Sets of equations implying congruence semidistributivity and \(n \)-permutability

Ralph Freese
Definitions

- Σ is a set of equations.
Definitions

- Σ is a set of equations.
- Σ is idempotent: if F is a function symbol occurring in Σ then $\Sigma \models x \approx F(x, \ldots, x)$.
Definitions

- Σ is a set of equations.
- Σ is idempotent: if F is a function symbol occurring in Σ then $\Sigma \models x \approx F(x, \ldots, x)$.
- A variety \mathcal{V} realizes Σ if the function symbols occurring in Σ can be interpreted as \mathcal{V}-terms such that the equations of Σ hold.

So a Maltsev term $p(x, y, z)$ is weakly independent of all of its places.

Σ', the derivative, is the augmentation of Σ by equations that say that F is independent of its ith place whenever Σ implies F is weakly independent of its ith place.
Definitions

- Σ is a set of equations.
- Σ is idempotent: if F is a function symbol occurring in Σ then $\Sigma \models x \approx F(x, \ldots, x)$.
- A variety \mathcal{V} realizes Σ if the function symbols occurring in Σ can be interpreted as \mathcal{V}-terms such that the equations of Σ hold.
- If $x \approx F(w)$, where w is a vector of not necessarily distinct variables, then F is weakly independent of its ith place for each i with $w_i \neq x$.
Definitions

- Σ is a set of equations.
- Σ is idempotent: if F is a function symbol occurring in Σ then Σ |= x ≈ F(x, ..., x).
- A variety V realizes Σ if the function symbols occurring in Σ can be interpreted as V-terms such that the equations of Σ hold.
- If x ≈ F(w), where w is a vector of not necessarily distinct variables, then F is weakly independent of its ith place for each i with w_i ≠ x. So a Maltsev term p(x, y, z) is weakly independent of all of its places.
Definitions

- Σ is a set of equations.
- Σ is idempotent: if F is a function symbol occurring in Σ then $\Sigma \models x \approx F(x, \ldots, x)$.
- A variety \mathcal{V} realizes Σ if the function symbols occurring in Σ can be interpreted as \mathcal{V}-terms such that the equations of Σ hold.
- If $x \approx F(w)$, where w is a vector of not necessarily distinct variables, then F is weakly independent of its i^{th} place for each i with $w_i \neq x$. So a Maltsev term $p(x, y, z)$ is weakly independent of all of its places.
- Σ', the derivative is the augmentation of Σ by equations that say that F is independent of its i^{th} place whenever Σ implies F is weakly independent of its i^{th} place.
Assume throughout this talk that Σ is idempotent. Then
Assume throughout this talk that Σ is idempotent. Then

- If Σ' is inconsistent then any variety that realizes Σ is congruence modular (CM).

If Σ is the lattice axioms, then $\Sigma' = \Sigma$. But the converse of the first statement is true if Σ is linear (no nested composition in the terms occurring in Σ).

For a finite linear, idempotent Σ one can effectively decide if Σ implies CM.

This contrasts McNulty's Theorem that there is no effective way to decide if a (nonlinear) idempotent Σ implies CM.
Assume throughout this talk that Σ is idempotent. Then

- If Σ' is inconsistent then any variety that realizes Σ is congruence modular (CM).
- If \mathcal{V} is a CM variety, then \mathcal{V} realizes some Σ such that Σ' is inconsistent. (The Day terms work.)
Assume throughout this talk that Σ is idempotent. Then

- If Σ' is inconsistent then any variety that realizes Σ is congruence modular (CM).
- If \mathcal{V} is a CM variety, then \mathcal{V} realizes some Σ such that Σ' is inconsistent. (The Day terms work.)
- The converse of the first statement is false: if Σ is the lattice axioms, then $\Sigma' = \Sigma$. But
Assume throughout this talk that \(\Sigma \) is idempotent. Then

- If \(\Sigma' \) is inconsistent then any variety that realizes \(\Sigma \) is congruence modular (CM).
- If \(\mathcal{V} \) is a CM variety, then \(\mathcal{V} \) realizes some \(\Sigma \) such that \(\Sigma' \) is inconsistent. (The Day terms work.)
- The converse of the first statement is false: if \(\Sigma \) is the lattice axioms, then \(\Sigma' = \Sigma \). But
- The converse of the first statement is true if \(\Sigma \) is linear (no nested composition in the terms occurring in \(\Sigma \)).
Theorems of Dent, Kearnes, Szendrei

