1) Recall from assignment 6 question (4) that, for \(h_1, h_2 \in G \), we say that \(h_2 \) is conjugate to \(h_1 \) if there is \(g \in G \) such that

\[
 h_2 = g^{-1}h_1g.
\]

(The map from \(G \) to itself sending \(h \) to \(g^{-1}hg \) is called “conjugation by \(g \”).)

(a) Show that “conjugacy” is an equivalence relation.
(b) For \(h \in G \), we use the term “conjugacy class of \(h \)” to refer to the equivalence class under the above equivalence relation. We denote the conjugacy class of \(h \) by \(C_h \). Show that \(\#C_h = 1 \) if and only if \(h \in Z(G) \).
(c) In question 4(b) of assignment 6, we found that for \(D_n \) when \(n \) is odd, the reflections are all in the same conjugacy class \(C_r = \{ \rho^i r : 0 \leq i < n \} \). Show that, for \(n \) odd, all the other non-identity conjugacy classes in \(D_n \) have size 2.
(d) When \(n \) is even, the answer is slightly different. What are the conjugacy classes of \(D_n \) in this case?

2) Determine the conjugacy classes of the quaternion group \(Q \).

3) (a) Suppose \(N_1 \) and \(N_2 \) are two normal subgroups of \(G \) such that \(N_1 \cap N_2 = \{ e \} \). If \(a_1 \in N_1 \) and \(a_2 \in N_2 \), show that \(a_1 \) and \(a_2 \) commute. (Hint: consider \(a_1^{-1}a_2^{-1}a_1a_2 \).)
(b) Suppose \(N_1 \) and \(N_2 \) are two normal subgroups of \(G \) such that every \(g \in G \) can be uniquely factored as \(g = a_1a_2 \) with \(a_1 \in N_1 \) and \(a_2 \in N_2 \). Show that \(N_1 \cap N_2 = \{ e \} \).
(c) Recall the definition of the direct product of two groups from Assignment 4 question (2). Suppose again that \(N_1 \) and \(N_2 \) are two normal subgroups of \(G \) such that every \(g \in G \) can be uniquely factored as \(g = a_1a_2 \) with \(a_1 \in N_1 \) and \(a_2 \in N_2 \). Show that the function \(\varphi : N_1 \times N_2 \to G \) defined by

\[
 \varphi((a_1, a_2)) = a_1a_2
\]

is an isomorphism. The group \(G \) is then said to be the internal direct product of \(N_1 \) and \(N_2 \).
(d) For two subsets $S, T \subseteq G$, define $ST := \{st : s \in S, t \in T\}$. Suppose N_1 and N_2 are two normal subgroups of G such that $G = N_1N_2$ and $N_1 \cap N_2 = \{e\}$. Show that G is the internal direct product of N_1 and N_2.

(4) Let p be a prime and suppose G is an abelian group of order p^2. It is possible that there is an element $a \in G$ such that $#a = p^2$, in which case $G \cong \mathbb{Z}/p^2\mathbb{Z}$ is cyclic. Suppose there is no such a in G.

(a) Suppose $a \in G$ with $a \neq e$. Show that $#a = p$.

(b) Suppose $a_1, a_2 \in G$ both not the identity. Let $N_i = \langle a_i \rangle$. Show that if $a_1^i = a_2^j$ for some integers i and j not divisible by p, then $a_2 \in N_1$. (Hint: Bézout’s identity will likely pop up in your proof).

(c) Conclude from part (b) that if $a_2 \not\in N_1$, then $N_1 \cap N_2 = \{e\}$.

(d) Show that $G = N_1N_2$. (Hint: think about the cosets of N_1).

(e) Conclude that G is the internal direct product of N_1 and N_2. Then conclude that $G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

Extra problems for the honours students:

(X1) Let $p > q$ be primes with $p \equiv 1 \pmod{q}$. Define

$$G_{pq} := \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a, b \in \mathbb{Z}/p\mathbb{Z} \text{ with } a^q \equiv 1 \pmod{p} \right\}.$$

(i) Show that G_{pq} is a group.

(ii) Show that G_{pq} is nonabelian.

(iii) What is the order of G_{pq}?

(iv) If $p \not\equiv 1 \pmod{q}$, what is the order of G_{pq}?