MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 1) Euclid's Prime Number Theorem is proved by "proof by contradiction"; what is the starting statement that leads to an absurdity?

- A) "Suppose that 2 is prime..."
- B) "Suppose that there are infinitely many primes..."
- C) "Suppose that $\sqrt{2}$ is a rational number..."
- D) "Suppose that there are only finitely many primes..."

Solve the problem relating to the Fibonacci sequence.

2) $F_{25} = 75,025$, $F_{26} = 121,393$

Find F27.

- A) $F_{27} = 46,368$
- C) $F_{27} = 242,786$

Express the rational number as a terminating or repeating decimal number.

3) $\frac{}{9}$

- C) 0.8

Give the prime factorization of the number. Use exponents when possible.

- 4)396
 - A) $2^2 \times 3^2 \times 11$ B) $2^3 \times 3^2 \times 11$ C) $2^4 \times 11$
- D) $3^{4} \times 11$
- 5) The number 120 can be factored as $120=2\times2\times5\times3\times2$. What does the Fundamental Theorem of Arithmetic (FTA) tell us about this factorization?
- - A) Any other factorization of 120 must be a rearrangement of the numbers 2, 2, 2, 3, and 5.
 - B) Any multiple of 120 is divisible by 2, 3, or 5
 - Every divisor of 120 is divisible by 2, 3, or 5
 - D) Nothing, FTA does not apply since 120 is not prime

Find all natural number factors of the number.

6)42

- A) 1, 7, 42
- C) 1, 2, 3, 7, 6, 14, 21, 42

B) 7, 6, 14, 42 D) 1, 2, 3, 7, 6, 14, 28, 42

Find the least common multiple of the two numbers.

- 7) 8, 28
 - A) 14

- B) 224
- C) 56

8	8) Which of the following modern words is NOT named after the 9th century scholar Abu Jafar Muhammad ibn Musa al-Khwarizmi (or his books)?	8)
	A) Algebra B) Algorithm C) Arithmetic	
(9) Which of the following numbers is rational? A) 0.121121111211111211112 B) π	9)
e e	C) ζ(3) (the "Riemann zeta function" at 3) D) 1.2134134134134134	
10	0) Which is a true statement about the Golden Ratio Φ .	10)
	A) $\Phi = \frac{1 - \sqrt{5}}{2} \angle \mathcal{O}$	*
	B) The height of the Acropolis divided by the width is ϕ	
	$C)\frac{\Phi}{1} = \frac{1}{\Phi - 1}$	
	$D) \Phi^2 + \Phi + 1 = 0$	
	if the number is rational or irrational.	
1	$11) \ 0.\overline{148}$	11)
	(A) Rational B) Irrational	Section 1
12	2) Which is a true statement about the Golden Ratio Φ . (F _n is the nth Fibonacci number.)	12)
	A) $\frac{F_{n+1}}{F_n}$ is close to Φ when n is large $B) \frac{F_{n+1}}{F_n} = \Phi$	
* 6	C) $\frac{F_n}{F_{n+1}}$ is close to Φ when n is large D) $\frac{F_n}{F_{n+1}} = \Phi$	
		*

13) Find integers r and s such that
$$GCF(30,42) = r \times 30 + s \times 42$$
A) $r = 3$, $s = 2$
B) $r = 2$, $s = 3$
C) $r = 3$, $s = -2$
D) $r = 2$, $s = -3$

14) When you use Euclid's Algorithm to find the GCF of 225 and 144, all but the one of the following numbers show up. Which one does not appear?

A) 9

B) 81

C) 18

D) 62

A) 5

Determine whether the statement is true or false.

15) If a number is divisible by both 3 and 9 then it is divisible by 27.

15) _____

9 is not sty

A) True

16) Suppose that $a = \frac{4 - \sqrt{7}}{3}$, and consider the following algebraic argument:

$$a = \frac{4 - \sqrt{7}}{3} = \frac{\sqrt{16} - \sqrt{7}}{3} = \frac{\sqrt{9}}{3} = \frac{3}{3} = 1$$

Which of the following is true?

- A) The argument is correct, and shows that a is algebraic.
- B) The argument is correct, and shows that a is rational.
- C) The argument is correct, but you cannot conclude (A) or (B) from it.
- D) The argument is incorrect, there is an algebra error.

Find the number of divisors of the number.

$$\frac{17) 2^4 \times 11}{A) 8}$$

18)

17)

Find the greatest common factor of the two numbers.

18)(104), 567

A) 52

C) 1

D) 6

19)

20)

19) What can we say about the number $x = 3.45\overline{45}$?

A) x is irrational

C) $x = \frac{31}{9}$

20) What is LCM of $23 \times 3^2 \times 7 \times 11^2 \times 23$ and $2^2 \times 5^3 \times 7^2 \times 11$?

A) 308 C) $2^3 \times 3^2 \times 5^3 \times 7^2 \times 11^2 \times 23$

D) $2^3 \times 3^2 \times 7 \times 11^2 \times 23$

Decide whether the rational number yields a repeating or a terminating decimal.

21)

A) Repeating

B) Terminating

22) Find all values for the missing digit x that makes 43x1 divisible by 3.

A) {1, 4, 7}

B) $\{1, 2, 6\}$

C) $\{1, 2, 3, 4, 5\}$

D) {0, 3, 6, 9}

4+3+x+1 = 8+x Should se. 9, 3, or 6