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ABSTRACT. This paper is motivated primarily by the question of when the
maximal and reduced crossed products of a G-C'*-algebra agree (particularly
inspired by results of Matsumura and Suzuki), and the relationships with
various notions of amenability and injectivity. We give new connections between
these notions. Key tools in this include the natural equivariant analogues of
injectivity, and of Lance’s weak expectation property: we also give complete
characterizations of these equivariant properties, and some connections with
injective envelopes in the sense of Hamana.
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1. INTRODUCTION

This paper studies the relationship between various notions of amenability of
actions of a group G on a C*-algebras A and the ‘weak containment’ question of
whether A xp.x G = A x,. G. We were motivated by trying to elucidate relationships
between the following works:

e recent interesting examples of Suzuki showing a disconnect between
notions of amenable actions and the equality A .« G = A x,. G;

e Matsumura’s work relating the property A xpn.xG = A x,.G to amenabil-
ity (at least in the presence of exactness of the acting group);

e the extensive work of Anantharaman-Delaroche on amenable actions, most
relevantly for this paper in [4] and [5];

e the seminal theorem of Guentner-Kaminker and Ozawa relating
exactness to existence of amenable actions;

e our study of the so-called maximal injective crossed product Eﬂ and the
connections to equivariant versions of injectivity;

e Hamana’s classical study of equivariant injective envelopes and the
recent important exploitation of these ideas by Kalantar and Kennedy in
their work on the Furstenberg boundary [16].

Our goal was to try to bridge connections between some of this in a way that we
hope systematises some of the existing literature a little better, as well as solving
1



2 ALCIDES BUSS, SIEGFRIED ECHTERHOFF, AND RUFUS WILLETT

some open problems. As the material is by nature somewhat technical, we will
refrain from giving precise statements in this introduction, but just some flavour.
Our results are perhaps most easily explained by discussing the contents of the
paper, which we now do.

In Section [2} we recall two notions of amenable action on a C*-algebra due to
Claire Anantharaman-Delaroche, and recall the theorems of Guentner-Kaminker and
Ozawa on exactness. We also make a simple observation based on this (Proposition
that will be used over and over again in one form or another throughout the
paper: roughly, this says that given an exact group G, for A to be amenable, it
is sufficient that there exists an equivariant ucp map from ¢*(G) to the centre of
the multiplier algebra M(A) (or the center of the double dual A**). In Section
we briefly recall Suzuki’s examples. We then show that while they do not
have Anantharaman-Delaroche’s strong amenability property, they do satisfy a
version of Exel’s approximation property and are therefore amenable in the sense of
Anantharaman-Delaroche. The key idea here is to drop a precise centrality condition
in favour of some form of ‘quasi-centrality’.

Motivated by Suzuki’s examples, in Section [d] we try to find reasonable conditions
on A that characterize when A Xy, G = A %, G in general. We are able to do
this (at least in the presence of exactness) in terms of injectivity-type conditions on
representations (Corollary , and in terms of a weak amenability-like condition
that we call commutant amenability (Theorem . We should explicitly say that
while these results seem theoretically useful, they have the drawback that they are
quite difficult to check in concrete examples without knowing something a priori
stronger. In Section [5] we continue our study of weak containment. Following
ideas of Matsumura, we now bring the Haagerup standard form of the double dual
into play, and use this to get more precise results on weak containment somewhat
generalizing Matusmura’s: the most satisfactory of these are in the setting of actions
of exact groups on commutative C*-algebras (Theorem , but we also have partial
results for noncommutative algebras, and non-exact groups.

In Section [6], we go back to the relationship with exactness. Thanks to the
above-mentioned work of Guentner-Kaminker and Ozawa, it is well-known that a
group G is exact if and only if it admits an amenable action on a compact space. It
is thus natural to ask whether the analogous result holds for amenable actions on
unital, possibly noncommutative C*-algebras, i.e. is it true that G is exact if and
only if it admits an amenable action on a unital C*-algebra? The answer is (clearly)
‘yes’ if ‘amenable’ in this statement means what Anantharaman-Delaroche calls
strong amenability, but this is less clear in general. We show in fact (see Theorem
that the answer is ‘yes’ in the strong sense that a group G is exact if and
only if it admits a commutant amenable action on a unital C*-algebra; commutant
amenability is the weakest reasonable notion of amenability that we know of.

