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Start with a quick discussion of cardinal and ordinal numbers. Cardinals are a
measure of size, ordinals of ordering. Ideally you should find an real introduction to
this somewhere, either in a Math 454 text or in a mid-20th-century analysis text.

1. Cardinality

Definition 1.1. A is equinumerous with B provided there is a bijection from A
onto B.

Other, equivalent notation/terminology for “A is equinumerous with B”:

(1) A and B have the same cardinality
(2) A ≈ B
(3) card(A) = card(B)

We seem to be referring to a concept called “cardinality” without really defining
it. Technically, we should view all the above as simply complicated ways of express-
ing a relationship between the two sets A and B. Early treatments of set theory
tried to define the cardinality of a set to be its equivalence class under the relation
≈, but since ≈ is defined on the class of all sets (which is not itself a set), this leads
to technical problems related to the classical set-theoretic paradoxes. Nevertheless,
it is not a terrible way to think of cardinalities.

Some important cardinalities:

• ℵ0 =cardinality of N. Sets with this cardinality (ie, which can be put into
a 1-1 correspondence with N) are called countably infinite.

• 2ℵ0 = c =cardinality of R (the continuum). Any math grad student should
be able to prove that this is also the cardinality of P(N).

• ℵ1 =the first uncountable cardinal. Implicit in this terminology is the
assertion that there is a set A with the property that A is is uncountable
(=infinite but not countably infinite) and that if B is any other uncountable
set then there is a 1-1 function from A into B.

The assertion that ℵ1 = 2ℵ0 is Cantor’s continuum hypothesis, and it is
independent of the usual axioms of set theory. Few mathematicians believe
it.

There is a whole beautiful theory of cardinal arithmetic, which we won’t go into
here; see any Math 454 text. One rather useful fact is that the union of finitely
many infinite sets has the same cardinality as the largest of the sets; in fact the
union of κ many sets whose cardinality is at most κ itself has cardinality at most
κ. This is a hugely nontrivial result in general, but you should be able to prove the
countable version (the union of countably many countable sets is countable).

Finally, an important and useful fact that has a surprisingly tricky proof:
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Theorem 1.1. (Cantor-Schroeder-Bernstein) If A has the same cardinality as a
subset of B and vice versa, then card(A) = card(B).

2. Ordinals

Just as cardinality is meant to be a measure of a set’s size, ordinality is meant to
be a measure of the order structure of a set. When discussing a queue of people, for
example, we might say that a person is 5th in line. This has cardinality implications
- the set of people from the front to/including him has 5 people in it - but also an
ordinality implication: 5 indicates his place in the line’s order.

Intuitively, an ordinal is a well-ordered set which represents all well ordered sets
with a given ‘order type’ (that is, it represents all well-ordered sets which are order-
isomorphic to it). Ordinals are meant to generalize the natural numbers, and the
order relation on ordinals will just be set membership ∈.

Here is one way to define them:

Definition 2.1. An ordinal number is a well-ordered set (α,<) satisfying:

∀a ∈ α a = {x ∈ α : x < a}

Note that this means that for any x, a ∈ α, x ∈ a ⇐⇒ x < a, that is, the
well-order on α is really just set membership, and every ordinal is the set of its
predecessors.

This definition is comprehensive enough that from it one can deduce many prop-
erties of ordinals; this is a major part of Math 454.

The ones we will need are:

Lemma 2.1. If α is an ordinal, then:

(1) Every a ∈ α is an ordinal
(2) α+ 1 := α ∪ {α} is an ordinal
(3) If α and β are ordinals, then α ∩ β is an ordinal.
(4) (Trichotomy) If α and β are ordinals then either α ∈ β or α = β or β ∈ α
(5) If (X,<) is a well-ordered set, then there is a unique order-isomorphism E

from X onto α for some ordinal α
(6) If two ordinals are order-isomorphic, then they are equal.
(7) Every ordinal α is either a successor ordinal, that is, α = β + 1 for some

β, or it is a limit ordinal, α =
⋃
{β : β < α}.

John von Neumann defined the natural number 0 = ∅ to be the first ordinal, and
recursively n + 1 := {0, 1, . . . , n} (which agrees with the definition of “+1” given
in the above lemma). In other words, the class of all ordinals has N as its initial
segment.

