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Abstract

In this work we introduce and study a new notion of amenability for actions
of locally compact groups on C˚-algebras. Our definition extends the definition of
amenability for actions of discrete groups due to Claire Anantharaman-Delaroche.
We show that our definition has several characterizations and permanence prop-
erties analogous to those known in the discrete case. For example, for actions on
commutative C˚-algebras, we show that our notion of amenability is equivalent to
measurewise amenability. Combined with a recent result of Alex Bearden and Jason
Crann, this also settles a long standing open problem about the equivalence of topo-
logical amenability and measurewise amenability for a second countable G-space
X.

We use our new notion of amenability to study when the maximal and re-
duced crossed products agree. One of our main results generalizes a theorem of
Matsumura: we show that for an action of an exact locally compact group G on a
locally compact space X the full and reduced crossed products C0pXq ¸max G and
C0pXq ¸red G coincide if and only if the action of G on X is amenable. We also
show that the analogue of this theorem does not hold for actions on noncommuta-
tive C˚-algebras.

Finally, we study amenability as it relates to more detailed structure in the
case of C˚-algebras that fibre over an appropriate G-space X, and the interaction
of amenability with various regularity properties such as nuclearity, exactness, and
the (L)LP, and the equivariant versions of injectivity and the WEP.

1991 Mathematics Subject Classification. 46L55, 43A35.
Key words and phrases. Amenable actions, C*-algebra, Matsumura’s theorem, weak contain-

ment, exact groups.
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CHAPTER 1

Introduction

Amenability is an important property of groups and their actions (and other
objects) with many consequences in dynamics, harmonic analysis, geometric group
theory, and elsewhere. There is a good notion of amenability in the literature for
an action of a locally compact group on a von Neumann algebra. However, for
actions on C˚-algebras, some natural definitions only work in the case where the
acting group is discrete. Our goals in this work are four-fold:

(1) Introduce a notion of amenability for an action of a locally compact group
on a C˚-algebra, and study its relationship to approximation properties
for the action and to existing notions of amenability for actions on com-
mutative C˚-algebras.

(2) Study the connection of amenability to the weak containment problem of
when the maximal and reduced crossed products coincide.

(3) Study amenability in the case of actions onX¸G-C˚-algebras for a regular
action G ñ X, and for type I G-C˚-algebras.

(4) Study the connection of amenability to various important regularity prop-
erties such as nuclearity, exactness, lifting properties, and equivariant ver-
sions of the WEP and injectivity.

We now discuss each of these goals in turn.

1.1. Amenable actions

To explain our notion of amenable actions, we start by recalling the classical
case of actions on von Neumann algebras. This theory was initiated by Claire
Anantharaman-Delaroche [4, Définition 3.4] over forty years ago and has been used
to great effect by Anantharaman-Delaroche and many others in the intervening
period.

To establish terminology, let A be a C˚-algebra (or a von Neumann algebra)
equipped with an action α : G Ñ AutpAq of a locally compact group G. Then
pA,αq is a G-C˚-algebra (respectively, G-von Neumann algebra) if for all a P A
the ‘orbit map’ G Ñ A defined by g ÞÑ αgpaq is norm (respectively, ultraweakly)
continuous.

Let G be a locally compact group, and let pM,σq be a G-von Neumann algebra.
Equip the von Neumann algebra tensor product L8pGqbM with the tensor product
of the canonical action τ on L8pGq induced by left translation, and the given action
σ on M . The following definition is due to Anantharaman-Delaroche [4, Définition
3.4]. Note that it reduces to one of the standard definitions of amenability of G if
M “ C.

7



8 1. INTRODUCTION

Definition 1.1. A G-von Neumann algebra pM,σq is amenable if there exists
an equivariant conditional expectation Φ : L8pGqbM Ñ M , where we view M as
a von Neumann subalgebra of L8pGqbM via the canonical embedding m ÞÑ 1bm.

If pA,αq is a G-C˚-algebra and G is discrete, then its double dual A˚˚ is a G-
von Neumann algebra with the canonically induced action α˚˚, and Anantharaman-
Delaroche [6, Définition 4.1] defines the G-action on A to be amenable precisely
when pA˚˚, α˚˚q is an amenable G-von Neumann algebra. This definition works
well in the discrete case, but not for general locally compact G: indeed, A˚˚ is
typically not a G-von Neumann algebra when G is not discrete.

One of the main ideas in this paper is to find an appropriate replacement
for A˚˚ when G is locally compact. The key ingredient is given by the following
theorem of Akio Ikunishi:

Theorem 1.2 ([46, Theorem 1.1]). Let G be a locally compact group, and pA,αq
a G-C˚-algebra. Then there is a canonically associated G-von Neumann algebra
pA2α, α

2q with the following universal property: any equivariant ˚-homomorphism
AÑM from A to a G-von Neumann algebra M extends uniquely to an ultraweakly
continuous equivariant ˚-homomorphism A2α ÑM .

It follows from the theorem that when G is discrete, pA2α, α
2q “ pA˚˚, α˚˚q.

Thus A2α is a natural replacement for A˚˚. We show that it has similar functoriality
properties to A˚˚, although it is often a proper quotient.

Replacing A˚˚ by the G-von Neumann algebra A2α we define a G-C˚-algebra
pA,αq to be von Neumann amenable if pA2α, α

2q is an amenable G-von Neumann
algebra. This clearly extends the notion of amenable action of a discrete group G.

However, von Neumann amenability is not directly useful for studying proper-
ties of the associated crossed products. Very early on in the theory, Anantharaman-
Delaroche [5, Corollaire 3.7] established the striking fact that amenability of a
G-von Neumann algebra pM,σq is equivalent to amenability of the induced action
of G on the centre ZpMq. For discrete G, Anantharaman-Delaroche later used this
in [6, Théorème 3.3] to characterize amenability in terms of an approximation prop-
erty using functions of positive type on G with values in the centre ZpMq of M ,
that is, functions θ : GÑ ZpMq such that for all finite F Ď G the ‘F ˆ F -matrix’

`

σgθpg
´1hq

˘

g,hPF
PMF pZpMqq

is positive. Specializing to M “ A˚˚ gives characterizations of amenability for
G-C˚-algebras. The following definition is inspired by this characterization.

Definition 1.3. Let pA,αq be a G-C˚-algebra. We say that pA,αq is amenable
if there exists a net pθi : G Ñ ZpA2αqq of norm-continuous, compactly supported
functions of positive type such that }θipeq} ď 1 for all i P I and θipgq Ñ 1A2α
ultraweakly and uniformly on compact subsets of G.

Our notion of amenability is a complete analogue of the classical definition of
Anantharaman-Delaroche [6, Définition 4.1] for discrete groups G. For actions of
discrete groups it has been shown by Anantharaman-Delaroche in [6, Théorème 3.3]
that amenability and von Neumann amenability coincide. In this work we prove
that amenability and von Neumann amenability coincide for actions of exact locally
compact groups G. Shortly after we posted a first draft of this work on the arXiv,
Alex Bearden and Jason Crann showed in [12, Theorem 3.6] with different methods
that both notions coincide also for non-exact groups. Thus we can now state
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Theorem 1.4 (Bearden-Crann). A G-C˚-algebra pA,αq is amenable if and
only if it is von Neumann amenable.

A drawback of these formulations of amenability is that the enveloping G-von
Neumann algebra is usually a huge object which is not easy to understand. Mo-
tivated by this, we give a different characterization, which we call the weak quasi-
central approximation property (wQAP). To state it, let us denote by SpAqc the set
of states φ on a G-C˚-algebra pA,αq such that, if α˚ is the induced action of G on
A˚, then the map

GÑ SpAq; g ÞÑ α˚g pφq

is norm-continuous.

Definition 1.5. Let pA,αq be a G-C˚-algebra. We say that pA,αq has the
weak quasi-central approximation property (wQAP) if there exists a net pξiqiPI of
functions in CcpG,Aq Ď L2pG,Aq such that:

(i) }xξi |ξiyA} ď 1 for all i P I;
(ii) for all φ P SpAqc we have φpxξi | λ

α
g ξiyAq Ñ 1 uniformly for g in compact

subsets of G;
(iii) for all φ P SpAqc and all a P A we have φpxξia´ aξi |ξia´ aξiyAq Ñ 0.

The (wQAP) is a variant of the quasi-central approximation property (QAP)
as introduced by the authors in [26, Section 3] to explain some work of Yuhei
Suzuki [69]. The (QAP) is analogous to the (wQAP), but one replaces the weak
convergence conditions (ii) and (iii) by the analogous norm1 convergence conditions.
We show in Theorem 4.4 that amenability is equivalent to the (wQAP) and to the
weak approximation property (wAP), a weak version of the approximation property
(AP) as introduced by Ruy Exel and Chi-Keung Ng in [38, Definition 3.6] for Fell
bundles over G. In an earlier draft of this work we presented an argument that for
discrete G amenability is also equivalent to the (QAP) and the (AP), and we asked
whether such result could also hold for actions of general locally compact groups.
While it turned out later that our argument contained a mistake2, our question has
been answered in the positive by Narutaka Ozawa and Suzuki in [61, Theorem 2.13
and Theorem 3.2]. Combining the results of Ozawa and Suzuki with ours we can
now state

Theorem 1.6 (Theorem 4.4 and Ozawa-Suzuki). For a G-C˚-algebra pA,αq
the following are equivalent

(i) pA,αq is amenable.
(ii) pA,αq has the (wQAP).

(iii) pA,αq has the (wAP).
(iv) pA,αq has the (QAP).
(v) pA,αq has the (AP).

We note a striking aspect of the (wQAP) and/or the (QAP). As discussed
above, Anantharaman-Delaroche [5, Corollaire 3.7] showed that amenability of
a G-von Neumann algebra is equivalent to amenability of the induced action on
its centre. It had been suspected – see for example [23, Definition 4.31] – that
amenability of a G-C˚-algebra pA,αq would also be equivalent to amenability of

1One should use strict convergence in the multiplier algebra in the non-unital case.
2We are grateful to one of the referees for pointing this out to us!
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the action on the centre3 ZpAq. However, in Definition 1.5, one has only the “quasi-
centrality” condition in (iii) above. Thanks to work of Suzuki [69] (see also the
discussion of Suzuki’s work in [26, Section 3]), we know that this distinction be-
tween centrality and quasi-centrality in the C˚-algebra case is quite fundamental.
Indeed, for simple C˚-algebras A, amenability of the action on ZMpAq – C al-
ways implies amenability of G, while it follows from Suzuki’s constructions (see
also the more recent work of Ozawa and Suzuki in [61]) that there are many im-
portant examples of amenable actions on simple C˚-algebras by groups which are
not amenable. It forms a theme of the current work that amenability for actions
on C˚-algebras is a genuinely ‘noncommutative’ property.

Using our characterizations of amenability, we can establish the following per-
manence properties. We think of these as evidence that amenability is a natural
condition.

Theorem 1.7. Amenability is inherited under taking equivariant: quotients;
hereditary subalgebras (in particular ideals); extensions; inductive limits; Morita
equivalent G-C˚-algebras.

At this point, it seems we can be confident that the definition of amenability
in this paper (equivalently, the (QAP)) is the ‘correct’ notion of amenability for
actions of locally compact groups on C˚-algebras.

We use the equivalence of the (AP) and amenability to show that nuclearity of
the cross-sectional C˚-algebra of a Fell bundle B over a discrete group G implies
the (AP): this resolves a conjecture of Pere Ara, Exel, and Takeshi Katsura [9,
Remark 6.5].

Let us complete this discussion of amenability with a result on measurewise
amenability. Having said that amenability is fundamentally a noncommutative
property, our introduction of the enveloping G-von Neumann algebra also allows
us to resolve problems concerning actions on commutative C˚-algebras. Using the
equivalence of von Neumann amenability and amenability4 as shown by Bearden
and Crann [12, Theorem 3.6], we get the following result.

Theorem 1.8. Let pA,αq be a G-C˚-algebra with A “ C0pXq commutative,
and both X and G second countable. Then the following are equivalent:

(1) the G-C˚-algebra A is amenable;
(2) for every quasi-invariant Radon measure µ on X, the G-von Neumann

algebra L8pX,µq is amenable.

Condition (2) was introduced by Jean Renault in [66, Definition II.3.6], who
called it measurewise amenability (see also [8, Definition 3.3.1]). In [3, Theorem
A] (see also [8, Theorem 4.2.7]), Scot Adams, George Elliott and Thierry Giordano
show that measurewise amenability is equivalent to requiring that for every quasi-
invariant Radon measure µ on X, the measure space pX,µq is amenable in the
classical sense of Robert Zimmer [76, Definition 1.4]. Thus our notion of amenabil-
ity interacts well with those of Zimmer and Renault.

Bearden and Crann [12, Corollary 4.14] have recently shown that amenability
of an action α : GÑ AutpC0pXqq is always equivalent to topological amenability of

3In the non-unital case, one should use the centre ZMpAq of the multiplier algebra.
4In an earlier version of this paper, we were able to establish a variant of Theorem 1.8 under

the additional assumption that G is exact; the work of Bearden and Crann allowed us to establish

the current more general version.
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the underlying action G ñ X. Combining this with Theorem 1.8 gives a positive
answer to the long standing open question whether topological amenability and
measurewise amenability for an action G ñ X coincide (for second countable G
and X).

1.2. The weak containment problem

A G-C˚-algebra pA,αq has the weak containment property (WCP) if the canon-
ical quotient map A¸max GÑ A¸red G is an isomorphism.

In [6, Proposition 4.8], Anantharaman-Delaroche used approximations by pos-
itive type functions to show that for discrete G, amenability of a G-C˚-algebra
pA,αq implies the (WCP). In this paper, we use our definition to extend this to
general locally compact groups. The weak containment problem asks whether the
converse holds true as well, i.e. if pA,αq has the (WCP), is it also amenable?

For the class of exact groups G and commutative G-C˚-algebras A, we can give
a complete, positive answer to this problem.

Theorem 1.9. Let G be a locally compact and exact group, and let A “ C0pXq
be a commutative G-C˚-algebra. Then the following are equivalent:

(i) the G-C˚-algebra A is amenable;
(ii) the canonical quotient map A¸max GÑ A¸red G is an isomorphism.

The class of exact groups was introduced by Eberhard Kirchberg and Simon
Wassermann in [50]. It is very large, containing for example all almost connected
groups [51, Corollary 6.9]. The exactness assumption comes into play in our work
via an important characterization of the property due to Jacek Brodzki, Chris
Cave, and Kang Li [22, Theorem 5.8] (in the second countable case) and Ozawa
and Suzuki [61, Proposition 2.5] (in general).

In the case of discrete G and unital commutative A, Theorem 1.9 is due to
Masayoshi Matsumura [55, Theorem 1.1]. Our proof is different to Matsumura’s,
relying heavily on ideas from our earlier work [26, Sections 4 and 5].

For noncommutative C˚-algebras, we establish the following analogue of The-
orem 1.9.

Theorem 1.10. Let G be a locally compact exact group, and let pA,αq be a
G-C˚-algebra. Then the following are equivalent:

(i) pA,αq is amenable;
(ii) for every G-C˚-algebra B, the canonical quotient map pAbmax Bq ¸max GÑ

pAbmax Bq ¸red G is an isomorphism;
(iii) the canonical quotient map pA bmax A

opq ¸max G Ñ pA bmax A
opq ¸red G is

an isomorphism.

Theorem 1.10 extends Matsumura’s [55, Theorem 1.1] which covers the case
where G is discrete and A is a unital nuclear C˚-algebra. Again, our techniques
are closer to our earlier work [26, Proposition 5.9] in the discrete case than to
Matsumura’s ideas.

It might at first seem odd that in Theorem 1.10 amenability is equivalent to
the weak containment property for A bmax A

op, and not for A itself. This is in
fact quite necessary and is another manifestation of the idea that amenability for
actions on C˚-algebras is a noncommutative phenomenon. Indeed, we have the
following striking example.
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Theorem 1.11. There is an action of G “ PSLp2,Cq on the compact operators
K that is non-amenable, but such that the canonical quotient map K ¸max G Ñ

K ¸red G is an isomorphism.

Using these examples, we are able to answer a question of Anantharaman-
Delaroche [7, Question 9.2 (b)] on whether the weak containment property passes
to the restriction of an action to a closed subgroup.

Theorem 1.12. There is an action of G “ PSLp2,Cq on the compact operators
K and a closed subgroup Γ of G such that the canonical quotient map K¸max GÑ
K¸redG is an isomorphism, but the canonical quotient map for the restricted action
K ¸max Γ Ñ K ¸red Γ is not injective.

The bad behaviour of the (WCP) under taking restrictions is in stark contrast to
the behaviour of amenability: we show that for actions of exact groups, amenability
passes to the restriction to a closed subgroup. While this paper was under review,
the exactness assumption was shown to be unnecessary by Ozawa and Suzuki [61,
Corollary 3.4].

We should remark that a key technical tool in our investigation of the weak
containment problem is a notion we call commutant amenability: see Definition
5.7. The interaction of amenability and commutant amenability with each other
and with exactness seems to be at the heart of the weak containment problem: see
for example [73] and [52] for some results relating exactness, amenability, and the
weak containment problem for groupoids.

1.3. Regular X ¸G-algebras and type I C˚-algebras

In the case that the C˚-algebra being acted on has good structure, we are
able to establish several interesting permanence properties and applications. These
results mainly seem to be new even in the discrete group case.

Let X be a locally compact G-space. An X ¸ G-algebra is a C˚-algebra that
fibres over X in a way that is compatible with the given actions. Such C˚-algebras
are important in the theory of induced representations, and in connection to the
Baum-Connes conjecture (among other places).

In the case that the G-action on X is sufficiently well behaved (the technical
condition needed is regularity - see Definition 6.1) we can use our results on weak
containment to deduce that amenability for a regular X ¸G-algebra is determined
by the actions on the fibres.

Theorem 1.13. Suppose that G is an exact group and that X is a regular locally
compact G-space. Further let pA,αq be an X ¸ G-algebra. Then the following are
equivalent:

(1) α : GÑ AutpAq is amenable.
(2) For every x P X, the action αx : Gx Ñ AutpAxq on the fibre Ax is

amenable.

As a corollary, we get yet another permanence result: an induced action of an
exact group from a closed subgroup is amenable if and only if the original action
was. This partly generalizes a result of Anantharaman-Delaroche from the discrete
case [6, Théorème 4.6].
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Specializing to actions on type I C˚-algebras, we can also show that suitable
amenable actions on type I algebras are determined by amenability of the actions
on the point stabilizers.

Theorem 1.14. Let α : GÑ AutpAq be an action of a second countable, locally
compact, exact group on a separable, type I C˚-algebra A such that the induced

action on pA is regular. Then α is amenable if and only if all stabilizers Gπ for the

action of G on pA are amenable.

In the case of Hausdorff spectrum, we get the following very satisfactory char-
acterization of amenability. Unlike the results above, the theorem below does not
proceed via our results on weak containment, and so does not require exactness.

Theorem 1.15. Let α : GÑ AutpAq be an action of a second countable, locally

compact group on a separable, type I C˚-algebra A such that X “ pA is Hausdorff
(for example, if A has continuous trace). Then α is amenable if and only if the
induced action on C0pXq is amenable.

Combining our work with a result of Bearden and Crann [12, Corollary 4.14],
one sees that in the situation of the theorem above, α is amenable if and only if
the action on X is topologically (or measurewise) amenable.

1.4. Regularity properties

For discrete groups, it is a well-known philosophy that if pA,αq is an amenable
G-C˚-algebra, then regularity properties such as nuclearity should be inherited by
the crossed product A ¸red G. For our notion of amenability for actions of locally
compact groups, we get the following results.

Theorem 1.16. Let pA,αq be an amenable G-C˚-algebra. Then A is nuclear
(respectively is exact, has the WEP, has the LLP) if and only if A¸maxG is nuclear
(respectively is exact, has the WEP, has the LLP).

We also get a similar result on the LP, although this is more subtle, in particular
requiring separability assumptions.

In the discrete case, the results on nuclearity and exactness are well known:
see for example [23, Theorem 4.1.8]. The result on the WEP for discrete groups
is proved in [17] with a different proof, and under the stronger assumption that
the G-C˚-algebra pA,αq is unital and amenable in the sense of Brown and Ozawa
[23, Definition 4.3.1]; this is what we call strong amenability (see Definition 3.5)
and it is the same as topological amenability of the action on the spectrum of the
centre ZpAq in case A is unital.

We turn now to G-injective C˚-algebras. A G-C˚-algebra A is injective if for
any commutative diagram

C

��
B

OO

// A
where the solid horizontal arrow is an equivariant ccp map and the vertical arrow
is an injective equivariant ˚-homomorphism, the diagonal arrow can be filled in by
an equivariant ccp map. The following theorem generalizes work of Brodzki, Cave,
and Li [22] and of Mehrdad Kalantar and Matthew Kennedy [48, Theorem 1.1]
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characterizing exactness in terms of actions on injective G-C˚-algebras. We refer
to Definition 3.5 for the notion of a strongly amenable action.

Theorem 1.17. Let G be a locally compact group. Then the following are
equivalent:

(1) G is exact.
(2) Every G-injective G-C˚algebra pA,αq is strongly amenable.
(3) There exists a strongly amenable G-injective G-C˚-algebra pA,αq.

Finally in the circle of ideas about regularity, we introduce a weakening of
G-injectivity called the continuous G-WEP. A G-C˚-algebra pA,αq has the con-
tinuous G-WEP if for any equivariant inclusion B ãÑ A of a G-C˚-algebra pB, βq
into pA,αq, there is an equivariant ccp map A Ñ B2β such that the composition

B Ñ A Ñ B2β is the canonical inclusion of B into its enveloping G-von Neumann

algebra. For actions on suitably nice C˚-algebras, this property is closely related
to amenability. Indeed, one has

Theorem 1.18. Let pA,αq be a G-C˚-algebra and assume that A has the WEP
(e.g. A is nuclear) and G is exact. Then pA,αq is amenable if and only if it has
the continuous G-WEP.

We conclude with the following result on a variant of the weak containment
property.

Theorem 1.19. Let pA,αq be a commutative G-C˚-algebra. Then pA,αq has
the continuous G-WEP if and only if A¸max G “ A¸inj G.

We will not explain all the terminology here, but just state that this is one of the
most general forms of the equivalence between a variant of the weak containment
property and a variant of an amenability property; indeed, it reduces to Theorem 1.9
when G is exact. Outside the exact case, weak containment unfortunately remains
quite mysterious, and the above is currently the most general result we know in
that direction.

1.5. Outline of the paper

In Chapter 2 we study one of the main actors in this paper: Ikunishi’s en-
veloping G-von Neumann algebra pA2α, α

2q of a G-C˚-algebra pA,αq. We show
that the construction pA,αq ÞÑ pA2α, α

2q has good functoriality properties, similar
to those of the usual bidual construction A ÞÑ A˚˚. Our construction is different
from the one given by Ikunishi in [46], but it follows from the universal proper-
ties of pA2α, α

2q that both constructions coincide. We also establish a one-to-one
correspondence between quasi-equivalence classes of covariant representations of
pA,G, αq and G-invariant central projections in A2α.

In Chapter 3 we introduce several notions of amenability and study some rela-
tions between approximation properties by positive type functions and our notions
of amenable actions. We also prove some basic permanence properties of amenabil-
ity. We then establish the equivalence of measurewise amenability and amenability.

In Chapter 4 we prove the equivalence between amenability and the weak quasi-
central approximation property (wQAP) and we relate this to the more recent
results of Ozawa and Suzuki in [61] which show that amenability is equivalent to
the stronger quasi-central approximation property (QAP), as introduced by the
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authors in [26, Section 3], and to the approximation property (AP) as introduced
in [38, Definition 3.6]. As an application we solve a long-standing open question
of Ara, Exel, and Katsura on the nuclearity of cross-sectional C˚-algebras of Fell
bundles over G.

In Chapter 5 we study the relation between amenability of actions and the weak
containment property. Section 5.2 proves the central positive results: Theorems
1.9 and 1.10 above. A key tool here is the use of the Haagerup standard form
of a G-von Neumann algebra. In Section 5.3 we construct our examples of non-
amenable actions α : GÑ AutpKq with K “ KpHq for some Hilbert space H, such
that K ¸max G – K ¸red G; in other words, this gives a negative solution to the
weak containment problem. We also give our examples of actions with the weak
containment property that have restrictions without that property.

In Chapter 6 we give applications to C˚-algebras with good structure. In
Section 6.1 we prove our results on X¸G-algebras in which X is a regular G-space
and for regular actions on type I G-C˚-algebras. In Section 6.2 we study actions

on type I C˚-algebras A with Hausdorff spectrum pA.
In Chapter 7 we study the relationship of amenability to regularity properties.

In Section 7.1 we show that various regularity properties pass to crossed products
as in Theorem 1.16 above. In Section 7.2 we prove Theorem 1.17, and in Section
7.3 we introduce our equivariant version of the weak expectation property of Lance,
the continuous G-WEP.

Finally, in Chapter 8 we discuss some recent developments and summarize some
natural questions which arise from the results in this paper. In particular we will
discuss the impact of the recent works of Bearden and Crann [12,13] and of Ozawa
and Suzuki [61] on the subject of this paper.

1.6. Conventions and notation

In this paper, BpHq refers to the algebra of bounded operators on a Hilbert
space H and LpHq refers to the algebra of adjointable operators on a Hilbert
C˚-module H. We will follow standard usage, and say that a net paiq in BpHq
converges weakly if it converges in the weak operator topology (not in the weak
topology that BpHq inherits from its dual space), and similarly in BpH,H 1q if H 1

is another Hilbert space. The ultraweak topology on a von Neumann algebra M
will refer to the weak-˚ topology coming from its unique predual; if M Ď BpHq is
a concrete von Neumann algebra, then the weak operator topology inherited from
BpHq agrees with the ultraweak topology on bounded sets (but not necessarily in
general). As we will usually be interested in convergence of bounded nets, we will
sometimes elide the difference between weak and ultraweak convergence when we
are dealing with a concrete von Neumann algebra.

Throughout, G denotes a locally compact group equipped with a fixed Haar
measure. We will typically write A, pA,Gq, pA,αq or pA,G, αq for a G-C˚-algebra
depending on which data we want to emphasize. If A is a G-C˚-algebra (or G-von
Neumann algebra) associated algebras and spaces such as the multiplier algebra
MpAq, the centre ZpAq, the dual A˚, and the double dual A˚˚ will be equipped
with the canonically induced actions. We warn the reader that even if the action
of G on A is strongly continuous5, the induced actions of G on A˚ and MpAq will

5Recall this means that for each a P A, the map G Ñ A defined by g ÞÑ αgpaq is norm

continuous.
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typically not be strongly continuous, and the induced action on A˚˚ will typically
not be ultraweakly continuous.

Throughout, L8pGq denotes the von Neumann algebra of (equivalence classes
of) bounded, measurable functions on G equipped with the left translation action
τ defined by pτgfqphq :“ fpg´1hq. This makes L8pGq a G-von Neumann algebra.
If A is a C˚-algebra (or von Neumann algebra) equipped with a not-necessarily-
continuous action α : G Ñ AutpAq, we will write Ac for the collection of all a P A
such that the map g ÞÑ αgpaq is norm continuous; note that norm continuity is
used here, even if A was originally a von Neumann algebra. Note that Ac is a
G-C˚-algebra with the naturally induced structures.

If pM,σq is a G-von Neumann algebra, then M becomes an L1pGq-module via

(1.1) f ˚m :“

ż

G

fpgqσgpmq dg, f P L1pGq, m PM,

where the integral converges ultraweakly. For f P L1pGq and g P G we define
τgpfqphq :“ fpg´1hq; direct computations then show that

(1.2) }f ˚m} ď }f}1}m} and σgpf ˚mq “ τgpfq ˚m

for all g P G, f P L1pGq and m P M . Since the translation action of G on L1pGq
is strongly continuous, it follows that L1pGq ˚M Ď Mc. On the other hand, it is
easily checked that if pfiqiPI is a standard approximate unit of L1pGq consisting of
positive continuous functions with compact supports, then fi ˚mÑ m in norm for
every m P Mc (see [62, Lemma 7.5.1]). Thus it follows from an application of the
Cohen-Hewitt factorization theorem [45, Theorem (2.5)], that

(1.3) Mc “ L1pGq ˚Mc “ L1pGq ˚M.

In particular, if we define

(1.4) CubpGq :“ L8pGqc “ L1pGq ˚ L8pGq,

it follows that CubpGq consists of all bounded continuous functions f : G Ñ C
that are uniformly continuous for the left-invariant uniform structure on G (see
[43, Proposition 3.3]). Throughout, we equip CubpGq with the restriction of the
action τ on L8pGq, i.e. pτgfqphq :“ fpg´1hq.

