Math 671 - Assignment 3 - Due September 20

- 1. Let (Ω, \mathcal{A}) be a measurable space, and $f : \Lambda \to \Omega$ any function. Prove that $f^{-1}(\mathcal{A}) = \{f^{-1}A : A \in \mathcal{A}\}$ is a σ algebra on Λ .
- 2. (Don't turn in) (a) If a topological space (X,\mathfrak{T}) is second countable, then the Borel σ algebra \mathcal{B}_X is the σ algebra generated by any basis. What if (X,\mathfrak{T}) is not second countable? (b) Conclude that if f_1, f_2, \ldots, f_n are real-valued measurable functions then $F = \langle f_1, \ldots, f_n \rangle : (\Omega, \mathcal{A}) \to \mathbb{R}^n$ is measurable into \mathbb{R}^n .
- 3. Let $\mathcal{A} = \sigma(\mathcal{C})$ be a σ algebra on Ω . (a) Show that for any $E \in \mathcal{A}$ there is a countable $\mathcal{C}' \subseteq \mathcal{C}$ (which might depend on E!) such that $E \in \sigma(\mathcal{C}')$. In other words, \mathcal{A} is the union of all σ algebras generated by countable subsets of \mathcal{C} . (b) Show that for any \mathcal{A} -measurable f there is a countable $\mathcal{C}' \subseteq \mathcal{C}$ such that f is $\sigma(\mathcal{C}')$ -measurable.