
0.1 Cardinality

N = ω = ℵ0 =the natural numbers= {0, 1, 2, 3, . . . }
We usually identify a natural number with the set of its prede-

cessors: n = {0, 1, 2, . . . , n− 1} In particular, 0 = ∅.

Definition 0.1. A is equinumerous with B provided there is a bi-
jection from A onto B.

Other, equivalent notation/terminology for “A is equinumerous with
B”:

a. A and B have the same cardinality

b. A ≈ B

c. card(A) = card(B)

Theorem 0.1. For any sets A, B, and C:

1. A ≈ A

2. A ≈ B =⇒ B ≈ A

3. A ≈ B &B ≈ C =⇒ A ≈ C

Definition 0.2. A has no greater cardinality than B (or card(A) ≤
card(B), or A � B) provided there is an injection from A into B.

Theorem 0.2. For any nonempty sets A and B the following are
equivalent:

1. card(A) ≤ card(B)

2. For some C ⊆ B, card(A) = card(C)

3. There is a function g from B onto A.
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Theorem 0.3. (Cantor-Schroder-Bernstein)If card(A) ≤ card(B)
and card(B) ≤ card(A) then card(A) = card(B)

Theorem 0.4. (Cantor)For any set A, card(A) 6= card(P (A)) (in
fact, card(A) < card(P (A))

Proof: Let g be any 1 − 1 finction from A into P (A). Put B =
{x ∈ A : x /∈ g(x)} Claim: B /∈ range(g). To see this, let x0 ∈ A,
and consider 2 cases: (i) x0 ∈ g(x0); then x0 /∈ B, so B 6= g(x0).
(ii) x0 /∈ g(x0); then x0 ∈ B, so B 6= g(x0). Either way, B 6= g(x0).
Since x0 was arbitrary in A, B /∈ range(g). Since g was arbitrary,
A 6≈ P (A). (Note that a 7→ {a} is an injection from A into P (A),
so card(A) ≤ card(P (A)).)

Proposition 0.1. For every set A, P (A) ≈ A2

Proof: Define f : P → A2 by f(α) = χα, where χα(x) = 1 if
x ∈ α, = 0 otherwise (i.e., χα is the characteristic function of the
set α). Claim: f is a bijection. 1 − 1: If α 6= β are in P (A) then
WOLG there is some n ∈ β − α. Then χα(n) = 0, χβ(n) = 1,
so f(α) 6= f(β). Onto: If φ ∈ A2 then put α = φ−1(1). Then
χα(n) = 1 ⇐⇒ n ∈ α ⇐⇒ φ(n) = 1, so f(α) = φ.
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Theorem 0.5. Suppose A 6= ∅. The following are equivalent:

1. ∃m ∈ ω A ≈ m

2. A � ω but A 6≈ ω

3. It is not the case that ∃ B ( A A ≈ B

4. There exists an injection f : A→ m for some m ∈ ω

5. There exists a surjection g : m→ A for some m ∈ ω

Definition 0.3. Call a set A satisfying any of the conditions of this
theorem finite

Definition 0.4. A is countable (or enumerable or or denumerable)
if either A is finite or A ≈ ω.

Theorem 0.6. Suppose A 6= ∅. The following are equivalent:

1. A is countable

2. A � ω

3. There is a surjection f from ω onto A

Remark: We will call a set A countably infinite if it is countable
and infinite. This is of course, just another way of saying that A ≈ ω.

An alternate approach to countability:

Definition 0.5. If Σ is any set (which we think of as a set of “let-
ters”, let Σ∗ be the set of finite “words” on Σ; formally, Σ∗ :=

⋃
n<ω

nΣ

Theorem 0.7. If Σ is countable then so is Σ∗

Proof: Without loss of generality Σ ⊆ ω−{0}. Define φ : Σ∗ → ω

by φ(τ) = p
τ(0)
0 p

τ(1)
1 · · · pτ(n−1)

n−1 , where n = domain(τ) and p0, p1, . . .
enumerates the prime numbers. It is easy to see that φ is one-to-one,
and that suffices.

Corollary 0.1. Q is countable

Proof: Every rational can be written as a word on the finite al-
phabet {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, /,−}; eg, −37

4
is the 5 character word

“-37/4”.
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Corollary 0.2. if A and B are countable then A×B is countable

Proof: Every pair in A × B can be writen as a word on the
alphabet A ∪B ∪ {(, ), , } (note the comma in the last set).

Note (exercise!) that this can be easily extended to a finite prod-
uct.

Theorem 0.8. A countable union of countable sets is countable.

Theorem 0.9. If A is infinite then A has a countably infinite subset
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0.2 Closures

Let X be a set, f : Xn → X, and A ⊆ X. Say that A is closed under
f provided f [An] ⊆ A, that is, ∀a1, . . . , an ∈ A, f(a1, . . . , an) ∈ A.
If F is a set of such functions (possibly of different arities), say that
A is closed under F provided that for every f ∈ F , A is closed
under f .

