Math 671 - Assignment 6 - Due October 16

1. (Don't hand in.) If $p>0$ and $X \in \mathcal{L}^{p}$ then $x^{p} P(X>x) \rightarrow 0$ as $x \rightarrow \infty$
2. If X, Y are independent and $X+Y \in \mathcal{L}^{p} \quad(p>0)$ then $X \in \mathcal{L}^{p}$. (Hint: Show that for large enough $\lambda>0$,

$$
P(|X|>\lambda) \leq 2 P(|X|>\lambda,|Y|<\lambda / 2) \leq 2 P(|X+Y|>\lambda / 2)
$$

and then use a result I said in class we wouldn't use very much (if at all).
3. Suppose X is a nonnegative random variable with $X \in \mathcal{L}^{p}$ for all $p>0$. Define $g(p)=\ln \mathbb{E}\left(X^{p}\right), 0<p<\infty$. Prove that g is a convex function on $(0, \infty)$. (Hint: Let $\alpha, \beta>0$ with $\alpha+\beta=1$, let $p=1 / \alpha, q=1 / \beta$, note $p, q>1$, and use Hölder's inequality.)
4. This problem sketches an alternate proof of Hölder's inequality. Do not hand in part (a).
(a) Let $\phi:[0, \infty) \rightarrow[0, \infty)$ be continuous and strictly increasing, with $\phi(0)=0$. Let $\psi=\phi^{-1}$. Prove that for $a, b>0, a b \leq \int_{0}^{a} \phi(x) d x+$ $\int_{0}^{b} \psi(y) d y$. (See picture below, sorry about its quality.)
(b) Conclude that if $p, q>1$ are conjugate exponents and $a, b>0$ then $a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}$
For the final two parts, assume that $f \in \mathcal{L}^{p}$ and $g \in \mathcal{L}^{q}$, where $p, q>1$ are conjugate exponents.
(c) Prove that if $\|f\|_{p}=\|g\|_{q}=1$ then $\mathbb{E}(|f g|) \leq\|f\|_{p}\|g\|_{q}$. (Hint: use the previous part.)
(d) Finally, prove Hölder's theorem for general $f \in \mathcal{L}^{p}, g \in \mathcal{L}^{q}$. (Hint: divide f and g by something suitable.)

