2500 years of very small numbers

(The myth of infinitesimals?)

David A. Ross
Department of Mathematics
University of Hawal'i



(Definition:]

An infinitesimal is a quantity which is smaller than any finite magnitude, but
not zero.

Modern Terminology:)

An infinitesimal is a number x # O such that |x| is less than every positive
number.

Question:|

s |x| < [x|?



What is the area of a circle?)

Antiphon, approx 450 B.C..
A circle is a polygon with a very large number (infinite) of vanishingly small
(infinitesimal) sides.
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Area computation:

Area of circle = (area of triangle) X (number of triangles)

1

E(baee of triangle) x (height of triangle) x (number of triangles)
1

—(base of triangle number of triangles) x (height of triangle
2 g

1

E(cwcumﬁer@nce of circle) X R

1

5(2 X X R) xR

= 7R*




(Centuries of indecision on infinitesimals

Eudoxus (4056-255 B.C.)
Method of exhaustion

Replaces infinitesimals with small, non-infinitesimal quantities, and a rigorous
proof technique

Archimedes (~250 B.C.)
Most publiehed proofe use exhaustion or compression

In The Method of Mechanical Theorems, explains how infinitesimal techniques can
be used for discovery



Archimedes Palimpsest

10th century copy of several Archimedes
works, including only known text of The
Method

12th century: badly erased and rewritten as
a liturgical text

1900: Inspected/photographed in Constantino-
ple; in Baltimore (under anonymous private
ownership) since 1995

Multispectral imaging, digital image enhance-
ment, and (more recently) X-ray floures-
cence used to reveal new text.

Many important new findings; for example
(2002) equinumerosity of infinite sete.



Johannes Kepler (1615) Nova stereometria dolorium vinariorium

Still a part of the standard Calculus curriculum (under the heading “volumes of
rotation”), these arguments are awkward without infinitesimals; textbooks try,
but most instructors still just use infinitesimal arguments.

Many results duplicate those in The Method
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Bonaventura Cavalieri (1625), Geometria indivisibilus

Replaced explicit infinitesimal arguments by axiomatic statements.

(1637), Excercitationes geometricae:

“Rigor is the affair of philosophy rather than mathematics.”



lsaac Barrow
Tangents to curves using infinitesimal methods.

(1604-7; published 1663) Several works speculating on the methodology used by
Archimedes.

Recent guestion: Barrow visited Conetantinople at a time when the Archimedes
Palimpeeet was there; did he have access to it?



Gottfried Wilhelm von Leibniz

(1654): Nova methodus pro maximis et minimis.., Acta Eruditorum

(1656): De geometria recondita et analysi indivisibilium et infinitorum, Acta

Eruditorum .
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Free use of infinitesimals. Viewed curves much as /\ntipnon, as eornpoeeel of
infinitely many small segments.

(1700+) The two questions:

a) Are infinitesimals real?
b) Do infinitesimals lead to correct theorems?

are independent.



lsaac Newton
(1687): Principia Mathematica

Uses no infinitesimals in the proofs (not even fluxions).

4  PHILOSOPHIZ NATURALIS.

DaMory  Copol. 4. lifdem pofitis, elt vis
Conrersst onripeta ut velocitas bis directe,
& chorda illa inverfe, Nam velo-
citas cft reciproce ur perpendiculum
&7 per corol. 1. prop. 1.
Corat, 5, Hinc fidetur figura quee- ;
vis curvilinea AP @, & in eadetor = o
etiam punflum §, ad quod vis cen- A ) .
tipeta perpetno dirigitur, inveniri poteft lex vis centripete, quar
corpus quodsis P a curfu retilineo perpetuo retraftum in figure
illivs perimetro detinebitur, camgue revolvendo defcribet. Nimi-

g %
rum computandurm eft vel folidu SPgx 3T vel folidum §7°-
« PF huic vi reciproce proportionale,  Ejus rei dabimus exempla;
in problematis fequentibus.
PROPOSITIO VIL. PROBLEMA IL

Gyretur corpus in circumferentia circuli, requiritur lex vis.
centripete tendentis ad puntlum quodcunque datam..

Efto circuli circumferentia
V9P 4; punflum datum, ad
quod vis ceu ad centrum fu-
um tendit, §; corpus in cir-
cumferentia latum P; locus
proximus, in quem movebitur
8 & circull tangens ad lo-
cum priorem PRZ, Per.
punftum 8 ducatur chorda
FF; & afta circuli diametro
V.4, jungatur AP ; & ad
P demitratyr perpendiculum
97, quod produétum occur-
rat tangenti PRin Z; ac de- ' gt
nique per punétum @ agatur L R, qua ipfi SP parallella fit, o=
currat tum circulo in Ly tum tangenti P Z in 8. Et ob fimifis &
agulsa ZQR, ZI'P, VP A; erit RP. guad, hoc eft @ RL

% QF quad”

(1091): De Quadratura Curvarum

Disavows infinitesimals.