Section [7] studies equivariant versions of injectivity, and of Lance’s weak expec-
tation property; these are used throughout the paper, but here we look at them
more seriously. In particular, we give complete characterizations of when a (unital)
G-algebra has these properties in terms of amenability and of the underlying non-
equivariant versions (Theorems and ; again, exactness turns out to play a
fundamental (and quite subtle) role. Finally, in Sectionwe discuss the relationship
of our notion of injectivity to that introduced by Hamana (fortunately, they turn out
to be the same), and to his equivariant injective envelopes. We give applications of
this material to a conjecture of Ozawa on nuclear subalgebras of injective envelopes
(Corollary [8.4), and to the existence of amenable actions on injective envelopes
(Theorem In both cases, our results generalize work of Kalantar and Kennedy.
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The initial motivation for this paper grew out of the relation of injectivity and
the weak expectation property with the maximal injective crossed product functor
as studied in [9]. It is interesting to note that this functor is, in a sense, ‘dual’ to
the minimal exact crossed product which was studied by the authors in [10] and
has a close relation to the Baum-Connes conjecture. The present paper shows that
the maximal injective crossed product nicely relates to amenability.

This paper started during visits of the first and third authors to the University of
Miinster. The first and third authors are grateful for the warm hospitality provided
by the second author and the operator algebra group of that university.

2. NOTATION, BASIC DEFINITIONS AND PRELIMINARIES

We use the following notation. The abbreviations ucp and ccp stand for ‘unital
completely positive’ and ‘contractive completely positive’ respectively. Throughout
the paper, G always refers to a discrete group. A G-algebra will always refer to a
C*-algebra A equipped with an action of G by *-automorphisms (we will not really
discuss any algebras that are not C*-algebras, so this should not lead to confusion).
A G-space will always refer to a locally compact Hausdorff space X equipped with
an action of G by homeomorphisms; note that if X is a G-space, then A = Cy(X)
is a G-algebra and vice versa. Generally, we will not explicitly introduce notation
for the action unless it is needed.

Given a G-algebra A, we will equip various associated algebras with the canonically
induced G-actions without explicitly stating this. Thus for example this applies
to the multiplier algebra M(A), the double dual A**, the opposite algebra A°P,
and the centre Z(A). Given G-algebras A and B, we will always equip the spatial
and maximal tensor products A ® B and A ®uax B with the associated diagonal
G-action unless explicitly stated otherwise.

A map ¢ : A — B between sets with G-actions « and f is equivariant if
d(ag(a)) = Bg(a(a)) for all a € A and g € G. We will also call equivariant maps
G-maps and allow other similar modifiers as appropriate (for example ‘ucp G-map’,
‘G-embedding’, ...). Relatedly, a G-subalgebra A of B will be a C*-subalgebra
that is invariant under the G-action (and is therefore a G-algebra in its own right).
Equivalently, we can think of a G-subalgebra A of a G-algebra B as a G-algebra A
equipped with a G-embedding ¢ : A — B.

The C*-algebra £*(G) will play a special role in this paper. It is always considered
as a G-algebra via the (left) translation action defined by

(v f)(h) == f(g~"h).

The following definitions are (to the best of our knowledge) due to Claire
Anantharaman-Delaroche: the definition of positive type functions is from [4, Defi-
nition 2.1], amenability of an action is from [4, Definition 4.1]. If A is commutative
or unital, then our notion of strong amenability as defined below is equivalent to a
notion of strong amenability due to Ananthraman-Delaroche [5, Definition 6.1] (see
Lemma below). In general our notion of strong amenability could possibly be
weaker than the one introduced by Anantharaman-Delaroche.

Definition 2.1. Let A be a G-algebra with associated action «.
A function 0 : G — A is positive type if for any finite subset {g1,...,gn} of G, the
matrix
(Oégi, (gz_lg]))ld € MH(A)
is positive.
We say that A is amenable if there exists a net (0; : G — Z(A**));er of positive
type functions such that:

(i) each 6; is finitely supported,;
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(ii) for each i, ;(e) < 1;
(iii) for each g € G, 0;(g) — 1 ultraweakly as i — c0.
And we call A strongly amenable if there exists a net (0; : G - ZM(A));er of
positive type functions such that:
(i) each 6; is finitely supported;
(ii) for each 7, 0;(e) < 1;
(iii) for each g € G, 0;(g) — 1 strictly as i — co.

Remark 2.2. Our notion of an amenable G-algebra should not be mistaken by the
notion of an amenable (i.e., nuclear) C*-algebra. The terminology for amenable
actions is unfortunately not completely consistent in the literature. The notion of
strong amenability also appears as |7, Definition 4.3.1] in the text of Brown and
Ozawa (although only in the special case of unital G-algebras). There it is just
called amenability. The notion of amenability as defined above is equivalent to
what is called weak amenability in [5, Definition 6.1] (see 5, Proposition 6.4]) for
nuclear G-algebras. However, it is not clear if this is true in the non-nuclear case,
so we will keep to the terminology ‘amenability’. Observe that strong amenability
always implies amenability, since the canonical inclusion M(A) — A** is strict to
ultraweak continuous.

