1. Let \(\Omega \) be an uncountable set. Show that

\[
\mathcal{A} := \{ A \subseteq \Omega : A \text{ countable or } A \text{ co-countable} \}
\]

is a \(\sigma \)-algebra.

2. Let \(\mathcal{C} \subseteq \mathcal{P}(\Omega), \sigma(\mathcal{C}) := \bigcap\{ \mathcal{A} \subseteq \mathcal{P}(\Omega) : \mathcal{C} \subseteq \mathcal{A}, \mathcal{A} \text{ a } \sigma-\text{algebra} \} \). Prove that \(\sigma(\mathcal{C}) \) is the smallest \(\sigma \)-algebra containing \(\mathcal{C} \). (Note that you need to prove the implicit statement that \(\sigma(\mathcal{C}) \) is a \(\sigma \)-algebra.)

3. E1.1 from the text.

4. If \(\mathcal{C} \) is a \(\pi \)-system, \(\Gamma \) a \(d \)-system, and \(\mathcal{C} \subseteq \Gamma \), then there is an algebra \(\overline{\mathcal{C}} \) such that \(\mathcal{C} \subseteq \overline{\mathcal{C}} \subseteq \Gamma \).