George (Bishop) Berkeley
(1754): The Analyst

“The foreign Mathematicians...suppose finite Quantities to consist of Parts
infinitely little, and Curves to be Polygons, whereof the Sides are infinitely
little, which by the Angles they make one with another determine the
Curvity of the Line. Now to conceive a Quantity infinitely small, that is,
infinitely less than any sensible or imaginable Quantity, or any the least
finite Magnitude, is, | confess, above my Capacity. But to conceive a
Part of such infinitely small Quantity, that shall be still infinitely less
than it, and consequently though multiply'd infinitely shall never equal
the minutest finite Quantity, is, | suspect, an infinite Difficulty to any
Man whatsoever; and will be allowed such by those who candidly say
what they think; provided they really think and reflect, and do not take
things upon trust.”



Berkeley was reacting in part to criticisms of religion from mathematicians:

“But he who can digest a second or third Fluxion, a second or third
Difference, need not, methinks, be squeamish about any Point in Divinity.”



Berkeley considers the following derivation of the slope of the curve y = x":

(x+0)" =X

-
Let o be an infinitesimal, then the slope is the change in y over the change in
X:

(x+0)" —x7 (x4 nox"" + Lp2xm2 o) — 7
0 B 0
n—~1 nin=1) 2 n-2
_ nox™  + ——5—o0"x" T+
0

nn — 1
= nx"" —I—%Ox”_4 + e

Now, the second and subsequent terms are negligible since o is infinitesimal, so
we drop them, and the slope is nx""



Berkeley wrote in response:

“Hitherto | have supposed that x flows, that x hath a real Increment,
that o is something. And | have proceeded all along on that Supposition,
without which | should not have been able to have made so much as one
single Step. From that Supposition it is that | get at the Increment
of x", that | am able to compare it with the Increment of x, and that
| find the Proportion between the two Increments. | now beg leave to
make a new OSupposition contrary to the first, i. e | will suppose
that there is no Increment of x, or that o is nhothing; which second
Supposition destroys my first, and is inconsistent with it, and therefore
with every thing that supposeth it. | do nevertheless beg leave to retain
nx""1, which is an Expression obtained in virtue of my first Supposition,
which necessarily presupposeth such Supposition, and which could not
be obtained without it: All which seems a most inconsistent way of

arguing, and such as would not be allowed of in Divinity.”



And more:

“Leibnitz and his followers in their calculus differentialis making no man-
ner of scruple, first to suppose, and secondly to reject Quantities in-
finitely small...l shall now only observe as to the method of getting rid
of such Quantities, that it is done without the least Ceremony.”

As for the Leibnizian idea that correct theorems may be obtained even assuming
infinitesimals are not real:

“But then it must be remembred, that in such Case although you may
pass for an Artist, Computist, or Analyst, yet you may not be justly
esteemed a Man of Science and Demonstration.”

Concludes with several questions, among them:

“Whether it be necessary to consider Velocities of nascent or evanescent
Quantities, or Moments, or Infinitesimals? And whether the introducing
of Things so inconceivable be not a reproach to Mathematics¢”



In the face of this and other criticism, mathematicians continued to use in-
finitesimals, because they worked. Notably:

Marquis de I'Hospital (1690) Analyse des Infiniments FPetits pour [lntelligence
des Lignes Courbes (first Calculus textbook)

“A curved line may be regarded as being made up of infinitely small
straight line segments”

“One can take as equal two quantities differing by an infinitely small
gquantity”

Leonhard Euler (1748): Introductio in analysin infinitorum (and many other works)

Prettv much everv other workinga mathematician of the dav.



In the 19th century, matematicians sought for and found a way to give Calculus
a sound footing without the need for infinitesimals.

Contributors include Bernard Bolzano (~1817), Jean Le Rond d'Alembert, En-
cyclopédie méthodique (177¢) Augustin-Louis Cauchy, Cours danalyse (1821),
and finally Karl Weierstrass (late 1670s) gave the ‘modern’ definition of limit.

Once infinitesimals were seen as unnecessary, mathematicians abandoned them
hastily, eg

Georg Cantor (18666/9): Claims to prove impossibility of infinitely small numbers,
labels infinitesimals a “cholera-bacillis” infecting mathematics.

Bertrand Russell (1901) calls them “unnecessary, erroneous, and self-contradictory”



[Resurrection of infinitesimals)

Abraham Robinson (19600): Seminars in Princeton and at the ASL annual meet-
ing

(1901): Nonstandard Analysis, Froc. Royal Acad. Sciences Amsterdam

Extended work of Skolem (1928), Los (1995), Schmieden and Laugwitz (1995),

et al, in which methods from Model Theory (a newish branch of mathematical
logic) were used to produce extensions of R containing infinitesimals.