Throughout, a G-map always means a G-equivariant map between sets
equipped with G-actions. This terminology might be combined with others in
what we hope is an obvious way: for example, G-embedding, ccp G-map, normal
G-map etc.

If µ is a positive Radon measure on a locally compact space X and M is a
von Neumann algebra, then L8pX,Mq denotes the von Neumann tensor product
L8pX,µqb̄M . We refer to [71, Chapter V, Theorem 7.17] for the relationship
between L8pX,Mq and the bounded ultraweakly measurable functions from X to
M .

For a G-C˚-algebra A we regard CcpG,Aq, the space of compactly supported,
norm continuous A-valued functions on G, as a ˚-algebra with convolution and
involution given by

f1 ˚ f2pgq :“

ż

G

f1phqαhpf2ph
´1gqq dh and f˚pgq :“ ∆pg´1qαgpfpg

´1qq˚
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for f1, f2, f P CcpG,Aq and g P G, where the integral is with respect to Haar
measure on G and ∆ : G Ñ p0,8q denotes the modular function on G. A co-
variant homomorphism pπ, uq : pA,Gq Ñ MpDq for a C˚-algebra D consists of a
˚-homomorphism π : A Ñ MpDq together with a strictly continuous homomor-
phism u : GÑ UMpDq, denoted g ÞÑ ug, into the group of unitaries of MpDq such
that for all a P A and g P G we have

πpαgpaqq “ ugπpaqu
˚
g .

We say that pπ, uq is nondegenerate if π : AÑMpDq is nondegenerate in the sense
that πpAqD “ D. If D is the algebra KpHq of compact operators on a Hilbert space
H, then MpDq “ BpHq and pπ, uq is a covariant representation on the Hilbert space
H in the usual sense. Every covariant homomorphism pπ, uq of pA,G, αq into MpDq
integrates to a ˚-homomorphism

π ¸ u : CcpG,Aq ÑMpDq; π ¸ upfq :“

ż

G

πpfpgqqug dg.

The maximal crossed product A¸maxG is defined as the completion of CcpG,Aq by
the C˚-norm

}f}max :“ sup
pπ,uq

}π ¸ upfq}.

Every integrated form π ¸ u : CcpG,Aq Ñ MpDq extends uniquely to a ˚-homo-
morphism out of A ¸max G, and this implements a one-to-one correspondence
between nondegenerate covariant homomorphisms of pA,G, αq and nondegenerate
˚-homomorphisms of A¸max G – the reverse process of pπ, uq ÞÑ π ¸ u is given by
sending a nondegenerate ˚-homomorphism Φ : A¸maxGÑMpDq to the covariant
homomorphism pΦ ˝ iA,Φ ˝ iGq, where piA, iGq : pA,Gq Ñ MpA ¸max Gq is the
canonical covariant homomorphism6. If A¸max G Ñ BpHuq denotes the universal
representation of A¸max G, i.e. the direct sum of all representations which appear
as GNS-constructions from the states of A¸maxG, then extending this representa-
tion (uniquely and faithfully) to MpA ¸max Gq, we will typically identify piA, iGq
with the underlying covariant representation of pA,G, αq on Hu.

The regular representation of pA,G, αq is the covariant representation

pirA, i
r
Gq :“

`

pidA bMq ˝ α̃, 1b λG
˘

of pA,Gq to MpA b KpL2pGqqq in which λG : G Ñ UpL2pGqq denotes the left
regular representation, M : C0pGq Ñ BpL2pGqq denotes the representation by
multiplication operators, and α̃ : A Ñ CbpG,Aq Ď MpA b C0pGqq is defined by
`

α̃paq
˘

pgq “ αg´1paq. The reduced crossed product A¸red G is defined as the image
of the integrated form (also called the regular representation)

ΛpA,αq : A¸max G� A¸red G ĎMpAbKpL2pGqqq

of pirA, i
r
Gq. If σ : A Ñ BpHq is any nondegenerate ˚-representation of A, the

extension of σ b idK : A b KpL2pGqq Ñ B
`

H b L2pGq
˘

to MpA b KpL2pGqqq
restricts to a representation

σ̃ ¸ λ : A¸red GÑ B
`

H b L2pGq
˘

6Note that we have abused notation slightly: we use the same symbol Φ for the canonical
extension of the original map Φ to MpA¸maxGq. Such abuses will be used throughout the paper

when they seem unlikely to cause confusion.
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which is faithful if and only if σ : A Ñ BpHq is faithful. It can be described
more concretely as the integrated form of the covariant representation pσ̃, λq on
L2pG,Hq – H b L2pGq given by

(1.5) prσpaqξqpgq :“ σ
`

αg´1paq
˘

ξpgq and pλgξqphq :“ ξpg´1hq,

for ξ P L2pG,Hq. We call σ̃ ¸ λ the regular representation induced from σ.
Note that the construction of pσ̃, λq as in (1.5) also makes sense if we start with

a G-von Neumann algebra M and a normal ˚-representation σ : M Ñ BpHq, in
which case rσ is faithful whenever σ is.

One of the main topics of this work is the question of when the regular rep-
resentation is an isomorphism. When this happens, we say that the G-C˚-algebra
A (or action α) has the weak containment property (WCP) and usually write
A¸max G – A¸red G or just A¸max G “ A¸red G.
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CHAPTER 2

The G-equivariant enveloping von Neumann
algebra

In this chapter, we introduce the enveloping G-von Neumann algebra of a
G-C˚-algebra, and establish its basic properties. For us, the point of the envelop-
ing G-von Neumann algebra is that it plays the same role with respect to covariant
representations of a G-C˚-algebra as the usual enveloping von Neumann algebra
plays with respect to representations of a C˚-algebra.

In Section 2.1 we give our definition of the enveloping G-von Neumann algebra,
and establish its universal property and functoriality properties.

In Section 2.2 we give a brief discussion of central covers of representations and
how they interact with the enveloping G-von Neumann algebra A2α. This material
is a natural extension of the non-equivariant theory, and will be useful in the proof
that measurewise amenability and amenability are equivalent.

Finally, in Section 2.3, we show that our enveloping von Neumann algebra
is canonically isomorphic to the universal W˚-dynamical system of Ikunishi [46],
who seems to be the first to have studied this object. We also give a brief summary
(closely related to the work of Ikunishi [46]) of the predual of the enveloping G-von
Neumann algebra.

2.1. The enveloping von Neumann algebra of a C˚-action

Let pA,αq be a G-C˚-algebra and let piA, iGq : pA,Gq Ñ BpHuq be the universal
representation of pA,Gq, that is, the covariant representation corresponding to the
direct sum of all GNS-representations of A¸maxG as explained in Section 1.6 above.

Definition 2.1. With notation as above, the enveloping G-von Neumann al-
gebra of pA,αq is defined to be

A2α :“ iApAq
2 Ď BpHuq.

Note that A2α is a G-von Neumann algebra with G-action given by α2 :“ AdiG.

Remark 2.2. The universal property of A˚˚ gives a G-equivariant, normal,
surjective ˚-homomorphism

i˚˚A : A˚˚ Ñ iApAq
2 “ A2α.

It can happen that i˚˚A is an isomorphism (see Remark 2.5 below), but this is not
true in general. Indeed, if A “ C0pGq equipped with the (left) translation action
τ , then C0pGq ¸max G – KpL2pGqq via the integrated form M ¸ λ of the covariant
pair pM,λq, where M is the multiplication action of C0pGq, and λ is the regular
representation. Therefore C0pGq

2
τ – L8pGq. For non-discrete locally compact

groups, the induced map i˚˚C0pGq
: C0pGq

˚˚ Ñ L8pGq is always a proper quotient,

19
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as the left hand side contains the characteristic function χtgu of any singleton as a
non-zero element, and this is non-zero on the right if and only if G is discrete.

The algebra A2α enjoys the following universal property for covariant represen-
tations:

Proposition 2.3. Let pA,αq be a G-C˚-algebra, and let pπ, uq : pA,Gq Ñ
BpHπq be a nondegenerate covariant representation. Let απ “ Adu denote the
action of G on πpAq2 given by conjugation with u. Then there exists a unique
normal α2-απ-equivariant surjective ˚-homomorphism

π2 : A2α Ñ πpAq2

which extends π.

Proof. Let pπ ¸ uq˚˚ : pA ¸max Gq
˚˚ Ñ BpHπq be the normal extension of

the integrated form π¸ u, which exists by the universal property of pA¸max Gq
˚˚.

Viewing A2α as a von Neumann subalgebra of pA ¸max Gq
˚˚, the homomorphism

pπ¸uq˚˚ restricts to the desiredG-equivariant normal extension π2 : A2α Ñ πpAq2 Ď
BpHπq. �

Corollary 2.4. Suppose that pM,σq is a G-von Neumann algebra and let
ϕ : A Ñ M be a G-equivariant ˚-homomorphism. Then there is a unique normal
G-equivariant extension ϕ2 : A2α ÑM .

Moreover, this extension is surjective if (and only if) ϕpAq is ultraweakly dense
in M .

Proof. Using the regular representation associated to a faithful normal rep-
resentation of M as in line (1.5), we may assume that M Ď BpHq, and that
there is a unitary representation u on H that implements σ. Then H 1 “ ϕpAqH
is a u-invariant closed subspace. We can apply Proposition 2.3 to the nonde-
generate covariant representation pϕ, uq of pA,G, αq on H 1, giving an extension
ϕ2 : A2α Ñ BpH 1q. The image of ϕ2 is contained in the ultraweak closure of ϕpAq
in BpH 1q, which equals the ultraweak closure of ϕpAq in BpHq, and is therefore
contained in M . The surjectivity statement is clear from the construction. �

It follows from Corollary 2.4 that A2α is the ‘biggest’ G-von Neumann algebra
containing A as an ultraweakly dense G-invariant C˚-subalgebra.

Remark 2.5. The canonical map i˚˚A : A˚˚ Ñ A2α of Remark 2.2 is an isomor-
phism if and only if A˚˚ is a G-von Neumann algebra: indeed, if A˚˚ is a G-von
Neumann algebra, then Corollary 2.4 gives an inverse to i˚˚A . In particular, i˚˚A is
an isomorphism whenever G is discrete.

Notice that A2α contains (a copy of) MpAq as a unital G-invariant C˚-
subalgebra. To see this, let iA : A Ñ BpHuq be the canonical representation of A
in the universal representation of A¸max G. As this representation is faithful and
nondegenerate, MpAq identifies canonically with the idealizer of iApAq in BpHuq

which lies in the bicommutant A2α of iApAq Ď BpHuq. From this, we see that the
construction A ÞÑ A2α has good functoriality properties:

Proposition 2.6. Let pA,αq and pB, βq be G-C˚-algebras, and let φ : A Ñ

MpBq be a (possibly degenerate) G-equivariant ˚-homomorphism. Then there is a
unique normal G-equivariant extension φ2 : A2α Ñ B2β of π.
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Moreover, this correspondence gives a well-defined functor pA,αq ÞÑ pA2α, α
2q

from the category of G-C˚-algebras and equivariant ˚-homomorphisms to the cate-
gory of G-von Neumann algebras and equivariant normal ˚-homomorphisms.

Proof. To construct φ2, identify MpBq with a C˚-subalgebra of M :“ B2β ,
and apply Corollary 2.4. The functoriality statement follows as the maps involved
are normal extensions from ultraweakly dense subalgebras. �

Above, we identified A2α with the image of A˚˚ in pA ¸max Gq
˚˚ under the

normal extension of the canonical map iA : AÑ pA¸max Gq
˚˚. Using the reduced

crossed product makes no difference.

Lemma 2.7. Let pA,αq be a G-C˚-algebra. Then A2α is isomorphic to the image
of A˚˚ in pA ¸red Gq

˚˚ under the normal extension pιrAq
˚˚ of the canonical map

irA : AÑ pA¸red Gq
˚˚.

Proof. Applying the regular representation construction from line (1.5) to the
representation iA : AÑ BpHuq and its normal extension i : A2α Ñ pA¸max Gq

˚˚ Ď

BpHuq we get representations

riA ¸ λ : A¸red GÑ BpL2pG,Huqq and ri : A2α Ñ BpL2pG,Huqq.

Consider the diagram

A2α
i //

ri ++

pA¸max Gq
˚˚ // pA¸red Gq

˚˚

pĂiA¸λq
˚˚

��
BpL2pG,Huqq

,

where the map pA ¸max Gq
˚˚ Ñ pA ¸red Gq

˚˚ is the canonical quotient. This
commutes: indeed, it clearly commutes on A, and all the maps are normal. The
lemma states that the composition of the two horizontal maps is injective. However,
the diagonal map ri is injective as i is, so we are done. �

Remark 2.8. Note that the image of the homomorphism p riA ¸ λq˚˚ in the
proof above equals

r riApAqp1b λqpGqs
2 “ r̃ipA2αqp1b λqpGqs

2 Ď BpHu b L
2pGqq

which is the von Neumann algebra crossed product A2α ¯̧G.

In the remainder of this section, we show that the functor A ÞÑ A2α has good
behaviour on injections, short exact sequences, and Morita equivalences.

Corollary 2.9. If pA,αq and pB, βq are G-C˚-algebras and ϕ : A Ñ B is
an injective G-equivariant ˚-homomorphism, then the unique normal extension
ϕ2 : A2α Ñ B2β is still injective.

Proof. Consider the commutative diagram

A2α
ϕ2 //

��

B2β

��
pA¸red Gq

˚˚
pϕ¸Gq˚˚ // pB ¸red Gq

˚˚,
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where the vertical maps are the inclusions of Lemma 2.7. The reduced crossed
product functor and the double dual functor take injective ˚-homomorphisms to
injective ˚-homomorphisms, whence pϕ¸Gq˚˚ is an injection, so ϕ2 is too. �

The following result shows that the functor pA,αq ÞÑ pA2α, α
2q converts short

exact sequences into direct sums, just as for the usual double dual.

Lemma 2.10. Suppose that I ãÑ A � B is a short exact sequence of G-C˚-
algebras, with actions on I, A, and B called ι, α, and β, respectively. Then there
is a functorial direct sum decomposition pA2α, α

2q “ pI2ι , ι
2q ‘ pB2β , β

2q.

Proof. As the maximal crossed product is an exact functor, the sequence

I ¸max G
� � // A¸max G // // B ¸max G

is exact. As taking double duals converts short exact sequences to direct sums (see
for example [20, III.5.2.11]), we get a canonical isomorphism

pA¸max Gq
˚˚ – pI ¸max Gq

˚˚ ‘ pB ¸max Gq
˚˚.

It follows directly that if p P I2α is the unit (which is also the unit of pI ¸maxGq
˚˚),

then pA2α “ I2ι and p1´ pqA2α “ B2β . �

We give a definition of Morita equivalence of G-von Neumann algebras, which
is based on [1, Definition 4.1].

Definition 2.11. Two G-von Neumann algebras pM,σq and pN, τq are Morita
equivalent if they are Morita equivalent via some M -N bimodule X in the sense of
[21, 8.5.12]1 that also satisfies the following equivariance condition: X is equipped
with a weak-˚ continuous2 G-action κ that is compatible with the M - and N -
valued inner products: this means that M xκgpxq |κgpyqy “ σgpM xx |yyq and xκgpxq |
κgpyqyN “ τgpxx |yyN q for all x, y P X and g P G.

The next lemma relates the above to Morita equivalence of G-C˚-algebras: see
for example [27, Section 3, Definition 1] for the latter.

Lemma 2.12. If pA,αq and pB, βq are two Morita equivalent G-C˚-algebras,
then pA2α, α

2q and pB2β , β
2q are Morita equivalent as G-von Neumann algebras.

Proof. If pA,αq is Morita equivalent to pB, βq, then there is a (linking) G-C˚-
algebra pL, δq containing A and B as opposite full corners by G-invariant orthogonal
full projections p, q P MpLq: this follows for example from the argument of [31,
Remark 2.5.3 (4)]. Then the enveloping G-von Neumann algebra A2α of the corner
A “ pLp identifies with the corner pL2δp in L2δ , and similarly B2β identifies with

qL2δq. Moreover, as p is full in L, it is also full in L2δ in the sense that the ideal of
L2δ generated by p is ultraweakly dense, and similarly for q. The result follows from
this: compare [1, Remark 4.3]. �

1See also [21, 8.5.1] for the background definitions needed to understand 8.5.12.
2X has a canonical weak-˚ topology by [21, Lemma 8.5.4].
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2.2. Central covers of covariant representations

In this section we discuss central covers of representations and how they interact
with the enveloping G-von Neumann algebra A2α. This material seems interesting
in its own right, and will be useful in the proof that measurewise amenability and
amenability are equivalent.

Recall from [62, Theorem 3.8.2] that for every nondegenerate ˚-representation
π : A Ñ BpHq there exists a unique central projection cπ P ZpA

˚˚q such that
cπA

˚˚ – πpAq2 via the normal extension π˚˚ : A˚˚ Ñ BpHq. Recall also from
[62, Definition 3.3.6] that two representations π1, π2 are quasi-equivalent if there
exists an isomorphism Φ : π1pAq

2 Ñ π2pAq
2 such that Φ

`

π1paq
˘

“ π2paq for all
a P A. From [62, Theorem 3.8.2] again, π1 and π2 are quasi-equivalent if and only
if cπ1

“ cπ2
.

Now, if pπ, uq is a nondegenerate covariant representation of pA,G, αq on a
Hilbert space H, it follows from the equation π ˝ αg “ Adug ˝ π and the fact that
Adug˝π is (quasi-)equivalent to π that cπ is G-invariant. Let dπ P ZpA

2
αq denote the

image of cπ under the canonical quotient map A˚˚ Ñ A2α. Since π˚˚ : A˚˚ Ñ πpAq2

factors through the α2-Adu-equivariant map π2 : A2α Ñ πpAq2 of Proposition 2.3, it
follows that π2 induces a G-isomorphism dπA

2
α – πpAq2. Recall that A2α is defined

as the double commutant iApAq
2 Ď BpHuq, where Hu denotes the Hilbert space of

the universal representation iA ¸ iG of A ¸max G. If pρ, vq denotes the restriction
of piA, iGq to the subspace dπHu of Hu we get ρpAq2 “ dπiApAq

2 “ dπA
2
α. Thus

we see that pρ, vq is quasi-equivalent to pπ, uq as in

Definition 2.13. We say that two nondegenerate covariant representations
pπ1, u1q and pπ2, u2q of pA,G, αq are quasi-equivalent if there exists an Adu1-Adu2-
equivariant isomorphism Φ : π1pAq

2 Ñ π2pAq
2 such that Φpπ1paqq “ π2paq for all

a P A.

Proposition 2.14. Let pπ1, u1q and pπ2, u2q be nondegenerate covariant rep-
resentations of pA,G, αq. Then the following are equivalent:

(1) pπ1, u1q and pπ2, u2q are quasi-equivalent.
(2) π1 and π2 are quasi-equivalent as representations of A.
(3) cπ1

“ cπ2
in ZpA˚˚q.

(4) dπ1
“ dπ2

in ZpA2αq.

Moreover the correspondence pπ, uq ÞÑ dπ sets up a bijection between quasi-
equivalence classes of nondegenerate covariant representations and G-invariant
central projections in A2α.

Proof. The implications (1) ñ (2) and (3) ñ (4) are trivial, and (2) ñ (3)
follows from [62, Theorem 3.8.2]. The implication (4) ñ (1) follows from the above
observed fact that the α2-Adui-equivariant maps π2i : A2α Ñ πipAq

2 of Proposition
2.3 induce G-equivariant isomorphisms dπiA

2
α – πipAq

2, i “ 1, 2.
For the final statement, the discussion so far shows that the correspondence

pπ, uq ÞÑ dπ is well defined and injective. To see that it is surjective, let piA, iGq :
pA,Gq Ñ BpHuq be the universal representation. If p P ZpA2αq is a G-invariant
projection then this restricts to a representation pπ, uq on pHu, and we have by
definition that dπ “ p. �

Thanks to Proposition 2.14, the following extension of the classical terminology
(compare [62, 3.8.1 and 3.8.12]) seems reasonable.



24 2. THE G-EQUIVARIANT ENVELOPING VON NEUMANN ALGEBRA

Definition 2.15. Let pπ, uq be a nondegenerate covariant representation of
pA,Gq. Then the projection dπ P A2α is called the equivariant central cover of
pπ, uq.

Of course, if A˚˚ “ A2α (for example if G is discrete), then the equivariant
central cover of pπ, uq is just the classical central cover of π.

2.3. The predual of the enveloping G-von Neumann algebra

In this section, we show that our envelopingG-von Neumann algebra is the same
as the one defined by Ikunishi in [46, page 2]. We then discuss the G-continuous
functionals on A in a little more detail. This material will be used in our treatment
of the weak quasi-central approximation property (wQAP) in Section 4.1.

Let A be a G-C˚-algebra, and let A˚,c consist of all elements φ P A˚ such that
the map g ÞÑ α˚g pφq defined by α˚g pφqpaq :“ φpαg´1paqq is norm continuous. In [46,
Theorem 1] Ikunishi constructed the universal W˚-dynamical system pMα, G, ᾱq
of a G-C˚-algebra pA,αq as the quotient of A˚˚ by the annihilator of A˚,c. The
following proposition, due to Ikunishi for ˚-homomorphisms (although the proof for
ccp maps is the same), shows that pMα, ᾱq enjoys the same universal properties as
pA2α, α

2q.

Proposition 2.16 (see [46, Theorem 1]). Let pN, σq be any G-von Neumann
algebra and let φ : A Ñ N be a G-equivariant ˚-homomorphism (resp. ccp map).
Then there exists a unique normal G-equivariant ˚-homomorphic (resp. ccp) exten-
sion φ̄ : Mα Ñ N . In particular, the identity id : AÑ A extends to an isomorphism
pMα, ᾱq – pA

2
α, α

2q.

Proof. First note that the induced action on the predual N˚ of N is norm
continuous: this can be deduced by representing N faithfully, equivariantly, and
normally into some BpHq via some regular representation pπ, uq as in Section 1.6,
and observing that the induced action Adu on the space of trace-class operators is
norm continuous. Thus we get a dual map φ˚ : N˚ Ñ A˚,c by N˚ Q ψ ÞÑ ψ ˝ φ.
The extension φ̄ is then given by φ̄ “ φ˚˚ : Mα “ pA

˚,cq˚ Ñ N . If φ is ccp, then so
is φ̄ as A is ultraweakly dense in Mα. The last assertion follows by observing that
īd : Mα Ñ A2α is the inverse of the extension id2 : A2α ÑMα of Corollary 2.4. �

Identifying Mα with A2α as above, we now immediately get:

Corollary 2.17. The assignment A ÞÑ A2α functorially takes equivariant ccp
maps to equivariant and normal ccp maps. �

In order to give a better description of A˚,c, note that L1pGq acts on A and
A˚ via the formulas

(2.1) h ˚ a :“

ż

G

hpgqαgpaq dg and h ˚ φ :“

ż

G

hpgqα˚g pφq dg

(the former integral converges in the norm topology, and the latter in the weak-˚
topology). Moreover, for any a P A and φ P A˚, one has the formula

ph ˚ φqpaq “

ż

G

hpgqpα˚gφqpaq dg “

ż

G

hpgqφpαg´1paqq dg

“

ż

G

hpg´1q∆pg´1qφpαgpaqq dg.
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Hence for any a P A, φ P A˚ and h P L1pGq, if we define ȟpgq :“ hpg´1q∆pg´1q, we
get the formula

(2.2) ph ˚ φqpaq “ φpȟ ˚ aq.

The following proposition is probably well known to experts. As pointed out
in [12] it can be deduced from [43, Proposition 3.4(i)] (or by a direct computation)
that the span of L1pGq ˚ A˚ :“ tf ˚ ϕ : f P L1pGq, ϕ P A˚u is dense in A˚,c, and
the proposition then follows from an application of the Cohen-Hewitt factorization
theorem [45, Theorem (2.5)].

Proposition 2.18. For any G-C˚-algebra pA,αq we have

A˚,c “ L1pGq ˚A˚,c “ L1pGq ˚A˚. �





CHAPTER 3

Amenable actions

In this chapter we introduce several a priori different notions of amenability for
actions of locally compact groups on C˚-algebras. These are inspired by the work
of Anantharaman-Delaroche in the case of discrete groups [6, Definition 4.1]. We
also establish some permanence properties and relate amenability to measurewise
amenability in the sense of Renault [66, Definition II.3.6] (see also [8, Definitions
3.2.8 and 3.3.1]). Combining this with a recent result of Bearden and Crann [12,
Corollary 4.14], this affirmatively solves the long-standing open problem of whether
measurewise amenability and topological amenability are equivalent for an action
G ñ X of a second countable locally compact group on a second countable locally
compact space.

In Section 3.1 we introduce our notions of amenability in terms of the enveloping
G-von Neumann algebra of a G-C˚-algebra. A lot of the work in this section is to
discuss different approximation properties of G-von Neumann algebras.

In Section 3.2 we discuss some permanence properties of amenable actions. This
was one of the main motivations for establishing the various equivalent formulations
of amenability earlier in the chapter.

Finally, in Section 3.3 we prove that for second countable G and X an action
G ñ X is measurewise amenable if and only if the induced action on C0pXq is
amenable.

3.1. Amenable actions of locally compact groups

In this section, we introduce amenable actions of general locally compact groups
on C˚-algebras, and establish the equivalence of amenability with several other con-
ditions. The main technical tool is Proposition 3.16, which establishes the equiva-
lence of several approximation properties for a G-von Neumann algebra.

Recall that if M is a G-von Neumann algebra, we denote by L8pG,Mq the von
Neumann algebra tensor product L8pGqbM equipped with the tensor product
action. We refer to [71, Chapter V, Theorem 7.17] for the relationship between
L8pG,Mq and the space of bounded, ultraweakly measurable functions from G to
M . We identify M with the subalgebra 1bM of L8pG,Mq.

Anantharaman-Delaroche [4, Définition 3.4] defined a continuous action of G
on a von Neumann algebra to be amenable if there is an equivariant conditional
expectation

P : L8pG,Mq ÑM.

Later in [6, Définition 4.1], Anantharaman-Delaroche defined an action of a discrete
group on a C˚-algebra A to be amenable if the induced action on the double dual
A˚˚ is amenable in the sense above. However, this does not make sense for general
actions of locally compact groups, as A˚˚ is not a G-von Neumann algebra in

27
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general. Replacing A˚˚ by A2α in the case where G is a general locally compact
group, leads to

Definition 3.1. A G-C˚-algebra pA,αq (or just the action α)1 is called von
Neumann amenable, if there exists a G-equivariant conditional expectation

P : L8pG,A2αq Ñ A2α.

Remark 3.2. In [5, Corollaire 3.7], Anantharaman-Delaroche showed that a
G-von Neumann algebra M is amenable if and only if ZpMq is amenable, i.e., if
and only if there exists a G-equivariant conditional expectation

P : L8pG,ZpMqq Ñ ZpMq.

In the context of this work, it is important to note that amenability of a
G-C˚-algebra A turns out not to be equivalent to amenability of ZpAq in general.

Although Definition 3.1 is a straightforward extension of the established def-
inition of amenable actions for discrete groups, it is not the most useful one for
studying the behaviour of the associated crossed products. In the case of discrete
groups Anantharaman-Delaroche was able to characterize amenability in terms of
several approximation properties involving functions of positive type. The following
is based on [6, Definition 2.1].

Definition 3.3. Let pA,αq be a G-C˚-algebra, or G-von Neumann algebra. A
function θ : G Ñ A is of positive type (with respect to α) if for every finite subset
F Ď G the matrix

`

αgpθpg
´1hqq

˘

g,hPF
PMF pAq

is positive.

If A is aG-C˚-algebra, then the prototypical examples of positive type functions
are given by θpgq “ xξ | γgpξqyA, where ξ is a vector in a G-equivariant Hilbert
A-module pH, γq. Indeed, it is shown in [6, Proposition 2.3] that every continuous
positive type function into a G-C˚-algebra is associated to some essentially unique
triple pH, γ, ξq as above.

Definition 3.4. A G-C˚-algebra pA,αq is amenable if there exists a net of
norm-continuous, compactly supported, positive type functions θi : G Ñ ZpA2αq
such that }θipeq} ď 1 for all i P I, and θipgq Ñ 1A2α ultraweakly and uniformly for
g in compact subsets of G.

Definition 3.5. A G-C˚-algebra pA,αq is strongly amenable, if there exists
a net of norm-continuous, compactly supported, positive type functions θi : G Ñ

ZMpAq such that }θipeq} ď 1 for all i P I, and θipgq Ñ 1ZMpAq strictly and
uniformly for g in compact subsets of G.