We can define things by recursion and prove things by induction on any ordinal
exactly the same way we do on the natural numbers. For example, the order-
isomorphism E from a well-ordered set (X,<) to an ordinal α has a cute recursive
definition, namely:

E(x) := {E(y) : y < x}
This is pretty terse; you should try it on an imaginary well-ordered set to see

what it means. Note, for example, that if x0 is the smallest element of X, then
E(x0) = ∅.
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To get a sense of why transfinite induction works, suppose φ(x) is some statement
we’re trying to prove holds for all ordinals x (or maybe just all x below some β),
and you prove

(1) φ(0) is true, and
(2) Whenever φ(γ) is true for all γ < α then φ(α) is true.

(Note that the first condition is actually implied by the second, so redundant.) The
claim is that φ(α) must be true for all α. Otherwise there is a least exception α, then
the antecedent of the second condition is true, hence φ(α) is true, a contradiction.

Alternately, we prove

(1) φ(0) is true, and
(2) Whenever φ(α) is true then φ(α+ 1) is true, and
(3) Whenever φ(α) is true for all α < λ then φ(λ) is true, for limit ordinals λ.

These two approaches correspond to what we call weak and strong induction in a
course like Math 321.

Assuming there exist uncountable ordinals (there do!), there must be a least one,
which we call ω1. An interesting property of ω1 is that if A ⊆ ω1 is a countable
set of ordinals, that is, A = {αn}n∈N with each αn < ω1, then for some β we have
αn < β < ω1 for all n. (This is a consequence of the fact that the union of a
countable set of countable sets is countable, another general fact any math grad
student should be able to prove.)

3. Generating a σ−algebra

We are now ready to generate a σ − algebra.

Lemma 3.1. Suppose {∅,Ω} ⊆ C ⊆ P(Ω). Define:

A0 := C;(1)

Aα+1 := Aα ∪ {A{ : A ∈ Aα} ∪ {
⋃
n

An : {An}n∈N ⊆ Aα}(2)

Aλ :=
⋃
α<λ

Aα, λ a limit ordinal(3)

Then Aω1 = σ(C)

Proof. ⊆) Let A be any σ − algebra containing C. Of course, A0 ⊆ A. Suppose

Aα ⊆ A. If A ∈ Aα ⊆ A then A{ ∈ A. If {An}n∈N ⊆ Aα ⊆ A then (since A is a
σ − algebra)

⋃
nAn ∈ A It follows that Aα+1 ⊆ A. Finally, suppose Aα ⊆ A for

all α < λ. Then Aλ =
⋃
α<λAα ⊆ A. By induction, Aα ⊆ A for all ordinals α,

including α = ω1. Since A was arbitratry, Aω1
⊆ σ(A)

⊇) We need to show that Aω1
is a σ − algebra. {∅,Ω} ⊆ C ⊆ Aω1

. If A ∈ Aω1

then for some α < ω1, A ∈ Aα, so A{ ∈ Aα+1 ⊆ Aω1
. If {An}n∈N ⊆ Aω1

then each
An ∈ Aαn

for some n, and (see discussion above) there is some β < ω1 with αn < β
for all n, and so

⋃
nAn ∈ Aβ ⊆ Aω1 , proving the claim.

�

4. Borel Sets

The Borel subsets of R is the σ−algebra BR generated by the open subsets of R.
Since any open subset of R is the union of open intervals with rational endpoints
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(and therefore a countable union of such intervals), BR = σ(C) where C is the
countable collection of such open intervals.

Define Aω1 as above. We prove by induction that for all α ≤ ω1, card(Aα) ≤ 2ℵ0 .
card(A0) = ℵ0. Assume card(Aα) ≤ 2ℵ0 . Every element of Aα+1 is either an
element of Aα, the complement of an element of Aα, or a set determined by a
function from N into Aα. The cardinality of such functions is also 2ℵ0 .1 Thus Aα+1

is the union of three sets each of cardinality at most 2ℵ0 , so it has cardinality at
most 2ℵ0 . Finally, Aω1 is the union of at most 2ℵ0 many sets each of cardinality at
most 2ℵ0 , so it too has cardinality at most 2ℵ0 . In fact, every singleton set of the
form {r} for r a real number is Borel (why?), so BR = Aω1

has cardinality of the
continuum.

We’ll see another way to prove this later in the semester.
You won’t find this fact stated, let alone proved, in many intro analysis or intro

probability texts, and that is a pity.
By the way, Cantor showed that if X is any set, then card(X) is strictly less than

card(P(X). Since there are only as many Borel sets as there are real numbers, these
cardinality considerations show that there are subsets of R which are not Borel.

1You can show this by finding a 1-1 function from (the set of functions from N to R) into R,
then applying the Cantor-Schroeder-Bernstein Theorem.