For commutative G-algebras A = Cy(X), the notions of amenability and strong
amenability are the same, and both are equivalent to amenability of the G-space
X, see |4, Théoréme 4.9 and Remarque 4.10]. However, we will see in Section
below that they are not the same in general even if we restrict to nuclear, unital
C*-algebras.

The following lemma will get used many times in the paper.

Lemma 2.3. Let A and B be G-algebras and suppose there exists a strictly continuous
uep G-map ¢ : ZM(A) — ZM(B). Then, if A is strongly amenable, so is B.

Proof. If (6;) is a net with the properties required to show strong amenability of
A, then it is not difficult to check that (¢ o 6;) has the properties required to show
strong amenability of B. O

Remark 2.4. Notice that the above result applies, in particular, if A is unital and
there is a ucp G-map Z(A) — ZM(B).

In [5, Definition 6.1], Anantharaman-Delaroche defines a (possibly noncommuta-
tive) G-algebra A to be strongly amenable if there exists an amenable G-space X
and a nondegenerate G-equivariant s-homomorphism ® : Co(X) — ZM(A).

Lemma 2.5. Every strongly amenable G-algebra in the sense of |5, Definition 6.1]
is strongly amenable in the sense of Definition above. If the G-algebra A is
unital or commutative, then both notions of strong amenability coincide.

Proof. The first assertion follows from Lemma [2.3| as every nondegenerate *-homo-
morphism Cy(X) — ZM(A) extends to a strictly continuous *-homomorphism
M(Cy(X)) —» ZM(A). If A is commutative, both definitions coincide by [5l
Proposition 6.3], so let us assume now that A is unital and let X be the Gelfand
dual of Z(A). Then strong amenability in the sense of Definition implies that
C(X) is an amenable G-algebra, thus X is an amenable G-space by [4, Théoréme
4.9 and Remarque 4.10]. Since the inclusion C(X) = Z(A) — A is unital (hence
nondegenerate), A is strongly amenable in the sense of [5, Definition 6.1]. O

The following important theorem is due to Ozawa |21] and (partially) Guentner-
Kaminker [12]. For background on exact groups, see for example [26] or 7, Chapter
5].
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Theorem 2.6. For a discrete group G, the following are equivalent:
(i) G is exact;
(i) the canonical G-action on £*(G) is strongly amenable. O

Proposition 2.7. Let G be an exact group and A be a G-algebra. The following
hold.
(i) If there exists a ucp G-map {*(G) — Z(M(A)), then A is strongly amenable.
(i) There ezists a ucp G-map £*(G) — Z(A**) if and only if A is amenable.

As a consequence, A is amenable if and only if A** is strongly amenable.

Proof. The first part follows immediately from Lemma [2.3] and Theorem [2.6]

For the second part, let a be the action on A**, and equip £°(G, Z(A**)) with
the G-action defined by

(@gf)(h) == ag(f(g~"h)).

If A is amenable, we have by |4, Théoreme 3.3] that there is a ucp G-map
P:(*(G, Z(A*)) — Z(A**). Composing this with the canonical unital G-embedding
(P (G) > (*(G, Z(A**)) gives the desired ucp G-map (*(G) — Z(A**).

Conversely, assume that there is a ucp G-map ¢*(G) — Z(A**). Since G is
exact, its translation action on ¢ (@) is strongly amenable, whence A** is strongly
amenable by Lemma [2.3] and so A is amenable, since convergence in norm implies
ultraweak convergence. O

Remark 2.8. Note that it follows from the above proof that for exact groups G the
ultraweak convergence in item (iii) of the definition of an amenable G-algebra (see
Definition can be replaced by norm convergence.

We will need some equivalent versions of amenability and strong amenability

Definition 2.9. Let A be a G-algebra with action a. Define ¢?(G, A) to be the
collection of all functions £ : G — A such that

D E9)*<9)

geG
converges in the norm of A. Equip £2(G, A) with the A-valued inner product defined
by
&= Eg)*n(g),

geG

[€l2 := VK€, )l a

and the G-action & defined by

(@€)(g) == an(&(h™1g)).
Lemma 2.10. Let A be a G-algebra.
(i) A is amenable if and only if there exists a net (& : G — Z(A**))ser of
functions such that:
(i) each &; is finitely supported;
(ii) for each i, {&,&) < 1;
(tit) for each g€ G, (&,04&) — 1 ultraweakly as i — 0.
(i) A is strongly amenable if and only if there exists a net (§; : G — ZM(A))ier
of functions such that:
(i) each &; is finitely supported;
(ii) for each i, {&,&) < 1;
(iit) for each g€ G, (&, aq4&) — 1 strictly as i — .