Assume throughout this talk that Σ is idempotent. Then

- If Σ' is inconsistent then any variety that realizes Σ is congruence modular (CM).
- If \mathcal{V} is a CM variety, then \mathcal{V} realizes some Σ such that Σ' is inconsistent. (The Day terms work.)
- The converse of the first statement is false: if Σ is the lattice axioms, then $\Sigma' = \Sigma$. But
- The converse of the first statement is true if Σ is linear (no nested composition in the terms occurring in Σ).
- For a finite linear, idempotent Σ one can effectively decide if Σ implies CM.
Assume throughout this talk that Σ is idempotent. Then

- If Σ' is inconsistent then any variety that realizes Σ is congruence modular (CM).
- If \mathcal{V} is a CM variety, then \mathcal{V} realizes some Σ such that Σ' is inconsistent. (The Day terms work.)
- The converse of the first statement is false: if Σ is the lattice axioms, then $\Sigma' = \Sigma$. But
- The converse of the first statement is true if Σ is linear (no nested composition in the terms occurring in Σ).
- For a finite linear, idempotent Σ one can effectively decide if Σ implies CM. This contrasts McNulty’s Theorem that there is no effective way to decide if a (nonlinear) idempotent Σ implies CM.
A similar theorem holds for \forall satisfying some congruence identity if

"Σ' is inconsistent"

is replaced by

"$\Sigma^{(k)}$ is inconsistent for some k."

The Theorems of Dent, Kearnes, Szendrei
The **order derivative**, Σ^+, augments Σ by

$$x \approx F(w')$$

whenever $\Sigma \models x \approx F(w)$, where w' is the same as w in every place except one, say i, and $w'_i = x$.
The order derivative, Σ^+, augments Σ by

$$x \approx F(w')$$

whenever $\Sigma \models x \approx F(w)$, where w' is the same as w in every place except one, say i, and $w'_i = x$.

If some iterated order derivative Σ^{+^k} of Σ is inconsistent then any variety that realizes Σ is congruence n-permutable, for some n.

Ralph Freese ()

semidistributivity and n-permutability

Mar 3, 2012 5 / 8
The order derivative, Σ^+, augments Σ by

$$x \approx F(w')$$

whenever $\Sigma \models x \approx F(w)$, where w' is the same as w in every place except one, say i, and $w'_i = x$.

If some iterated order derivative Σ^{+^k} of Σ is inconsistent then any variety that realizes Σ is congruence n-permutable, for some n.

If \mathcal{V} is a congruence n-permutable, for some n, then \mathcal{V} realizes some Σ whose iterated order derivative Σ^{+^k} is inconsistent. (The Hagemann-Mitschke terms work.)
The order derivative, Σ^+, augments Σ by

$$x \approx F(w')$$

whenever $\Sigma \models x \approx F(w)$, where w' is the same as w in every place except one, say i, and $w'_i = x$.

If some iterated order derivative Σ^{+k} of Σ is inconsistent then any variety that realizes Σ is congruence n-permutable, for some n.

If \mathcal{V} is a congruence n-permutable, for some n, then \mathcal{V} realizes some Σ whose iterated order derivative Σ^{+k} is inconsistent. (The Hagemann-Mitschke terms work.)

The converse of the first statement is false. But
The order derivative, Σ^+, augments Σ by

$$x \approx F(w')$$

whenever $\Sigma \models x \approx F(w)$, where w' is the same as w in every place except one, say i, and $w'_i = x$.

If some iterated order derivative Σ^{+k} of Σ is inconsistent then any variety that realizes Σ is congruence n-permutable, for some n.

If \mathcal{V} is a congruence n-permutable, for some n, then \mathcal{V} realizes some Σ whose iterated order derivative Σ^{+k} is inconsistent. (The Hagemann-Mitschke terms work.)

The converse of the first statement is false. But

The converse of the first statement is true if Σ is linear.
The order derivative, Σ^+, augments Σ by

$$x \approx F(w')$$

whenever $\Sigma \models x \approx F(w)$, where w' is the same as w in every place except one, say i, and $w'_i = x$.