The next several remarks record connections between these notions and the
existing literature.

1Throughout this paper, we will treat properties of G-C˚-algebras and of actions interchange-
ably: for example, “Let A be a von Neumann amenable G-C˚-algebra” means the same thing as

“Let α : GÑ AutpAq be a von Neumann amenable action”.
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Remark 3.6. If G is discrete then A2α “ A˚˚. It follows that for G discrete,
amenability as in Definition 3.4 for pA,αq is equivalent to von Neumann amenabil-
ity as in Definition 3.1: this was shown in 1987 by Anantharaman-Delaroche
[6, Théorème 3.3]. On the other hand, the equivalence between amenability and
von Neumann amenability was established very recently for all actions of locally
compact groups by Bearden and Crann in [12, Theorem 3.6]; we will discuss this
in more detail below.

Remark 3.7. If A is unital, then strict convergence in MpAq “ A coincides
with norm convergence. It follows that strong amenability as in Definition 3.5
extends the notion of amenability defined by Brown and Ozawa in [23, Definition
4.3.1].

Remark 3.8. Since the inclusion iA : A ãÑ pA ¸max Gq
˚˚ extends to a unital

inclusion of MpAq into A2α such that ZMpAq is mapped into ZpA2αq, we see that
strong amenability as in Definition 3.5 implies amenability as in Definition 3.4.

If A is commutative and G is discrete, then Anantharaman-Delaroche showed
that strong amenability is equivalent to amenability in [6, Théorème 4.9]. This
result has been extended recently by Bearden and Crann in [12, Corollary 4.14] to
actions of arbitrary locally compact groups on commutative C˚-algebras.

At the other extreme, if A is simple, then ZMpAq – C and so strong amenabil-
ity for a G-action on A implies amenability of G. This is in stark contrast to the
fact that there are important examples, given by Suzuki in [69] (see also [61]),
of amenable actions of non-amenable discrete exact groups on unital, simple and
nuclear C˚-algebras: see the discussion in [26, Section 3]. This implies in partic-
ular that strong amenability is strictly stronger than amenability and it indicates
that strong amenability is not the ‘correct’ notion of amenability for actions on
noncommutative C˚-algebras.

The following result, which is a consequence of [7, Proposition 2.5], relates
strongly amenable (and hence amenable) actions on commutative C˚-algebras to
topologically amenable actions on spaces as in [7, Definition 2.1].

Proposition 3.9. An action G ñ X of a locally compact group G on a locally
compact space X is topologically amenable if and only if the induced action α : GÑ
AutpC0pXqq is strongly amenable.

Proof. It is shown in [7, Proposition 2.5] that the action of G on X is topo-
logically amenable if and only if there is a net phiq in CcpX ˆ Gq of positive type
functions (in the sense of [7, Definition 2.3]) that tend to one uniformly on compact
subsets of XˆG. Let phiq be a net in CcpXˆGq implementing topological amenabil-
ity as above. Then the net θi : GÑ C0pXq defined by θipgqpxq :“ hipx, gq satisfies
the assumptions needed for strong amenability in Definition 3.5. Conversely, as-
sume θi : GÑMpC0pXqq satisfies the conditions in Definition 3.5. Let J consist of
ordered pairs pK, εq where K is a compact subset of XˆG, and where ε ą 0. Make
J a directed set by stipulating that pK, εq ď pK 1, ε1q if K Ď K 1 and ε1 ă ε. For each
j “ pK, εq P J choose ij such that |θij pgqpxq ´ 1| ă ε for all px, gq P K. For each
j “ pK, εq, let KX Ď X be the projection of K to X, and choose ej P CcpXq with
values in the unit interval r0, 1s such that αgpejqpxq “ 1 for all px, gq P KYKXˆteu.
Define hj P CcpX ˆGq by hjpx, gq “ ejpxqθij pgqpxqαgpejqpxq. Then each hj is pos-
itive type, and the net phjq converges uniformly to one on compact sets, showing
amenability of the action of G on X as in [7, Definition 2.1]. �
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Our main goal in the rest of this section is to show that in general amenability
implies von Neumann amenability, and moreover that both are equivalent if G is
exact. We also relate these to several other approximation properties. As already
mentioned above, since we first circulated a draft of this paper, Bearden and Crann
[12, Theorem 3.6] showed that amenability and von Neumann amenability are
equivalent in general. However, the results below still seem worthwhile: first, as
the proof is different and simpler in the exact case; and second, as some of the
other approximation properties we consider are equivalent to amenability when G
is exact, but not in general.

For the next lemma, recall from Section 1.6 that if β : G Ñ AutpBq is any
homomorphism of G into the group of ˚-automorphisms of a C˚-algebra B, we
write Bc for the C˚-subalgebra of B consisting of all elements b P B such that the
map

GÑ B; g ÞÑ βgpbq

is continuous in norm.

Lemma 3.10. Let pM,σq be a G-von Neumann algebra. Then the following are
equivalent:

(1) there exists a net of norm-continuous, compactly supported, positive type
functions θi : GÑM such that }θipeq} ď 1 for all i P I, and θipgq Ñ 1M
ultraweakly and uniformly for g in compact subsets of G;

(2) there exists a net of norm-continuous, compactly supported, positive type
functions θi : GÑMc such that }θipeq} ď 1 for all i P I, and θipgq Ñ 1M
ultraweakly and uniformly for g in compact subsets of G.

The equivalence also holds if we replace “ θipgq Ñ 1M ultraweakly” with “ θipgq Ñ
1M in norm” in both conditions.

Note that the lemma applied to M “ ZpA2αq implies that we can replace the
codomain in the definition of amenability (Definition 3.4) with a G-C˚-algebra.

Proof of Lemma 3.10. The implication (2) ñ (1) is clear, so we just need
to prove that if pθiq has the properties in (1), then we can build a net with the
properties in (2).

Let tVj : j P Ju be a neighbourhood basis of e in G consisting of symmetric
compact sets such that Vj Ď Vj1 if j ě j1 and let pfjqjPJ be an approximate unit
of L1pGq consisting of continuous positive functions with

ş

G
fjpgq dg “ 1 and such

that supppfjq Ď Vj for all j P J . Assume further that there exists a compact

neighbourhood V0 “ V ´1
0 of e such that Vj Ď V0 for all j P J .

For each pair pi, jq P I ˆ J we define

θi,jpgq :“

ż

G

fjpkqσkpθipk
´1gkqq dk.

We claim that each θi,j is norm-continuous, compactly supported, positive type,
satisfies }θi,jpeq} ď 1, and takes values in Mc. Indeed, it is straightforward to check
that the functions θi,j : GÑM are compactly supported, and satisfy }θi,jpeq} ď 1
for all i, j. Moreover, each is norm-continuous as θi is norm-continuous and com-
pactly supported, so uniformly norm-continuous. To see that each θi,j is positive
type, let F be a finite subset of G. Then

`

σgpθi,jpg
´1hqq

˘

g,hPF
“

ż

G

fjpkq
´

σgkpθipk
´1g´1hkqq

¯

g,hPF
dk.
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This is an ultraweakly convergent integral of positive matrices in MF pMq, so posi-
tive. Finally, to see that θi,j is valued in Mc, we note that for any g, h P G,

σhpθi,jpgqq “

ż

G

fjpkqσhkpθipk
´1gkqq dk

l“hk
“

ż

G

fjph
´1lqσlpθipl

´1hgh´1lqq dl.

Norm-continuity of this in h follows from uniform norm-continuity of the original
θi, plus uniform continuity of each fj .

To complete the proof in the case of ultraweak convergence it suffices to show
that for any compact K Ď G, any finite F ĎM˚ and any ε ą 0 there exists a pair
pi, jq P I ˆ J such that for all g P K and all ψ P F we have

|ψpθi,jpgq ´ 1M q| ă ε.

We now do this.
Since θipgq Ñ 1M ultraweakly and uniformly on compact sets in G, we can find

an index i P I such that for all ψ P F and for all g P V0KV0 we get

|ψpθipgq ´ 1M q| ă
ε

3
.

Let 0 ‰ C ě maxt}ψ} : ψ P F u. Since θi : G Ñ M is norm-continuous, the
image θipV0KV0q is a norm-compact subset of M . We therefore find finitely many
elements g1, . . . , gr P V0KV0 such that θipV0KV0q Ď

Ťr
l“1B ε

3C
pθipglqq. Since σ :

G Ñ AutpMq is ultraweakly continuous, we can further find an index j P J such
that for all k P Vj and for all ψ P F

ˇ

ˇψ
`

σkpθipglqq ´ θipglq
˘
ˇ

ˇ ă
ε

3
.

Then for all k P Vj , g P K and ψ P F we find a suitable l P t1, . . . , ru such that
ˇ

ˇψpσkpθipk
´1gkqq ´ 1M q

ˇ

ˇ

ď
ˇ

ˇψ
`

σk
`

θipk
´1gkq ´ θipglq

˘˘
ˇ

ˇ`
ˇ

ˇψ
`

σkpθipglqq ´ θipglq
˘
ˇ

ˇ` |ψpθipglq ´ 1M q|

ď
ε

3
`
ε

3
`
ε

3
“ ε.

We then conclude for all g P K and ψ P F , that

ˇ

ˇψpθi,jpgq ´ 1M q
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ż

G

fjpkqψ
`

σkpθipk
´1gkq ´ 1M q

˘

dk

ˇ

ˇ

ˇ

ˇ

ď

ż

G

fjpkq
ˇ

ˇψ
`

σkpθipk
´1gkq ´ 1M q

˘
ˇ

ˇ dk

ď

ż

G

fjpkqε dk “ ε

which completes the proof under the assumption that θipgq Ñ 1M ultraweakly.
Suppose instead that θipgq Ñ 1M in norm uniformly for g in compact subsets

of G. Then if K Ď G is compact and ε ą 0, let i0 P I be such that }θipgq´ 1M } ă ε
for all g P V0KV0 and i ě i0. Then, for all g P K, j P J , and i ě i0 we get

}θi,jpgq ´ 1M } ď

ż

G

fjpkq
›

›σk
`

θipk
´1gkq ´ 1M

˘
›

› dk ď

ż

G

fjpkqε dk “ ε,

which completes the proof. �

Remark 3.11. Similarly to the proof of Lemma 3.10, one can replace the
codomain of the maps θi in the definition of strong amenability (Definition 3.5)
with pZMpAqqc. We leave the details to the reader.
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We need some more preliminaries. First, we recall a standard definition.

Definition 3.12. Let A be a C˚-algebra and let X be a locally compact space
equipped with a fixed Radon measure µ2. Define L2pX,Aq to be the Hilbert A-
module given as the completion of CcpX,Aq with respect to the A-valued inner
product

xξ |ηyA “

ż

X

ξpxq˚ηpxq dµpxq.

We write }ξ}2 :“
a

}xξ |ξyA} for the associated norm. Note that L2pX,Aq identifies
canonically with the (exterior) Hilbert module tensor product L2pXq bA.

Let now pA,αq be a G-C˚-algebra. There is a continuous action λα of G on
L2pG,Aq determined by the formula

λαg pξqphq “ αgpξpg
´1hqq.

A direct computation shows this is compatible with the given action of G on A,
meaning that xλαg ξ |λ

α
g ηyA “ αgpxξ |ηyAq for all g P G and ξ, η P L2pG,Aq. We call

λα the α-regular representation of G on L2pG,Aq.

We record a well-known result of Anantharaman-Delaroche [6, Proposition 2.5]
for later use.

Lemma 3.13. Let A be a G-C˚-algebra. For any norm-continuous, compactly
supported, positive type function θ : GÑ A, there exists ξ P L2pG,Aq such that

θpgq “ xξ |λαg ξyA

for all g P G. �

Lemma 3.14. Let A Ď BpHq be a concrete C˚-algebra and let α : GÑ AutpAq
be a homomorphism (not necessarily continuous in any sense). Then the following
are equivalent:

(1) There exists a net pξiqiPI of vectors in the unit ball of L2pG,Acq such that

xξi |λ
α
g ξiyAc Ñ 1H

weakly in BpHq and uniformly for g in compact subsets of G.
(2) There exists a net pξiqi in CcpG,Acq with }ξi}2 ď 1 for all i P I and

xξi |λ
α
g ξiyAc Ñ 1H

weakly in BpHq and uniformly for g in compact subsets of G.
(3) There exists a net pθiqiPI in CcpG,Acq of positive type functions such that

}θipeq} ď 1 for all i P I, and θipgq Ñ 1H weakly and uniformly for g in
compact subsets of G.

The same equivalences hold if we replace “weakly” everywhere it appears by
either “in norm” or “strictly in MpAqc”.

Proof. (2) ñ (3) follows by defining θipgq “ xξi | λ
α
g ξiyAc for all g P G

and (3) ñ (1) follows from Lemma 3.13. In order to show (1) ñ (2), let pξiqi
be a net of unit vectors in L2pG,Acq such that xξi | λ

α
g ξiyAc Ñ 1H weakly and

uniformly for g in compact subsets of G. Since CcpG,Acq is dense in L2pG,Acq
we can find for each i P I and n P N an element ηi,n P CcpG,Aq with }ηi,n}2 ď 1
and }ξi ´ ηi,n}2 ď

1
n . Then, with the canonical order on I ˆ N one easily checks

2We will mainly be interested in the case that X “ G and µ is Haar measure
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that pηi,nqpi,nq satisfies the conditions in (2). For norm or strict approximation the
arguments are analogous. �

We need one more definition before getting to the main results. Let M Ď BpHq
be a G-von Neumann algebra with G-action σ. For ξ P CcpG,Mq there is a bounded
operator ξ : H Ñ L2pG,Hq defined by pξ ¨ vqpgq :“ ξpgqv. With notation as in
Definition 3.12, one computes directly that }ξ ¨ v}2L2pG,Hq “ xv, xξ | ξyMvyH and

therefore the map CcpG,Mq Ñ BpH,L2pG,Hqq extends uniquely to an isometric
inclusion L2pG,Mq ãÑ BpH,L2pG,Hqq.

Definition 3.15. With notation as above, we define L2
wpG,Mq to be the weak

closure of L2pG,Mq inside BpH,L2pG,Hqq.

Note that L2
wpG,Mq is still a Hilbert M -module: considering L2pG,Mq as

inside BpH,L2pG,Hqq, the inner product on L2pG,Mq is given by operator compo-
sition via the formula xξ |ηy “ ξ˚ ˝ η; one checks that this still gives an M -valued
inner product for ξ and η in the weak closure of L2pG,Mq. As any two normal,
faithful, (unital) representations of a von Neumann algebra have unitarily equiva-
lent amplifications (see for example [20, III.2.2.8]), L2

wpG,Mq does not depend on
the choice of representation of M , up to canonical isomorphism3.

In particular, replacing the Hilbert space H if necessary, we may assume with-
out loss of generality that the G-action on M is implemented by a unitary repre-
sentation u : GÑ BpHq, that is, σg “ Adug. Considering L2pG,Mq as a subset of
BpH,L2pG,Hqq, the action4 λσ on L2pG,Mq of Definition 3.12 is then induced by
the formula

pλσg qpxq “ pλg b ugq ˝ x ˝ u
˚
g , x P L2pG,Mq.

Clearly this formula extends λσ to a weakly continuous action on L2
wpG,Mq.

Note finally that there is an equivariant action of L8pG,Mq on L2
wpG,Mq by

adjointable operators that extends the natural tensor product action of L8pGqbM
on L2pG,Mq “ L2pGq b M . This can be realized concretely via the canonical
representation of L8pG,Mq “ L8pGqbM on L2pG,Hq “ L2pGq bH: the action
of f P L8pG,Mq on x P L2

wpG,Mq is realized by the operator composition
f ˝ x : H Ñ L2pG,Hq, which one checks belongs to L2

wpG,Mq. We leave the
algebraic checks that the action is equivariant and by adjointable operators to the
reader.

The following result relates amenability of a G-von Neumann algebra to certain
approximation properties. It is the key technical result of this section.

Proposition 3.16. Let pM,σq be a G-von Neumann algebra and consider the
following assertions:

(1) there is a net of compactly supported, norm-continuous, positive type func-
tions θi : GÑ ZpMqc with }θipeq} ď 1 and θipgq Ñ 1 in norm uniformly
for g in compact subsets of G;

3One can also see that L2
wpG,Mq is a Hilbert M -module that does not depend on the cho-

sen representation of M by identifying it with the selfdual completion of the Hilbert M -module

L2pG,Mq as a ternary ring of operators: see the discussion on page 357 of [21] and also [75].
4It is not necessarily strongly continuous for the Hilbert module norm, but this does not

matter.
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(2) there is a net of compactly supported, norm-continuous, positive type func-
tions θi : GÑ ZpMqc with }θipeq} ď 1 and θipgq Ñ 1 ultraweakly and
uniformly for g in compact subsets of G;

(3) there is a bounded net pξiq in CcpG,ZpMqcq Ď L2pG,ZpMqcq with

xξi |λ
σ
g pξiqyZpMqc Ñ 1

ultraweakly and uniformly for g in compact subsets of G;
(4) for any ultraweakly dense ˚-subalgebra A of M , there is a bounded net pξiq

in L2
wpG,Mq such that

xξi |aλ
σ
g pξiqyM Ñ a

ultraweakly and pointwise for each g P G and each a P A;
(5) the G-von Neumann algebra pM,σq is amenable, i.e., there is a

G-equivariant projection P : L8pG,Mq ÑM ;
(6) there is a ucp G-map L8pGq Ñ ZpMq;
(7) there is a ucp G-map CubpGq Ñ ZpMqc.

Then

(1) ñ (2) ô (3) ñ (4) ñ (5) ñ (6) ô (7)

and all of these conditions are equivalent if G is exact.

Note that by Lemma 3.10 we may replace ZpMqc by ZpMq in statements (1)
and (2) above. As mentioned before, Bearden and Crann showed (amongst other
things) in [12, Theorem 3.6] that (5) implies (2) even for non-exact groups G. Using
this and the implications from Proposition 3.16, we then get

Theorem 3.17 (Bearden-Crann, plus Proposition 3.16). Items (2) – (5) in
Proposition 3.16 are all equivalent. �

Proof of Proposition 3.16. The implication (1) ñ (2) is clear, and (2) ô
(3) follows from Lemma 3.14. The implication (3) ñ (4) follows (with A “ M)
because, since pξiq takes values in the centre, we have

xξi |mλ
σ
g pξiqyM “ xξi |λ

σ
g pξiqyMm

for all m P M , and as multiplication is separately ultraweakly continuous on
bounded sets. The implication (5) ñ (6) follows by restriction of P to L8pGq,
and using that M is in the multiplicative domain of P to conclude that the image
of the restriction is central. The implication (6) ñ (7) follows by taking continuous
parts and using that L8pGqc “ CubpGq (see line (1.4) above). The implication
(7) ñ (1) for G exact follows from [61, Proposition 2.5]5 which implies that the
G-action on CubpGq is strongly amenable if (and only if) G is exact.

It therefore remains to establish the implications (4) ñ (5) and (7) ñ (6). For
(4) ñ (5) we shall use the idea of the proof of [2, Lemma 6.5], which is exactly the
implication (4) ñ (5) we need for G discrete.

First notice that once (4) holds for a P A, then it also holds for a in the norm
closure of A because the net pξiq is bounded. Hence we may assume without loss
of generality that A Ď M is a C˚-subalgebra, and in particular, that there is an
increasing approximate unit pejq for A. Using the canonical left action of L8pG,Mq

5See also [22, Theorem 5.8], which handles the case of second countable G.
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by adjointable operators on the von Neumann Hilbert module L2
wpG,Mq we define

for each i and for all f P L8pG,Mq,

Qipfq :“ xξi |fξiy,

where here (and below) we put x¨ | ¨y :“ x¨ | ¨yM . Then pQiq is a uniformly
bounded net of completely positive linear maps L8pG,Mq Ñ M with supi }Qi} ď
supi }ξi}

2
2 ă 8. The set of all completely positive linear maps L8pG,Mq ÑM that

are bounded by a fixed constant C ě 0 is compact with respect to the pointwise
ultraweak topology (this follows for example from [23, Theorem 1.3.7]). Hence we
may assume (after passing to a subnet if necessary) that there is a cp linear map
Q : L8pG,Mq ÑM with Qpfq “ limiQipfq ultraweakly for all f P L8pG,Mq.

Recall that pejq is an increasing approximate unit for A. For each j we define
the cp map Pj : L8pG,Mq ÑM as

(3.1) Pjpfq :“ Qpe
1{2
j fe

1{2
j q f P L8pG,Mq,

and for all pairs pi, jq and f P L8pG,Mq we define

Pi,jpfq :“ Qipe
1{2
j fe

1{2
j q “ xξi |e

1{2
j fe

1{2
j ξiy.

Then for each j, Pjpfq “ limi Pi,jpfq “ limixξi |e
1{2
j fe

1{2
j ξiy for all f P L8pG,Mq.

Let us consider the restriction of Pj to the centre ZpL8pG,Mqq, which equals
L8pG,ZpMqq by [71, Chapter V, Corollary 5.11]. Hence we get a net pPjq of cp
maps Pj : L8pG,ZpMqq Ñ M . We shall prove that this net converges pointwise-
ultraweakly to a G-equivariant projection P : L8pG,ZpMqq Ñ ZpMq. As we al-
ready know that the existence of such a projection is equivalent to the von Neumann
amenability of M (see Remark 3.2), this will complete the proof of (4) ñ (5).

We first claim that the net pPjq converges pointwise ultraweakly to a cp map
P : L8pG,ZpMqq Ñ M . For this it suffices to show that for any positive f P
L8pG,ZpMqq, the net pPjpfqq is increasing. Notice first that f commutes with all
elements of M Ď L8pG,Mq, so in particular it commutes with all elements of A.
Hence for any j ď k and any positive f P L8pG,ZpMqq, we have

Pjpfq ď Qpe
1{2
j fe

1{2
j q “ Qpf1{2ejf

1{2q ď Qpf1{2ekf
1{2q “ Qpe

1{2
k fe

1{2
k q “ Pkpfq

as required. Let P : L8pG,ZpMqq ÑM be the pointwise ultraweak limit of pPjq.
We next claim that P takes image in ZpMq, and is a projection. It is enough to

show that P pfqa “ aP pfq for every positive f P L8pG,ZpMqq and every positive
a P A. For this it is enough to show that P pfqa is positive. By construction,

P pfqa “ lim
j

lim
i
xe

1{2
j ξi |fe

1{2
j ξiya “ lim

j
lim
i
xe

1{2
j ξi |fe

1{2
j ξiay

ultraweakly. Now, for any normal state φ on M we compute

ˇ

ˇ

ˇ
φ
´

xe
1{2
j ξi |fe

1{2
j ξiay ´ xe

1{2
j ξi |fae

1{2
j ξiy

¯
ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ
φ
´

xe
1{2
j ξi |fpe

1{2
j ξia´ ae

1{2
j ξiqy

¯
ˇ

ˇ

ˇ

2

ď }ξi}
2
2}f}

2φ
`

xe
1{2
j ξia´ ae

1{2
j ξi |e

1{2
j ξia´ ae

1{2
j ξiy

˘

(3.2)
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and notice that

lim
j

lim
i
φ
`

xe
1{2
j ξia´ ae

1{2
j ξi |e

1{2
j ξia´ ae

1{2
j ξiy

˘

“ lim
j

lim
i

´

φpxe
1{2
j ξia |e

1{2
j ξiayq ´ φpxe

1{2
j ξia |ae

1{2
j ξiyq

´ φpxae
1{2
j ξi |e

1{2
j ξiayq ` φpxae

1{2
j ξi |ae

1{2
j ξiyq

¯

“ 0

since all terms are converging to φpa˚aq by the assumption on the net pξiq. But
since fa ě 0 (as f and a are positive and commute), this and line (3.2) then proves

φ
`

P pfqa
˘

“ lim
j

lim
i
φ
`

xe
1{2
j ξi |fae

1{2
j ξiy

˘

“ lim
j

lim
i
φ
`

Pi,jpfaq
˘

ě 0

as desired. Thus P takes image into ZpMq and can therefore be viewed as a cp
map P : L8pG,ZpMqq Ñ ZpMq. It is a projection because for every m P ZpMq,

P pmq “ lim
j

lim
i
xe

1{2
j ξi |me

1{2
j ξiy “ lim

j
lim
i
xξi |ejmξiy “ lim

j
ejm “ m,

where all limits are with respect to the ultraweak topology (note that as A is
ultraweakly dense in A, pejq converges ultraweakly to the identity of M).

It remains to verify that P is G-equivariant. This is equivalent to the identity

(3.3) σg
`

P ppτ b σqg´1pfqq
˘

“ P pfq

for every positive f P L8pG,ZpMqq and g P G. Observe that for all i and j we
have

σg
`

Pijppτ bσqg´1pfqq
˘

“ σg
`

xe
1{2
j ξi |Adλσg´1pfqe

1{2
j ξiy

˘

“ xλσg pe
1{2
j ξiq |fλ

σ
g pe

1{2
j ξiqy.

Thus, in order to prove (3.3) it suffices to show that
ˇ

ˇ

ˇ
φ
´

xλσg pe
1{2
j ξiq |fλ

σ
g pe

1{2
j ξiqy ´ xe

1{2
j ξi |fe

1{2
j ξiy

¯ ˇ

ˇ

ˇ
Ñ 0

for every normal state φ of M . The triangle inequality implies that every semi-norm
satisfies

ˇ

ˇ}x}2 ´ }y}2
ˇ

ˇ “
`

}x} ` }y}
˘
ˇ

ˇ}x} ´ }y}
ˇ

ˇ ď
`

}x} ` }y}
˘

}x´ y};

applying this to the semi-norm } ¨ }φ induced by the semi-inner product xξ |ηyφ :“
φpxξ |ηyq on L2

wpG,Mq we deduce that
ˇ

ˇ

ˇ
φ
´

xλσg pe
1{2
j ξiq |f ¨ λ

σ
g pe

1{2
j ξiqy ´ xe

1{2
j ξi |fe

1{2
j ξiy

¯
ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
}f1{2λσg pe

1{2
j ξiq}

2
φ ´ }f

1{2e
1{2
j ξi}

2
φ

ˇ

ˇ

ˇ

ď 2 sup
k
}ξk}φ ¨ }f} ¨ }λ

σ
g pe

1{2
j ξiq ´ e

1{2
j ξi}φ.

Finally notice that

}λσg pe
1{2
j ξiq ´ e

1{2
j ξi}

2
φ

“ φ
`

xλσg pe
1{2
j ξiq ´ e

1{2
j ξi |λ

σ
g pe

1{2
j ξiq ´ e

1{2
j ξiy

˘

“ φ
´

σgpxe
1{2
j ξi |e

1{2
j ξiyq ´ xλ

σ
g pe

1{2
j ξiq |e

1{2
j ξiy ´ xe

1{2
j ξi |λ

σ
g pe

1{2
j ξiqy ` xe

1{2
j ξi |e

1{2
j ξiy

¯

.

Taking the limit in i and using the properties of pξiq, this converges to

φ
´

σgpejq ´ σgpe
1{2
j qe

1{2
j ´ e

1{2
j σgpe

1{2
j q ` ej

¯

,
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and taking now the limit in j, using that pejq is an approximate unit (and hence
converges ultraweakly to 1), this converges to zero.

Finally, it remains to show that (7) ñ (6). We adapt ideas from the proof of
[6, Lemme 2.1]. Let Φ : CubpGq Ñ ZpMqc be a ucp G-map as in (7). Then for
every positive function h P CcpGq with }h}1 “ 1 it follows from line (1.4) that

Φh : L8pGq Ñ ZpMqc; Φhpfq :“ Φph ˚ fq

gives a well-defined completely positive map. As it is clearly unital, it is thus ucp.
Let I be a directed set and let pUiqiPI be a neighbourhood base of the identity

in G with Ui Ď Uj ô i ě j. For each i P I let hi P CcpGq be a positive function
with }hi}1 “ 1 and suppphiq Ď Ui; write Φi :“ Φhi . Then pΦiq is a net of ucp maps
from L8pGq to ZpMq, and by [23, Theorem 1.3.7] we may assume, after passing

to a subnet if necessary, that there exists a ucp map Φ̃ : L8pGq Ñ ZpMq such that

Φ̃pfq “ limi Φipfq for all f P L8pGq, where the limit is in the ultraweak topology
of ZpMq.

