1. Find solutions (if they exist!) to each of the following congruences. Stand-culone!)
(a)) $2 x \equiv 1 \bmod 3$.
(1a)Solnn Trial and error.
(b) $2 x \equiv 5 \bmod 7$.
(c) $2 x \equiv 5 \bmod 8$.
(d) $3 x \equiv 4 \bmod 8$.
(e) $6 x \equiv 3 \bmod 15$.
$2 x \equiv 1 \bmod 3$ means $2 x=1+$ some multiple of 3 .
(f) $6 x \equiv 7 \bmod 15$.
(g) $8 x \equiv 7 \bmod 18$.
(h) $7 x \equiv 4 \bmod 54$.

Try adding multiples of 3 until we find one that is
divisible by 2 (even):
$1+0=1,1+3=1+6=7,1+9=10, \cdots$
(i) $51 x \equiv 3 \bmod 128$.
(j) $9 x+23 \equiv 28 \bmod 25$.

Try the same approach $\quad 3=2.1+1$
as sorn in last example.
Add multples of 8 to 5
so let $x=4 \div 2=2$. Check: works

Until we find one that
is divisible by 21
$5+0=5,5+8=1,5816=21, \quad \mid-\quad$ not working! why n
$5+24=29,5+32=37 \ldots$ no
so no solution exist, (If weill noticed that
have made the problem easier!)
One more example, not from This list:
Solve $18 x \equiv 4 \bmod 26$
We cold try adding multiples of 26 to 4 and see if we get a multiple of 18 ! $4,30,56,82, \ldots$ Can you recognize a multiple of 18? I cant...
Let's use the Euclidean Alyouthn:

$$
\begin{aligned}
& 26=18 \cdot 1+8 \quad \text { SO } \operatorname{GCF}(26,1(x)=2 \text {. Moreover, } \\
& 18=8.2+6 \quad 2=8-6.1 \quad \text { (now get rid of 6) } \\
& 8=6.1+2 \quad=8-(18-8.2) \quad \text { (regroup) } \\
& 6=2.3+0 \quad=3.8-18 \quad(\text { get nd of } 8) \\
& =3 \cdot(26-18 \cdot 1)-18 \quad \text { (regroup) } \\
& =\underbrace{3.26}_{\text {divistle sc } 26}-4.18 \text { this snit } 4 \\
& \text { So } 18 \cdot(-4) \equiv 2 \text { moo } 26 \\
& \tau_{\text {this is }} \text { negative } \\
& \text { So add } 26 \text { to the }-4 \text {, } 18 \cdot(22) \equiv 2 \bmod 26 \\
& \text { multaph by } 2 \quad 18.44 \equiv 4 \bmod 26 \\
& \text { while } x=44 \text { is an ok answer, better } \\
& \text { to have the residue } \bmod 26 \text {, so take } x=44-26=18 \text {. } \\
& \text { Let's check Tut it works? }
\end{aligned}
$$

$$
\begin{aligned}
& 18 \cdot 18 \bmod 26=9.36 \bmod 26=9.10 \bmod 26=90 \bmod 26 \\
& =18 \text { (since } 90-26.3=18 \text {) } \checkmark \text { whew! }
\end{aligned}
$$

2. $3^{302} \bmod 5=$?
(3.) $3^{302} \bmod 7=$?
3. $3^{302} \bmod 11=$?
4. What is the remainder after dividing 3^{50} by 7 ?
5. What is the remainder after dividing 2^{63} by 61 ?) Note these are just like $\mathbb{H}_{2}=4$ (why?)
6. Does $10 \mid\left(101^{2015}-1\right)$?
7. Suppose a is not divisible by 23 . Find $a^{154} \bmod 23$.
8. True or False:
(a) For any integer $a, a^{5}-a$ is divisible by 30 .
(b) For any integer $a, a^{11}-a$ is divisible by 66 .

Let's do \#7.
is $101^{2015}-1$ derisible by 10? One solis: If you start multiplying 101 by itself, every time (even after 2015 times!) it looks lime stuff 1, So $101^{2015}=$ prof 0 , which is divisible by 10 !
Here's another olin:

$$
\begin{aligned}
& \text { Since } 10=2.5 \text {, we 'll check clivsib1ith } 5 y 2 \text { : } 5 \text {. } \\
& 101^{2015} \bmod 2 \equiv 1^{2015} \bmod 2 \equiv 1 \bmod 2(\text { since } 101 \equiv 1 \bmod 2) \\
& 80101^{2015}-1 \equiv 0 \bmod 2 \text {, or } 2 \mid 101^{2015}-1 \\
& 101^{2015} \bmod 5 \equiv 1^{2015} \bmod 5(\text { since } 101 \equiv 1 \bmod 5) \\
& \equiv 1 \bmod 5 \text {, so } 5 \mid 101^{2015}-1 \\
& \text { Since both } 2 \mid 101^{2015}-1 \text { and } 5 \mid 101^{2015}-1 \text {, we must have } 10 \mid 101^{2015}-1 .
\end{aligned}
$$

