Nonstandard Analysis basics for seminar

(I) Nonstandard Analysis

Start with a mathematical universe (superstructure) V, containing:

- All natural numbers 0,1,2,...; real numbers $\sqrt{2},\pi,e,\phi,...$; etc.
- ullet The set $\mathbb N$ of natural numbers as an object; the set $\mathbb R$ of real numbers; etc.
- ullet Every function from ${\mathbb R}$ to ${\mathbb R}$, and the set of all such functions
- Your favorite groups, Banach spaces, measure spaces, etc
- Every other mathematical object we might want to talk about
- Closure under ϵ , \mathcal{P} , etc.
- We call the elements of this mathematical universe standard.

Extend to a nonstandard mathematical universe *V:

- ullet For every object A in V, there is a corresponding object *A in *V
- EG, *V has objects *N, * \mathbb{R} , * sin(x), etc.
- (For simplicity, we drop the stars from simple objects like numbers: 12 instead of *12 etc)
- There may (generally will) be many more objects in *V than in V
- \bullet An element of *V that is **not** in V is called nonstandard.

The extension should satisfy two important properties:

Transfer If S is a bounded first-order statement about objects in V, then S is true in V if and only if it true in V

For example, let (G, \cdot, e) be a multiplicative group; the following are true in V:

$$(\forall x \in G)(\exists y \in G)[(x \cdot y = e) \land (y \cdot x = e)]$$

$$(\forall x \in G)[(x \cdot e = x) \land (x \cdot e = x)]$$

$$(\forall x \in G)(\forall y \in G)(\forall z \in G)[(x \cdot y) \cdot z = x \cdot (y \cdot z)]$$
By transfer it follows:
$$(\forall x \in^* G)(\exists y \in^* G)[(x^* \cdot y =^* e) \land (y^* \cdot x =^* e)]$$

$$(\forall x \in^* G)[(x^* \cdot^* e = x) \land (x^* \cdot^* e) = x)]$$

$$(\forall x \in^* G)(\forall y \in^* G)(\forall z \in^* G)[(x^* \cdot y)^* \cdot z = x^* \cdot (y^* \cdot z)]$$

In other words, *G is also not only a *group , but also an actual group.

As another example, since 12 is an element of \mathbb{N} , *12 is an element of $^*\mathbb{N}$.

Since we can think of the basic elements (like *12) of *V as just being the same as their counterparts (like 12) in V, * \mathbb{N} is a superset of \mathbb{N} .

Similarly, for any standard set A which is an object of V, the set *A in *V extends the set A.

Saturation:

A set $a \subseteq V$ is internal if $\exists b \in V \ a \in b$ (otherwise it is external)

For example, if $A \in V$ then $\mathcal{P}(A) \in V$, so $^*A \in ^*\mathcal{P}(A)$ holds, and *A is internal.

Equivalently, a set a is internal if it can be defined from other internal sets by a bounded first-order formula.

Now, K-saturation is the property:

If $\mathcal A$ is a family of sets with the finite intersection property, and $|\mathcal A|<\kappa$, then $\bigcap \mathcal A\neq\emptyset$.

Equivalently, any set of statements of cardinality $< \kappa$ about an object X which is finitely satisfiable in *V , can all be simultaneously satisfied by a single object in *V

We will always assume that the model is κ -saturated for κ bigger than the cardinality of every standard set (though much less saturation usually suffices).

Saturation roughly means: Anything that can happen in *V, does happen.

Example: Consider the statements:

x is a real number

x > 0

x < 1

x < 1/2

x < 1/3

x < 1/4

:

Any finite set of these statements refers to a smallest fraction 1/N; but then, $x = \frac{1}{N+1}$ satisfies this finite set of statements.

It follows that there is a an element of ${}^*\mathbb{R}$, call it ϵ , such that

 $\epsilon > 0$

and, for every (standard) natural number N,

 $\epsilon < 1/N$

We have proved that ${}^*\mathbb{R}$ contains nonzero infinitesimals, where

Definition: An infinitesimal is an element ϵ of ${}^*\mathbb{R}$ such that

 $|\epsilon| < 1/N$

for every natural number N in $\mathbb N$

Since * \mathbb{R} (sometimes called the set of "hyperreal numbers") is, like the usual set of real numbers, closed under the basic arithmetic operations, it also contains negative infinitesimals (like $-\epsilon$), infinite numbers (like $1/\epsilon$), and many other objects.