It remains to show that Φ̃ is G-equivariant. First observe that for each h P
L1pGq we have }h ˚ hi ´ hi ˚ h}1 Ñ 0 and therefore

(3.4) }ph ˚ hi ´ hi ˚ hq ˚ f}8 ď }h ˚ hi ´ hi ˚ h}1}f}8 Ñ 0

for all f P L8pGq. Recall from Section 1.6 that we denote the translation action
on CubpGq by τ . Then for all f P CubpGq and h P L1pGq it follows from the
G-equivariance of Φ that

Φph ˚ fq “ Φ

ˆ
ż

G

hpgqτgpfq dg

˙

“

ż

G

hpgqΦpτgpfqq dg

“

ż

G

hpgqσgpΦpfqq dg “ h ˚ Φpfq.

Since convolution with h is ultraweakly continuous on ZpMq, this and line (3.4)
imply that for all h P L1pGq and f P L8pGq:

Φ̃ph ˚ fq “ lim
i

Φphi ˚ h ˚ fq “ lim
i

Φph ˚ hi ˚ fq “ lim
i
h ˚ Φphi ˚ fq “ h ˚ Φ̃pfq.

Recall now from line (1.2) that

σgph ˚mq “ τgphq ˚m presp. τgph ˚ fq “ τgphq ˚ f q

for every g P G, h P L1pGq, and m PM (resp. f P L8pGq). On the other hand, for
all g P G, h P L1pGq and m PM , we get

h ˚ σgpmq “

ż

G

hpsqσsgpmq ds
sÞÑsg´1

“

ż

G

∆pg´1qhpsg´1qσspmq ds “ ρg´1phq ˚m,

where we define ρgphqpsq :“ ∆pgqhpsgq for g P G and h P L1pGq. Similarly, we have
h ˚ τgpfq “ ρg´1phq ˚ f for g P G, h P L1pGq and f P L8pGq.

Now, using the fact that hi ˚ m Ñ m (resp. hi ˚ f Ñ f) ultraweakly for all
m P ZpMq (resp. f P L8pGq) and in norm for m P ZpMqc (resp. f P CubpGq), we
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get for all g P G and f P L8pGq:

Φ̃pτgpfqq “ lim
i

Φphi ˚ τgpfqq “ lim
i

Φpρg´1phiq ˚ fq

“ lim
i

lim
j

Φphj ˚ ρg´1phiq ˚ fq “ lim
i

lim
j

Φpρg´1phiq ˚ hj ˚ fq

“ lim
i

lim
j
ρg´1phiq ˚ Φphj ˚ fq “ lim

i
lim
j
hi ˚ σgpΦphj ˚ fqq

“ lim
i
hi ˚ σgpΦ̃pfqq “ σgpΦ̃pfqq,

which completes the proof. �

Remark 3.18. In [7, Theorem 7.2], Anantharaman-Delaroche shows (amongst
other things) that if a group admits a topologically amenable action on a compact
space, then it is exact. Applying this to the spectrum of the C˚-algebra ZpMqc,
we see that condition (1) of Proposition 3.16 implies exactness of G.

On the other hand, condition (2) is automatic for M “ L8pGq, so (2) does
not imply (1) in general. This follows from the fact that the translation action
of G on itself is topologically amenable (e.g., see [7, Examples 2.7 (3)]), hence
τ : GÑ AutpC0pGqq is strongly amenable by Proposition 3.9 and hence amenable
by Remark 3.8. But then (2) follows from the fact that C0pGq

2
τ “ L8pGq (see

Remark 2.2).
We also remark that (7) is automatic for M “ CubpGq

2
τ : one can just consider

the canonical inclusion CubpGq Ñ CubpGq
2
τ . On the other hand, if M “ CubpGq

2
τ

satisfies condition (5), then the action on CubpGq is amenable by Theorem 3.17,
and therefore the action of G on the spectrum of CubpGq is topologically amenable
by [12, Corollary 4.14] and Proposition 3.9. Hence G is exact by [7, Theorem 7.2]
again, and we see that (7) ñ (5) cannot hold in general.6.

To summarize, the conditions in Proposition 3.16 satisfy

(1) ñ (2) ô (3) ô (4) ô (5) ñ (6) ô (7)

in general, and all are equivalent when G is exact. But neither of the one-way
implications are reversible when G is not exact.

As our main interest is in G-C˚-algebras, it is convenient to record the conse-
quences of Proposition 3.16 above and Theorem 3.17 of Bearden and Crann in this
case.

Corollary 3.19. For a G-C˚-algebra pA,αq consider the following statements:

(1) the induced action α2 : GÑ AutpZpA2αqcq is strongly amenable;
(2) α is amenable;
(3) α is von Neumann amenable;
(4) there is a ucp G-map L8pGq Ñ ZpA2αq;
(5) there is a ucp G-map CubpGq Ñ ZpA2αqc.

Then

(1) ñ (2) ô (3) ñ (4) ô (5)

and all of these conditions are equivalent if G is exact.

Proof. Apply Proposition 3.16 and Theorem 3.17 to M “ A2α. �

6We are grateful to Jason Crann for pointing this out to us.
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3.2. Permanence properties of amenability

In this section, we record some permanence properties of amenable actions.

Proposition 3.20. Amenability is preserved by Morita equivalence: precisely,
if pA,αq and pB, βq are Morita equivalent G-C˚-algebras, then A is amenable if
and only if B is amenable.

Proof. If pA,αq and pB, βq are Morita equivalent, then so are the correspond-
ingG-von Neumann algebrasA2α andB2β by (the proof of) Lemma 2.12. This implies

that their centres ZpA2αq and ZpB2βq are isomorphic as G-von Neumann algebras

(see [2, Proposition 4.6]) and this clearly implies the result. �

Lemma 3.21. Let pA,αq and pB, βq be G-C˚-algebras and let Φ: A Ñ MpBq
be a nondegenerate G-equivariant ˚-homomorphism. If the normal extension
Φ2 : A2α Ñ B2β maps ZpA2αq into ZpB2βq and if pA,αq is amenable, then so is

pB, βq. Similarly, if the strictly continuous extension Φ̄ : MpAq Ñ MpBq maps
ZMpAq into ZMpBq, then strong amenability passes from pA,αq to pB, βq.

Proof. Since Φ is nondegenerate, Φ2 : A2α Ñ B2β is normal and unital. Thus,

if pθiq is a net of positive type functions implementing amenability of pA,αq, then
pΦ2 ˝ θiq implements amenability of pB, βq. A similar argument works for strong
amenability. �

Remark 3.22. The above lemma is not true in general without the assumptions
that ZpA2αq (respectively, ZMpAq) is mapped to ZpB2βq (respectively, ZMpBq). To
see counterexamples, let G be a non-amenable group acting amenably on a non-zero
C˚-algebra A and let B “ A ¸red G equipped with the action β “ AdiG, where
iG : G Ñ UMpA ¸red Gq denotes the canonical homomorphism. As the inner
action β on A ¸red G induces the trivial action on ZppA ¸red Gq

2
βq, we see that β

is amenable if and only if G is amenable. On the other hand, the canonical map
iA : AÑMpA¸red Gq is a nondegenerate G-equivariant ˚-homomorphism (which
has image in B if G is discrete). We refer to [69] for more involved examples where
A and B are both simple and unital.

Proposition 3.23. Let α : GÑ AutpAq be a continuous action and let I Ď A
be a G-invariant ideal. Then α is amenable if and only if the induced actions αI

and αA{I on I and A{I, respectively, are both amenable.

Proof. The decomposition A2α “ I2αI ‘ pA{Iq
2
αA{I

of Lemma 2.10 induces a
decomposition ZpA2αq “ ZpI2αI q ‘ ZppA{Iq2

αA{I
q. The result follows directly from

this. �

As a consequence of the previous results we also get permanence properties for
hereditary subalgebras:

Corollary 3.24. Let α : G Ñ AutpAq be a continuous amenable action and
let B Ď A be a G-invariant hereditary C˚-subalgebra. Then the restricted action
on B is amenable.

Proof. The right ideal BA is an imprimitivity bimodule implementing a
Morita equivalence between B “ BAB and the ideal I “ ABA. The result follows
from Propositions 3.23 and 3.20. �
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We shall see in Proposition 4.8 below that amenability is also preserved under
taking inductive limits of amenable G-C˚-algebras.

3.3. The equivalence of amenability and measurewise amenability

In this section, we establish the equivalence of amenability and measurewise
amenability for actions on commutative C˚-algebras A “ C0pXq. Measurewise
amenability was introduced by Renault in [66, Definition II.3.6]. In [3, Theorem
A], Adams, Elliott, and Giordano show that the original definition is equivalent to
the following.

Definition 3.25. Let C0pXq be a commutative G-C˚-algebra, where both
X and G are second countable. Then the underlying action of G on X is called
measurewise amenable if for every quasi-invariant Radon measure µ on X, the
G-von Neumann algebra L8pX,µq is amenable.

Using Theorem 3.17 of Bearden and Crann we obtain the following characteri-
zation of measurewise amenability.

Proposition 3.26. Let C0pXq be a commutative G-C˚-algebra, where both X
and G are second countable. Then the underlying action G ñ X is measurewise
amenable if and only if for every quasi-invariant Radon measure µ on X there
exists a net of compactly supported, positive type, norm-continuous functions θi :
G Ñ L8pX,µq with θipeq ď 1 for all i and such that θipgq Ñ 1 ultraweakly and
uniformly on compact subsets of G. �

Our main goal in the rest of this section is the following

Theorem 3.27. Let pC0pXq, αq be a commutative G-C˚-algebra, and assume
that X and G are second countable. Then the following are equivalent:

(1) α is amenable;
(2) the underlying action G ñ X is measurewise amenable.

For the proof, we will need a technical lemma. For the statement, let us say
that a covariant representation pπ, uq of a G-C˚-algebra A is cyclic if the integrated
form π ¸ u is cyclic as a representation of A¸max G.

Lemma 3.28. Let G be a locally compact group, and let pA,αq be a G-C˚-
algebra. Then the following are equivalent:

(1) α is amenable;
(2) for every nondegenerate covariant representation pπ, uq of pA,G, αq the action

Adu : GÑ AutpπpAq2q is amenable;
(3) for every cyclic covariant representation pπ, uq of pA,G, αq the action Adu :

GÑ AutpπpAq2q is amenable.

Proof. The implications (1) ñ (2) ñ (3) are straightforward, so we only need
to check (3) ñ (1). For this, using Theorem 3.17, it suffices to check condition (2)
from Proposition 3.16, i.e. to show that for any finite set tφ1, ..., φnu of states from
the predual of A2α, any ε P p0, 1q, and any compact subset K of G there exists a
continuous compactly supported positive type function θ : G Ñ ZpA2αq such that
}θpeq} ď 1, and such that

(3.5) |φipθpgqq ´ 1| ă ε for all i P t1, ..., nu and g P K.
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Define ψ :“ 1
n

řn
i“1 φi, which is also a state in the predual of A2α. As A2α is a

(unital) von Neumann subalgebra of pA¸max Gq
˚˚, we may extend ψ to a normal

state, say rψ, on pA¸max Gq
˚˚ using [20, Corollary III.2.1.10]. Considering rψ as a

state on A¸max G, let pπ, uq be its GNS representation, considered as a covariant
pair for pA,Gq with associated cyclic vector ξ.

Now, as the representation pπ, uq is cyclic, assumption (3) gives a continuous
compactly supported positive type function θ0 : GÑ ZpπpAq2q such that }θ0peq} ď
1, and such that if ψ0 is the (normal) vector state on πpAq2 associated to ξ, then
|ψ0pθ0pgqq ´ 1| ă ε2{2n for all g P K. Let dπ P ZpA

2
αq be the central cover of

pπ, uq as in Definition 2.15, so there is a canonical equivariant normal isomorphism
πpAq2 – dπA

2
α. This restricts to an equivariant isomorphism of centres ZpπpAq2q –

ZpdπA
2
αq. Let ι : ZpπpAq2q ãÑ ZpA2αq be the composition of this isomorphism and

the canonical inclusion ZpdπA
2
αq Ñ ZpA2αq. We claim that θ :“ ι ˝ θ0 has the right

properties. Indeed, it is clearly positive type, satisfies }θpeq} ď 1 and is compactly
supported, so it remains to show the condition in line (3.5).

For this, we note that ψpp1 ´ dπqA
2
αq “ 0, whence ψ0 ˝ θ0 “ ψ ˝ θ, and so for

any g P K,

ε2

2n
ą |ψ0pθ0pgqq ´ 1| “ |ψpθpgqq ´ 1| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

φipθpgqq ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

whence

ε2

2
ą

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

pφipθpgqq ´ 1q

ˇ

ˇ

ˇ

ˇ

ˇ

.

For each i P t1, ..., nu, write xi and yi for the real and imaginary parts, respectively,
of φipθpgqq, so taking real parts of this inequality gives

(3.6) ´
ε2

2
ă

n
ÿ

i“1

pxi ´ 1q ă
ε2

2
.

Note that, as θ is positive type and }θpeq} ď 1, we have }θpgq} ď 1 for all g P G,
whence xi `

?
´1yi is in the unit ball of C for all i P t1, ..., nu. Hence line (3.6)

implies that 1 ´ ε2{2 ă xi ď 1 for each i. As x2
i ` y2

i ď 1, this implies that
y2
i ď ε2 ´ ε4{4 for each i. Hence for each i and each g P K,

|φipθpgqq ´ 1|2 “ pxi ´ 1q2 ` y2
i ď

ε4

4
` ε2 ´

ε4

4
“ ε2

and we are done. �

Proof of Theorem 3.27. For the implication (1)ñ (2), assume that C0pXq
is amenable. Note that if µ is a quasi-invariant Borel measure on X we can construct
a covariant representation pMµ, uq of pC0pXq, G, αq on L2pX,µq given by

`

Mµpfqξ
˘

pxq :“ fpxqξpxq and
`

ugξ
˘

pxq :“
´dµpg´1xq

dµpxq

¯1{2

ξpg´1xq,

where dµpg´1xq
dµpxq denotes the Radon-Nikodym derivative.

Now, Mµ gives an equivariant ˚-homomorphism C0pXq Ñ L8pX,µq with ultra-
weakly dense image, whence Corollary 2.4 gives a canonical, equivariant, surjective
extension M2

µ : C0pXq
2
α Ñ L8pX,µq to the enveloping G-von Neumann algebra

C0pXq
2
α of C0pXq. Let pθi : G Ñ C0pXq

2
αq be a net satisfying the conditions as
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in (2) of Proposition 3.16. Then pM2
µ ˝ θiq also satisfies the same conditions with

respect to L8pX,µq. Hence by Proposition 3.26, L8pX,µq is an amenable G-von
Neumann algebra.

To see (2) ñ (1), note that by Lemma 3.28, it is enough to show that for every
cyclic covariant representation pπ, uq : pC0pXq, Gq Ñ BpHπq the action Adu : G Ñ
AutpπpC0pXqq

2q is amenable. Since C0pXq ¸max G is separable, it follows that the
Hilbert space Hπ is separable as well. It follows then from Renault’s disintegra-
tion theorem [67, Théorème 4.1], that there exists a quasi-invariant measure µ on

X such that π has a direct integral decomposition
ş‘

X
πx dµpxq with respect to a

measurable field of Hilbert spaces over pX,µq, and that G acts compatibly on this
field. This implies that there exists an ultraweakly continuous, unital, equivariant,
˚-homomorphism Φπ : L8pX,µq Ñ ZpπpC0pXqq

2q. Composing Φπ with a net pθiq
of positive type functions in CcpG,L

8pX,µqq with the properties in Proposition
3.26, we obtain a net which establishes amenability of pπpC0pXqq

2,Aduq. �

In [12, Corollary 4.14], Bearden and Crann show that amenability for a commu-
tative G-C˚-algebra C0pXq is equivalent to strong amenability. As strong amenabil-
ity of C0pXq is the same as topological amenability of G ñ X (see Proposition 3.9),
we thus get the following corollary. As noted in the introduction to this chapter,
this solves a long-standing open question.

Corollary 3.29. Suppose that G ñ X is a continuous action of a second
countable locally compact group on a second countable locally compact space X.
Then the following are equivalent:

(1) G ñ X is measurewise amenable;
(2) G ñ X is topologically amenable. �



CHAPTER 4

The quasi-central approximation property

In earlier work [26, Section 3], we introduced the quasi-central approximation
property, or (QAP), for an action α : G Ñ AutpAq of a discrete group G on a
C˚-algebra A. We showed there that the (QAP) implies amenability of the action
in the sense of Anantharaman-Delaroche [6, Définition 4.1] (equivalently, in the
sense of Definition 3.4), but left the converse open. Since we introduced it, the
(QAP) played an important role in recent work of Suzuki [70] on the classification
of G-C˚-algebras; this (and the naturalness of the question) motivated us to revisit
the converse in this chapter.

In Section 4.1 we show that amenability of an action of a locally compact group
G is always equivalent to a weak version (wQAP) of the (QAP). This provides a
description of amenability in terms of A-valued positive type functions which avoids
the use of the enveloping G-von Neumann algebra A2α. As a consequence, we show
that amenability passes to inductive limits of G-C˚-algebras.

In the meantime Ozawa and Suzuki showed in [61, Theorem 3.2] that amenabil-
ity (and hence the (wQAP)) and the (QAP) are equivalent and, in [61, Theorem
2.13], that the (QAP) is also equivalent to the approximation property (AP), which
was introduced by Ruy Exel [36, Definition 4.4] in the context of Fell bundles over
discrete groups, and by Exel and Chi-Keung Ng [38, Definition 3.6] for Fell bundles
over general locally compact groups.

In Section 4.2, we deduce consequences for C˚-algebras associated to Fell
bundles. The equivalence of amenability and the (AP) for group actions on C˚-
algebras gives a hint that Exel’s definition is the “correct” extension of the notion
of amenability to the setting of Fell bundles. In this context, we use the connection
between amenability and the (AP) to solve a conjecture of Ara, Exel, and Katsura
relating the (AP) and nuclearity of cross-sectional C˚-algebras.

4.1. The weak quasi-central approximation property (wQAP)

In this section we want to give some characterizations of amenability in terms
of A-valued positive type functions on G. This is preferable for certain purposes, as
the properties use A itself, rather than the much larger enveloping G-von Neumann
algebra A2α of the action.

Recall from Section 2.3 above that Ikunishi [46, Theorem 1] showed that the
predual of A2α canonically identifies with the closed subspace A˚,c of all φ P A˚

such that the map

GÑ A˚; g ÞÑ α˚g pφq

is norm continuous. Every such functional can be written as a linear combination
of at most four states in SpAqc :“ SpAq X A˚,c, which then identifies with the set
of normal states on A2α.

43
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In what follows, if H is a Hilbert A-module (such as L2pG,Aq from Definition

3.12) we shall write }ξ}2 :“ }xξ | ξyA}
1
2 for all ξ P H. Moreover, if φ is a positive

linear functional on A, then we shall write

(4.1) xξ |ηyφ :“ φpxξ |ηyAq and }ξ}φ :“ xξ |ξy
1
2

φ

for all ξ, η P H. Note that x¨ | ¨yφ is a semi-inner product on H and therefore satisfies
the Cauchy-Schwarz inequality

(4.2) |xξ |ηyφ| ď }ξ}φ}η}φ

for all ξ, η P H, whence in particular each }¨}φ is a seminorm. Following Ananthara-
man-Delaroche [6, Section 1], we write τs for the topology on H defined by this
family of semi-norms.

In what follows we equip L2pG,Aq with the G-action λα as in Definition 3.12
above, and the left and right A-module actions determined respectively by

paξqpgq :“ aξpgq and pξaqpgq :“ ξpgqa

for all ξ P CcpG,Aq.

Definition 4.1. An action α : G Ñ AutpAq of a locally compact group G on
a C˚-algebra A satisfies the weak quasi-central approximation property (wQAP) if
there exists a net pξiqiPI of functions ξi P CcpG,Aq Ď L2pG,Aq such that

(1) }ξi}2 ď 1 for all i P I;
(2) for all φ P SpAqc we have xξi |λ

α
g ξiyφ Ñ 1 uniformly on compact subsets

of G;
(3) for all φ P SpAqc and all a P A we have }ξia´ aξi}φ Ñ 0.

Remark 4.2. The (wQAP) is a variant of the quasi-central approximation
property (QAP) as introduced for actions of discrete groups in [26, Section 3]. The
(QAP) has a natural extension to locally compact groups where conditions (2) and
(3) in Definition 4.1 are replaced by the conditions

(21) xξi | λ
α
g ξiyA Ñ 1 in the strict topology of MpAq uniformly on compact

subsets of G;
(31) }ξia´ aξi}2 Ñ 0 for all a P A.

Our main goal in this section is to show that the (wQAP), and some related
properties, are equivalent to amenability. While this paper was under review,
Ozawa and Suzuki established that the (QAP) is also equivalent to amenability
(hence the (QAP) and (wQAP) are always equivalent by Theorem 4.4 below).1

Another interesting approximation property is the Exel-Ng approximation
property (AP). This was introduced in [38, Definition 3.6] in the setting of Fell
bundles over locally compact groups. In the special case of actions α : GÑ AutpAq
this translates into

Definition 4.3. An action α : GÑ AutpAq satisfies the approximation prop-
erty (AP) if there exists a bounded net pξiq in CcpG,Aq Ď L2pG,Aq such that for
all a P A

xξi |aλ
α
g ξiyA Ñ a

in norm, uniformly on compact subsets of G.

1In a previous version of this paper we had a proof of this fact for discrete groups G, but, as
was pointed out to us by one of the referees, there was a mistake in our proof.
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An action α : GÑ AutpAq satisfies the weak approximation property (wAP) if
there exists a } ¨ }2-bounded net pξiq in CcpG,Aq such that for all φ P SpAqc and for
all a P A

φ
`

xξi |aλ
α
g ξiyA ´ a

˘

Ñ 0

uniformly on compact subsets of G.

It is clear that the (AP) implies the (wAP). The main result of this section is
the following

Theorem 4.4. Let α : G Ñ AutpAq be an action of the locally compact group
G on the C˚-algebra A. Then the following are equivalent:

(1) α is amenable.
(2) α satisfies the (wQAP).
(3) α satisfies the (wAP).

The following lemma is well known to experts: it is a special case of a version of
Kaplansky’s density theorem for Hilbert modules due to Zettl (see [75, Lemma 2.4
and Corollary 2.7]). For completeness, we give an elementary direct proof below:

Lemma 4.5. Suppose that M is a von Neumann algebra and A Ď M is an
ultraweakly dense C˚-subalgebra. Then, if H is a Hilbert space, the unit ball of
the Hilbert A-module H b A is dense in the unit ball of the Hilbert M -module
H bM with respect to the locally convex topology τs generated by the seminorms
ξ ÞÑ }ξ}φ “ φpxξ |ξyM q

1{2, where φ runs through the set of normal states of M .

Proof. Let us assume without loss of generality thatA is represented faithfully
and nondegenerately on the Hilbert space K such that M “ A2 Ď BpKq. We

represent the linking algebra LpH bAq :“

ˆ

KpHq bA H bA
H˚ bA A

˙

faithfully on the

Hilbert-space direct sum pH bKq ‘K via
ˆ

k b a ξ b b
η˚ b c d

˙ˆ

ζ b v
w

˙

“

ˆ

kζ b av ` ξ b bw
xη |ζyCcv ` dw

˙

.

Let p and q “ 1 ´ p denote the orthogonal projections from pH b Kq ‘ K onto
H bK and K, respectively. The isometric inclusion of H bA into the upper right
corner BpK,H b Kq “ pBppH b Kq ‘ Kqq extends to an isometric inclusion of
H bM “ H b A2. Moreover, H bM lies in the strong closure of H b A inside
BpK,H bKq, as if ξ bm is any elementary tensor in H bM and paiq is a net in
A which converges strongly to m, then for every vector w P K we get

pξ b aiqw “ ξ b aiw Ñ ξ bmw “ pξ bmqw.

It follows then from the Kaplansky density theorem applied to LpHbAq Ď BppHb
Kq ‘Kq, that the unit ball of H bA is strongly dense in the unit ball of H bM .

Let then ξ be an element of the unit ball of H bM and let pξiq be a net in
the unit ball of H b A such that ξi Ñ ξ strongly; we claim that ξi Ñ ξ in the τs
topology, which will suffice to complete the proof. We have ξiv Ñ ξv in K for all
v P K, whence for all v, w P K we have

xxξi ´ ξ |ξi ´ ξyMv |wyC “ xpξi ´ ξq
˚pξi ´ ξqv |wyC “ xpξi ´ ξqv | pξi ´ ξqwyC Ñ 0

as i Ñ 8. Hence the bounded net pxξi ´ ξ | ξi ´ ξyM qi weakly converges to 0.
Since the ultraweak topology coincides with the weak topology on bounded sets,
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it follows that }ξi ´ ξ}φ Ñ 0 for every normal state φ of M . Thus ξi Ñ ξ in the
topology τs. �

Corollary 4.6. Let α : GÑ AutpAq be an action and V Ď G an open subset
of G. Then for every ξ P L2pV,A2αq with }ξ}2 ď 1 there exists a net pξiq P CcpV,Aq
such that }ξi}2 ď 1 for all i P I and ξi Ñ ξ in the topology τs generated by the
seminorms ξ ÞÑ }ξ}φ, φ P SpAqc.

Proof. This follows from Lemma 4.5 with H “ L2pV q (with respect to the
Haar measure of G restricted to V ) together with the fact that the unit ball of
CcpV,Aq is norm-dense in the unit ball of L2pV,Aq. �

For what follows we also need the following well-known fact. We leave the
straightforward proof to the reader.

Lemma 4.7. Suppose that X is a normed space, pφiq is a norm-bounded net in
X˚, and φ P X˚. Then the following are equivalent:

(1) pφiq converges to φ in the weak*-topology.
(2) pφiq converges to φ uniformly on every compact subset K of X. �

We are now ready for the

Proof of Theorem 4.4. For (1) ñ (2) assume that α is amenable and let
pξiq be a net in CcpG,ZpA

2
αqcq with xξi |ξiyA2α ď 1 such that

(4.3) xξi |λ
α2

g ξiyφ Ñ 1 as iÑ8

for all φ P SpAqc uniformly on compact subsets C Ď G. For each i, let Vi Ď G
be a relatively compact open subset of G such that supp ξi Ď Vi. It follows from
Corollary 4.6 that for each ξi we can find a net pξijqj in CcpVi, Aq such that }ξij}2 ď
1 and

(4.4) }ξij ´ ξi}φ Ñ 0 as j Ñ8

for each state φ P SpAqc. With notations as in (4.1), we compute for each φ P SpAqc:

|xξij |λ
α
g pξijqyφ ´ xξi |λ

α2

g pξiqyφ| ď |xξij ´ ξi |λ
α
g pξijqyφ| ` |xξi |λ

α2

g pξij ´ ξiqyφ|

ď }ξij}2}ξij ´ ξi}φ ` }ξi}2}ξij ´ ξi}α˚
g´1 pφq

ď }ξij ´ ξi}φ ` }ξij ´ ξi}α˚
g´1 pφq

.

Using Lemma 4.7 (applied to A2α as the dual space of A˚,c) we conclude that the
sum in the last line converges to 0 as j Ñ8 uniformly for g in the compact closure
Ci of ViV

´1
i in G. Since xξi | λ

α2

g ξiyA2α “ 0 for all g R Ci (and similarly with ξi
replaced by ξij), we conclude that for each i,

(4.5) |xξij |λ
α
g pξijqyφ ´ xξi |λ

α2

g pξiqyφ| Ñ 0 as j Ñ8

uniformly on g P G.
Let now F be a finite subset of SpAqc, let A be a finite subset of A, let C be

a compact subset of G, and let ε ą 0. To complete the proof, it suffices to find
η P CcpG,Aq such that }η}2 ď 1, such that |xη |λαg ηyφ ´ 1| ă ε for all g P C and φ
in F , and such that }ηa ´ aη}φ ă ε for all a P A and φ P F . Using line (4.3), we
may find i so that ξi satisfies

(4.6) |xξi |λ
α2

g ξiyφ ´ 1| ă ε{2
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for all φ P F and g P C. Let P pAqc :“ P pAq XA˚,c, where P pAq denotes the set of
positive functionals on A. Then the limits in lines (4.4) and (4.5) clearly still hold
for all φ P P pAqc. Using this and the limit in line (4.4) we may find j such that ξij
satisfies

(4.7) }ξij ´ ξi}φ ă
ε

κ
with κ :“ 2p1`maxaPA}a}q

for all φ in F Y tψpa ¨ a˚q : ψ P F, a P Au, and so that

(4.8) |xξij |λ
α
g pξijqyφ ´ xξi |λ

α2

g pξiqyφ| ă ε{2

for all φ P F and g P G. We claim that η :“ ξij works.
Indeed, η is in CcpG,Aq and }η}2 ď 1 as all elements of the net pξijq have these

properties. Lines (4.6) and (4.8) imply that |xη |λαg ηyφ ´ 1| ă ε for all g P C and
φ P F . Finally, we note that for any φ P F and any a P A, using that ξi takes
values in the center of A2α we have

}ηa´ aη}φ “ }ηa´ ξia` aξi ´ aη}φ

ď }pη ´ ξiqa}φ ` }apη ´ ξiq}φ

ď φpa˚xη ´ ξi |η ´ ξiyA2αaq
1{2 ` φp}a}2xη ´ ξi |η ´ ξiyA2αq

1{2

“ }η ´ ξi}φpa˚¨aq ` }a}}η ´ ξi}φ.