the norm defined by
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Proof. The proof is essentially contained in that of |4, Théoréme 3.3] and the proofs
are essentially the same in both cases, so we just sketch the idea in the amenable
case. If (§;) is a net as in the statement of the lemma, then

satisfies the properties needed to check amenability. Conversely, if (6;) is as in the
definition of amenability, then the fact that each 6; is positive type and finitely
supported means we can apply a GNS-type construction for each ¢ as in [4, Propo-
sition 2.5] to get a vector n; € £*(G, Z(A**)) such that 0;(g) = {n;,&yn;) for all
g € G. Using that the collection of finitely supported elements is norm dense
in (2(G, Z(A**)) and appropriately approximating each 7; by some &; gives the
result. O

3. SUZUKI'S EXAMPLES

In [25], Yuhei Suzuki produces (amongst other things) a very striking class of
examples. Let G be a countable, exact, non-amenable group. Suzuki shows in
[25, Proposition B] that there exists a simple, unital, separable, nuclear G-algebra
A such that A x,. G = A Xy G. As A is simple and unital, its center is just
scalar multiples of the unit, so A cannot be strongly amenable: if it were, G would
necessarily be amenable. It is well-known that strong amenability implies equality
of the maximal and reduced crossed product C*-algebras, but the converse had
been an open question.

Now, it is also known [4, Proposition 4.8] that if A is an amenable G-algebra,
then A %, G = A X, G. The converse is again open, and so it is natural to ask if
Suzuki’s examples are amenable. The answer turns out to be yes: one way to see
this is to note that Suzuki’s examples arise as a direct limit

A x,. G =lim(A4, %, G)

with each A, a strongly amenable nuclear G-subalgebra of A; as A, is (strongly)
amenable, A, x G is nuclear by [4, Théoréme 4.5], whence A x G is nuclear, and so
A is amenable by [4, Théoréme 4.5] again.

While we guess Suzuki (and others) are aware of this, it does not seem to have
been explicitly recorded in his paper. Suzuki’s examples seem to be the first known
examples of G-algebras with an amenable action that is not strongly amenable.

In the rest of this section, we will give another approach to amenability of Suzuki’s
algebras, partly as it is more concrete, and partly as we suspect it will be useful
in other contexts. This involves another variant of amenability in the form of
an approximation property. Although this variant will not be used in the rest of
the paper, it seems a natural notion so worth including. It is also the strongest
‘amenability-type’ condition that we could show that Suzuki’s examples satisfy, and
so seems worthwhile from that point of view.

Definition 3.1. A G-algebra A has the quasi-central approzimation property (QAP)
if there is a net (§: G — M(A));er of finitely supported functions satisfying

(i) <&,&) <1 for all 4

(ii) <&, a4y converges strictly to 1 in M(A) for all g € G;

(iii) |&a — a&ill2 — 0 for all a € A.

One can actually assume that the functions &; in the definition of the QAP take
their values in A:

Lemma 3.2. Suppose that the G-algebra A has the QAP. Then the functions (&)ier
in the definition of the QAP can be chosen to take their values in A, i.e., there exists
a net (§: G — A)ier which satisfies conditions (i), (ii), and (iii) of Definition[3.1]
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Proof. Let (n; : G — M(A));er be a net as in Definition and let (ej);es be a
quasi-central approximate unit of A, i.e., we have |eja — ae;| — 0 for all a € A,
and 0 < e; < 1forall je J. Define&;: G — Abyé,(g9) :=ni(g)ej. Then
iy i) = ei{mi,miye; < 1forall (¢,7) e I x J and

(Cigr Og&i ) = € Ggniag(ej) — 1
in the strict topology of A, using the fact that multiplication is strictly continuous

on bounded subsets of M(A). Thus (&;.;)(.j)erxs satisfies conditions (i) and (ii) of
Definition To check condition (iii) let @ € A be fixed. Then

I€ija — a&ijll2 = [mieja — aniej]2
< [nieja —miaej|2 + |niae; — anies2
< [nill2 - [eja — aej|| + [mia — anil2 - [le;]
< |eja — aej| + |nia — an;l2 — 0.
This finishes the proof. O

It follows from Lemma that if A is strongly amenable, then it has the QAP.
On the other hand, it follows from Lemma that the QAP implies the so-called
approximation property of Exel (see |11, Definition 20.4]), and therefore that the
QAP implies amenability by the results of |1}, Theorem 6.11 and Corollary 6.16]. To
summarize, we have the following implications in general:

strong amenability = QAP = amenability.

