Math 671 - Assignment 1 - Due September 6

1. Let Ω be an uncountable set. Show that

$$\mathcal{A}:=\{A\subseteq\Omega: A \text{ countable } or A \text{ co-countable}\}$$

is a σ – algebra.

- 2. Let $\mathcal{C} \subseteq \mathcal{P}(\Omega)$, $\sigma(\mathcal{C}) := \bigcap \{ \mathcal{A} \subseteq \mathcal{P}(\Omega) : \mathcal{C} \subseteq \mathcal{A}, \mathcal{A} \text{ a } \sigma \text{algebra} \}$. Prove that $\sigma(\mathcal{C})$ is the smallest $\sigma \text{algebra}$ containing \mathcal{C} . (Note that you need to prove the implicit statement that $\sigma(\mathcal{C})$ is a $\sigma \text{algebra}$.)
- 3. E1.1 from the text.
- 4. If \mathcal{C} is a π -system, Γ a d-system, and $\mathcal{C} \subseteq \Gamma$, then there is an algebra $\overline{\mathcal{C}}$ such that $\mathcal{C} \subseteq \overline{\mathcal{C}} \subseteq \Gamma$