This is less than ε by line (4.7), so we are done with (1) ñ (2).
For the proof of (2) ñ (3) let pξiq be a net in CcpG,Aq as in Definition 4.1.

Then, for all a P A and φ P SpAqc we get:
ˇ

ˇφpxξi |aλ
α
g ξiyA ´ axξi |λ

α
g ξiyAq

ˇ

ˇ “
ˇ

ˇxa˚ξi |λ
α
g ξiyφ ´ xξia

˚ |λαg ξiyφ
ˇ

ˇ

“
ˇ

ˇxa˚ξi ´ ξia
˚ |λαg ξiyφ

ˇ

ˇ

ď }a˚ξi ´ ξia
˚}φ}λ

α
g ξi}2 Ñ 0

uniformly on G. Since φpxξi |λ
α
g ξiy ´ 1q Ñ 0 uniformly on compact subsets of G, it

follows from this and separate ultraweak continuity of multiplication on bounded
sets that φpxξi |aλ

α
g ξiyA ´ aq Ñ 0 uniformly on compact subsets of G as well.

The implication (3) ñ (1) follows from Theorem 3.17. Indeed, our assumption
(3) implies that condition (4) from Proposition 3.16 holds with respect to M “ A2α
and the canonical inclusion A ãÑ A2α; hence by Theorem 3.17, condition (2) from
Proposition 3.16 holds, which is the desired conclusion. �

We now give a useful application of Theorem 4.4 towards inductive limits of
amenable G-C˚-algebras.

Proposition 4.8. Suppose that pAm, G, αmq is a directed system of G-C˚-
algebras and let α : G Ñ AutpAq denote the induced action on the inductive limit
A :“ limmAm. If all αm are amenable, then so is α.

Proof. We follow the ideas of [26, Proposition 3.3]. Proposition 3.23 implies
that amenability passes to quotients. Hence we may assume that the canonical
maps Am Ñ A are G-embeddings, and we therefore may regard A as the closed

union of the Am. For each m, let pξ
pmq
i q be a net in CcpG,Amq Ď CcpG,Aq which

implements the (wQAP) for αm, which exists by Theorem 4.4. These nets can be
used to construct a net that establishes the (wQAP) for A: we leave the elementary
details to the reader. Theorem 4.4 now shows that A is amenable. �
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The theorem below records the equivalences between the family of properties
around the (QAP) and (AP), combining Theorem 4.4 and some of the main results
of Ozawa-Suzuki [61] for the reader’s convenience.

Theorem 4.9. Let α : GÑ AutpAq be an action of a locally compact group G.
Then the following are equivalent:

(1) α is amenable;
(2) α satisfies the (QAP);
(3) α satisfies the (wQAP);
(4) α satisfies the Exel-Ng (AP);
(5) α satisfies the (wAP).

Proof. The equivalences (1) ô (2) and (2) ô (4) are due to Ozawa and
Suzuki: see [61, Theorem 3.2] and [61, Theorem 2.13], respectively. On the other
hand, (1), (3), and (5) were shown to be equivalent in Theorem 4.4. �

Remark 4.10. There is a variant of the approximation property due to Bédos
and Conti (see [14, Definition 5.7]) for actions of discrete groups G, which is ex-
tended to actions of locally compact G by Bearden and Crann in [12, Section
4]. Parallel to our work, Bearden and Crann showed in [12, Theorem 4.2] that
amenability is equivalent to a variant of the Bédos-Conti approximation property.
The Bédos-Conti property is in a similar spirit as the (AP) of Ng and Exel but it
is a priori weaker than the (AP).

4.2. Consequences for Fell bundles

As mentioned at the start of this chapter, the approximation property of Exel
was originally defined in the context of Fell bundles (see for example [37] for back-
ground on Fell bundles). In [9, Remark 6.5] it is conjectured that nuclearity of the
cross-sectional C˚-algebra C˚redpBq of a Fell bundle B should imply the (AP) for B.
Using Theorem 4.9 we give a positive answer to this conjecture:

Corollary 4.11. Let B “ pBgqgPG be a Fell bundle over the discrete group G
and assume that its reduced cross-sectional C˚-algebra C˚redpBq is nuclear. Then B
has the (AP) of Exel.

Proof. Consider the dual G-action α :“ pδB on the crossed product A :“
C˚redpBq ¸δB G by the canonical (dual) coaction δB of G on the cross-sectional
C˚-algebra C˚redpBq. Using [1, Remark 3.3 and Theorem 3.4], we see that B is
weakly equivalent to pA,αq as Fell bundles in the sense of [1, Definition 2.6]. If
C˚redpBq is nuclear, then so is A¸α,red G as it is isomorphic to C˚redpBq bKp`2pGqq
(see [1, Remark 3.3] again). Using [6, Théorème 4.5], this implies that the G-
action α on A is amenable and hence by Theorem 4.9, α also has the (AP). The
(AP) passes through weak equivalences of Fell bundles by [2, Corollary 5.24 and
Theorem 6.12], from which it follows that B has the (AP). �

The converse of the above corollary is known: if B has the (AP) and Be is
nuclear, then C˚pBq “ C˚redpBq is nuclear (see [37, Proposition 25.10]). Note that
this really is the precise converse of Corollary 4.11, as nuclearity of C˚redpBq implies
nuclearity of Be due to the existence of a conditional expectation E : C˚redpBq Ñ Be
(see [37, Definition 19.2 and Proposition 19.3]).
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The (AP) is therefore a way to characterize nuclearity of cross-sectional C˚-
algebras of Fell bundles, in particular, crossed products. We should remark that this
problem of characterizing nuclearity of Fell bundle C˚-algebras or crossed products
has been studied recently in [44, 57] using the theory of Herz-Schur multipliers.
In [57, Definition 4.1] a notion of ‘nuclearity’ for a G-C˚-algebra A is introduced
that is shown to be equivalent to nuclearity of A ¸red G in [57, Theorem 4.3].
A similar ‘nuclearity’ notion is introduced for Fell bundles in [44, Definition 6.3],
and again this is used to characterize nuclearity of the cross-sectional C˚-algebra
in [44, Theorem 6.8]. Combining all this together, we can rephrase nuclearity of
C˚-dynamical systems in terms of the ((Q)AP) as follows:

Corollary 4.12. A G-C˚-algebra A is nuclear in the sense of [57] if and only
if A is a nuclear C˚-algebra and α has the (QAP). Similarly, a Fell bundle B is
nuclear in the sense of [44] if and only if Be is a nuclear C˚-algebra and B has the
(AP) of Exel. �





CHAPTER 5

The weak containment property and commutant
amenability

In this chapter we study the weak containment property as in the following
definition.

Definition 5.1. AG-C˚-algebra pA,αq (or just the action α) is said to have the
weak containment property (WCP) if the regular representation ΛpA,αq : A¸maxGÑ
A ¸red G is an isomorphism. When this is the case, to shorten the notation, we
usually write A¸max G – A¸red G or even A¸max G “ A¸red G.

For discrete groups, Anantharaman-Delaroche showed in [6, Proposition 4.8]
that amenability implies the (WCP), but the converse has been a long-standing
open problem. We are interested here in elucidating the relationship between
amenability and the (WCP).

In Section 5.1, we build on our earlier work [26, Sections 4 and 5] for discrete
groups. We study injectivity properties of covariant representations, and use this
to show that the (WCP) for pA,G, αq with G exact is equivalent to a property
we call commutant amenability. Roughly, A is commutant amenable if the com-
mutant πpAq1 of A in any covariant representation pπ, uq (or just in the universal
representation) has an amenability-like approximation property. These results also
show that (commutant) amenability always implies the (WCP), whether or not the
acting group is exact.

In Section 5.2 we bring into play the Haagerup standard form, which is a covari-
ant representation of a G-von Neumann algebra with particularly good properties.
The results here extend work of Matsumura [55], who first had the idea of us-
ing the Haagerup standard form to study amenability (our proofs are different to
Matsumura’s, however, following instead the lines of our earlier work [26, Section
5] on discrete groups). The Haagerup standard form lets us translate commutant
amenability into more intrinsic properties: for example, amenability of A turns out
to be equivalent to commutant amenability of A bmax A

op. We also show that
commutant amenability is equivalent to amenability for actions on commutative
C˚-algebras. Thus for actions of exact locally compact groups on commutative
C˚-algebras, amenability is indeed equivalent to the (WCP).

In sharp contrast, in Section 5.3, we show that the (WCP) is not equivalent to
amenability for actions on noncommutative C˚-algebras. Our counterexamples are
quite concrete: for example, we show that actions of PSLp2,Cq on the compact op-
erators can satisfy the (WCP), yet be non-amenable. We use the same examples to
show that the (WCP) does not pass through the restriction of an action to a closed
subgroup, which answers a question of Anantharaman-Delaroche [7, Question 9.2
(b)] in the negative.
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5.1. Injective representations and commutant amenability

In this section, we use ideas developed by the authors in the case of discrete
groups in [26, Section 4] to provide necessary and sufficient conditions for a G-C˚-
algebra pA,αq to have the weak containment property (WCP) from Definition 5.1,
at least when G is exact.

Recall from [25] that the injective crossed product functor pA,αq ÞÑ A ¸inj G
is the largest crossed product functor which is injective in the sense that every
G-equivariant inclusion ϕ : A ãÑ B from a G-C˚-algebra A into a G-C˚-algebra
B descends to an inclusion ϕ ¸inj G : A ¸inj G ãÑ B ¸inj G. For a given G-C˚-
algebra pA,αq, the crossed product A ¸inj G can be realized as the completion of
the convolution algebra CcpG,Aq with respect to the norm

}f}inj :“ inft}ϕ ˝ f}B¸maxG : ϕ : A ãÑ B is G-equivariantu.

It was observed in [25, Proposition 4.2] that A ¸inj G “ A ¸red G whenever G is
exact1, so that for exact groups the (WCP) is equivalent to A¸max G “ A¸inj G,
that is, to the statement that the canonical quotient map q : A¸max GÑ A¸inj G
is an isomorphism.

Our first goal is to characterize when q : A¸maxGÑ A¸injG is an isomorphism
in terms of injective representations as in the next definition.

Definition 5.2. Let pA,αq and pB, βq be G-C˚-algebras and let ι : A ãÑ B be
a G-equivariant inclusion. Then a covariant representation

pπ, uq : pA,Gq Ñ BpHq
is called G-injective with respect to ι if the dashed arrow below

B
σ

""
A

ι

OO

π // BpHq

can be filled in with a ccp G-map σ (here BpHq is equipped with the G-action Adu).
We say that pπ, uq is G-injective if it is G-injective with respect to any

G-inclusion ι : A ãÑ B of A into a G-C˚-algebra B.

We need the following generalization of [26, Lemma 4.8].

Lemma 5.3. Let A be a G-C˚-algebra, and pσ, uq : pA,Gq Ñ BpHq be a pair
consisting of a ccp map σ and a unitary representation u satisfying the covariance
relation

σpαgpaqq “ ugσpaqu
˚
g

for all a P A and g P G. Then the integrated form

σ ¸ u : CcpG,Aq Ñ BpHq; f ÞÑ

ż

G

σpfpgqqug dg

extends to a ccp map σ ¸ u : A¸max GÑ BpHq.

Proof. The ccp G-map σ : A Ñ BpHq necessarily takes image in BpHqc,
and by [24, Theorem 4.9, (5) ñ (6)] it then descends to a ccp map σ ¸max G :
A ¸max G Ñ BpHqc ¸max G, with respect to the action Adu : G Ñ AutpBpHqcq

1This can fail if G is not exact: see [25, Lemma 4.7].
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given by conjugation with u. Composing σ¸maxG with the integrated form id¸u :
BpHqc ¸max GÑ BpHq of the covariant pair pid, uq gives the ccp map σ ¸ u. �

The following proposition extends [26, Theorem 4.9], where the same result
has been shown for actions of discrete groups. Although the proof is almost the
same as in the discrete case, we include it for completeness.

Proposition 5.4. Let ι : A ãÑ B be an inclusion of G-C˚-algebras pA,αq and
pB, βq. Then the following are equivalent:

(1) the descent ι¸max G : A¸max GÑ B ¸max G is injective;
(2) every nondegenerate covariant representation pπ, uq of pA,G, αq on some

Hilbert space H is G-injective with respect to the inclusion ι : A ãÑ B;
(3) there exists a nondegenerate covariant representation pπ, uq of pA,G, αq

which is G-injective with respect to ι : A ãÑ B and which has a faithful
integrated form π ¸ u : A¸max GÑ BpHq.

Proof. Assume (1), and let pπ, uq : pA,Gq Ñ BpHq be a covariant represen-
tation. We must show that the dashed arrow below can be filled in with a ccp
G-map

(5.1) B

""
A

ι

OO

π // BpHq .

Let rA and rB be the unitizations of A and B and let rπ : rAÑ BpHq and rι : rAÑ rB
be the canonical (equivariant) unital extensions. It will suffice to prove that the
dashed arrow below

rB

!!
rA

rι

OO

rπ // BpHq

can be filled in with an equivariant ccp map; indeed, if we can do this, then the

restriction of the resulting equivariant ccp map rB Ñ BpHq to B will have the
desired property.

Since the descent ι¸G : A¸maxGÑ B¸maxG of ι is injective by assumption,
it follows from this and the commutative diagram

0 // B ¸max G // rB ¸max G // C¸max G // 0

0 // A¸max G //

OO

rA¸max G //

OO

C¸max G // 0

of short exact sequences that the map

rι¸G : rA¸max GÑ rB ¸max G

is injective as well. From now on, to avoid cluttered notation, we will assume that
A, B, π and ι are unital, and that the map ι¸G : A¸maxGÑ B¸maxG is injective;
our goal is to fill in the dashed arrow in line (5.1) under these new assumptions.
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It follows from unitality of ι that the map ι ¸ G : A ¸max G Ñ B ¸max G
uniquely extends to an injective ˚-homomorphism MpA¸maxGq ÑMpB¸maxGq.
Hence in the diagram below

MpB ¸max Gq
Ćπ¸u

&&
MpA¸max Gq

π¸u //

ι¸G

OO

BpHq

we may use injectivity of BpHq (i.e. Arveson’s extension theorem as, for example,
in [23, Theorem 1.6.1]) to show that the dashed arrow can be filled in with a ucp
map. Any element of the form iBGpgq P MpB ¸max Gq is in the multiplicative

domain of Čπ ¸ u, from which it follows that the restriction φ of Čπ ¸ u to B –

iBpBq ĎMpB ¸max Gq is equivariant. This restriction φ is the desired map.
The implication (2) ñ (3) is clear, so it remains to show (3) ñ (1). Let

π ¸ u : A ¸max G Ñ BpHq be a nondegenerate faithful representation such that
there is a ccp G-map φ : B Ñ BpHq that extends π as in (3). Lemma 5.3 implies
that this ccp map integrates to a nondegenerate ccp map φ¸u : B¸maxGÑ BpHq.
As the diagram

B ¸max G

φ¸u

%%
A¸max G

π¸u //

ι¸G

OO

BpHq
commutes and the horizontal map is injective, the vertical map is injective too. �

Notice that A¸max G “ A¸inj G if and only if every G-embedding ι : A ãÑ B
satisfies the equivalent conditions in Proposition 5.4. Hence we get the following
immediate consequence, which we record for ease of future reference:

Corollary 5.5 (cf. [26, Corollary 4.11]). For a G-C˚-algebra A, the following
are equivalent:

(1) A¸max G “ A¸inj G;
(2) every nondegenerate covariant representation pπ, uq is G-injective;
(3) there is a G-injective nondegenerate covariant representation that inte-

grates to a faithful representation of A¸max G.

Moreover, if G is exact, ¸inj may be replaced by ¸red in the above. �

In order to connect the above observations to amenability, we need the following
extension of [26, Lemma 4.12] from discrete to locally compact groups.

Lemma 5.6. Let A be a G-C˚-algebra and let pπ, uq : pA,Gq Ñ BpHq be a
nondegenerate G-injective covariant pair. Then for any unital G-C˚-algebra C
there exists a ucp G-map φ : C Ñ πpAq1 Ď BpHq.

Proof. Let G act diagonally on CbA and consider the canonical G-embedding

i : A ãÑMpC bAqc; a ÞÑ 1b a.

Then G-injectivity of π yields a ccp G-map ϕ : MpC bAqc Ñ BpHq with ϕ ˝ i “ π.
Say now phkq is an increasing approximate unit for A. As ϕ is ccp, we see that for
any k

1 ě ϕp1q ě ϕp1b hkq “ ϕpiphkqq “ πphkq.
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As πphkq Ñ 1 strongly, the above inequalities force ϕp1q “ 1, so ϕ is ucp. We now
consider the canonical G-embedding j : C ÑMpCbAqc, c ÞÑ cb1, and then define
φ : C Ñ BpHq by φpcq :“ ϕpjpcqq. It remains to show that φpCq Ď πpAq1. However,
since ϕ ˝ i “ π is a homomorphism, the image of i lies in the multiplicative domain
of ϕ, so that

φpcqπpaq “ ϕpjpcqipaqq “ ϕpipaqjpcqq “ πpaqφpcq. �

We are now going to introduce a notion of amenability which, at least for exact
groups G, characterizes weak containment:

Definition 5.7. Let pA,αq be a G-C˚-algebra. For a covariant representation
pπ, uq : pA,Gq Ñ BpHq, equip the commutant πpAq1 with the action Adu. Then
pπ, uq is commutant amenable if there exists a net pθi : G Ñ πpAq1q of norm-
continuous, compactly supported, positive type functions such that }θipeq} ď 1 for
all i and θipgq Ñ 1 ultraweakly and uniformly for g in compact subsets of G.

The G-C˚-algebra pA,αq is commutant amenable if every2 nondegenerate co-
variant pair is commutant amenable.

Remark 5.8. Lemma 3.10 implies that one can require instead a net taking
values in πpAq1c (but that otherwise has the same properties) without changing the
definition of commutant amenability.

In what follows, we say that a family tpπj , ujq : j P Ju of covariant representa-
tions of pA,G, αq is faithful if their direct sum integrates to a faithful representation
of A¸max G.

Lemma 5.9. Suppose that pπ, uq is a commutant amenable covariant represen-
tation of pA,G, αq on some Hilbert space H. Then for each f P CcpG,Aq we have

}π ¸ upfq} ď }f}A¸redG.

In particular, if there exists a faithful family tpπj , ujq : j P Ju of commutant
amenable covariant representations of pA,G, αq, then A¸max G “ A¸red G.

Proof. Let pπ, uq : pA,Gq Ñ BpHq be a commutant amenable covariant repre-
sentation. Using Remark 5.8 and Lemma 3.14, there is a net pξiq in CcpG, πpAq

1
cq Ď

L2pG, πpAq1cq with the properties from item (2) of Lemma 3.14. For each i, define

Ti : H Ñ L2pG,Hq, v ÞÑ rg ÞÑ ξipgqvs.

A direct computation shows that for all i P I we have

}Tiv}
2 “ xv | xξi |ξiyπpAq1vyC ď }v}

2.

Thus }Ti} ď 1 for all i P I. More direct computations show that the adjoint of Ti
is given by

T˚i pηq “

ż

G

ξipgq
˚ηpgq dg

for η P CcpG,Hq.
Now, via Fell’s trick, the covariant pair pπ b 1, ub λq : pA,Gq Ñ BpL2pG,Hqq

integrates to A¸red G. Consider the net of contractive completely positive maps

φi : BpL2pG,Hqq Ñ BpHq; b ÞÑ T˚i bTi.

2We will see in Proposition 5.13 below that it suffices for the universal representation to be
commutant amenable.
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For f P CcpG,Aq Ď A¸max G and v P H we compute:

φi
`

pπ b 1q ¸ pub λqpfq
˘

v “ T˚i ppπ b 1q ¸ pub λqpfqqTiv

“

ˆ
ż

G

ż

G

ξiphq
˚πpfpgqqugξipg

´1hq dg dh

˙

v.

Let Adu be the action on πpAq1, and λAdu the induced action on L2pG, πpAq1q from
Definition 3.12. Using that ξi takes values in πpAq1, we get

φi
`

pπ b 1q ¸ pub λqpfq
˘

“

ż

G

πpfpgqq

ˆ
ż

G

ξiphq
˚ugξipg

´1hqu˚g dh

˙

ug dg

“

ż

G

πpfpgqqxξi |λ
Adu
g ξiyπpAq1ug dg.

As xξi |λ
Adu
g ξiyπpAq1 converges weakly to 1 uniformly for all g in compact subsets of

G, and as multiplication is separately weakly continuous, we get weak convergence

φi
`

pπ b 1q ¸ pub λqpfq
˘

Ñ pπ ¸ uqpfq.

As weak limits do not increase norms and as each φi is contractive, this implies

}pπ ¸ uqpfq} ď lim sup
iÑ8

}φi
`

pπ b 1q ¸ pub λqpfq
˘

}

ď }pπ b 1q ¸ pub λqpfq} ď }f}A¸redG,

which completes the proof. �

Here is the main result of this section. Note in particular that commutant
amenability characterizes weak containment for actions of exact groups.

Proposition 5.10. Let pA,αq be a G-C˚-algebra. Consider the following state-
ments:

(1) α is amenable;
(2) α is commutant amenable;
(3) there exists a commutant amenable, covariant representation pπ, uq of

pA,G, αq such that π ¸ u : A¸max GÑ BpHπq is faithful;
(4) α has the weak containment property.

Then
(1) ñ (2) ñ (3) ñ (4).

Moreover, if G is exact, we also have (4) ñ (2).

Proof. Suppose that (1) holds and let pπ, uq be a nondegenerate covariant
representation of pA,G, αq. By Proposition 2.3 there exists a normal surjective
G-equivariant ˚-homomorphism Φ : A2α � πpAq2. Surjectivity implies that Φ re-
stricts to a unital ˚-homomorphism ΦZ : ZpA2αq Ñ ZpπpAq2q Ď πpAq1. Thus if
pθi : G Ñ ZpA2αqq is a net of compactly supported positive type functions imple-
menting amenability of α it follows that pΦZ ˝θiq implements commutant amenabil-
ity of pπ, uq, hence (2). The implication (2) ñ (3) is trivial and (3) ñ (4) follows
from Lemma 5.9 above.

Assume now that G is exact. Then (4) and Corollary 5.5 imply that every
nondegenerate covariant representation pπ, uq is G-injective, so Lemma 5.6 implies
that there exists a G-equivariant ucp map Φ : CubpGq Ñ πpAq1. As G is exact,
[61, Proposition 2.5] implies that the action on CubpGq is strongly amenable as
in Definition 3.5, i.e., there exists a net pηi : G Ñ CubpGqq of norm-continuous,
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compactly supported, positive type functions such that }ηipeq} ď 1 for all i and
ηipgq Ñ 1CubpGq in norm and uniformly on compact subsets of G. But then pΦ ˝
ηiq is a net of πpAq1-valued positive type functions that implements commutant
amenability of pπ, uq. �

Remark 5.11. We have seen in Section 3.2 that our notion of amenability
enjoys some desirable permanence properties like passage to ideals and quotients.
It is also not difficult to see from the definition that commutant amenability passes
to quotients and ideals. In particular, since commutant amenability implies the
(WCP) by Proposition 5.10 above, it follows that commutant amenability of a
G-C˚-algebra A implies its inner exactness in the sense that the sequence

0 Ñ I ¸red GÑ A¸red GÑ pA{Iq ¸red GÑ 0

is exact for every G-invariant ideal I Ď A.
On the other hand we will see in Theorem 5.16 below that if A is amenable then

Abmax B is amenable for any B; this property fails for commutant amenability, as
will follow from our examples in Section 5.3 below.

We conclude this section by showing that in order to check commutant
amenability one does not have to study all representations: indeed it suffices to
just look at cyclic representations, or just at the universal representation. We were
motivated to show this by a question of Ruy Exel.

First, we record a basic lemma about permanence properties.

Lemma 5.12. Let pA,αq be a G-C˚-algebra. Then the class of commutant
amenable covariant representations of pA,αq is closed under taking subrepresenta-
tions, and under taking arbitrary direct sums.

Proof. Let pσ, vq be a subrepresentation of pπ, uq, where the latter acts on
some Hilbert space H. Assume that pπ, uq is commutant amenable, and let pθi :
G Ñ πpAq1qiPI be a net implementing its commutant amenability. As pσ, vq is
a subrepresentation of pπ, uq, there is a G-invariant projection p P πpAq1 such
that pσ, vq is the restriction of pπ, uq to pH. In particular, the corner pπpAq1p
identifies canonically with σpAq1. Using this identification, the functions defined by
g ÞÑ pθipgqp implement commutant amenability of pσ, vq.

Let now pπj , ujqjPJ be an arbitrary family of representations of pA,Gq, all of
which are commutant amenable, and let pπ, uq be their direct sum. For each j P J ,

let pθ
pjq
i : G Ñ πipAq

1qiPIj be a net implementing the commutant amenability of
pπj , ujq. For each finite subset F of I and each tuple i :“ pijqjPF P

ś

jPF Ij , define

θF,i : GÑ πpAq1 by taking the direct sum
à

jPF

θ
pjq
ij

: GÑ
à

jPF

πjpAq
1

and composing with the canonical inclusion
à

jPF

πjpAq
1 ãÑ πpAq1.

Let Λ be the collection of pairs λ “ pF, iq where F is a finite subset of J , and
i P

ś

jPF Ij . Define a (directed) partial order on Λ by stipulating that pF, iq ď

pF 1, i1q if F Ď F 1, and if for all j P F , the jth entry of i is at most the jth entry
of i1. Then the net pθλqλPΛ implements commutant amenability of the direct sum
representation; we leave the direct checks to the reader. �
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For the next result, recall from Section 3.3 that we call a covariant representa-
tion pπ, uq of pA,Gq cyclic if the integrated form π¸ u is cyclic as a representation
of A¸max G.

Proposition 5.13. Let pA,αq be a G-C˚-algebra. The following are equivalent:

(1) pA,αq is commutant amenable;
(2) all cyclic covariant representations of pA,αq are commutant amenable;
(3) the universal covariant representation of pA,αq is commutant amenable.

Proof. The implications (1) ñ (2) and (1) ñ (3) hold by definition. Any
representation is a direct sum of cyclic representations, so (2) ñ (1) by Lemma
5.12. Finally, (3) ñ (2) by Lemma 5.12, as any cyclic representation is (unitarily
equivalent to) a subrepresentation of the universal representation by definition of
the latter. �

5.2. Applications of the Haagerup standard form

A von Neumann algebra M admits an essentially unique Haagerup standard
form: this is a representation of M such that the relationship between M and M 1

has particularly good properties, and that is covariant for a unitary representation
of the group of automorphisms of M with the point-ultraweak topology. Crucially
for us, a Haagerup standard form exists even for possibly non-countably decompos-
able von Neumann algebras such as A2α. In this section, we exploit the Haagerup
standard form to improve the results of the previous section. In particular, we will
see that commutant amenability and amenability coincide for actions on commu-
tative C˚-algebras, and we will also show that amenability is characterized by the
weak containment property of Abmax A

op for actions of exact groups.
The idea to use Haagerup standard forms for the study of amenable actions

is due to Matsumura [55], and was also exploited by the current authors in [26,
Section 5] for actions of discrete groups.

The following theorem records the consequences of the Haagerup standard form
that we will need: see [41, Theorem 2.3 and Corollary 3.6]. For the statement, for
a G-C˚-algebra A, let pAop, αopq denote its opposite C˚-algebra equipped with the
G-action αop that agrees with α as an action on the underlying set.

Theorem 5.14 (Haagerup). Let pA,αq be a G-C˚-algebra. There exist faithful
normal representations π of A2α and πop of pAopq2αop on the same Hilbert space H
together with a strongly continuous unitary representation u : GÑ UpHq such that
the following are satisfied:

(1) pπ, uq is covariant for pA2α, G, α
2q and pπop, uq is covariant for

`

pAopq2αop , G, pαopq2
˘

;
(2) πpAq1 “ πopppAopq2αopq and πoppAopq1 “ πpA2αq.