If some iterated order derivative Σ^{+k} of Σ is inconsistent then any variety that realizes Σ is congruence n-permutable, for some n.

If \mathcal{V} is a congruence n-permutable, for some n, then \mathcal{V} realizes some Σ whose iterated order derivative Σ^{+k} is inconsistent. (The Hagemann-Mitschke terms work.)

The converse of the first statement is false. But

The converse of the first statement is true if Σ is linear.

For a finite linear, idempotent Σ one can effectively decide if Σ implies congruence n-permutability, for some n.
The weak derivative, Σ^*, augments Σ by an equation expressing that F is independent of its i^{th} place whenever

$$\Sigma \models x \approx F(x, \ldots, x, y, x, \ldots, x)$$

where the y is in the i^{th} place.
Semidistributivity

- The **weak derivative**, Σ^*, augments Σ by an equation expressing that F is independent of its i^{th} place whenever

$$\Sigma \models x \approx F(x, \ldots, x, y, x, \ldots, x)$$

where the y is in the i^{th} place.

- If some iterated weak derivative Σ^{*k} of Σ is inconsistent then any variety that realizes Σ is congruence semidistributive.
The weak derivative, Σ^*, augments Σ by an equation expressing that F is independent of its i^{th} place whenever

$$\Sigma \models x \approx F(x, \ldots, x, y, x, \ldots, x)$$

where the y is in the i^{th} place.

If some iterated weak derivative Σ^*_k of Σ is inconsistent then any variety that realizes Σ is congruence semidistributive.

If \mathcal{V} is a congruence semidistributive then \mathcal{V} realizes some Σ whose iterated weak derivative Σ^*_k is inconsistent. (In a joint paper with Matt, Ross and others we have a variant of the Hobby-McKenzie-Kearnes-Kiss terms work.)
The weak derivative, Σ^*, augments Σ by an equation expressing that F is independent of its i^{th} place whenever

$$\Sigma \models x \approx F(x, \ldots, x, y, x, \ldots, x)$$

where the y is in the i^{th} place.

If some iterated weak derivative Σ^*^k of Σ is inconsistent then any variety that realizes Σ is congruence semidistributive.

If \mathcal{V} is a congruence semidistributive then \mathcal{V} realizes some Σ whose iterated weak derivative Σ^*^k is inconsistent. (In a joint paper with Matt, Ross and others we have a variant of the Hobby-McKenzie-Kearnes-Kiss terms work.)

The converse of the first statement is false, even if Σ is linear. Nevertheless
Semidistributivity

- The **weak derivative**, \(\Sigma^* \), augments \(\Sigma \) by an equation expressing that \(F \) is independent of its \(i^{th} \) place whenever

\[
\Sigma \models x \approx F(x, \ldots, x, y, x, \ldots, x)
\]

where the \(y \) is in the \(i^{th} \) place.

- If some iterated weak derivative \(\Sigma^{*k} \) of \(\Sigma \) is inconsistent then any variety that realizes \(\Sigma \) is congruence semidistributive.

- If \(\mathcal{V} \) is a congruence semidistributive then \(\mathcal{V} \) realizes some \(\Sigma \) whose iterated weak derivative \(\Sigma^{*k} \) is inconsistent. (In a joint paper with Matt, Ross and others we have a variant of the Hobby-McKenzie-Kearnes-Kiss terms work.)

- The converse of the first statement is false, even if \(\Sigma \) is linear. Nevertheless

- For a finite linear, idempotent \(\Sigma \) one can effectively decide if \(\Sigma \) implies congruence semidistributivity.
A variety is congruence semidistributive iff there are terms $d_i(x, y, z), i = 0, \ldots, n$, such that

$$d_0(x, y, z) \approx x \quad d_n(x, y, z) \approx z$$

and
A variety is congruence semidistributive iff there are terms $d_i(x, y, z)$, $i = 0, \ldots, n$, such that

$$d_0(x, y, z) \approx x \quad d_n(x, y, z) \approx z$$

and for each i two of the following three hold:

