Lecture notes: Measurable Functions/Random Variables
Math 671 Fall 2013 (Prof. Ross, UH Dept. of Math)

Definition 0.1. Let (Ω, \mathcal{A}) and (Λ, \mathcal{B}) be σ – algebras. $f : \Omega \to \Lambda$ is measurable (or \mathcal{A} - \mathcal{B} measurable for definiteness) if $f^{-1}(\mathcal{B}) \subseteq \mathcal{A}$

- Usually Λ will be a topological space (usually \mathbb{R}^n) and \mathcal{B} the Borel σ algebra.
- In fact, Λ will usually be \mathbb{R} , and if we say "f is a measurable function" without mentioning other context then assume f is \mathbb{R} -valued.
- If $\Omega = \mathbb{R}$ then we will usually assume \mathcal{A} is the Borel σ algebra, and a measurable f on Ω is called a *Borel* function.
- Some useful facts:
 - (1) For a function $f:(\Omega,\mathcal{A})\to\mathbb{R}$, measurability is equivalent to any of the following conditions:
 - (a) $f^{-1}(-\infty, r) \in \mathcal{A}$ for all $r \in \mathbb{R}$ (or even $r \in \mathbb{Q}$)
 - (b) $f^{-1}(-\infty, r] \in \mathcal{A}$ for all $r \in \mathbb{R}$ (or even $r \in \mathbb{Q}$)
 - (c) $f^{-1}(r,\infty) \in \mathcal{A}$ for all $r \in \mathbb{R}$ (or even $r \in \mathbb{Q}$)
 - (d) $f^{-1}[r, \infty) \in \mathcal{A}$ for all $r \in \mathbb{R}$ (or even $r \in \mathbb{Q}$)
 - (2) A continuous function from one topological space to another is (Borel-Borel)-measurable.
 - (3) (compare to Lemma 3.4 in text) If $f:(\Omega_2, \mathcal{A}_2) \to (\Omega_3, \mathcal{A}_3), g:$ $(\Omega_1, \mathcal{A}_1) \to (\Omega_2, \mathcal{A}_2) \text{ are both measurable, then } f \circ g \text{ is measurable.}$

1

- (4) If $f, g: (\Omega, A)$ are measurable then so are f+g, cf, f-g, and fg, where c is a constant.
- (5) If $A \in \mathcal{A}$ then I_A is measurable from $(\Omega, \mathcal{A}) \to \mathbb{R}$. In fact, any *simple function* of the form $\sum_{i=1}^{n} a_i I_{A_i}$ is measurable.
- The proofs for (some version of) all of these is in the text, and you should make sure you can prove them.
- It will often be convenient to assume that our functions are $\overline{\mathbb{R}}$ valued; this doesn't affect anything above.
- Remarks on text's $m \sum, b \sum, (m \sum)^+$
- A continuous function from one topological space to another is (Borel-Borel)-measurable.
- Supose $f_n:(\Omega,\mathcal{A})\to\mathbb{R}, n\in\mathbb{N}$, are measurable functions. Then

$$\inf_{n} f_n, \qquad \sup_{n} f_n, \qquad \liminf_{n} f_n, \qquad \limsup_{n} f_n$$

and $I_{\{\lim_n f_n \text{ exists}\}}$ are all measurable.

- A (Real-valued) random variable is a measurable function X from a probability space to \mathbb{R} .
- (Notation) If X is a random variable, we often write

$$[X = r] \text{ for } \{\omega \in \Omega : X(\omega) = r\}$$

$$[X < r] \text{ for } \{\omega \in \Omega : X(\omega) < r\}$$

$$[X \in A] \text{ for } \{\omega \in \Omega : X(\omega) \in A\} = X^{-1}(A)$$