Moreover, if A is commutative, we have πpAq1 “ πpAq2 – A2α. �

The equivalence of (3) and (5) as in the next theorem is due to Matsumura
[55, Theorem 1.1] for G discrete and exact and A “ CpXq commutative and unital.
Matsumura’s result has been extended by the authors to actions of discrete, exact
G on possibly non-unital A “ C0pXq in [26, Theorem 5.2]. Here we give a version
which works for actions of general locally compact groups.

Theorem 5.15. Let pA,G, αq be a G-C˚-algebra with A “ C0pXq commutative
and consider the following statements:
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(1) the underlying action G ñ X is topologically amenable;
(2) α is strongly amenable;
(3) α is amenable;
(4) α is commutant amenable;
(5) α has the weak containment property.

Then
(1) ô (2) ô (3) ô (4) ñ (5).

If, in addition, G is exact, all five properties are equivalent.

Only the relationships between the last three properties are new: (1) ô (2) is
well-known (see Proposition 3.9 above), and the equivalence (2) ô (3) is a deep
recent result of Bearden and Crann [12, Corollary 4.14]. We include (1) and (2)
only for ease of reference.

Proof. As discussed above, we only need to discuss the implications between
(3), (4), and (5). Proposition 5.10 gives (3) ñ (4) ñ (5). To see (4) ñ (3) observe
that (4) implies in particular that the Haagerup standard form representation pπ, uq
is commutant amenable. For A commutative, we have πpAq1 “ A2α “ ZpA2αq,
hence commutant amenability of pπ, uq implies amenability of α. If G is exact,
Proposition 5.10 gives (5) ñ (4). �

We now move on to noncommutative G-C˚-algebras. For arbitrary
G-C˚-algebras we get the following application of the Haagerup standard
form: this result extends Matsumura’s [55, Theorem 1.1], where the equivalence of
(1) and (5) is shown for G discrete and A unital and nuclear.

Theorem 5.16. Let pA,αq be a G-C˚-algebra and consider the following state-
ments:

(1) pA,αq is amenable;
(2) for every G-C˚-algebra pB, βq the diagonal action pA bmax B,α b βq is

amenable;
(3) for every G-C˚-algebra pB, βq the diagonal action pA bmax B,α b βq is

commutant amenable;
(4) the diagonal action α b αop : G Ñ AutpA bmax A

opq is commutant
amenable;

(5) αb αop satisfies the weak containment property.

Then
(1) ô (2) ô (3) ô (4) ñ (5)

and if G is exact, all these properties are equivalent.

Proof. The map

Φ : AÑMpAbmax Bq; Φpaq “ ab 1

is a nondegenerate G-equivariant ˚-homomorphism whose extension to enveloping
G-von Neumann algebras (see Proposition 2.6) preserves centres. Thus it follows
from Lemma 3.21 that α amenable implies α b β amenable, whence (1) ñ (2).
Proposition 5.10 shows that amenability always implies commutant amenability,
whence (2) ñ (3). The implication (3) ñ (4) is trivial. Moreover, (4) ñ (5), and
also (5) ñ (4) in the case that G is exact, follow from Proposition 5.10.

Thus to complete the proof, we need to show (4) ñ (1). If pπ, uq and πop are
as in the Haagerup standard form, we obtain a covariant representation pπˆπop, uq
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of pAbmax A
op, G, αb αopq into BpHq such that pπ ˆ πopqpab bq “ πpaqπoppbq for

all a P A and b P Aop. Then (4) implies that pπ ˆ πop, uq is commutant amenable.
It follows then from the properties of π and πop that

pπ ˆ πopqpAbmax A
opq1 “ πpAq1 X πpAopq1 “ πpAq1 X πpAq2 “ ZpπpAq2q – ZpA2αq,

hence commutant amenability of pπ ˆ πop, uq implies amenability of α as required.
�

As we will want to refer back to it below, we record the following corollary of
Theorem 5.16 and Proposition 5.10.

Corollary 5.17. Let pA,αq be a G-C˚-algebra with G exact. Then the fol-
lowing are equivalent:

(1) pA,αq is amenable.
(2) For every G-C˚-algebra pB, βq, the diagonal action α b β on A bmax B

has the weak containment property. �

Remark 5.18. In [7] Anantharaman-Delaroche defined an action pA,αq of G
to be weakly amenable, if for every G-C˚-algebra pB, βq

pAbmin Bq ¸αbβ,max G – pAbmin Bq ¸αbβ,red G.

Clearly this is closely related to Corollary 5.17, especially as Anantharaman-
Delaroche also mentioned that there was no particular reason to choose the
minimal tensor product rather than the maximal one in her definition.

As an application of Theorem 5.16 and Corollary 5.17, we conclude this section
by showing that amenability of an action pA,αq of G passes to the restriction of
the action to an exact closed subgroup H of G. At first sight, this statement
looks trivial, since if pθi : GÑ ZpA2αqq is a net of continuous compactly supported
positive type functions which implement amenability of pA,αq, then the net pθi|H :
H Ñ ZpA2αqq certainly implements amenability of the action of H on A2α, which
implies amenability of α|H as long as we know A2α|H “ A2α. This is true if H is

open in G, since then the H-continuous states of A coincide with the G-continuous
ones, hence both algebras have the same predual.

In general, it follows from the universal property of A2α|H that the identity of

A extends to a normal surjective ˚-homomorphism qH : A2α|H Ñ A2α, but this map

is not always injective. For example, if G acts on A “ C0pGq by the translation
action τ , then C0pGq

2
τ “ L8pGq as already observed before. But if H “ teu, we

get C0pGq
2
τ |teu

“ C0pGq
˚˚ which, as observed before, differs from L8pGq if G is not

discrete. However, using Theorem 5.16 we can show the following.

Proposition 5.19. Suppose that α : G Ñ AutpAq is an amenable action and
that H is an open, or exact and closed, subgroup of G. Then the restriction α|H :
H Ñ AutpAq is amenable as well.

While this paper was under review, Ozawa and Suzuki [61, Corollary 3.4]
showed that the result holds true even without the exactness or openness assump-
tions on H using a different argument.

Proof. By the above discussion, we may assume that H is exact. By Theorem
5.16 it suffices to show that

(5.2) pAbmax A
opq ¸max H – pAbmax A

opq ¸red H
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via the regular representation. To see this we first observe that amenability of α
implies that the diagonal action α b αop b τ of G on A bmax A

op b C0pG{Hq is
amenable as well, where τ : G Ñ AutpC0pG{Hqq is given by left translation. As a
consequence, we have

(5.3)
`

Abmax A
op b C0pG{Hq

˘

¸max G –
`

Abmax A
op b C0pG{Hq

˘

¸red G

via the regular representation. Now by Green’s imprimitivity theorem (e.g., see
the discussion after [31, Theorem 2.6.4]) there is a canonical equivalence bimodule
XG
HpAbmax A

opq which implements a Morita equivalence

pAbmax A
op b C0pG{Hqq ¸max G „M pAbmax A

opq ¸max H

and which factors through an equivalence bimodule XG
HpAbmaxA

opqred which gives
a Morita equivalence for the reduced crossed products

pAbmax A
op b C0pG{Hqq ¸red G „M pAbmax A

opq ¸red H.

The isomorphism (5.2) then follows from the isomorphism (5.3) and the Rieffel
correspondence between ideals in Morita equivalent C˚-algebras (see [68, Theorem
3.1]). �

5.3. Weak containment does not imply amenability

In this section, we present an example of a non-amenable action α : G Ñ

AutpAq of a locally compact group G on the C˚-algebra A “ KpHq of compact
operators such that A¸max G “ A ¸red G. Thus the weak containment property
(WCP) is not equivalent to amenability in general. The groups involved in our
construction are concrete: for example, one could use G “ PSLp2,Cq. As this
group is exact, and as for actions of exact groups the (WCP) is equivalent to
commutant amenability, our construction also shows that commutant amenability
is strictly weaker than amenability. Our example will also show that the (WCP)
(or commutant amenability) for a G-C˚-algebra pA,G, αq does not generally pass
to the restriction pA,H,α|Hq to a closed subgroup H of G, answering a question of
Anantharaman-Delaroche [7, Question 9.2 (b)].

We do not have an example of a non-amenable action with the weak contain-
ment property where the acting group is discrete. We shall also see below that our
construction is unlikely to produce anything interesting in that case, so the discrete
case remains quite open.

In order to prepare our example, we need to recall some basic facts on circle-
valued Borel 2-cocycles ω : G ˆ G Ñ T, the corresponding maximal and reduced
twisted group algebras C˚maxpG,ωq and C˚redpG,ωq, and their relations to actions of
G on the compact operators KpHq and their crossed products. As references for
more background and details, we suggest [30] and [31, Section 2.8.6]. Throughout
this section we assume that our groups are second countable and that H is a
separable Hilbert space.

Recall that a circle-valued Borel 2-cocycle on G is a Borel map ω : GˆGÑ T
such that

(5.4) ωpg, hqωpgh, lq “ ωpg, hlqωph, lq and ωpg, eq “ 1 “ ωpe, gq

for all g, h, l P G, where e denotes the neutral element of G. We write Z2pG,Tq for
the set of all such Borel cocycles. Two cocycles ω, ω1 are equivalent if there exists
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a Borel function ϕ : GÑ T such that

(5.5) ω1pg, hq “ ϕpgqϕphqϕpghqωpg, hq

and we write H2pG,Tq for the set of equivalence classes rωs for ω P Z2pG,Tq. Note
that pointwise multiplication of cocycles induces a group multiplication on Z2pG,Tq
and H2pG,Tq, respectively.

An ω-representation for a cocycle ω P Z2pG,Tq is a weakly Borel map v : GÑ
UpHq into the unitary group of a Hilbert space H such that

vgvh “ ωpg, hqvgh @g, h P G.

The regular ω-representation λω : GÑ UpL2pGqq is defined by
`

λωg ξ
˘

phq “ ωpg, g´1hqξpg´1hq.

The ω-twisted L1-algebra L1pG,ωq consists of the Banach space L1pGq (with respect
to Haar measure) with ω-twisted convolution and involution given by

f1 ˚ω f2pgq “

ż

G

f1phqf2ph
´1gqωph, h´1gq dg and f˚pgq “ ∆pg´1qωpg, g´1qfpg´1q,

for f, f1, f2 P L
1pGq and g P G. Every ω-representation v : G Ñ UpHq integrates

to give a ˚-representation ṽ : L1pG,ωq Ñ BpHq via

ṽpfq “

ż

G

fpgqvg dg,

and the assignment v ÞÑ ṽ gives a one-to-one correspondence between ω-represen-
tations of G and nondegenerate ˚-representations of L1pG,ωq.

The maximal twisted group algebra C˚maxpG,ωq is the enveloping C˚-algebra
of L1pG,ωq, i.e., the completion of L1pG,ωq by the C˚-norm }f}max “ supv }ṽpfq},
where v runs through all ω-representations of G. The reduced twisted group algebra

C˚redpG,ωq is the completion of L1pG,ωq by the reduced norm }f}red “ }Ăλωpfq}. Up
to isomorphism C˚maxpG,ωq and C˚redpG,ωq only depend on the cohomology class
rωs P H2pG,Tq: if ϕ : G Ñ T implements an equivalence between ω and ω1 as in
(5.5), the map f ÞÑ ϕ̄f , f P L1pG,ωq, extends to an isomorphism of the twisted
group algebras.

Every ω-representation v : G Ñ UpHq (and in particular v “ λω) determines
an action αω :“ Adv : G Ñ AutpKpHqq. Following [30, Section 3], let BrGptptuq
denote the equivariant Brauer group, which consists of all Morita equivalence classes
(equivalently by [30, Lemma 3.1], stable outer conjugacy classes) of actions α :
G Ñ AutpKpHqq with multiplication given by rαs ¨ rβs “ rα b βs. It follows from
[30, Lemma 3.1 and Section 6.3] that, up to stable outer conjugacy, αω only
depends on the class rωs P H2pG,Tq, and that the map

H2pG,Tq Ñ BrGptptuq; rωs ÞÑ rαωs

is an isomorphism of groups.
If ω P Z2pG,Tq is a 2-cocycle, its inverse in Z2pG,Tq is given by the complex

conjugate ω̄ of ω, and if v : G Ñ UpHq is an ω̄-representation, we get an action
αω̄ :“ Adv : GÑ AutpKpHqq of G on the compact operators K :“ KpHq such that

(5.6) C˚maxpG,ωq bK – K ¸max G and C˚redpG,ωq bK – K ¸red G

where both isomorphisms are extensions of the map

L1pG,ωq dKÑ L1pG,Kq; f b k ÞÑ
´

g ÞÑ fpgqkv˚g

¯
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(e.g., see [31, Remark 2.8.18 (1)]). Conversely, since every action of G on KpHq
is implemented by some ω̄-representation for some Borel cocycle ω P Z2pG,Tq
(compare [31, pages 76-77]), we see that crossed products of group actions on
KpHq always correspond to twisted group C˚-algebras. As a direct consequence we
get the following

Observation 5.20. Assume that ω is a circle-valued Borel 2-cocycle on the
locally compact group G. Then C˚maxpG,ωq – C˚redpG,ωq via the regular represen-
tation λω if and only if K¸αω̄,max G – K¸αω̄,red G via the regular representation.

The next observation follows easily from the definition of amenability together
with the fact that for any action α : GÑ AutpKpHqq we have KpHq2α “ KpHq˚˚ “
BpHq and ZpBpHqq “ C.

Observation 5.21. An action α : GÑ AutpKpHqq of a locally compact group
G on the algebra of compact operators on a Hilbert space H is amenable if and
only if G is amenable.

Thus, if we combine the above observations, in order to produce a non-
amenable action αω̄ : G Ñ AutpKpHqq that satisfies the (WCP), it suffices to find
a non-amenable group G and a circle-valued 2-cocycle ω : G ˆ G Ñ T such that
C˚maxpG,ωq – C˚redpG,ωq via the ω-regular representation λω.

In order to find such examples, we now consider central extensions

1 Ñ Z Ñ LÑ GÑ 1

of second countable locally compact groups. In this situation the maximal group

C˚-algebra C˚maxpLq carries a canonical structure of a C0p pZq-algebra via the struc-
ture homomorphism

Φ : C0p pZq – C˚pZq Ñ ZMpC˚maxpLqq; Φp pfq “

ż

Z

fpzqiLpzq dz,

where pf P C0p pZq denotes the Fourier transform of f P CcpZq Ď C˚pZq, and where
iL : L Ñ UMpC˚maxpLqq is the canonical homomorphism. It follows from [74,

Proposition C.5] that the fibre C˚maxpLqχ over a character χ P pZ is the quotient of
C˚maxpLq by the ideal

(5.7) Iχ :“
č

!

ker ũ : u P pL, u|Z “ χ ¨ 1Hu

)

.

Composing Φ : C0p pZq Ñ ZMpC˚maxpLqq with the regular representation induces a

similar C0p pZq-algebra structure on C˚redpLq and if pZ is discrete3 (i.e. Z is compact),

the fibre C˚redpLqχ at χ P pZ is the quotient

C˚redpLqχ “ C˚redpLq{I
red
χ “ C˚maxpLq{pker λ̃L ` Iχq “ C˚maxpLqχ{qχpker λ̃Lq

with

(5.8) Ired
χ :“

č

!

ker ũ : u P pL, u|Z “ χ ¨ 1Hu , u ă λL

)

Ď C˚redpLq,

and where qχ : C˚maxpLq Ñ C˚maxpLqχ denotes the quotient map.

3This is also true for general Z if G is exact: the key points are the Packer-Raeburn stabi-
lization trick [63, Proposition 1.1] and the work of Kirchberg and Wasserman [50, Theorem 4.2]

relating exactness to continuous fields; as we will not need this, we do not provide more details.
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If Z is compact (we will actually only use the case that Z is finite), we get
direct sum decompositions

(5.9) C˚maxpLq “
à

χP pZ

C˚maxpLqχ and C˚redpLq “
à

χP pZ

C˚redpLqχ.

The fibres C˚maxpLqχ and C˚redpLqχ have alternative descriptions as twisted group
algebras. This well-known fact, which goes back to Mackey’s analysis of unitary
representations for group extensions, can be deduced, for example, from [63, The-
orem 1.2] (see also [35, Lemma 6.3]), but in order to give a complete picture, we
present the main ideas below.

First we choose once and for all a Borel cross-section c : GÑ L for the quotient
map q : LÑ G such that cpeGq “ eL (such a cross-section exists by [11, Theorem

3.4.1], for example). Then each character χ P pZ determines a 2-cocycle ωχ : GˆGÑ
T by

ωχpg, hq “ χ
`

cpgqcphqcpghq´1
˘

, g, h P G.

The following lemma is a special case of [49, Theorem 4.53], but can be traced back
to Mackey [54].

Lemma 5.22. For χ P pZ, let ωχ be as above. Then for every Hilbert space H,
the assignment

u ÞÑ v :“ u ˝ c

gives a one-to-one correspondence between the unitary representations u : L Ñ

UpHq which restrict to χ ¨ 1H on Z and the ωχ-representations v : GÑ UpHq. �

Remark 5.23. If χ P pZ, then, using the Borel section c : G Ñ L, the induced
representation IndLZ χ in the sense of Mackey and Blattner (e.g., see [31, Section
2.7] for the definition in this setting) can be realized on the Hilbert space L2pGq by
the formula

(5.10)
`

IndLZ χpcpgqzqξ
˘

phq “ χpzqωχpg, g
´1hqξpg´1hq g, h P G, z P Z.

Indeed, if Hχ “ Fχ is the Hilbert space of the induced representation as defined pre-
ceding [31, Proposition 2.7.7], then the map u : Fχ Ñ L2pGq; ξ ÞÑ ξ ˝c extends to a

unitary intertwiner between Blattner’s realization of IndLZ χ and the representation
defined by the formula (5.10).

It follows that IndLZ χ corresponds to the ωχ-regular representation λωχ under
the correspondence of Lemma 5.22 above. In particular, if Z is compact, the regular
representation of L decomposes as the direct sum ‘χP pZλ

ωχ under the direct sum

decomposition in (5.9).

The proof of the next proposition follows along the lines of [63, Theorem 1.2]
(see also [35, Lemma 6.3]). Since every irreducible representation of L restricts to a

multiple of some character χ P pZ, the statement for the maximal group algebra can
be deduced from Lemma 5.22 and a straightforward computation. The statement
for the reduced group C˚-algebra C˚redpLq follows in a similar way by using Remark
5.23 and [31, Lemma 2.8.13].

Proposition 5.24 (cf [63, Theorem 1.2]). Let 1 Ñ Z Ñ L Ñ G Ñ 1 be a

central extension of second countable groups, and for each χ P pZ let ωχ P Z
2pG,Tq
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be the cocycle determined by χ and the Borel cross-section c : G Ñ L. Then the
map

ϕχ : CcpLq Ñ L1pG,ωχq; ϕχpfqpgq :“

ż

Z

fpcpgqzqχpzq dz

extends to a surjective ˚-homomorphism φχ : C˚maxpLq Ñ C˚maxpG,ωχq with kernel
Iχ, and therefore induces an isomorphism

C˚maxpLqχ – C˚maxpG,ωχq.

Similarly, if Z is compact (or G is exact), the map ϕχ induces an isomorphism
C˚redpLqχ – C˚redpG,ωχq. �

We are now ready to formulate the following principle:

Proposition 5.25. Suppose that 1 Ñ Z Ñ LÑ GÑ 1 is a central extension
of second countable groups such that Z is compact (or G is exact). Suppose further

that G is not amenable and there exists a character χ P pZ such that the following
holds:

(Z) Every irreducible unitary representation u : LÑ UpHq of L that restricts
to χ ¨ 1H on Z is weakly contained in the regular representation λL of L.

Then C˚maxpG,ωχq – C˚redpG,ωχq via the ωχ-regular representation λ̃ωχ . In partic-
ular, there exists a non-amenable action αχ : GÑ AutpKpHqq such that

KpHq ¸max G – KpHq ¸red G

via the regular representation.

Proof. If χ P pZ is such that property (Z) holds for χ, then it follows from
the description of the fibres C˚maxpLqχ and C˚redpLqχ as quotients of C˚maxpLq by the

ideals described in (5.7) and (5.8) that the regular representation λ̃L : C˚maxpLq Ñ
C˚redpLq induces an isomorphism C˚maxpLqχ – C˚redpLqχ. The result then follows
from Proposition 5.24 together with Observations 5.20 and 5.21. �

We are grateful to Timo Siebenand for helpful discussions towards the follow-
ing example for a central extension satisfying all the assumptions of the above
proposition.

Example 5.26. Consider the central extension

1 Ñ C2 Ñ SLp2,Cq Ñ PSLp2,Cq Ñ 1,

where C2 denotes the cyclic group of order two sitting in SLp2,Cq via ˘I with I the
identity matrix. Write N for the positive natural numbers, and N0 for NYt0u. The
representation theory of SLp2,Cq is well known and, following [39, Chapter III], a
complete list of (equivalence classes) of irreducible representations of SLp2,Cq can
be parametrized by the parameter space P consisting of the disjoint union of the
following subsets of N0 ˆ C:

P “
“

Nˆ iR
‰

Y
“

t0u ˆ ir0,8q
‰

Y
“

t0u ˆ p0, 1q
‰

Y tp0, 2qu.

If p0, 2q ‰ pn, sq P P, the corresponding irreducible representation upn,sq :
SLp2,Cq Ñ UpHpn,sqq acts on a Hilbert space Hpn,sq consisting of certain functions
ξ : CÑ C by the formula

(5.11)
´

upn,sq
`

a b
c d

˘

ξ
¯

pzq “ pbz ` dq´n|bz ` d|n´2s´2f
´az ` c

bz ` d

¯

.



66 5. THE WEAK CONTAINMENT PROPERTY AND COMMUTANT AMENABILITY

The point p0, 2q P P parametrizes the trivial representation of SLp2,Cq. It has
been shown by Lipsman in [53] that the only representations in this list which are
not weakly contained in the regular representation λ are the trivial representation
(with parameter p0, 2q) and the representations up0,tq with t P p0, 1q. But formula
(5.11) easily shows that all these representations restrict to a multiple of the trivial
character of C2. Hence it follows that the non-trivial character χ of C2 satisfies all
assumptions of Proposition 5.25.

A similar direct approach, using the well-known representation theory of
SLp2,Rq, shows that the central extension 1 Ñ C2 Ñ SLp2,Rq Ñ PSLp2,Rq Ñ 1
together with the non-trivial character of C2 also gives an example satisfying the
assumptions of Proposition 5.25.

Remark 5.27. We should point out that the above example does not contradict
Theorem 5.16. Indeed, if ω P Z2pG,Tq and αω “ Adλω : G Ñ AutpKq is a corre-
sponding action on K “ KpL2pGqq under the isomorphism H2pG,Tq – BrGptptuq,
then pαωqop : GÑ AutpKopq can be identified (up to stable outer conjugacy) with
αω̄ : G Ñ AutpKq. This follows from the fact that under the bijection T ÞÑ T op

from KÑ Kop we get

αop
g pT

opq “ pλωg Tλ
ω
g´1q

op “ pλωg´1q
opT oppλωg q

op

and that g ÞÑ vg :“ pλωg´1q
op is a ω̃-representation for the cocycle

ω̃pg, hq “ ωph´1, g´1q g, h P G,

which is equivalent to ω̄ (e.g., see [18, p. 989]). But then the diagonal action
αω b pαωqop „ αω b αω̄ corresponds to the trivial cocycle 1 “ ω ¨ ω̄. Therefore
αωbpαωqop represents the trivial class in the Brauer group BrGptptuq and hence is
Morita equivalent to the trivial action of G on KpHq. However, the trivial action on
a non-zero C˚-algebra A satisfies the (WCP) if and only if G is amenable: indeed,
one has canonical surjections

A¸id,max G – Abmax C
˚
maxpGq Ñ Ab C˚maxpGq Ñ Ab C˚redpGq – A¸id,red G

and if the action has the (WCP) all these maps must be isomorphisms, which forces
the canonical quotient C˚maxpGq Ñ C˚redpGq to be an isomorphism, too. It follows
in particular that for the actions α : G Ñ AutpKq constructed by the principle in
Proposition 5.25, the actions αb αop never satisfy the (WCP).

A similar construction of actions on K “ KpHq of a non-amenable discrete
group Γ seems to be unlikely, due to the following observation:

Proposition 5.28. Suppose that Γ is a discrete group which contains a copy
of the free group F2 in two generators. Then, for every action α : Γ Ñ AutpKq the
regular representation Λ : K ¸max Γ Ñ K ¸red Γ is not faithful. Hence pK, αq does
not satisfy the (WCP).

For the proof we need:

Lemma 5.29. Suppose that α : GÑ AutpAq is an action of the locally compact
group G on the C˚-algebra A and let H Ď G be an open subgroup of G. If pA,αq
satisfies the (WCP), then so does pA,α|Hq.
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Proof. This follows from the commutative diagram

A¸max H
ΛpA,Hq
ÝÝÝÝÑ A¸red H

§

§

đ

§

§

đ

A¸max G
ΛpA,Gq
ÝÝÝÝÑ A¸red G

together with the fact that the vertical arrows are faithful, since H is open in G,
and the lower horizontal arrow is faithful if pA,αq satisfies the (WCP). �

Proof of Proposition 5.28. Assume that α : Γ Ñ AutpKq is an action
which satisfies the (WCP). By assumption, Γ contains the free group F2. Thus
it follows from Lemma 5.29 that the restriction of α to F2 Ď Γ also satisfies the
(WCP). Since every automorphism of K “ KpHq is of the form Adu for some
u P UpHq, it follows from the freeness of F2 that there exists a unitary representation
u : F2 Ñ UpHq such that αg “ Adug for each g P F2. But then α is Morita
equivalent to the trivial action. Since F2 is not amenable, it follows as in Remark
5.27 above that α does not have the (WCP). �

We now discuss applications to restricted actions. In [7, Question 9.2 (b)]
Anantharaman-Delaroche asked: if pA,G, αq is a G-C˚-algebra with the (WCP),
and if H is a closed subgroup of G, then does pA,H,α|Hq also have the (WCP)?
We will use our work above to give two examples showing that the answer is no.

Here is our first source of examples where the (WCP) does not behave well
with respect to restrictions. The proof is immediate from Proposition 5.28.

Proposition 5.30. Let pK, G, αq be a non-amenable action with the (WCP)
as in the conclusion of Proposition 5.25, and let Γ be a discrete subgroup of G that
contains a copy of the free group F2. Then the restricted action pK,Γ, α|Γq does not
have the (WCP). �

Example 5.31. There are many examples satisfying the condition in the state-
ment. To give a concrete example, note that using Example 5.26, we may assume
that G “ PSLp2,Rq. The fundamental group of any closed, orientable surface of
genus at least two embeds as a discrete subgroup of PSLp2,Rq by the uniformiza-
tion theorem. Such a group Γ always contains a copy of F2, as is clear from its
standard presentation.

Below we give a second source of examples where the (WCP) does not behave
well with respect to restriction. This second collection of examples is perhaps even
more striking, as the subgroup in this case is just the diagonal subgroup of a product
GˆG.

Proposition 5.32. Let pK, G, γq be a non-amenable action of G “ PSLp2,Cq
or G “ PSLp2,Rq satisfying the (WCP) as in Example 5.26. Let A “ K b Kop be
equipped with the G ˆ G action defined as αpg,hq :“ γg b γop

h . Let H :“ tpg, gq P
GˆG | g P Gu Ď GˆG be the diagonal subgroup.

Then pA,GˆG,αq satisfies the (WCP), but pA,H,α|Hq does not.

Proof. We note first that pKop, G, γopq satisfies the (WCP). This follows as
the cocycle ω corresponding to γop takes values in C2 Ď T, and thus ω equals
its complex conjugate ω. As in Remark 5.27, γop is the action on Kop – K that
corresponds to ω, whence pKop, γopq and pK, γq are Morita equivalent.
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Note moreover that K¸redG is nuclear (and therefore also K¸maxG, Kop¸redG
and Kop ¸max G are nuclear). Indeed, using line (5.6) above, K ¸red G is Morita
equivalent to C˚redpG,ωq. On the other hand, using line (5.9) and Proposition 5.24,
C˚redpG,ωq is a direct summand of C˚redpLq, for L “ SLp2,Cq. Finally, note that L
is connected, whence C˚redpLq is nuclear by [28, Corollary 6.9 (c)].