The problem with these earlier extensions is that they did not include enough of
the structure of mathematical universe to be useful.

Robinson’s idea: extend all of mathematics at once to a larger model, and use
predicate logic to keep track of what’s true in the bigger model.




(Construction of the nonstandard model

Start with a mathematical universe (superstructure) V, containing:

e All natural numbers 0,1, 2,...; real numbers x/z,%,e,qb,...; etc.

® The set N of natural numbers as an object; the set R of real numbers; etc.
® Every function from R to R, and the set of all such functions

® Your favorite groups, Banach spaces, etc

® Every other mathematical object we might want to talk about

e We call the elements of this mathematical universe standard.




Extend to a nonstandard mathematical universe *V:

® For every object A in V, there is a corresponding object A in *V
® EG, "V has objects "N, "R, *sin(x), ete.

e (For simplicitry, we drop the stars from simple objects like numbers: 12
instead of *12 etc)

® There may (generally will) be many more objects in *V than in V

e An element of *V that is not in V is called nonstandard.

*sin(x) *In(x) *P(N)




The extension should satisfy two important properties:

Transfer If S is a statement’ about objects in V, then S is true in V if and
only if it true in *V

For example, since the following is true in V:

For any x and y in R, x+y=y+x

then in *V it follows:

For any x and y in "R, x"+y = y"+x

‘(Technically, a “statement” is a first-order bounded-quantifier formula in a language with constants and func-
tion/predicate symbols from V)



In particular, since (for example) 12 is an element of N, *12 is an element of
*N.

Since we can think of the basic elements (like *12) of *V as just being the
same as their counterparts (like 12) in V, "N is a superset of N.

Similarly, for any standard set A which is an object of V, the set "A in "V
extends the set A.

Remark: We might imagine a standard mathematician living in universe V, and
a nonstandard mathematician living in *V. The transfer principle says that
both these mathematicians experience exactly the same true statements. The
reason this is possible is that they both speak the same language - the
language of V. In particular, the ‘nonstandard’” mathematician will not be able
to refer to any particular element of *V that is not the x—image of an
element of V.



Saturation Suppose that 8 is a collection of statements about an object X,
and that for every finite subcollection of & there is an object in *V for which
they hold; then there is an object in *V for which all the statements in &
hold at the same time.

Roughly means: Anything that can happen in *V, does happen.

| have not explained how such a nonstandard model is created. We now know
many ways to construct such models; all employ straightforward techniques
from mathematical logic, and none is especially difficult.



Example: Consider the statements:
X is a real number

x>0
x <
x<1/2
x<1/3
x<1/4

Any finite set of these statements refers to a smallest fraction 1/N; but then,

/]

X = o satisfies this finite set of statements.

It follows that there is a an element of R, call it e, such that
e >0
and, for every (standard) natural number N,

e <1/N



We have proved that *R contains nonzero infinitesimals, where
Definition: An infinitesimal is an element ¢ of *R such that
le] <1/N
for every natural number N in N
How does this avoid internal contradictions?

For example, the following statement, called the Archimedean Property, is true
for the usual real numbers:

For every positive real number x there is an N in N such that Nx > 1.

By the transfer property,

For every positive x in *R there is an N in *N such that Nx > 1.]

Note that this is true for our € as well, while Ne < 1 for every N in N, there
will be elements of *N which are less than 1 /¢l



Since "R (sometimes called the set of “hyperreal numbers”) is, like the usual set
of real numbers, closed under the basic arithmetic operations, it also contains
negative infinitesimals (like —¢), infinite numbers (like 1/¢), and many other
objects:

-5 = e B—

100—¢€ 100 100+e€

Negative Finite Positive
infinite infinite

In particular, as we have seen there are elements of *N which are bigger than
everv element of N: in other words. there are infinite inteaers.



Some notation:
If two numbers x and y differ by an infinitesimal, write x =y
The set of infinitesimals is therefore {x in *R : x = O}.

It turns out that every finite hyperreal s differs infinitesimally from some unique
standard real r; call r the standard part of s, r = st(s).

In other words, st() takes any finite hyperreal to the closest standard real
number.



Example Return to the problem of finding the slope of the curve y = x" (ie,
%)
Recall the computation:
(x+0)" —x" (X" 4 nox" 1 4 2p2yn=2 Ly

— 2

0 0

nn — 1
n—-=1 + ( >0XH_2+"
2
For any given value of x and o, this will be a hyperreal number. If x is a
standard real number, and o an infinitesimal, then all the terms but the first

one are infinitesimal, so the standard part of this expression is just nx"".

