
Public Key Cryptography - Math 100 Spring 2015

1 Cryptography

General Picture:
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Features:

1. Rocky and Bullwinkle both know algorithm

2. Same information (key) is used for encryption/decryption,

known to both Rocky and Bullwinkle

3. If key falls into Boris and Natasha’s hands, they

can decode any message

4. Therefore Rocky and Bullwinkle need to ex-

change their keys in a secure manner
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Other issues:

1. There are many historical codes and ciphers,

testaments to their inventors’ cleverness.

2. Example: Substitution cipher

EG: ROT13

ABCDEFGHIJKLMNOPQRSTUVWXYZ ⇒
NOPQRSTUVWXYZABCDEFGHIJKLM

Math is fun! ⇒ Zngu vf sha!

3. Example: Transposition cipher

EG: Rail Fence Cipher

Math is fun! ⇒

M*** ****f***

*a*h*i* **u*!

**t***s****n*

⇒ M fahi u!tsn

4. If encryption algorithm is simple enough, code-

breaker can deduce the algorithm/key
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5. Example: Enigma (cf The Imitation Game)

Plaintext typed one character at a time into

electromechanical encoding device

Character is replaced by a substitution cipher

Each keystroke causes the device to change ci-

pher according to mechanical workings (rotors,

gears, etc.)

Decoding done with similar machine, assumes

same starting point

Difficulty in breaking depends on complexity

of machine (number of rotors, etc)

Operation is covered by an area of math called

Group Theory

(image from https://commons.wikimedia.org/wiki/File:Enigmas.jpg)
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2 Public-key (RSA) cryptography

• Rivest, Shamir, Adleman 1977 (hence “RSA”)

• (Possibly invented first by GCHQ mathemati-

cian Clifford Cocks in 1973)

• Versions of this now dominate cryptography for

anything from high-security communication to

secure web pages (https)
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• Features:

1. Bullwinkle shares/publishes an encryption key,

keeps decryption key secret

2. Rocky (or anyone!) uses encryption key to en-

crypt plain text

3. Bullwinkle uses decryption key to decrypt text

4. Bullwinkle doesn’t need to share the decryp-

tion key with anyone, and it is almost impos-

sible to figure out the private decryption key

from the public encryption key

5. Encryption and decryption is based on arith-

metic mod n (so is easy)

6. The cracking difficulty is based on the compu-

tational difficulty of factoring large numbers
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Operation

Setup:

1. Bullwinkle picks p, q large primes so that n =

pq(=“modulus”) is hard to factor, really big.

2. Bullwinkle picks e“public exponent”, any num-

ber < n relatively prime to (p− 1)(q − 1)

3. d =“private exponent” is the unique solution

to

ed ≡ 1 mod (p− 1)(q − 1)

4. Bullwinkle publishes both n and e on his web-

site
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Encryption:

1. Rocky converts the text message to a (probably

large) number M

2. Rocky encodes this to C = M e mod n

3. (Note: if M > n then information will be lost!

That’s why n should be big.)

4. Rocky sends C to Bullwinkle.
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Decryption:

1. Bullwinkle computes Cd mod n

2. Mathematics says: result is M

3. Bullwinkle can convert M back into text.
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So what’s left?

1. Given e, p, q, how do we find the unique d such

that ed ≡ 1 mod (p− 1)(q − 1)

More generally, given the equation ax ≡ b

mod m, how do we solve for x? Is it even al-

ways possible?

2. Show that the value Bullwinkle computes:

M = Cd mod n

really is the original message. (It isn’t magic!)
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So, let’s recall:

p and q are large primes

n = pq

e < n

GCF of e and (p− 1)(q − 1) is 1

d (the private exponent) satisfies

ed ≡ 1 mod (p− 1)(q − 1)

M = the message = an integer less than n

Rocky computes

C = M e mod n

Bullwinkle computes

Cd mod n

Is this last value back to M? Does

Cd mod n = (M e)d mod n

= M ed mod n
?≡M mod n

In other words, is M ed −M divisible by n?
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Remember, n = pq. PROOF BY CASES:

Case 1: p and q both divide M . Then n|M , so

M ≡ 0 ≡M ed mod n.

Case 2: either p or q (but not both) divide M .

Suppose (for definiteness) that q|M, p - M . Since

ed ≡ 1 mod (p− 1)(q − 1),

ed = 1 + k(p− 1)(q − 1) for some k.

So,

M ed −M = M(M ed−1 − 1)

= M(Mk(p−1)(q−1) − 1)

= M((M p−1)k(q−1) − 1)

We’d be done if we knew that M p−1 ≡ 1 mod p,

since then q would divide the first term and p the

second, so n = pq divides the product.
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Case 3: neither p nor q divide M .

As in case 2, if we know that the conditions on

p and q imply M p−1 ≡ 1 mod p and M q−1 ≡ 1

mod q then p and q would both divide (M ed−1−1),

so n|M ed −M .
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To make these two cases work, we can invoke a

thing called

Fermat’s Little Theorem If p is prime and

p - a then ap ≡ a mod p,

equivalently ap−1 ≡ 1 mod p

The proof (using necklaces!) will be done in

class.
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