We will soon show that Suzuki’s examples have the QAP (but are not strongly
amenable), whence the first implication above is not reversible. We do not know
if the second is reversible. The key point for showing Suzuki’s examples have the
QAP is as follows.

Proposition 3.3. Assume the G-algebra A is the inductive limit of a sequence (or
net) of G-algebras (Ap)nen- If all A, have the QAP, then so does A. In particular,
if all A, are strongly amenable, then A is amenable.

Proof. Since the QAP passes to quotients by G-invariant ideals, we may assume
without loss of generality that (A4, )nen is an increasing net of G-algebras such that
Unen Ay, is dense in A. For each n let (&) be a net of functions &, : G — A,
satisfying the conditions of Definition for the QAP of A,,. Let n;,, : G — A
denote the composition of &; , with the inclusion A, — A. It is clear that the net
(mi,n) satisfies condition (i) in the definition of the QAP. Moreover, conditions (ii)
and (iii) for (&; ) imply that

alMins QgNin) = @5 Miny QgNinya —a and |9 na — an;nfa — 0

for all a € A,,, and hence for all a € UnenAy. Since (1) is uniformly bounded (by
1) with respect to the £2-norm, it follows that (ii) and (iii) hold for alla e A. O

Now, let us briefly describe Suzuki’s examples as given in |25, Proposition B] in
order to see how they fit into the above discussion. Let G be any countable exact
group. Then it is always possible to choose a second countable, compact, amenable
G-space X (i.e. the G-algebra C'(X) is strongly amenable) such that the G-action
is also free and minimal (see for example |24, Section 6]). The crossed product
Ag := C(X) x G is therefore a simple, separable, unital and nuclear C*-algebra.
Consider Ag as a G-algebra endowed with the conjugation action, that is, the (inner)
action implemented by the canonical unitaries uy € C*(G) < Ag. Observe that an
inner action can never be amenable unless G is amenable (or the algebra is zero).
However, the diagonal G-action on the infinite tensor product A := A?N has the
QAP (and is therefore amenable).
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Indeed, as observed by Suzuki, it is enough to realise A as the direct limit of the
G-subalgebras A,, := AP" ® C(X), which are X x G-algebras in the obvious way. It
follows that all A,, are strongly amenable, hence A has the QAP by Proposition [3.3]

Note that Suzuki’s examples also show that (unlike the QAP), strong amenability
does not behave well with respect to limits. It is not clear to us whether amenability
passes to inductive limits of G-algebras, but Proposition [3.3| at least shows that
limits of strongly amenable G-algebras are amenable.

We close this section with a brief discussion on the amenability of some other
examples of G-algebras A with A x G = A x, G constructed by Suzuki in [25].
In |25/ Theorem A] he produces examples of actions « : G — Aut(A) of non-
amenable second countable locally compact groups on simple C*-algebras A such
that the full and reduced crossed products coincide. Since A is simple, we have
ZM(A) =~ Cy(Prim(A)) = C, hence, since G is not amenable, A cannot be a strongly
amenable G-algebra.

To see that A is amenable if G is discrete, recall that Suzuki constructs A as a
crossed product A = Cy(X x G) x ' with respect to a certain minimal diagonal
action, say 3, of a free group I' such that X is a compact amenable I'-space and
B commutes with the G-action p := idx ® p on Cy(X x G), where p denotes the
right translation action of G on itself. Then the action 5 on Cy(X x G) is amenable
and therefore A = Cy(X x G) x T is nuclear by [4, Théoréme 4.5]. Now, since the
G-action p commutes with £, it induces an action, say 7, of G on A = Co(X xG) x T,
which is the action considered by Suzuki. To see that this action is amenable, by
[4, Théoreme 4.5] it suffices to show that A x G is nuclear. But this follows from
the equation

AxyG=(Co(X xG)xgT) x,G=(Co(X xG)x;G)xT
= (C(X) ®K((G))) # T,

which is nuclear by the amenability of the action of I' on C(X) @ K(¢2(G)), which
follows from amenability of the I'-space X.

A similar argument shows that Suzuki’s examples of [25, Proposition C] are also
amenable if G is discrete (but not strongly amenable). We believe that all these
examples should also have the QAP, but so far we did not succeed to give a proof.

4. WEAK CONTAINMENT

In this section, motivated in part by Suzuki’s examples from [25], and partly by
issues that came up in our earlier work on exotic crossed products [9], we study the
question of characterizing when A Xy G is equal to A x,. G. If A satisfies this
property, one sometimes says that A has weak containment, whence the title of this
section.