Now, to see that pA,GˆG,αq satisfies the (WCP), note that

A¸max pGˆGq – pK ¸max Gq b pKop ¸max Gq

– pK ¸red Gq b pKop ¸red Gq – A¸red pGˆGq.

Notice that all C˚-algebras involved here are nuclear, so that we do not need to
worry about the choice of maximal or minimal tensor product. On the other hand,
the restriction of theGˆG-action on A toH is γbγop which, by the non-amenability
of γ (or G), does not satisfy the (WCP) by Theorem 5.16 (or by Remark 5.27). �

We close this section with an application of the above results towards property
(WF3) as considered by Bekka and Valette in [16]. A locally compact group G
satisfies property (WF3) if (and only if) for every closed subgroup H and every
irreducible unitary representation v of H there exists a unitary representation u of
G such that v is weakly contained in the restriction u|H . As pointed out in [16],
this is equivalent to asking whether the canonical ˚-homomorphism

jH : C˚maxpHq ÑMpC˚maxpGqq

given as the integrated form of the restriction iG|H of the canonical map iG : GÑ
UMpC˚maxpGqq is faithful for all closed subgroups H of G. Note that amenable
groups and discrete groups always satisfy (WF3) but it is shown in [16] that (WF3)
might fail in general. Indeed, [16, Theorem 1.3] shows that an almost connected
group G satisfies (WF3) if and only if G is amenable. It is an interesting problem
for a given group G to determine all closed subgroups H for which the map jH :
C˚maxpHq Ñ MpC˚maxpGqq fails to be injective. The following result complements
the results on lattices in SLp2,Rq and SLp2,Cq as given in [16, Section 5]:

Theorem 5.33. Let Γ be any nonamenable discrete subgroup of G “ SLp2,Rq
(resp. G “ SLp2,Cq) which contains the centre Z of G. Then the canonical
˚-homomorphism jΓ : C˚maxpΓq ÑMpC˚maxpGqq is not injective.

Proof. As Γ is nonamenable, it contains a free subgroup on two generators
by the Tits alternative [72, Corollary 1]. Since C2 – Z Ď Γ we may write C˚maxpΓq
as the direct sum C˚maxpΓq1Z ‘ C˚maxpΓqχ as in (5.9) where 1Z denotes the trivial
character and χ the nontrivial character of Z. With the similar decomposition of
C˚maxpGq as C˚maxpGq1Z ‘ C˚maxpGqχ it is easy to see that jΓ decomposes into the
direct sum of the two canonical ˚-homomorphisms

j1 : C˚maxpΓq1Z ÑMpC˚maxpGq1Z q and jχ : C˚maxpΓqχ ÑMpC˚maxpGqχq.

Thus jΓ is faithful if and only if both j1 and jχ are faithful. If αχ : G{Z Ñ

AutpKq is the corresponding action on the compacts, faithfulness of jχ translates
into faithfulness of the canonical ˚-homomorphism

jα : K ¸αχ,max pΓ{Zq ÑMpK ¸αχ,max pG{Zqq.
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By Example 5.26 we have K ¸max pG{Zq “ K ¸red pG{Zq and hence jα factors
through the composition

K ¸max pΓ{Zq
Λ
Ñ K ¸red pΓ{Zq ãÑMpK ¸red pG{Zqq

which is not faithful by Proposition 5.28. �





CHAPTER 6

Actions on X ¸ G-algebras and type I C˚-algebras

In this chapter we study amenability of actions on C˚-algebras with particularly
good structure. Some results require separability and exactness assumptions: see
the theorems below for precise assumptions.

Very roughly, a G-space X is regular if the quotient GzX is not too wild. In
Section 6.1 we discuss X ¸ G-algebras over a regular G-space X. The key tool
used throughout Section 6.1 is Theorem 5.16; as a consequence most results of this
section require exactness of the acting group. A simple example of an X¸G-algebra
with X regular occurs if H is a closed subgroup of G and we consider the G-space
X “ G{H. Then, if A is an H-C˚-algebra, there is an induced G-C˚-algebra

IndGH A, which turns out to be a pG{Hq ¸G-algebra. In the special case of IndGH A

our results imply that for G exact, pA,Hq is amenable if and only if pIndGH A,Gq is
amenable, partially generalizing a result of Anantharaman-Delaroche [6, Théorème
4.6] for actions of discrete groups. Another important application occurs when A

is a type I C˚-algebra, and the induced action of the exact group G on pA (which

need not be Hausdorff) is regular. According to a classical result of Glimm, pA then
admits a sort of decomposition into Hausdorff regular G-spaces, and we use this

to show that pA,G, αq is amenable if and only if for each rπs P pA, the stabilizer
subgroup Gπ of rπs is an amenable group.

In Section 6.2 we continue to study type I C˚-algebras, but under the additional

assumption that pA is Hausdorff. In this case, we show that pA,Gq is amenable if

and only if pC0p pAq, Gq is amenable.
Both of these characterizations of amenability for actions on type I C˚-algebras

can be seen as partial generalizations of Observation 5.21 above, which is the case

of an action on a type I C˚-algebra with pA a single point.

6.1. Amenability of regular X ¸G-algebras

In this section, we study actions on C˚-algebras that decompose in a good
way over a G-space X. We give applications to induced G-C˚-algebras and type I
G-C˚-algebras.

Recall that if X is a locally compact G-space, then a G-C˚-algebra pA,αq
is called an X ¸ G-algebra, if it is equipped with a nondegenerate G-equivariant
˚-homomorphism Φ : C0pXq Ñ ZMpAq. If A is an X¸G-algebra, then for each x P
X the fibre Ax of A at x is the quotient Ax :“ A{Ix, where Ix :“ ΦpC0pXr txuqqA
is the ideal of “sections” vanishing at x. It follows from [74, Theorem C.26] that
a G-C˚-algebra pA,αq has the structure of an X ¸ G-algebra if and only if there
exists a continuous G-equivariant map ϕ : PrimpAq Ñ X. More precisely, given
Φ : C0pXq Ñ ZMpAq as above, then the corresponding map ϕ : PrimpAq Ñ X
sends the closed subspace PrimpAxq Ď PrimpAq to the point x.

71
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If Gx “ tg P G : gx “ xu denotes the stabilizer at a point x P X, then α
induces an action αx : Gx Ñ AutpAxq via αxg pa`Ixq “ αgpaq`Ix. In what follows,
we denote by Gpxq “ tgx : g P Gu the G-orbit of x P X.

Recall that a topological space Z is called almost Hausdorff if every closed
subset Y of Z contains a relatively open dense Hausdorff subset U Ď Y , and Z is
called a T0-space if for two points y, z P Z with y ‰ z at least one of these points
is not in the closure of the other.

Definition 6.1. A locally compact G-space X is called regular if at least one
of the following conditions hold:

(1) For each x P X the canonical map G{Gx Ñ Gpxq; gGx ÞÑ gx is a homeo-
morphism and the orbit space GzX is either almost Hausdorff or second
countable;

(2) GzX is almost Hausdorff and G is σ-compact;
(3) G and X are second countable and GzX is a T0-space.

To help orient the reader, let us point out that it is shown in [68, Proposition
7.1] that (2) ñ (1) and it follows from [40, Theorem] (see Theorem 6.5 below) that
all three properties are equivalent if X and G are second countable. For further
background on such regularity properties see [34] and [74, Section 6.1].

As an application of Theorem 5.16 and Corollary 5.17 we now prove

Theorem 6.2. Suppose that G is an exact group, that X is a regular locally
compact G-space, and that pA,αq is an X ¸ G-algebra. Then the following are
equivalent:

(1) α : GÑ AutpAq is amenable;
(2) For every x P X the action αx : Gx Ñ AutpAxq is amenable.

For references on facts about induced representations of crossed products as
used in the proof below we refer to [31, Chapter 2] or [74].

Proof. To see (1) ñ (2) we first apply Proposition 5.19 to see that the re-
striction of α to Gx is amenable for all x P X (note that closed subgroups of
exact groups are exact by [51, Theorem 4.1].) Since Ax is a quotient of A by the
Gx-invariant ideal Ix, it follows then from Proposition 3.23 that the resulting action
on Ax “ A{Ix is amenable as well.

For (2) ñ (1) we show that for every G-C˚-algebra pB, βq the regular repre-
sentation

Λ : pAbmax Bq ¸max GÑ pAbmax Bq ¸red G

is an isomorphism. The result then follows from Corollary 5.17.
Indeed, if pA,αq is an X ¸ G-algebra via the structure map Φ : C0pXq Ñ

ZMpAq, then pAbmax B,αb βq is an X ¸G-algebra with respect to the structure
map

Φb 1 : C0pXq Ñ ZMpAbmax Bq.

Moreover, it follows from the exactness of the maximal tensor product that the fibre
pA bmax Bqx is isomorphic to Ax bmax B with action pα b βqx “ αx b β : Gx Ñ
AutpAx bmax Bq. If αx is amenable, the same is true for αx b β by Theorem 5.16.
It follows that the X ¸G-algebra pAbmax B,αb βq again satisfies all assumptions
of the theorem.

It therefore suffices to show that, under the assumptions of the theorem, the
maximal and reduced crossed products coincide. For this it suffices to show that
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every primitive ideal of A¸max G contains the kernel of the regular representation
Λ : A ¸max G Ñ A ¸red G. To see this, let ϕ : PrimpAq Ñ X be the continuous
G-map corresponding to Φ. It follows then from [34, Proposition 3] that ϕ is
a complete regularization in the sense of [34, Definition 1], which then implies
(using [34, Proposition 2]) that every primitive ideal P P PrimpA ¸max Gq can be

realized as the kernel of an induced representation IndGGxpρ ¸ uq, where pρ, uq is
the inflation of some irreducible representation of pAx, Gx, αxq to pA,Gx, αq. Since
αx : Gx Ñ AutpAxq is amenable, the representation ρ¸u is weakly contained in the
inflation of the regular representation of pAx, Gx, α

xq to pA,Gx, αq, which, in turn,
is weakly contained in the regular representation of A ¸max Gx. Since induction
preserves weak containment and since the regular representation of A ¸max Gx
induces to the regular representation Λ of A ¸max G, we see that IndGGxpρ ¸ uq is

weakly contained in Λ, which just means that P “ kerpIndGGxpρ¸ uqq Ě ker Λ and
the result follows. �

A trivial action of G on X is always regular, so the following is an immediate
consequence of Theorem 6.2.

Corollary 6.3. Suppose that pA,αq is an X ¸ G-algebra with X a trivial
G-space and that G is exact. Then α is amenable if and only if all fibre actions
αx : GÑ AutpAxq are amenable. �

If H is a closed subgroup of G and α : H Ñ AutpAq is an action, then

IndGHpA,αq :“

"

f P CbpG,Aq :
fpghq “ αh´1pfpgqq for all g P G, h P H,

and pgH ÞÑ }fpgq}q P C0pG{Hq

*

is a G-C˚-algebra with respect to the action

Indα : GÑ AutpIndGHpA,αqq; Indαgpfqptq :“ fpg´1tq.

The system pIndGHpA,αq, G, Indαq is called the system induced from pA,H,αq to
G. Note that there is a canonical G-equivariant structure map

Φ : C0pG{Hq Ñ ZpIndGHpA,αqq;
`

Φpϕqf
˘

pgq “ ϕpgHqfpgq,

which gives pIndGHpA,αq, G, Indαq the structure of a G{H¸G-algebra. The evalua-

tion maps f ÞÑ fpgq then identify the fibres pIndGHpA,αqqgH with A and the actions

pIndαqgH : GgH “ gHg´1 Ñ AutppIndGHpA,αqqgHq with αg : gHg´1 Ñ AutpAq
given by αg

ghg´1 “ αh. Thus, as a direct corollary of Theorem 6.2 we get

Corollary 6.4. Let H be a closed subgroup of the exact group G and let α :
H Ñ AutpAq be an action. Then the induced action Indα : GÑ AutpIndGHpA,αqq
is amenable if and only if α is amenable. �

Note that for discrete groups G the above result has been shown by
Anantharaman-Delaroche in [6, Théorème 4.6] without any exactness conditions
on G.

Before we state our next result, we need to recall a theorem of Glimm ([40,
Theorem 1]):

Theorem 6.5 (Glimm). Suppose that the second countable locally compact
group G acts on the almost Hausdorff second countable locally compact space X.
Then the following are equivalent:

(1) GzX is a T0 space.
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(2) Each orbit Gpxq is locally closed, that is Gpxq is relatively open in its
closure.

(3) For each x P X the canonical map

G{Gx Ñ Gpxq; gGx Ñ gx

is a homeomorphism.
(4) There exists an increasing system pUνq of open G-invariant subsets of X

indexed over the ordinal numbers ν such that
(a) U0 “ H and X “ Uν0

for some ordinal ν0;
(b) for every limit ordinal ν we have Uν “

Ť

µăν Uµ; and

(c) the orbit space GzpUν`1 r Uνq is Hausdorff for all ν. �

Note that Glimm’s original theorem lists a number of other equivalent state-
ments, but the above are all we need. If G ñ X satisfies the statements of Glimm’s
theorem, we say that X is a regular G-space. Item (1) in Glimm’s theorem implies
that this is compatible with Definition 6.1 if X is Hausdorff and G and X are second
countable.

The theorem applies in particular to actions α : GÑ AutpAq of second count-

able groups on separable type I C˚-algebras: in this situation the dual space pA of
unitary equivalence classes of irreducible ˚-representations of A is almost Hausdorff
and locally compact with respect to the Jacobson (or Fell) topology as described
in [32, Chapter 3]. If α : G Ñ AutpAq is an action on a type I C˚-algebra, then

there is a corresponding topological action G ñ pA given by pg, rπsq ÞÑ rπ ˝ αg´1s.

Moreover, for each rπs P pA the action α induces an action απ of the stabilizer Gπ
on the algebra of compact operators KpHπq given by απg “ Advg, where vg P UpHπq

is a choice of unitary which implements the unitary equivalence π » π ˝αg (see for
example [31, Remark 2.7.28]).

Theorem 6.6. Let G be a second countable, exact, locally compact group. Let
pA,G, αq be a G-C˚-algebra such that A is type I, and such that the induced action

on pA is regular. Then α is amenable if and only if for all rπs P pA the stabilizer Gπ
is an amenable group.

Proof. We first observe that it follows from part (3) of Glimm’s theorem

(Theorem 6.5), that for each rπs P pA the orbit Gprπsq “ trπ ˝αgs : g P Gu is locally

closed in pA. This implies that there are G-invariant ideals J Ď I Ď A such that

Gprπsq – yI{J : just take

J “
č

tker ρ : rρs P Gprπsqu and I “
č

!

kerσ : rσs P GprπsqrGprπsq
)

and use the well-known correspondences between open (respectively closed) subsets

of pA with the duals of ideals (respectively quotients) of A as explained in [32,
Chapter 3]. In what follows, we shall write AGprπsq for this subquotient I{J .

Since by Proposition 3.23 amenability passes to ideals and quotients, it follows
that amenability of α implies amenability of the induced action αGprπsq of G on the

subquotient AGprπsq. Since Gprπsq – {AGprπsq, it follows from [33, Theorem] that

pApGrπsq, α
Gprπsqq is isomorphic to the induced system

`

IndGGπ pKpHπq, α
πq, Indαπ

˘

.

Thus, it follows from Corollary 6.4 that αGprπsq is amenable if and only if the action
απ : Gπ Ñ AutpKpHπqq is amenable, which by Observation 5.21 is equivalent to
amenability of Grπs.
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So far we observed that under the assumptions of the theorem amenability of

α implies amenability of Gπ for all rπs P pA. To see the converse, let pUνq be a

system of G-invariant open subsets of pA over the ordinal numbers as in part (4)
of Glimm’s theorem (Theorem 6.5). Then for each ν there is a unique G-invariant

ideal Iν Ď A such that Uν – pIν . Since pA “ Uν0 “
xIν0 for some ordinal number ν0,

we also have A “ Iν0 .
We show by transfinite induction that, if all stabilizers Gπ are amenable, then

the restrictions αν : GÑ AutpIνq of α to the G-ideals Iν are amenable for all ν. For
ν “ 0 we have U0 “ H and therefore I0 “ t0u and the result is clear. So suppose
now that 0 ă ν is an ordinal number such that αµ : G Ñ AutpIµq is amenable
for all µ ă ν. If ν is a limit ordinal, then Uν “

Ť

µăν Uµ from which it follows

that Iν “
Ť

µăν Iµ. It follows then from Proposition 4.8 that αν : G Ñ AutpIνq is
amenable.

So assume now that ν “ µ ` 1 for some ordinal µ. By the conditions in item
(4) of Glimm’s theorem (Theorem 6.5) the orbit space Xν :“ GzpUν r Uµq –

Gzp{Iν{Iµq is Hausdorff. Therefore the G-C˚-algebra Aν :“ Iν{Iµ has the structure
of an Xν ¸ G-algebra for the trivial G-space Xν , and one checks that the fibre
actions αGprπsq : GÑ AutpAGprπsqq at orbits Gprπsq P Xν coincide with the actions

pAGprπsq, α
Gprπsqq as studied above. As seen above, these fibre systems are amenable

if and only if the groups Gπ are amenable. Thus it follows from Corollary 6.3 that

amenability of Gπ for all rπs P pA implies amenability of the action on Aν “ Iν{Iµ.
By assumption, the action on Iµ is amenable as well. Hence Proposition 3.23 now
implies amenability of αν : GÑ AutpIνq. This finishes the proof. �

6.2. Actions on type I C˚-algebras with Hausdorff spectrum

If pA,αq is a separable type I G-C˚-algebra with Hausdorff spectrum pA “ X
such that the action of the second countable exact group G is regular in the sense
of the previous section, then it is an easy consequence of Theorem 6.6 that α is
amenable if and only if the action on C0pXq is amenable. We will now show with
different methods that this result holds true without any regularity conditions on

the action. Note that if pA “ X is Hausdorff, then A has a canonical C0pXq-algebra
structure via the identification CbpXq – ZpMpAqq given by the Dauns-Hofmann
theorem (see e.g. [65, Section A.3] for more details).

Theorem 6.7. Let α : GÑ AutpAq be an action of a second countable locally

compact group on a separable type I C˚-algebra A such that X “ pA is Hausdorff.
Then α is amenable if and only if the corresponding action on C0pXq is amenable.

Recall that a C˚-algebra A is called a continuous-trace algebra if it is type I

with Hausdorff spectrum pA and such that for every rπs P pA there exists an open

neighbourhood U of rπs in pA and a positive element a P A such that ρpaq is a
projection of rank one for all rρs P U (see e.g. [32, Proposition 4.5.3]). In this

case the ideal AU Ď A satisfying xAU “ U is Morita equivalent to C0pUq. We refer
to [32, Chapter 10] or [65, Chapter 5] for detailed treatments of continuous-trace
algebras.

The proof of Theorem 6.7 will use the structure of the equivariant Brauer group
as introduced in [30], and which has been used already in the special case X “ tptu
in Section 5.3 above. For this recall that if X is a paracompact locally compact
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G-space, then the elements of the equivariant Brauer group BrGpXq are the X¸G-
equivariant Morita equivalence classes rA,αs of systems pA,G, αq in which A is a

separable continuous-trace C˚-algebra with spectrum pA – X and α : GÑ AutpAq

is an action which covers the given action of G on X via the identification X – pA.
It is shown in [30, Theorem 3.6] that BrGpXq becomes an abelian group if we define
multiplication of two elements rA,αs and rB, βs by

rA,αs ¨ rB, βs “ rAbX B,αbX βs,

where A bX B denotes the C0pXq-balanced tensor product of A with B. This
can be defined as the quotient pA b Bq{JX , where JX denotes the ideal in A b B
generated by all elements of the form

af b b´ ab fb; a P A, b P B, f P C0pXq.

The neutral element is given by the class rC0pXq, τ s, where τ : G Ñ AutpC0pXqq
is the action associated to the given G-action on X. If X “ tptu, this just boils
down to the group of Morita equivalence classes of actions on compact operators
on Hilbert spaces as used in Section 5.3 above.

Lemma 6.8. The statement of Theorem 6.7 holds true if, in addition, A is a
continuous-trace algebra.

Proof. Theorem 5.16 implies that if α : G Ñ AutpAq is amenable and
β : GÑ AutpBq is any action, then the diagonal action αbβ : GÑ AutpAbmaxBq
is amenable. Since amenability always passes to quotients by G-invariant ideals
(Proposition 3.23) it then follows that amenability of α also passes to diagonal ac-
tions on balanced tensor products AbXB. Thus, if α : GÑ AutpAq is an amenable

action on the continuous-trace algebra A with spectrum X “ pA, and if pB,G, βq is
a representative of the inverse class rA,αs´1 in BrGpXq, then the amenable action
pA bX B,G, α bX βq is equivariantly Morita equivalent to pC0pXq, G, τq. Since
amenability is stable under G-equivariant Morita equivalences by Proposition 3.20,
it follows that τ : GÑ AutpC0pXqq is amenable.

For the converse, assume that τ : GÑ AutpC0pXqq is amenable. Then pA,αq –
pC0pXq bX A, τ bX αq is amenable as well. �

The following lemma, which is possibly well known, provides a tool to reduce
the proof of Theorem 6.7 to the case of continuous-trace algebras.

Lemma 6.9. Let pA,αq be a separable type I G-C˚-algebra such that pA is Haus-
dorff. Then there exists a non-zero closed G-invariant continuous-trace ideal I of
A.

Proof. It follows from [32, Theorem 4.5.5] that there exists a non-zero con-

tinuous-trace closed ideal J of A. Let V “ pJ Ď pA and let U “
Ť

gPG g ¨ V . Then

U is a non-empty G-invariant open subset of pA. Let I Ď A denote the G-invariant

ideal such that U “ pI Ď pA. Then pI is Hausdorff. Thus in order to check that I is
a continuous-trace algebra, we only need to check that for each rπs P pI there exists
an open neighbourhood W of rπs and a positive element a P I such that ρpaq is
a rank one projection for all rρs P W . But this follows easily from the fact that

rπs P g ¨ V “ {αgpJq for some g P G and that αgpJq Ď I has continuous trace for all
g P G. �
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Proof of Theorem 6.7. It follows from Lemma 6.9 together with transfinite
induction that there exists an increasing system of G-invariant ideals pIνqν , indexed

by the ordinal numbers, such that A “ Iµ0
for some ordinal µ0, Iµ “

Ť

νăµ Iν for

every limit ordinal µ, and for every ν the quotient Iν`1{Iν is a continuous-trace

algebra. Likewise, if Uν “ pIν , pC0pUνqqν is a system of ideals in C0pXq with
the same properties. It follows then from a combination of Proposition 3.23 with
Proposition 4.8 that α : G Ñ AutpAq is amenable if and only if the actions on
the quotients Iν`1{Iν are all amenable and, similarly, that the action on C0pXq
is amenable if and only if the actions on C0pUν`1 r Uνq “ C0pUν`1q{C0pUνq are
all amenable. Since Uν`1 r Uν “ pIν`1{Iνq

x , the result now follows from Lemma
6.8. �

Since by [12, Corollary 4.14], an action α : G Ñ AutpC0pXqq is amenable if
and only if it is strongly amenable, we get the following corollary:

Corollary 6.10. Let pA,αq be a separable type I G-C˚-algebra such that pA

is Hausdorff, and G is second countable. Suppose also that X “ pA is Hausdorff.
Then α is amenable if and only if α is strongly amenable. �

Remark 6.11. Notice that the results of this section have no analogue if one
replaces amenability by the weaker notion of commutant amenability (or weak
containment): it can happen, for instance, that a continuous trace G-C˚-algebra

A is commutant amenable but the induced action on C0p pAq is not commutant
amenable. This follows from our counterexamples in Section 5.3 where A is the
algebra of compact operators on a Hilbert space, so continuous trace.





CHAPTER 7

Regularity properties

In this chapter, we collect together some miscellaneous results about regularity
properties.

In Section 7.1 we show that various C˚-algebraic regularity properties – for ex-
ample, nuclearity – pass from A to A¸max G – A¸red G if the action is amenable.
The key tools here are standard facts about the interactions between crossed prod-
ucts and tensor products, and Proposition 5.10 which tells us that the reduced and
maximal crossed products agree for an amenable action.

In Section 7.2 we characterize exactness of a group in terms of amenability
of actions on injective C˚-algebras; this generalizes an earlier result of ours [26,
Theorem 8.3] from actions of discrete groups to actions of general locally compact
groups.

Finally, in Section 7.3 we introduce a property called the continuous G-WEP.
This is an equivariant analogue of the WEP that seems appropriate to locally com-
pact groups. We show that the continuous G-WEP is closely related to amenability
and the weak containment property.

7.1. Properties passing to the crossed product by an amenable action

In this section, we show that amenable actions have good permanence proper-
ties with respect to nuclearity, exactness, the WEP, the LLP, and the LP: roughly,
we show that an amenable G-C˚-algebra A has any of these properties if and only
if A¸red G does.

With the exception of the LP, we state all results only in terms of the reduced
crossed product for brevity, but note that amenability implies A¸maxG “ A¸redG
by Proposition 5.10. Indeed, at least nuclearity, exactness, the WEP, and the LLP
pass from A ¸red G to A for arbitrary actions. We are grateful to one of the
referees for pointing out to us an easy argument for this fact, which replaces a
more complicated one we used in an earlier version. We do not know whether the
LP always passes from A ¸red G to A,1 but we shall see below that (for separable
systems pA,G, αq) it always passes from the maximal crossed product A¸max G to
A.

We first start with a lemma. For the statement, let us say that a pair pA,Dq of
C˚-algebras is nuclear if the canonical map AbmaxD Ñ AbD is an isomorphism.
The proof of the first statement in the lemma was suggested to us by one of the
referees.

1This is true in many cases: for instance, if G is discrete, then the LP passes from A¸red G
to A as it is the image of a conditional expectation.

79
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Lemma 7.1. Let pA,αq be a G-C˚-algebra, and let D be a C˚-algebra. If
pA¸redG,Dq is a nuclear pair, then so is pA,Dq. Conversely, if pA,αq is amenable
and pA,Dq is a nuclear pair, then so is pA¸red G,Dq.

Proof. For every C˚-algebra D equipped with the trivial G-action, there is a
canonical sequence of surjective ˚-homomorphisms

pA¸red Gq bmax D � pAbmax Dq ¸red G� pAbDq ¸red G – pA¸red Gq bD,

where the first map exists by the universal property of “bmax” applied to the
canonical homomorphisms of A ¸red G and D into MppA bmax Dq ¸red Gq. The
composition is the canonical quotient map pA¸redGqbmaxD � pA¸redGqbD. Thus
if pA¸redG,Dq is a nuclear pair, it follows that pAbmaxDq¸redG� pAbDq¸redG
is injective, which then forces A bmax D Ñ A bD to be injective as well, that is,
pA,Dq is a nuclear pair.

Suppose now that pA,αq is amenable. There is then a sequence of canonical
˚-homomorphisms

pA¸red Gq bmax D
p1q
– pA¸max Gq bmax D

p2q
– pAbmax Dq ¸max G

p3q
– pAbmax Dq ¸red G

p4q
Ñ pAbDq ¸red G

p5q
– pA¸red Gq bD

that we now explain. The isomorphisms (1) and (3) come from Proposition 5.10
and amenability of pA,αq, which also implies amenability of pA bmax D,α b idq
(see Theorem 5.16). The isomorphisms (2) and (5) are the canonical untwisting
isomorphisms (see for example [31, Lemma 2.4.1]). The homomorphism labeled (4)
is induced from the canonical quotient map AbmaxD Ñ AbD. Thus if pA,Dq is a
nuclear pair, then the composition of all the maps (1)-(5) above is an isomorphism,
which then implies that pA¸red G,Dq is a nuclear pair. �

Theorem 7.2. Let pA,αq be a G-C˚-algebra. Consider the statements below.

(1) A is nuclear (respectively has the LLP, has the WEP).
(2) A¸red G is nuclear (respectively has the LLP, has the WEP).

Then (2) ñ (1) in general, and if pA,αq is amenable then (1) ñ (2).

Proof. A C˚-algebra is nuclear if and only if pA,Dq is a nuclear pair for any
C˚-algebra D. Hence the statement on nuclearity is immediate from Lemma 7.1.
The assertions on the LLP and the WEP are also direct consequences of Lemma 7.1:
by [23, Corollary 13.2.5] the LLP for a C˚-algebra A is equivalent to the statement
that Bp`2q forms a nuclear pair with A, and the WEP is equivalent to the statement
that C˚pFq forms a nuclear pair with A, where F denotes a free group on countably
infinitely many generators. �

Remark 7.3. If G is discrete and pA,αq is a G-C˚-algebra, Anantharaman-
Delaroche shows in [6] that A ¸red G is nuclear if and only if A is nuclear and
α is amenable. An analogous result cannot be true for actions of general locally
compact groups, since by a famous result of Connes [28, Corollary 6.9 (c)] we
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know that the reduced group algebra C˚redpGq “ C¸red G of any second countable,
connected, locally compact group G is nuclear; however, the trivial action of G on
C is amenable if and only if G is amenable. Note that there are many connected
locally compact groups that are not amenable (e.g. SLp2,Rq).

