Math 671 - Assignment 8 - Due Nov. 1 or thereabouts

- 1. Text E4.6
- 2. Text E4.7
- 3. Let X_n be iid random variables, K > 0 a constant, and let $Y_n = X_n I_{[|X_n| \le K]}$. Suppose that the following three series converge:
 - i) $\sum_{n} P(|X_n| > K);$
 - ii) $\sum_n \mathbb{E}(Y_n)$;
 - iii) $\sum_{n} Var(X_n)$.

Then $\sum_n X_n$ converges a.s. (Hint: First, use the Kolmogorov inequality we proved in class to show that $\sum_n (Y_n - \mathbb{E}(Y_n))$ converges. Then use (ii), then use the fact that $\{X_n\}_n$ is equivalent to $\{Y_n\}_n$ from (i).)