This question seems difficult in general: while amenability of the action is a
sufficient condition by [4, Proposition 4.8], finding a ‘good’ necessary condition
that works in complete generality has proven elusive, even in the case when A is
commutative.

It turns out to be easier to characterize when A .. G equals the so-called
maximal injective crossed product A x5 G, which was introduced by the current
authors in |9]. As proved in [9, Proposition 4.2], A xinj G = A %, G whenever G is
exact, so characterizing when A x.x G = A %y G is the same as characterizing
when A X, G = A %, G for ‘most’ groups that come up in ‘real life’.

We first recall the definition of the maximal injective crossed product from
19, Section 3].
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Definition 4.1. For a G-C*-algebra A, the injective crossed product A xin; G is
defined as the completion of C.(G, A) for the norm defined on a € C.(G, A) by

la] := inf{|a o | Bxm..c | ¢ : A — B an injective equivariant *-homomorphism}.

It is not immediate from the definition, but this is a C*-norm. Moreover, it defines
a crossed product functor that takes injective equivariant x-homomorphisms to
injective #-homomorphisms. The following definitions are important for establishing
the basic properties of Xi,j, and will be fundamental to our work in this paper.

Definition 4.2. A G-algebra A is G-injective if for any G-embedding A € B, there
exists an equivariant conditional expectation P : B — A.

A G-algebra A has the G-WERP if for any G-embedding ¢ : A — B, there exists
a ccp map P : B — A** such that Pot: A — A** coincides with the canonical
embedding A — A**.

The above definition of G-injectivity is maybe a little non-standard. We will
see in Section [8| below (see Proposition that it is equivalent to the more usual
definition due to Hamana [15].

We have the following basic lemma: this will get used several times below.

Lemma 4.3. If B is an injective G-algebra in the sense of Definition[[.3, then it
s unital.

Proof. Let B be the unitisation of B, equipped with the unique extension of
the G-action. Then the natural inclusion B — B admits an equivariant ccp

splitting F : B—B , which is necessarily a conditional expectation (see for example
[7, Theorem 1.5.10]). Then for any b € B,

E(1)b= E(1b) = E(b) = b= E(b) = E(b1) = bE(1),
so E(1) is a unit for B. O

Remark 4.4. A G-injective G-algebra clearly has the G-WEP. Moreover, if A** is
G-injective, then A has the G-WEP. To see this, let A < B be a G-embedding,
and extend it canonically to an embedding of double duals A** «— B**  Ag A**
is G-injective, this admits a splitting P : B** — A** and the restriction of this
splitting to B is the map required by the G-WEP. The converse is false in general:
indeed, A = ¢*(G) is G-injective by Example just below, so always has the
G-WEP; however, A** is G-injective if and only if G is exact as will follow from
Theorem [2.6] and Theorem [Z.4] below.

Example 4.5. Perhaps the simplest example of a G-injective algebra is ¢*(G).
Indeed, let (*(G) — B be any G-embedding. Choose a state ¢ on B that extends
the Dirac mass at the identity ., considered as a multiplicative linear functional
Je : £*(G) — C. Then define

P:B—(*(G), P®b): g ¢(By-1 (b))

It is not too difficult to see that this is a ccp G-map splitting the original inclusion
(compare |9, Proposition 2.2] for a more general result).

Noting that Co(G)** = {*(G), Remark [4.4] gives that Cy(G) has the G-WEP. It
is never G-injective for infinite G, as G-injectivity implies unitality by Lemma

More generally (and with essentially the same proof: see [9, Proposition 2.2 and
Remark 2.3]) we have the following example.

Example 4.6. Let B be a C*-algebra that is injective in the usual sense (i.e. G-
injective where G is the trivial group). Then ¢* (G, B) equipped with the translation
action defined by

(va(£))(h) := f(g~"h)
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is G-injective. More generally, if B is equipped with a G-action 3 (but is still only
assumed non-equivariantly injective) and ¢ (G, B) is equipped with the diagonal
type action

(Bgf)(h) == By(f(g~"h)),
then (*(G, B) is G-injective.

The following lemma, proved in [9, Proposition 3.12], is key to establishing these
properties.

Lemma 4.7. Let A be a G-algebra with the G-WEP (in particular, A could be
G-injective). Then A Xpmax G = A Xipj G. O

The following lemma is well-known. The proof is closely related to the proof of
[8) Theorem 4.9, (5) = (6)].

Lemma 4.8. Let A be a G-algebra, and (o,u) : (A,G) — B(H) be a pair consisting
of a ccp map o and a unitary representation u satisfying the usual covariance relation

o(ag(a)) = ugo(a)ug

for allae A and g € G. Then the integrated form
o xu:Co(G,A) > B(H), fr> Y a(f(9))ug

geG

extends to a ccp map o X u: A Xpax G — B(H).

