, there exists t2 such that v,r* = w2 for r#tz. 
Since w1 # w2, it follows that there are only two v,‘s, i.e., v = vl + v2 canonically. 

From the casei=l,r=l wegeteither(a)v,r*=wi or(b)vi=wrr*.Fromi=l, 
r=2wegeteither(c)~~~*=w~or(d)v~=w~~,,andfromi=2,r=leither(e)v~~*= 
w2 or (f) v1 = w21*. It follows that either (a) and (f) hold, or else (b) and (c)hold. By 
duality, wemayassume thelatter,i.e.,vl = wll* andv2i* = wt. 

Note that wll $02~. For otherwise, (b) would imply v1 Q w l w1 i < w * v21 = v2, 
a contradiction. 

Now consider wr =w t wll = w t v21 (by (c)), By (SD”) this implies wl = w + 
WI1 * vzl = w since wl r g v21 and wl i ,,, < v B w. This final contradiction proves the 
lemma. 0 

Returning to the proof of the Theorem, we again assume that w > v is a singular cover. 
By Lemma 2.2 and duality we may assume that there is an element u covering w. Since 
v is meet irreducible, the interval u/v is a three element chain. By Theorem 1.5 there is a 
completely meet irreducible element 4 such that w = u * q canonically. Moreover, if ul 
denotes the unique canonical joinand of u not below w, then ul = K’(q). This situation is 
diagrammed in Figure 2. The solid lines are used to indicate coverings. 

uo 
l \  

0 

b 

. 

go\ 
. 09 

l W 
V 

Fig. 2. 

Now u = ul + v = ul + XV,. Since u = ZUi canonically we obtain from the refinement 
property of Section 2: 

{ul:i>l)~(vl,v2,...). (**) 

Note that there is an r such that v, $ ul. For otherwise we would have v Q ul d u, 
which, since ul Q w, implies u i = U. Since ul is a canonical joinand of U, u = ul implies 
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that u is either a generator of a proper meet. This however contradicts Theorem I .S 
which says that u is join reducible. 

Fix an r such that v, $ ul. Then Il,v, = v, < u = Zuj. Applying (W) to this inclusion 
we get four cases. 

Case 1. v, < ul. This cannot occur by the choice of r. 
Case 2. V, < Ui for some i > 1. By (**) we also have Ui Q V, for some S, whence r = s 

and V, = Ui EJ(w). Since w is completely join irreducible, V, must be completely join 
irreducible by Theorem 1.2, and so v v *K(v,) by Lemma 1.1. Hence u>w>v> 
v * K(I),) is a covering chain of length 3. By Theorem 9.2 of 191, such chains occur onIy 
in the connected component of FL(X) containing 0 or 1, where the known singular covers 
in FL (X) also occur. Thus we may assume that v, $ Ui for all i > 1. 

Case 3. vrs < u for some s > 1. Now v,., > v (as s > 1) and v,, is meet irreducible, 
so this implies v,, = U. But v,$ EM(v) is completely meet irreducible, i.e., u = v, has an 
upper cover u*. Again this gives a covering chain of length three, so we may assume that 
this case does not occur. 

Case 4. vrl < u. By the dual of Lemma 2.1 we have v,r* > w, so w < vrl* <u. This 
implies that v,.~* = U, since v,.~* = w would imply that w = vrl + v is a proper join, a 
contradiction. 

Let u2 be the canonical joinand of u not below v,.~, so that v,.~ = u * ~(24~). Now vrl, 
being a canonical meetand of v,, is meet irreducible, so in fact T.J,~ = K(u~). We claim that 
u1 # u2. Clearly or1 # w since w is meet reducible and v,.~ is meet irreducible. Also 
vrl Q v by the definition of canonical form. Since every element properly below w is 
below V, the above implies that 0,1 $ w. Now if vu,, <q then v,.r <q * u = w, a contradic- 
tion. Thus~(us)=v,~ =$ q, but K(u~) =q, showing that u1 #u2. 

Now apply the dual of Theorem 1.4. Since u = v rl*, the canonical joinands of u are 
precisely u2 and the canonical joinands of or1 not below K'(Vrl) = u2. Thus each Ui, if 2, 
and especially ~1, is a canonical joinand of vrl. 

Hence, 

V,l >V,l ' K(Ul) = V,l * q = V,l * 11 ' q = V,l * W = V,. 

Since v, < v, we have shown that the connected component of u in FL(X) contains at 
least the configuration diagrammed in Figure 3, where solid lines denote coverings. 

vr, /O‘;y w 
0 

1 

. O v 
. 

. 
vr O 

Fig. 3. 

By checking the main theorem of [6], which characterizes connected components in 
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free lattices, we see that the above configuration is never part of a connected component. 
This final contradiction completes the proof of the theorem. 
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