Assignment 10 – Part 1 – Math 541

The following problems from the textbook:

Section 4.3: 4, 5, 6, 15

(1) Suppose \(\varphi : R \to R' \) is a homomorphism of rings. Show that \(\ker(\varphi) \leq R \) and \(\text{im}(\varphi) \leq R' \). (This was stated in class, but not proved).

(2) Suppose \(R \) is a ring and \(S \) is a set with two binary operations denoted + and \(\cdot \). Suppose \(\varphi : R \to S \) is a surjective function such that \(\varphi(a + b) = \varphi(a) + \varphi(b) \) and \(\varphi(ab) = \varphi(a) \cdot \varphi(b) \) for all \(a, b \in R \). Show that \(S \) is a ring. Show that if \(R \) has an identity, then so does \(S \). Show that if \(R \) is commutative, then so is \(S \).

(3) Suppose \(\varphi : R \to R' \) is a homomorphism of rings and suppose \(S' \) is a subring of \(R' \). Show that \(\varphi^{-1}(S') \) is a subring of \(R \). If \(S' \) is an ideal, show that \(\varphi^{-1}(S') \) is, too.

(4) Suppose \(I \) and \(J \) are ideals in \(R \) and \(I \subseteq J \). Show that \(I \) is an ideal in \(J \).

(5) Let \(F \) be the field \(\mathbb{Z}/p\mathbb{Z} \) where \(p \) is a prime and consider the polynomials with coefficients in \(F \), denoted \(F[x] \). An element \(f(x) \in F[x] \) can be thought of as a function from \(F \) to itself \(F \); its value on \(a \in F \) is obtained by plugging \(a \) in to \(f(x) \), i.e. it is the function \(a \mapsto f(a) \). Show that the polynomial \(f(x) = x^p - x \) gives the zero function (i.e. the function that sends every \(a \in F \) to 0).