- In particular, as we have seen there are elements of N which are bigger than every element of N; in other words, there are infinite integers.
- The set $\{x \in {}^*\mathbb{R} | \exists N \in \mathbb{N} \mid |x| < N\}$ is the set of finite elements of ${}^*\mathbb{R}$. It is the same as the set of nearstandard elements of \mathbb{R} , namely the set of $x \in {}^*\mathbb{R}$ such that for some standard $x_0 \in \mathbb{R}$, $(x-x_0)$ is infinitesimal. This x_0 is unique if it exists, and we denote it by ${}^*\!x$ or st(x), the standard part of x.
- The set of all infinitesimals, and the set of all finite numbers, are both **external** subrings (but not subfields) of \mathbb{R} , and the standard part map $x \mapsto^{\circ} x$ is a ring homomorphism.

Many applications are based on the ubiquity of "hyperfinite sets":

Definition: A set E in *V is hyperfinite if there is a *one-to-one correspondence between E and $\{0,1,2,\ldots,H\}$ for some H in *N. Equivalently, if the mathematical statement "E is finite" holds in *V.

Examples: 1. Every finite set is hyperfinite.

- 2. If H is an infinite integer, $\{0,1,2,\cdots,H\}=\{n\in{}^*\mathbb{N}:n\leq H\}$ is a hyperfinite subset of ${}^*\mathbb{N}$
- 3. If H is an infinite integer, $\{0, \frac{1}{H}, \frac{2}{H}, \cdots, \frac{H-1}{H}, 1\}$ is a hyperfinite subset of *[0.1]

Theorem: If A is an infinite set in V then there is a hyperfinite set \hat{A} in *V such that every element of A is in \hat{A}

Proof: Consider the statements: (i) X is finite; (ii) $a \in X$ (one such statement for every element a of A)

Given any finite number of these statements, a corresponding finite number $\{a_1,\ldots,a_n\}$ of elements of A are mentioned, so $X=\{a_1,\ldots,a_n\}$ satisfies those statements. By the saturation principle there is therefore a set X in *V satisfying all the statements simultaneously; let \hat{A} be this X. \dashv

Corollary: There is a hyperfinite set containing \mathbb{R} .

"Nonstandard analysis is the art of making infinite sets finite by extending them." —M. Richter

(II) Loeb Measures

- Let (Q, A, μ) be an internal finitely additive finite *-measure. (This means that Q is an internal set, A is an internal *-algebra on Q, and $\mu: A \to^* [O, \infty)$ is an internal function satisfying (i) $\mu(\emptyset) = O$, (ii) $\mu(Q)$ is finite, and and (iii) $\mu(A \cup B) = \mu(A) + \mu(B)$ whenever $A, B \in A$ are disjoint.)
- Note that \mathcal{A} is (externally) an algebra on \mathcal{Q} , and st $\circ \mu = {}^{\circ *}\mu$ is an actual finitely-additive measure on $(\mathcal{Q}, \mathcal{A})$.
- Moreover, if $A_0 \supseteq A_1 \supseteq A_2 \supseteq \cdots$ is a sequence of elements of \mathcal{A} indexed by the standard natural numbers, and the intersection $\bigcap_n A_n$ is empty, then by \aleph_1 -saturation there is a finite N such that $\bigcap_{n \le N} A_n = \emptyset$.
- The Carathéodory extension criterion is therefore satisfied trivially, and $(\mathcal{Q},\mathcal{A},^{\circ}\mu)$ extends to a countably-additive measure space $(\mathcal{Q},\mathcal{A}_{L},\mu_{L})$, (a Loeb space) where \mathcal{A}_{L} is the smallest (external) sigma-algebra containing \mathcal{A} .
- A useful fact: If $E \in \mathcal{A}_L$, and $\epsilon > 0$ is standard, then $\exists A_i, A_o \in \mathcal{A}$ such that $A_i \subseteq E \subseteq A_o$ and $\mu(A_o) \mu(A_i) < \epsilon$,