Theorem 0.10. If X a set, F a set of functions such that for every
f ∈ F , domain(f) ⊆ Xn (where n =the arity of f), and A ⊆ X,
then there is a set B ⊆ X, the closure of A under F , such that:

1. B is closed under F ;

2. A ⊆ B; and

3. ∀B̂, B ⊆ B̂ ⊆ X ∧ B̂ closed under F =⇒ B̂ = B ∨ B̂ = X
(in other words, B is the minimal superset of A closed under
F ).

Example 0.1. Let Σ be the countable alphabet

Σ = {(, ),∼,∧,∨,→,←,↔, A0, A1, A2, . . . , An, . . . }

and let X = Σ∗, as usual the set of finite words on Σ. Define
functions f, g, h, γ, ρ by:

f(x) = “(∼ x)”

g(x, y) = “(x ∧ y)”

h(x, y) = “(x ∨ y)”

γ(x, y) = “(x→ y)”

ρ(x, y) = “(x↔ y)”

Then the closure of A = {A0, A1, . . . , An, . . . } under F = {f, g, h, γ, ρ}
is the set of Well-Formed Formulas (or WFFs) of propositional logic.
(Write out some examples!)
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0.3 Orders, ordinals, cardinals

We will occasionally have occasion to use the Axiom of Choice (AC).
One common form of this axiom is:

Zorn’s Lemma:Let A be a set, suppose A is closed under unions
of chains. Then A contains a maximal element.

(Here a chain is a set C such that ∀x, y ∈ C, x ⊆ y∨ y ⊆ x. The
hypothesis on A is that ∀C ⊆ A, if C is a chain then

⋃
C ∈ A. A

maximal element in this setting is an M ∈ A such that ∀A ∈ A, if
M ⊆ A then M = A.)

Zorn’s Lemma is not always the easiest form of AC to use. For
the next, we recall a couple of definitions.

Definition 0.6. A binary relation ≤ is a partial order on A pro-
vided ≤ is reflexive, antisymmetric, and transitive. ≤ is a linear
order provided in addition any two elements are comparable, that is,
∀x, y ∈ A x ≤ y ∨ y ≤ x. (In other words, trichotomy holds.) A
partial order ≤ on A is well-founded provided every nonempty sub-
set of A has a minimal element. A well-founded partial order is a
well order.

Note that a nonempty subset in a well-founded relation might
have several minimal elements, but in a linear order every minimal
element is a minimum element.

Another version of AC is the

Well-Ordering Principle: Every set can be well-ordered.

To convince yourself that this axiom is ludicrous, note that it
means that there is a well-ordering of R (not of course the usual
ordering). However, it is equivalent to Zorn’s Lemma, and for the
remainder of the course we will assume it is true (unless we specify
otherwise).

Now, consider the natural numbers again:

ω = {0, 1, 2, . . . , n . . . }

As we defined them before, each natural number is an element of its
successor, in fact of all its successors, and in fact the usual ordering
on ω is just ∈. Moreover, the set is well-ordered under this ordering.
Everything I just said remains true if we consider ω + 1 := ω; ω in
place of ω. This motivates the following definition:
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Definition 0.7. An ordinal is a set α, well-ordered by ∈, such that
whenever x ∈ y ∈ α, x ∈ α.

Intuitively, the ordinals line up ‘forever’, and each ordinal is the
set of all earlier ones.

The first important property of ordinals is that ther are ‘canoni-
cal’ well-ordered sets:

Theorem 0.11. Every well-ordered set A is order isomorphic to an
ordinal α

By order-isomorphic I mean that there is a bijection f from A
onto α, and that x < y ⇐⇒ f(x) < f(y) for all x, y ∈ A. In fact,
the isomorphism f is easily defined recursively by f(x) := {f(y) :
y < x, y ∈ A} for x ∈ A. While I won’t give the proof here that
this f is an order isomorphism, you should compute f for the first
few elements of A and convince yourself that it will work.

Theorem 0.12. (Trichotomy for ordinals) If α, β are ordinals then
exactly one of α < β, α = β, α > β hold (where < is ∈).

Remark: The proof is surprisingly hard, so is omitted.

Definition 0.8. If A is a set, then card(A) is defined to be the least
ordinal α such that α ≈ A. An ordinal α is a cardinal number
provided α = card(α)

Remark: The fact that card(A) exists for every A is a consequence
of choice: well-order A, find an isomorphic ordinal α′ using the
theorem above, then find the least α ∈ α′ such that α ≈ α′ (which
we can do since α′ is well-ordered). In fact, the statement “Every
set has a cardinality” is equivalent to choice; you should be able to
see why this is so.
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