Proof. Replacing A with its unitization and ¢ with the canonical ucp extension to
the unitization ([7, Proposition 2.2.1]) we may assume that A and o are unital. Equip
the algebraic tensor product A ® H with the inner product defined on elementary
tensors by

(@®&,b®n) := <& o(a”b)n).
As in proofs of the usual Stinespring construction (see for example |7, Proposition
1.5.1]), the fact that o is completely positive implies that this inner product is
positive semi-definite, so we may take the separated completion to get a Hilbert
space H'. Let a denote the action of G on A, let g € G, and provisionally define a
map v, : H — H' by the formula
Vg1 a®& — ag(a) @ugé.

Equivariance of ¢ implies that this preserves the inner product defined above, so
each v4 is well-defined and unitary. It is then straightforward to check that v
defines a unitary representation v of G on H’'. Moreover, as in the usual Stinespring
construction, for a € A the map &(a) defined on elementary tensors by

g(a):bR®&— ab®¢

gives a well-defined bounded operator on H’, and this defines a representation
o : A — B(H'), which is covariant for the representation v of G. Again analogously
to the usual Stinespring construction,

ViE—>14¢

defines an equivariant isometry V : H — H’ such that V*&(a)V = o(a) for all
a € A. One can now check that if

FXv: A Xpax G— B(H')
is the integrated form of the pair (&,v), then the map defined by
(1) AXpax G > B(H), a— V*(G xv(a))V
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is an extension of the map

oxu:C(G,A) - BH), f— Za(f(g))ug
G

from the statement. As the map defined in line is clearly ccp, we are done. [

The statement and proof of the following result are inspired by Lance’s tensor
product trick: see for example the exposition in |7, Proposition 3.6.6], or the original
article |18].

Theorem 4.9. Let v: A — B be a faithful G-embedding. The following are equiva-
lent:
(i) ¢t Xmax G A Xmax G — B Xax G is injective;
(i) for any covariant representation (mw,u): (A,G) — B(H), there is a ccp G-map
¢: B — B(H) with pot=m;
(iii) there exists a covariant representation (w,u) : (A,G) — B(H) such that the
integrated form m x u : A Xyax G — B(H) is faithful and for which there is a
cep G-map p: B — B(H) with pot = 7.

Proof. Assume (i), and let (m,u) : (A,G) — B(H) be a covariant representation.
We must show that the dashed arrow below can be filled in with a ccp G-map

(2) B

T N
. N
N
N
A 4”>B(H)
Let A and B be the unitzations of A and B and let 7 : A — B(H) and 7: A — B

be the canonical (equivariant) unital extensions. It will suffice to prove that the
dashed arrow below

B
N
- N
L N
AN
[N
A—">B(H)

can be filled in with an equivariant ccp map; indeed, if we can do this, then the
restriction of the resulting equivariant ccp map B — B(H) to B will have the desired
property.

Since the descent ¢ X G : A Xpax G — B Xpax G of ¢ is injective by assumption,
it follows from this and the commutative diagram

0 —— B Xmax G —— B %max G — C Xypay G — 0

| |

OH’AxmaxGHENmaXGHCNmaXGHO

of short exact sequences that the map
ZxG:/TxmaxGﬁéxlmaxG

is injective as well. From now on, to avoid cluttered notation, we will assume that A,
B, m and ¢ are unital, and that the map ¢ X G : A Xpax G — B Xpax G is injective;
our goal is to fill in the dashed arrow in line under these new assumptions.



12 ALCIDES BUSS, SIEGFRIED ECHTERHOFF, AND RUFUS WILLETT

Now, as we are assuming that ¢ x G : A Xyax G — B X« G is injective, in the
diagram below

B N'max G

~ —
N XU

xG ~
~
XU

A
A Xax G —— B(H)

we may thus use injectivity of B(H) (i.e. Arveson’s extension theorem as in for
example |7, Theorem 1.6.1]) to show that the dashed arrow can be filled in with a
ucp map. Any operator of the form u, is in the multiplicative domain of 7 % u, from
which it follows that the restriction ¢ of T x u to B is equivariant. This restriction
¢ is the desired map.

The implication (ii)=-(iii) is clear, so it remains to show (iii)=>(i). Let m x u :
A Xpnax G — B(H) be a faithful representation such that there is an ccp G-map
7 : B — B(H) that extends 7 as in (iii). Lemma implies that this ccp map
integrates to a ccp map T X u : B Xpax G — B(H). As the diagram

B N max G

TXU
LNGT

A Xpax G —B(H)
commutes and the horizontal map is injective, the vertical map is injective too. [

Notice that A Xpmax G = A Xin; G if and only if every G-embedding ¢: A — B
satisfies the equivalent conditions in Proposition [f.9] Hence we get the following
immediate consequence, for which we need one additional definition.