$$d_i(x, x, y) \approx d_{i+1}(x, x, y)$$
$$d_i(x, y, x) \approx d_{i+1}(x, y, x)$$
$$d_i(x, y, y) \approx d_{i+1}(x, y, y)$$
A variety is congruence semidistributive iff there are terms $d_i(x, y, z)$, $i = 0, \ldots, n$, such that

$$d_0(x, y, z) \approx x \quad d_n(x, y, z) \approx z$$

and for each i two of the following three hold:

$$d_i(x, x, y) \approx d_{i+1}(x, x, y)$$
$$d_i(x, y, x) \approx d_{i+1}(x, y, x)$$
$$d_i(x, y, y) \approx d_{i+1}(x, y, y)$$

Let Σ be these equations. Assume inductively that Σ^*^k implies $x \approx d_i(x, y, z)$. Then, using the above equations, one can show that Σ^*^{k+2} implies $x \approx d_{i+1}(x, y, z)$.
A variety is congruence semidistributive iff there are terms $d_i(x, y, z)$, $i = 0, \ldots, n$, such that

$$d_0(x, y, z) \approx x \quad d_n(x, y, z) \approx z$$

and for each i two of the following three hold:

$$d_i(x, x, y) \approx d_{i+1}(x, x, y)$$
$$d_i(x, y, x) \approx d_{i+1}(x, y, x)$$
$$d_i(x, y, y) \approx d_{i+1}(x, y, y)$$

Let Σ be these equations. Assume inductively that Σ^*_k implies $x \approx d_i(x, y, z)$. Then, using the above equations, one can show that Σ^*_{k+2} implies $x \approx d_{i+1}(x, y, z)$.

So some iterated weak derivative implies $x \approx d_n(x, y, z) \approx z$ and so is inconsistent.
Theorem

For each property \(P \) listed below, given a finite, idempotent, linear set of equations \(\Sigma \) one can effectively decide if every variety that realizes \(\Sigma \) satisfies \(P \).

- Is congruence modular.
- Satisfies a nontrivial congruence identity.
- Is congruence \(n \)-permutable for some \(n \).
- Is congruence semidistributive.
- Is congruence meet-semidistributive.
- Is congruence distributive.
Decidable properties of finite, idempotent linear Σ’s

Theorem

For each property P listed below, given a finite, idempotent, linear set of equations Σ one can effectively decide if every variety that realizes Σ satisfies P.

- Is congruence modular.

- Satisfies a nontrivial congruence identity.
- Is congruence n-permutable for some n.
- Is congruence semidistributive.
- Is congruence meet-semidistributive.
- Is congruence distributive.
Decidable properties of finite, idempotent linear Σ’s

Theorem

For each property P listed below, given a finite, idempotent, linear set of equations Σ one can effectively decide if every variety that realizes Σ satisfies P.

- *Is congruence modular.*
- *Satisfies a nontrivial congruence identity.*
Theorem

For each property P listed below, given a finite, idempotent, linear set of equations Σ one can effectively decide if every variety that realizes Σ satisfies P.

- Is congruence modular.
- Satisfies a nontrivial congruence identity.
- Is congruence n-permutable for some n.
Decidable properties of finite, idempotent linear Σ’s

Theorem

For each property P listed below, given a finite, idempotent, linear set of equations Σ one can effectively decide if every variety that realizes Σ satisfies P.

- Is congruence modular.
- Satisfies a nontrivial congruence identity.
- Is congruence n-permutable for some n.
- Is congruence semidistributive.
Decidable properties of finite, idempotent linear Σ’s

Theorem

For each property P listed below, given a finite, idempotent, linear set of equations Σ one can effectively decide if every variety that realizes Σ satisfies P.

- Is congruence modular.
- Satisfies a nontrivial congruence identity.
- Is congruence n-permutable for some n.
- Is congruence semidistributive.
- Is congruence meet-semidistributive.
Decidable properties of finite, idempotent linear Σ’s

Theorem

For each property P listed below, given a finite, idempotent, linear set of equations Σ one can effectively decide if every variety that realizes Σ satisfies P.

- Is congruence modular.
- Satisfies a nontrivial congruence identity.
- Is congruence n-permutable for some n.
- Is congruence semidistributive.
- Is congruence meet-semidistributive.
- Is congruence distributive.