Theorem 7.4. Let pA,αq be a G-C˚-algebra with A separable and G second
countable. Consider the statements

(1) A has the LP.
(2) A¸max G has the LP.

Then (2) ñ (1) in general, and if pA,αq is amenable then (1) ñ (2).

Proof. We use a recent characterization of the LP due to Pisier. Pisier shows
in [64, Theorem 0.2] that a separable C˚-algebra A has the LP if and only if
for any index set I and any collection of C˚-algebras tDi : i P Iu the canonical
˚-homomorphism

(7.1) `8ptDiuq bmax AÑ `8ptDi bmax Auq

is faithful, where `8ptDiuq denotes the C˚-algebra of bounded I-tuples pdiq P
ś

iPI Di equipped with the supremum norm. We now look at the map

(7.2) `8ptDiuq bmax pA¸max Gq Ñ `8
`

tDi bmax pA¸max Gqu
˘

.

Let tpBi, βiq : i P Iu be any collection of G-C˚-algebras, and let `8ptBiuqc denote
the algebra of continuous elements in `8ptBiuq with respect to the component-wise
action βgpbiq :“ pβi,gpbiqq. Let

(7.3) ϕ : `8ptBiuqc ¸red G ãÑ `8ptBi ¸red Guq

be defined on CcpG, `
8ptBiuqcq by evaluation at each i. Note that ϕ is injective:

this follows as if πi : Bi Ñ BpHiq is a faithful representation with induced regular
representation rπi¸λ : Bi¸redGÑ BpHibL

2pGqq (see line (1.5)) and if π :“
À

iPI πi
with induced regular representation rπ ¸ λ, then

´

à

iPI

p rπi ¸ λq
¯

˝ ϕ “ rπ ¸ λ

as maps `8ptBiuqc ¸red G Ñ B
`
À

iPIpHi b L2pGqq
˘

, and the right hand side is
injective.

Using this, if pA,αq is amenable, we now observe that the map in (7.2) can be
written as the composition of canonical maps

`8ptDiuq bmax pA¸max Gq –
`

`8ptDiuq bmax A
˘

¸max G

“
`

`8ptDiuq bmax A
˘

¸red G (since α is amenable)

(*)
Ñ `8

`

tDi bmax Au
˘

c
¸red G (induced from (7.1))

ãÑ `8
`

tpDi bmax Aq ¸red Gu
˘

(since (7.3) is faithful)

“ `8
`

tpDi bmax Aq ¸max Gu
˘

(since α is amenable)

– `8
`

tDi bmax pA¸max Gqu
˘

.

Thus A¸max G has the LP if and only if the map (*) is faithful, which holds true
if and only if the map `8ptDiuqbmax AÑ `8

`

tDibmax Auqc is faithful, and hence
if and only if the map in (7.1) is faithful. By Pisier’s theorem this holds true if and
only if A has the LP. Thus we proved that (1) ô (2) if pA,αq is amenable.
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In general2, we can factor the map in (7.2) as

`8ptDiuq bmax pA¸max Gq –
`

`8ptDiuq bmax A
˘

¸max G

(**)
Ñ `8

`

tpDi bmax Auqc ¸max G
˘

(***)
Ñ `8

`

tpDi bmax Aq ¸max Gu
˘

– `8
`

tDi bmax pA¸max Gqu
˘

,

(7.4)

where the map (**) is induced by the canonical G-map

(7.5) `8ptDiuq bmax AÑ `8
`

tDi bmax Auqc,

and the map (***) is induced by the coordinate projections

`8
`

tpDi bmax Auqc ¸max GÑ pDi bmax Aq ¸max G.

Using Pisier’s theorem, if A¸max G has the LP, then the composition is injective,
whence the map (**) is injective. This implies that the map in line (7.5) is injective,
which implies that the map in line (7.1) is also injective, so we are done by Pisier’s
theorem again. �

Proposition 7.5. Let pA,G, αq be an amenable G-C˚-algebra. Then A is exact
if and only if A¸red G is exact.

Proof. Assume that A is exact and let J ãÑ B � C be a short exact sequence
of C˚-algebras equipped with the trivial action. We thus get a commutative dia-
gram

0 ÝÝÝÝÝÑ pAb Jq ¸max G ÝÝÝÝÝÑ pAbBq ¸max G ÝÝÝÝÝÑ pAb Cq ¸max G ÝÝÝÝÝÑ 0

–

§

§

đ

–

§

§

đ

§

§

đ

–

0 ÝÝÝÝÝÑ pAb Jq ¸red G ÝÝÝÝÝÑ pAbBq ¸red G ÝÝÝÝÝÑ pAb Cq ¸red G ÝÝÝÝÝÑ 0

–

§

§

đ

–

§

§

đ

§

§

đ

–

0 ÝÝÝÝÝÑ pA¸red Gq b J ÝÝÝÝÝÑ pA¸red Gq bB ÝÝÝÝÝÑ pA¸red Gq b C ÝÝÝÝÝÑ 0

for which the upper vertical arrows are isomorphisms by Theorem 5.16 and Propo-
sition 5.10, and the lower vertical arrows are the canonical untwisting isomorphisms
(see [31, Lemma 2.4.1]). Hence the bottom line is exact if and only if the top line
is. The former holds for any short exact sequence if and only if A¸red G is exact,
and the latter holds for any short exact sequence if and only if A is exact (as ¸maxG
preserves short exact sequences – see for example [31, Proposition 2.4.8]). �

Remark 7.6. It has been shown by Ng in [59, Corollary 4.6] that exactness
of A ¸red G implies exactness of A for every G-C˚-algebra pA,αq without any
amenability conditions. Note that exactness of A¸max G always implies exactness
of A ¸red G (and hence exactness of A), since exactness is inherited by quotients
(see [23, Corollary 9.4.3]).

2We thank one of the referees for suggesting a simpler argument in this case.
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7.2. Characterizing exactness via actions on G-injective algebras

In this section we use amenable actions on G-injective C˚-algebras to charac-
terize exactness, generalizing our earlier result [26, Theorem 8.3] for discrete groups
to the locally compact case. Recall that a G-C˚-algebra A is G-injective if for any
commutative diagram

C

��
B

OO

// A

where the solid horizontal arrow is an equivariant ccp map and the vertical arrow
is a (˚-homomorphic) G-embedding, the diagonal arrow can be filled in by an
equivariant ccp map. Using for example [25, Corollary 2.4], one can see that G-
injectivity of A is equivalent to the following formally weaker property: for every
G-embedding ϕ : A ãÑ B of A into a G-C˚-algebra B there exists a ccp G-map
ψ : B Ñ A such that ψ ˝ ϕ “ idA. The class of G-injective C˚-algebras was
introduced (in a more general setting) and extensively studied by Hamana [42,43].

The property of being a G-injective C˚-algebra is a very strong one, but exam-
ples exist for any G: for example, CubpGq is always G-injective by [25, Proposition
2.2] (this is also implicit in [43]). The following result is thus a generalization of
the theorem of Brodzki, Cave, and Li [22] and Ozawa and Suzuki [61, Proposi-
tion 2.5] that exactness of G is equivalent to amenability of its canonical action on
CubpGq (which is used in our proof). It also generalizes a result of Kalantar and
Kennedy [48, Theorem 1.1] characterizing exactness of a discrete group in terms of
amenability of the action of a group on its Furstenberg boundary.

Theorem 7.7. Let G be a locally compact group. Then the following are equiv-
alent:

(1) G is exact;
(2) every G-injective G-C˚algebra pA,αq is strongly amenable;
(3) there exists a non-zero strongly amenable G-injective G-C˚-algebra pA,αq.

Proof. For (1) ñ (2), recall that [61, Proposition 2.5] gives that G is exact
if and only if the translation action of G on CubpGq is strongly amenable. Let
pA,αq be G-injective. Then [26, Lemma 4.3] implies that A is unital. Consider
the diagonal action of G on CubpGq b A and define ι : A ãÑ CubpGq b A by
ιpaq “ 1b a. By G-injectivity of A, there exists a ucp G-map ϕ : CubpGq bAÑ A
such that ϕ ˝ ιpaq “ a for all a P A. The restriction of ϕ to CubpGq – CubpGq b
1A Ď CubpGq b A then gives a ucp G-map Φ : CubpGq Ñ A. Since A lies in the
multiplicative domain of ϕ, it follows that Φ takes its values in ZpAq. Thus, if pθiq
is a net of compactly supported positive type functions as in Definition 3.5 which
establishes strong amenability of the translation action on CubpGq, then the net
pΦ ˝ θiq establishes strong amenability of pA,αq, which implies (2).

(2) ñ (3) follows as G-injective C˚-algebras exist for any G (for example,
CubpGq). For (3) ñ (1) let pA,αq be a G-injective, strongly amenable G-C˚-
algebra. Since A is unital, it follows that α restricts to a strongly amenable action
of G on the (unital) centre ZpAq. The existence of a strongly amenable action on a
unital commutative G-C˚-algebra implies that G is exact by [7, Theorem 7.2]. �
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Remark 7.8. In the spirit of the above result, let us point out that Ozawa
and Suzuki show in [61, Corollary 3.6] that a locally compact group admits an
amenable action on a unital C˚-algebra if and only if it is exact (the authors
previously established this for discrete groups [26, Corollary 6.2]).

7.3. The continuous G-WEP

In this section we introduce a property called the continuous G-WEP for locally
compact groups, and relate it to amenability and weak containment.

Definition 7.9. A G-C˚-algebra pA,αq has the continuous G-WEP if for every
G-embedding ϕ : A ãÑ B there exists a G-equivariant ccp map ψ : B Ñ A2α such
that ψ˝ϕ “ iA, where iA : AÑ A2α Ď pA¸maxGq

˚˚ denotes the canonical inclusion.

Recall from [25, Definition 3.9] that a G-C˚-algebra A has the G-equivariant
weak expectation property (G-WEP) if for every G-embedding ϕ : A ãÑ B there
exists a G-equivariant ccp map ψ : B Ñ A˚˚ such that ψ˝ϕ “ ι, where ι : AÑ A˚˚

denotes the canonical inclusion. The continuous G-WEP is introduced here as it
seems more appropriate to non-discrete groups. In fact, however, since our first
draft of this paper Bearden and Crann [13, Proposition 4.5] showed that there is
no difference between the G-WEP and continuous G-WEP, so either could be used
in any of the statements we give here.

Proposition 7.10. Let pA,αq be a G-C˚-algebra and consider the statements:

(1) pA,αq has the continuous G-WEP;
(2) pA,αq is amenable.

Then (1) ñ (2) if G is exact and (2) ñ (1) if A has the WEP. In particular, if G
is exact and A has the WEP, then both statements are equivalent.

Proof. It follows from an easy adaptation of [26, Lemma 7.9] that if pA,αq
has the continuous G-WEP, then for each unital G-C˚-algebra C there exists a ucp
G-map ψ : C Ñ ZpA2αq. This applies in particular to C “ CubpGq with translation
action. If G is exact, then the action on CubpGq is amenable by [61, Proposition
2.5], and this implies amenability of pA,αq.

Suppose conversely that A has the WEP and α is amenable. The WEP implies
that for any embedding ϕ : A ãÑ B and any faithful representation π : A Ñ BpHq
there exists a ccp map ψ : B Ñ πpAq2 such that ψ ˝ ϕ is the canonical inclusion
A ãÑ πpAq2. In particular, for each G-embedding ϕ : A ãÑ B there exists a ccp
map ψ : B Ñ A2α such that ψ ˝ϕ “ iA. Our goal is to replace ψ by a G-equivariant
ccp map with the same property.

Recall from Definition 3.15 that for a G-von Neumann algebra M Ď BpHq with
action σ : G Ñ AutpMq, we define a Hilbert M -module L2

wpG,Mq to be the weak
closure of CcpG,Mq inside BpH,L2pG,Hqq, where we view ξ P CcpG,Mq as acting
via

H Q v ÞÑ ξ ¨ v P L2pG,Hq given by pξ ¨ vqpgq “ ξpgqv.

For each b P B, define mb P L
8pG,A2αq by

mb : GÑ A2α, g ÞÑ α2gpψpβg´1pbqqq,

which we consider as an adjointable operator on L2
wpG,A

2
αq as in the discussion

below Definition 3.15. Let pξiqiPI be a net in CcpG,ZpA
2
αqcq Ď L2

wpG,A
2
αq with the
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properties from item (3) of Proposition 3.16. For each i, define a map

Ti : B Ñ A2α, b ÞÑ xξi |mbξiyA2α .

One then checks that the net pTiq consists of ccp maps. After passing to a subnet
we may assume that pTiq has a pointwise ultraweak limit (see [23, Theorem 1.3.7]),
which is also a ccp map T : B Ñ A2α. We claim that this limit has the right
properties.

First, let us check that if a is an element of A, then T pϕpaqq “ a. Indeed, in
this case ma is just the operator of left-multiplication by a, and so we have

Tipaq “ xξi |aξiyA2α “

ż

G

ξipgq
˚aξipgq dg.

for all i. As ξi takes values in ZpA2αq, this just equals xξi | ξiyA2αa, however, which
converges ultraweakly to a as i tends to infinity.

It remains to check that T is equivariant. Let b P B and h P G. Then

Tipβhpbqq “ xξi |mβhpbqξiyA2α “

ż

G

ξipgq
˚α2g

`

ψpβg´1hpbqq
˘

ξipgq dg.

Replacing g by hg, this becomes
ż

G

ξiphgq
˚α2hg

`

ψpβg´1pbqq
˘

ξiphgq dg

“ α2h

´

ż

G

pλα
2

h´1ξiqpgq
˚α2g

`

ψpβg´1pbqq
˘

pλα
2

h´1ξiqpgq dg
¯

“ α2hpxλ
α2

h´1ξi |mbpλ
α2

h´1ξiqyA2αq.

To prove equivariance, it thus suffices to show that

xλα
2

h´1ξi |mbpλ
α2

h´1ξiqyA2α ´ xξi |mbξiyA2α

“ xλα
2

h´1ξi ´ ξi |mbpλ
α2

h´1ξiqyA2α ` xξi |mbpλ
α2

h´1ξi ´ ξiqyA2α

(7.6)

tends ultraweakly to zero. Indeed, in the identity

xλα
2

h´1ξi ´ ξi |λ
α2

h´1ξi ´ ξiyA2α

“ α2h´1pxξi |ξiyA2αq ` xξi |ξiyA2α ´ xξi |λ
α2

h´1ξiyA2α ´ xλ
α2

h´1ξi |ξiyA2α ,

the right hand side tends ultraweakly to zero. The expression in line (7.6) therefore
tends ultraweakly to zero by using the Cauchy-Schwartz inequality for the semi-
inner products x¨ | ¨yφ :“ φpx¨ | ¨yA2αq for all states φ P SpAqc, i.e., for all normal
states on A2α by Proposition 2.16. �

We now turn to the relationship of the (continuous) G-WEP to weak contain-
ment type properties. Recalling that A ¸inj G “ A ¸red G when G is exact by
[25, Proposition 4.2], the property “A ¸max G “ A ¸inj G” should be viewed as a
generalization of the weak containment property to actions of potentially non-exact
groups.

In [25, Proposition 3.12] we showed that the G-WEP implies that A¸maxG “
A¸inj G. The following is a slight strengthening of this result:

Proposition 7.11. Let pA,αq be a G-C˚-algebra. Then the following are equiv-
alent:

(1) A has the continuous G-WEP;
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(2) For every nondegenerate covariant representation pπ, uq : pA,Gq Ñ BpHq
and every G-embedding ι : A ãÑ B into another G-C˚-algebra B, there is
a ccp G-map ϕ : B Ñ πpAq2 with ϕ ˝ ι “ π.

In particular, if A has the continuous G-WEP, then every covariant representation
is G-injective and A¸max G “ A¸inj G.

Proof. Fix a nondegenerate covariant representation pπ, uq : pA,Gq Ñ BpHq
and a G-embedding ι : A ãÑ B. Assuming that A has the continuous G-WEP, there
is a ccp G-map ψ : B Ñ A2α with ψ ˝ ι “ iA : A ãÑ A2α. On the other hand, by
Proposition 2.3 there is a normal G-equivariant homomorphism π2 : A2α Ñ πpAq2 Ď
BpHq with π2 ˝ iA “ π. It follows that ϕ :“ π2 ˝ψ is a ccp G-map with ϕ˝ ι “ π, as
desired. Conversely, if every covariant representation satisfies this property, then so
does the universal representation of A¸maxG and this gives the continuous G-WEP
for A.

The fact that if A has the continuous G-WEP, then every covariant represen-
tation is injective is now true by definition (see Definition 5.2), and A ¸max G “

A¸inj G follows from Proposition 5.4. �

If the C˚-algebra being acted on is commutative, we can do better and get
a complete characterization of the weak containment type property “A ¸max G “
A¸injG”. Note that when G is exact, the following result reduces to Theorem 5.15;
it should therefore be viewed as a generalization of that theorem that is applicable
outside the realm of exact groups.

Theorem 7.12. Let A “ C0pXq be a commutative G-C˚-algebra. Then A has
the continuous G-WEP if and only if A¸max G “ A¸inj G.

Proof. If A has the continuous G-WEP, then Proposition 7.11 implies that
A ¸max G “ A ¸inj G. For the converse, let pπ, uq be a Haagerup standard form
representation of pA2α, G, α

2q on a Hilbert space H as in Theorem 5.14. Since A
is commutative, so is A2α. In particular A2α is injective, whence [25, Proposition
2.2] implies that B :“ CubpG,A

2
αq is a commutative G-injective G-C˚-algebra with

respect to the action induced by the left translation G-action on G and the trivial G-
action on A2α. Consider the canonical G-embedding ι : A ãÑ B that sends a P A to
the function ιpaqpgq :“ iApαg´1paqq, where iA : A ãÑ A2α is the canonical embedding.
Since pπ ˝ iA, uq is a nondegenerate covariant representation of pA,G, αq and since
A ¸max G “ A ¸inj G, it follows from Corollary 5.5 that pπ ˝ iA, uq is G-injective.
Hence there exists a ccp G-map ϕ : B Ñ BpHq with ϕ ˝ ι “ π ˝ iA. Since B is
commutative, it follows that

ϕpBq Ď πpiApAqq
1 “ πpA2αq

1 “ πpA2αq – A2α,

where the second equality follows as πpA2αq is a masa in BpHq by the properties of
the Haagerup standard form. We may therefore view ϕ as a ccp G-map B Ñ A2α
splitting the inclusion A ãÑ B in the sense that ϕ ˝ ι “ iA. Since B is G-injective,
this implies that A has the continuous G-WEP. �



CHAPTER 8

Some new developments and questions

In what follows we report on some results related to this work and discuss some
open questions.

8.1. A summary of new developments

We start with results related to this work. Between our first posting of a draft of
this paper on the arXiv and the current version, Bearden and Crann [12,13], McKee
and Pourshashami [56], and Ozawa and Suzuki [61] have produced beautiful results
which both complement and generalize some of ours. These authors also answered
some questions that we explicitly raised in earlier versions of this paper. To clarify
the state of the art and how these different results are related to each other, and
also to record when others answered questions we raised in earlier versions of this
paper, we discuss some of this work.

1. The relationship between amenability (Definition 3.4) and von Neumann
amenability (Definition 3.1) was first addressed by Anantharaman-Delaroche (using
different language). Indeed in [6, Théorème 3.3], Anantharaman-Delaroche shows
that these notions are equivalent for actions of discrete groups. In the current
paper, we formulated these notions for locally compact groups, and proved they are
equivalent whenever the acting group is exact (see Proposition 3.16). In an earlier
version, we asked whether they are equivalent in general. This was rapidly solved
affirmatively by Bearden and Crann in [12, Theorem 4.2]. This result of Bearden
and Crann was influential on subsequent versions of this paper, as it allowed us
to generalize several of our theorems: for example, we originally established the
equivalence of amenability of an action α : G Ñ AutpC0pXqq and measurewise
amenability of the underlying action G ñ X in Theorem 3.27 under the assumption
that G is exact, and [12, Theorem 3.6] allowed us to establish it in general.

2. In an earlier version of this paper, we claimed a proof that amenability
and the (QAP) are equivalent for discrete groups. Our proof unfortunately had a
mistake, but the equivalence was subsequently shown to hold in general by Ozawa
and Suzuki [61, Theorem 3.2]. In this theorem they also show that amenability
for an action α : G Ñ AutpAq is equivalent to the existence of a G-conditional
expectation

P : L8pG,A˚˚q Ñ A˚˚,

although, as noted before, A˚˚ fails to be a G-von Neumann algebra in general.
This can be viewed as a direct extension of the original definition by Anantharaman-
Delaroche for discrete G. Ozawa and Suzuki show in [61, Theorem 2.13] that an
action has the (QAP) if and only if it has the approximation property (AP) of Exel

87



88 8. SOME NEW DEVELOPMENTS AND QUESTIONS

and Ng [38], and therefore the (AP) and amenability are equivalent in general (see
Chapter 4 for more details).

3. In [6, Théorème 4.9] Anantharaman-Delaroche shows that if G is discrete,
then amenability of α : GÑ AutpC0pXqq is equivalent to strong amenability. In an
earlier version of this paper, motivated by our results on measurewise amenability
in Theorem 3.27, we asked whether this extends to locally compact groups: more
precisely, we asked the equivalent question of whether amenability of α : G Ñ

AutpC0pXqq and topological amenability of G ñ X are the same. This was solved
by Bearden and Crann in [12, Corollary 4.14].

4. In this paper, we show in Proposition 5.19 that amenability behaves well
under restrictions to exact subgroups. This was established without the exactness
assumption by Ozawa and Suzuki in [61, Corollary 3.4].

5. In an earlier version of this paper, we asked whether a locally compact group
is exact if and only if it admits an amenable action on a unital C˚-algebra. This
was answered in the affirmative by Ozawa and Suzuki in [61, Corollary 3.6].

6. In an earlier version of this paper we asked whether the G-WEP of [25,
Definition 3.9] and the continuous G-WEP of Definition 7.9 above are the same.
This was solved affirmatively by Bearden and Crann in [13, Proposition 4.5], as
part of a general study of the equivariant weak expectation property and related
issues.

7. In Question 8.8 below we ask for which class C of locally compact groups
does the following hold: “For any G-C˚-algebra pA,αq, if A ¸red G is nuclear,
then α is amenable.” In a previous version of this paper we suggested that the
class C might contain all groups with property (W) as studied by Anantharaman-
Delaroche in [7, Section 4]. In [29, Theorem 3.5], Crann shows that property (W)
is equivalent to inner amenability. Very recently, McKee and Pourshahami proved
(see [56, Corollary 6.6]) that all inner amenable groups (and hence all groups with
property (W)) are indeed contained in C.

As a result of this progress, we are now in the very satisfactory situation of
knowing that many versions of amenability are equivalent in complete generality:
these include von Neumann amenability, amenability, the (wQAP), the (AP), and
the (QAP). On the other hand, it is now clear that other versions of amenabil-
ity are different: work of Suzuki [69] (see also the discussion in [26, Section 3])
shows that strong amenability is strictly stronger than amenability; and commu-
tant amenability is strictly weaker than amenability thanks to the results of Section
5.3.

To conclude the discussion on recent developments, we would like to draw the
reader’s attention to another aspect of the recent work of Ozawa and Suzuki in
[61], and in particular to Section 6 of that paper. Ozawa and Suzuki give several
exciting constructions of amenable actions of locally compact groups on purely
infinite simple C˚-algebras. In particular, they show (among other interesting
examples), that every amenable action of a second countable group G on a separable
C˚-algebra A is KKG-equivalent to an outer amenable action of G on a separable
simple purely infinite C˚-algebra B so that the KKG-equivalence can be realized
by a G-equivariant inclusion A Ď B (see [61, Theorem 6.1]).



8.2. SOME QUESTIONS 89

8.2. Some questions

We now turn to questions.
Let us first discuss the connection between amenability and weak containment.

In Section 5.3, we showed that there are non-amenable actions on the compact
operators whose maximal and reduced crossed products are the same, i.e. that
have the weak containment property. However, the following basic question remains
open.

Question 8.1. Is there a non-amenable action on a unital C˚-algebra with the
weak containment property?

We also observed that the method used in Section 5.3 for producing non-
amenable examples with weak containment is unlikely to work for discrete groups.
The following question is thus very natural and interesting.

Question 8.2. Is there a non-amenable action of a discrete group with the
weak containment property?

Due to the close relationship between the weak containment property and com-
mutant amenability, the following questions are closely related.

Question 8.3. Is there a non-amenable, commutant amenable action on a
unital C˚-algebra?

Question 8.4. Is there a non-amenable, commutant amenable action of a
discrete group?

Note that Questions 8.1 and 8.2 are equivalent to Questions 8.3 and 8.4 respec-
tively for actions of exact groups, as Theorem 5.10 shows the weak containment
property and commutant amenability are equivalent for actions of exact groups.
However, for non-exact groups, this is not at all clear: note for example that Ques-
tions 8.3 and 8.4 have a negative answer for actions on commutative G-C˚-algebras
by Theorem 5.15; however, Questions 8.1 and 8.2 seem particularly interesting for
commutative G-C˚-algebras.

The above comments also make the following question quite natural.

Question 8.5. Are weak containment and commutant amenability equivalent
for all actions of locally compact groups?

A problem with commutant amenability is that it seems difficult to check:
using Proposition 5.13, it suffices to check commutant amenability for the universal
representation, but this is generally difficult due to the huge size of this object. As
in many interesting (and possibly all) cases, commutant amenability is equivalent
to the weak containment property, it would be very satisfying to have an answer to
the following question.

Question 8.6. Is there an ‘intrinsic’ characterization of commutant amenabil-
ity for a G-C˚-algebra A, i.e. can one find an approximation property of the pair
pA,Gq that is equivalent to commutant amenability?

Continuing a discussion of the difference between amenability and commutant
amenability, we know from Theorem 7.2 (and Proposition 5.10) that if pA,αq is
amenable and A is nuclear, then A¸redG is nuclear. The following is thus natural.
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Question 8.7. Suppose that pA,αq is a G-C˚-algebra with A nuclear. Does
commutant amenability of pA,αq imply nuclearity of A¸red G?

In [26, Theorem 6.1, part (i)], the authors show that if A is nuclear and com-
mutant amenable, and if G is discrete, then the canonical inclusion A ¸red G Ñ

pAbAopq¸redG is a nuclear map. This is evidence for a positive answer to Question
8.7, at least in the discrete case.

Continuing this circle of ideas, Anantharaman-Delaroche showed in [6,
Théorème 4.5] that if the reduced crossed product A ¸red G by an action of a
discrete group G is nuclear then the action of G on A must be amenable. A similar
result cannot hold for all locally compact groups since one can find counterexamples
even for A “ C by taking G to be any non-amenable group with nuclear reduced
C˚-algebra, such as G “ SLp2,Rq.

Question 8.8. For what class C of locally compact groups G does the following
hold? “For anyG-C˚-algebra pA,αq, if A¸redG is nuclear, then pA,αq is amenable.”

As mentioned above, McKee and Pourshashami [56, Corollary 6.6] showed that
C contains all inner amenable groups (equivalently, all groups with property (W)),
generalizing Anantharaman-Delaroche’s result for discrete groups. However, the
exact extent of the class C remains open. Recall from Remark 7.6 that nuclearity of
A¸red G always implies nuclearity of A. Hence one may as well restrict to nuclear
A in Question 8.8.

As a last question, unrelated to the discussion above, let us recall that Bearden
and Crann [12, Corollary 4.14] showed that an action on a commutative G-C˚-
algebra is amenable if and only if it is strongly amenable. On the other hand, in
Corollary 6.10 we showed that an action of a second countable group on a sepa-
rable type I C˚-algebra with Hausdorff spectrum is amenable if and only if it is
strongly amenable. It is natural to ask whether the Hausdorffness and separability
assumptions can be dropped.

Question 8.9. Let pA,G, αq be a type I, amenable G-C˚-algebra. Is pA,G, αq
also strongly amenable?

Note that if one replaces “type I” with “nuclear”, then the answer is “no” as
shown by Suzuki in [69] (see also the discussion in [26, Section 3]).
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