(1) In this question, R is a commutative ring with identity. This question continues the idea of speaking of divisibility in terms of ideals. An ideal P in R is called prime if $P \neq R$ and whenever $ab \in P$, then $a \in P$ or $b \in P$.

(a) Suppose R is an integral domain. Show that, for $a \neq 0$, the principal ideal (a) is prime if and only if a is a prime element.

(b) Show that the zero ideal $\{0\}$ is prime if and only if R is an integral domain.

(c) Let I be an ideal of R. Show that I is prime if and only if R/I is an integral domain.

(d) Show that every maximal ideal is prime. Can you give an example of a non-maximal prime ideal?