
Nonstandard Analysis basics for seminar

(I) Nonstandard Analysis

Start with a mathematical universe (superstructure) V , containing:

• All natural numbers 0,1,2, . . . ; real numbers
√
2, π, e, φ, . . . ; etc.

• The set N of natural numbers as an object; the set R of real num-
bers; etc.

• Every function from R to R, and the set of all such functions

• Your favorite groups, Banach spaces, measure spaces, etc

• Every other mathematical object we might want to talk about

• Closure under ε,P, etc.

• We call the elements of this mathematical universe standard.

Extend to a nonstandard mathematical universe ∗V :

• For every object A in V , there is a corresponding object ∗A in ∗V

• EG, ∗V has objects ∗N, ∗R, ∗ sin(x), etc.

• (For simplicity, we drop the stars from simple objects like numbers:
12 instead of ∗12 etc)

• There may (generally will) be many more objects in ∗V than in V

• An element of ∗V that is not in V is called nonstandard.

The extension should satisfy two important properties:

Transfer If S is a bounded first-order statement about objects in V , then
S is true in V if and only if it true in ∗V

For example, let (G, ·, e) be a multiplicative group; the following are true in
V :
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(∀x ∈ G)(∃y ∈ G)[(x · y = e) ∧ (y · x = e)]

(∀x ∈ G)[(x · e = x) ∧ (x · e = x)]

(∀x ∈ G)(∀y ∈ G)(∀z ∈ G)[(x · y) · z = x · (y · z)]
By transfer it follows:

(∀x ∈∗ G)(∃y ∈∗ G)[(x∗·y =∗ e) ∧ (y∗·x =∗ e)]

(∀x ∈∗ G)[(x∗·∗e = x) ∧ (x∗·∗e) = x)]

(∀x ∈∗ G)(∀y ∈∗ G)(∀z ∈∗ G)[(x∗·y)∗·z = x∗·(y∗·z)]

In other words, ∗G is also not only a ∗group, but also an actual group.

As another example, since 12 is an element of N, ∗12 is an element of
∗N.

Since we can think of the basic elements (like ∗12) of ∗V as just being
the same as their counterparts (like 12) in V , ∗N is a superset of
N.

Similarly, for any standard set A which is an object of V , the set ∗A in
∗V extends the set A.

Saturation:

A set a ⊆∗ V is internal if ∃b ∈ V a ∈∗ b (otherwise it is external)

For example, if A ∈ V then P(A) ∈ V , so ∗A ∈∗ P(A) holds, and ∗A is
internal.

Equivalently, a set a is internal if it can be defined from other internal
sets by a bounded first-order formula.

Now, κ-saturation is the property:

If A is a family of sets with the finite intersection property, and
|A| < κ, then

⋂
A 6= ∅.

Equivalently, any set of statements of cardinality < κ about an object X
which is finitely satisfiable in ∗V , can all be simultaneously satisfied
by a single object in ∗V

2



We will always assume that the model is κ−saturated for κ bigger than the
cardinality of every standard set (though much less saturation usually
suffices).

Saturation roughly means: Anything that can happen in ∗V , does happen.

Example: Consider the statements:

x is a real number

x > 0

x < 1

x < 1/2

x < 1/3

x < 1/4

...

Any finite set of these statements refers to a smallest fraction 1/N; but
then, x = 1

N+1 satisfies this finite set of statements.

It follows that there is a an element of ∗R, call it ε, such that

ε > 0

and, for every (standard) natural number N,

ε < 1/N

We have proved that ∗R contains nonzero infinitesimals, where

Definition: An infinitesimal is an element ε of ∗R such that

|ε| < 1/N

for every natural number N in N

Since ∗R (sometimes called the set of “hyperreal numbers”) is, like the
usual set of real numbers, closed under the basic arithmetic opera-
tions, it also contains negative infinitesimals (like −ε), infinite numbers
(like 1/ε), and many other objects.
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In particular, as we have seen there are elements of ∗N which are bigger
than every element of N; in other words, there are infinite integers.

The set {x ∈ ∗R|∃N ∈ N |x| < N} is the set of finite elements of ∗R. It is
the same as the set of nearstandard elements of R, namely the set
of x ∈ ∗R such that for some standard x0 ∈ R, (x−x0) is infinitesimal.
This x0 is unique if it exists, and we denote it by ◦x or st(x), the
standard part of x.

The set of all infinitesimals, and the set of all finite numbers, are both
external subrings (but not subfields) of R, and the standard part
map x 7→◦x is a ring homomorphism.

Many applications are based on the ubiquity of “hyperfinite sets”:

Definition: A set E in ∗V is hyperfinite if there is a ∗one-to-one correspon-
dence between E and {0,1,2, . . . , H} for some H in ∗N. Equivalently,
if the mathematical statement “E is finite” holds in ∗V .

Examples: 1. Every finite set is hyperfinite.

2. If H is an infinite integer, {0,1,2, · · · , H} = {n ∈ ∗N : n ≤ H} is
a hyperfinite subset of ∗N

3. If H is an infinite integer, {0, 1H ,
2
H , · · · ,

H−1
H ,1}is a hyperfinite

subset of ∗[0.1]

Theorem: If A is an infinite set in V then there is a hyperfinite set Â in
∗V such that every element of A is in Â

Proof: Consider the statements: (i) X is finite; (ii) a ∈ X (one such state-
ment for every element a of A)

Given any finite number of these statements, a corresponding fi-
nite number {a1, . . . , an} of elements of A are mentioned, so X =
{a1, . . . , an} satisfies those statements. By the saturation principle
there is therefore a set X in ∗V satisfying all the statements simul-
taneously; let Â be this X. a

Corollary: There is a hyperfinite set containing R.

“Nonstandard analysis is the art of making infinite sets
finite by extending them.” –M. Richter
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(II) Loeb Measures

• Let (Ω,A, µ) be an internal finitely additive finite ∗-measure. (This
means that Ω is an internal set, A is an internal ∗−algebra on
Ω, and µ : A →∗ [0,∞) is an internal function satisfying (i) µ(∅) = 0,
(ii) µ(Ω) is finite, and and (iii) µ(A∪B) = µ(A)+µ(B) whenever A, B ∈ A

are disjoint.)

• Note that A is (externally) an algebra on Ω, and st ◦ µ = ◦∗µ is an
actual finitely-additive measure on (Ω,A).

• Moreover, if A0 ⊇ A1 ⊇ A2 ⊇ · · · is a sequence of elements of
A indexed by the standard natural numbers, and the intersection⋂

n An is empty, then by ℵ1−saturation there is a finite N such that⋂
n≤N An = ∅.

• The Carathéodory extension criterion is therefore satisfied trivially, and
(Ω,A,◦µ) extends to a countably-additive measure space (Ω,AL , µL),
(a Loeb space) where AL is the smallest (external) sigma-algebra
containing A.

• A useful fact: If E ∈ AL, and ε > 0 is standard, then ∃Ai, Ao ∈ A

such that Ai ⊆ E ⊆ Ao and µ(Ao) − µ(Ai) < ε,
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