Math 671 - Assignment 7 - Due Oct. 23

In all the exercises except the last one, X_{n} is a sequence of random variables and S_{n} denotes the sum $S_{n}=X_{1}+\cdots+X_{n}$.

1. If $\sup _{n}\left|X_{n}\right| \in \mathcal{L}^{p}$ and $X_{n} \rightarrow X$ a.s. then $X \in \mathcal{L}^{p}$ and $X_{n} \rightarrow X$ in \mathcal{L}^{p}.
2. For any sequence of random variables X_{n} and $p \geq 1$,
(a) If $X_{n} \rightarrow 0$ a.s. then $\frac{S_{n}}{n} \rightarrow 0$ a.s.
(b) If $X_{n} \rightarrow 0$ in \mathcal{L}^{p} then $\frac{S_{n}}{n} \rightarrow 0$ in \mathcal{L}^{p}
(c) Part (b) is false if $0<p<1$.
3. If $\frac{S_{n}}{n} \rightarrow 0$ in probability then $\frac{X_{n}}{n} \rightarrow 0$ in probability. Show that this remains true if we replace n by a_{n} where $\frac{a_{n+1}}{a_{n}} \rightarrow 1$.
4. Prove that the set of real numbers in $[0,1]$ which do not contain a ' 2 ' in the decimal expansion is of Lebesgue measure zero. Deduce from this the existence of two sets A and B each of measure zero such that every real number is representable as a sum $a+b$ with $a \in A$ and $b \in B$
