Assignment 8 – Part 1

(1) Recall from assignment 6 question (4) that, for $h_1, h_2 \in G$, we say that h_2 is conjugate to h_1 if there is $g \in G$ such that

$$h_2 = g^{-1}h_1g.$$

(The map from G to itself sending h to $g^{-1}hg$ is called “conjugation by g”).

(a) Show that “conjugacy” is an equivalence relation.

(b) For $h \in G$, we use the term “conjugacy class of h” to refer to the equivalence class under the above equivalence relation. We denote the conjugacy class of h by C_h. Show that $\#C_h = 1$ if and only if $h \in Z(G)$.

(c) In question 4(b) of assignment 6, we found that for D_n when n is odd, the reflections are all in the same conjugacy class $C_r = \{\rho^i r : 0 \leq i < n\}$. Show that, for n odd, all the other non-identity conjugacy classes in D_n have size 2.

(d) When n is even, the answer is slightly different. What are the conjugacy classes of D_n in this case?

(2) Determine the conjugacy classes of the quaternion group Q.