Lecture notes: Measurable Functions/Random Variables Math 671 Fall 2013 (Prof. Ross, UH Dept. of Math)

Definition 0.1. Let (Ω, \mathcal{A}) and (Λ, \mathcal{B}) be $\sigma-$ algebras. $f: \Omega \rightarrow \Lambda$ is measurable (or $\mathcal{A}-\mathcal{B}$ measurable for definiteness) if $f^{-1}(\mathcal{B}) \subseteq \mathcal{A}$

- Usually Λ will be a topological space (usually \mathbb{R}^{n}) and \mathcal{B} the Borel σ - algebra.
- In fact, Λ will usually be \mathbb{R}, and if we say " f is a measurable function" without mentioning other context then assume f is \mathbb{R}-valued.
- If $\Omega=\mathbb{R}$ then we will usually assume \mathcal{A} is the Borel σ - algebra, and a measurable f on Ω is called a Borel function.
- Some useful facts:
(1) For a function $f:(\Omega, \mathcal{A}) \rightarrow \mathbb{R}$, measurability is equivalent to any of the following conditions:
(a) $f^{-1}(-\infty, r) \in \mathcal{A}$ for all $r \in \mathbb{R}$ (or even $r \in \mathbb{Q}$)
(b) $f^{-1}(-\infty, r] \in \mathcal{A}$ for all $r \in \mathbb{R}$ (or even $\left.r \in \mathbb{Q}\right)$
(c) $f^{-1}(r, \infty) \in \mathcal{A}$ for all $r \in \mathbb{R}($ or even $r \in \mathbb{Q})$
(d) $f^{-1}[r, \infty) \in \mathcal{A}$ for all $r \in \mathbb{R}($ or even $r \in \mathbb{Q})$
(2) A continuous function from one topological space to another is (Borel-Borel)-measurable.
(3) (compare to Lemma 3.4 in text) If $f:\left(\Omega_{2}, \mathcal{A}_{2}\right) \rightarrow\left(\Omega_{3}, \mathcal{A}_{3}\right), g$: $\left(\Omega_{1}, \mathcal{A}_{1}\right) \rightarrow\left(\Omega_{2}, \mathcal{A}_{2}\right)$ are both measurable, then $f \circ g$ is measurable.
(4) If $f, g:(\Omega, \mathcal{A})$ are measurable then so are $f+g, c f, f-g$, and $f g$, where c is a constant.
(5) If $A \in \mathcal{A}$ then I_{A} is measurable from $(\Omega, \mathcal{A}) \rightarrow \mathbb{R}$. In fact, any simple function of the form $\sum_{i=1}^{n} a_{i} I_{A_{i}}$ is measurable.
- The proofs for (some version of) all of these is in the text, and you should make sure you can prove them.
- It will often be convenient to assume that our functions are $\overline{\mathbb{R}}$ valued; this doesn't affect anything above.
- Remarks on text's $m \sum, b \sum,\left(m \sum\right)^{+}$
- A continuous function from one topological space to another is (Borel-Borel)-measurable.
- Supose $f_{n}:(\Omega, \mathcal{A}) \rightarrow \mathbb{R}, n \in \mathbb{N}$, are measurable functions. Then

$$
\inf _{n} f_{n}, \quad \sup _{n} f_{n}, \quad \liminf _{n} f_{n}, \quad \limsup _{n} f_{n}
$$

and $I_{\left\{\lim _{n} f_{n} \text { exists }\right\}}$ are all measurable.

- A (Real-valued) random variable is a measurable function X from a probability space to \mathbb{R}.
- (Notation) If X is a random variable, we often write

$$
\begin{gathered}
{[X=r] \text { for }\{\omega \in \Omega: X(\omega)=r\}} \\
{[X<r] \text { for }\{\omega \in \Omega: X(\omega)<r\}} \\
{[X \in A] \text { for }\{\omega \in \Omega: X(\omega) \in A\}=X^{-1}(A)}
\end{gathered}
$$