= ...s0me algebra- . = nx

In a nonstandard developement of Calculus, one can therefore just define the
derivative of a function f at a (standard) real number x by:

if(x) _ 61_/(f(x +¢) — f(x)
ax

), where ¢ = 0,¢ # O

provided this standard part is defined and does not depenal on the choice of
e~ 0,



To make this practical, one needs arithmetic rules for manipulating infinitesimals
(and infinite real numbers); these are actually quite simple to state and use.

EG (from Elementary Calculus by H.J. Keisler)
Let a and b be finite hyperreal numbers. Then

(1) st{—a) = —stla).

(11) st{a + b) = st(a) + st{b).

(111) stla — b) = st{a) — st(b).

(1v) st(ab) = st(a) « st(b).

(v) If st(b) # O, then st(a/b) = st{a)/st(b).
(vi) st(a") = (st(a))".

(vii) Ifa > 0, then st(/a) = Jst(a).
(viil} If a < b, then st{a) < st(b).



Other notions from Calculus become equally simple.

For example, the following standard definition of continuity (from any modern
Calculus text) is meant to capture the intuitive idea that a function’s graph
does not have a break at x:

Definition - Weierstrassian

f is continuous at x provided for every ¢ > O there is a 6 > O such that
whenever y is a real number with O < |y —x| <&, f(y) —f(x)| <e.

It is often hard for freshmen to parse this expressionl Compare with:
Definition - nonstandard

f is continuous at x provided whenever y = x, f(y) = f(x).



/Applications outside of Calculus|

The nonstandard model has turned out to be a surprisingly useful construct,
not just for the foundations of mathematics, but for research in many areas
of pure and applied mathematice.

The general practice of using these large models for work in mathematics has
come to be called “nonstandard analysis” (after the Robinson’s article and a
later book), though it should be emphasized (for Bishop Berkeley's sake) that
while the methodology is not classical, the results it is used to prove are
classical (and, in particular, true).

The most interesting applications are based on the ubiquity of “hyperfinite sets”

(Definition: A set E in "V is hyperfinite if there is a “one-to-one correspondence
between E and {0,1,2,...,H} for some H in *N. Equivalently, if the formal
statement “X is finite” holds for E in *V.)



Lemma: If A is an infinite eet in V then there is a hyperfinite set A in *V such
that every element of A is in A

Proof: Consider the statements: (i) X is finite; (i) a is in X (one such statement
for every element a of A)

Given any finite number of these statements, a corresponding finite number
{a4,...,8,} of elements of A are mentioned, so X = {a,,...,a,} oatisfies
those statements. By the saturation principle there therefore a set X in ™V

satisfying all the statements simultaneously; let A be this X.

Corollary: There is a hyperfinite set containing R.

“Nonstandard analysis is the art of making infinite sets finite by ex-
tending them.” —M. Richter



The advantage of hyperfinite sets is that we can use finitary counting methods
with them, even if they are infinite.

The duality between discrete/hyperfinite and continuous/infinite has been exploited
in areas such as:

® Stochastic analysis (Brownian motion is the standard part of a random
walk on a hyperfinite time line; stochastic differential equations are solved
as difference equations against these random walks)

® Mathematical economics (hyperfinite sets of infinitesimal traders)

e Mathematical physics (eg, “Loeb measure” solutions of the Boltzmann equa-
tion)

e Number theory (“approximate” N by the set {0,4,...,H}, H infinite integer)

@ Probability theory (probability measures are built as counting measures on
hyperfinite sets)

e 9" grade philosophy of mathematics:

— Zeno’s Paradoxes (W.. MclLaughlin, Scientific American, Nov. 1994)

— 0.99999... =1
— Dartboard problem



Final thoughts)

e The initial objections to infinitesimals were ontological; are infinitesimals real?

® The ‘'modern’ solution doesnt resolve this question, only shows that they can
be introduced formally - a very Leibnizian solution.

e What a given infinitesimal “is”, as an object, depends on how the nonstandard
model is constructed.

® This has been raised as an objection to nonstandard analysis, but post-
Dedekind the same question can be raised with respect to the real numbers!

e (In fact, the nonstandard model can be used to define R from the rational
numbers.)



® From the point of view of a mathematical logician, there has been a fun-
damental shift in the nature of mathematics over the centuries: from being
about numbers and geometric objects, to being about statements about num-
bers and geometric objects, and finally (in the 20th century) to being about
statements about mathematics.

e It is difficult to maintain a Platonist view of mathematical objects like the
real line when faced with this shift.

e On the other hand, nearly all mathematicians adopt the useful fiction in
practice that such mathematical objects (and far more esoteric ones) are
‘real’; there is no reason not to do this with infinitesimals as well.

e Infinitesimals represent an opportunistic approach to mathematical argument
- use anything that works. However, whereas the infinitesimal arguments of
Archimedes et al were just used for discovery, the same arguments in the
modern context constitute a complete and correct proof,