Definition 4.10. A covariant representation (7, u) : (4, G) — B(H) is G-injective
if for any G-embedding A < B there exists a ccp map o : B — B(H) that extends
«, and satisfies the covariance relation for u.

Corollary 4.11. For a G-algebra A, the following are equivalent:
(’L) A AN max G=A xinj G,'
(ii) every covariant representation (m,u) is G-injective;
(iii) there is a G-injective covariant representation that integrates to a faithful
representation of A X G.

Moreover, if G is exact, Xinj may be replaced by x, in the above. (]

Our next goal is to develop this to get a characterization in terms of an amenability
property of a more traditional ‘approximation property’ form.

Lemma 4.12. Let A be a G-algebra and let (m,u): (A,G) — B(H) be a nondegen-
erate G-injective covariant pair. Then for any unital G-algebra C' there exists a ucp
G-map ¢ : C — w(A) < B(H).

Proof. Consider the canonical G-embedding
t:A—>CQRA, a—~1Q®a.

Then G-injectivity of 7 yields a ccp G-map ¢: C® A — B(H) with p ot = 7. Since
7 is nondegenerate, so is p, that is, p(e;) — 1 strongly if (e;) is an approximate
unit for A. Tt follows that ¢ extends to a ucp map ¢: M(C ® A) — B(H),
see |19, Corollary 5.7]. Moreover, this extension is G-equivariant as can be seen
from the construction of @ in [19]. We now consider the canonical G-embedding
j:C > M(C®A), c— c®1, and then define ¢: C — B(H) by ¢(c) := @(j(c)). It
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remains to show that ¢(C) < 7(A)". But since pot = @ ot = 7 is a homomorphism,
the image of ¢ lies in the multiplicative domain of ¢, so that

p(c)m(a) = o(j(c))p(ua)) = (i (c)u(a))
= @((a)j(c)) = ¢((a))@(i(c)) = m(a)p(c).
0

Here is the version of amenability we will use. To state it, if A is a G-algebra
and (m,u) : (4,G) — B(H) a covariant pair, then 7(A)" will be equipped with the
G-action g = Ad,, defined by conjugation by wu.

Definition 4.13. Let A be a G-algebra, and (m,u) : (A,G) — B(H) a covariant
pair. The pair (m,u) is commutant amenable (C-amenable) if there exists a net
(0; : G — w(A)’) of positive type functions (with respect to 8 = Ad,) such that:
(i) each 0; is finitely supported;
(ii) for each i, ;(e) < 1;
(iii) for each g € G, 0;(g) — 1 ultraweakly as i — oo.
The G-algebra A is commutant amenable (C-amenable) if every covariant pair is
C-amenable.

Remark 4.14. If a G-algebra A is amenable, then it is C-amenable. This follows as
any covariant representation (m,u) of (A, G) extends to a covariant representation of
(A** @), and as the image of Z(A**) under this extension is necessarily contained
in the commutant w(A)".

We give the above definition to make the analogy with amenability clearer.
However, it will be more convenient to work with the following reformulation. To
state it, recall that if (m,u): (A,G) — B(H) is a covariant representation of the G-
algebra A, we use the action 3 = Ad,, on the commutant (A)’ to define £2(G, w(A)")
as in Definition 2.9] The proof of the next lemma is essentially the same as that of
Lemma [2.10, and so omitted.

Lemma 4.15. Let A be a G-algebra with action «, and let (7,u) be a covariant
pair. Then (m,u) is C-amenable if and only if there exists a net (&;) in (2(G,w(A)")
such that:

(1) each &; is finitely supported;
(2) for each i, {&,&) < 1;
(3) for each g€ G, (&, B4(&)) — 1 ultraweakly as i — co. O

Proposition 4.16. Let A be a G-algebra, and say there exists a C-amenable
covariant pair (m,u) which integrates to a faithful representation of A Xmax G. Then
AXpax G=A X, G.

Proof. Let (m,u) : (A,G) — B(H) be a covariant pair as in the statement. Let
(& : G > w(A)) be a net as in Lemma For each i, define

T,: H— (G, H), v (9 &(9)v).
A direct computation shows that
| Tiv])? = (v, <&, &pv)-

As (&, &) < 1 for all i, the term on the right is bounded above by |v|?, and thus
|T:|| < 1. The adjoint of T; is easily seen to be given by

TF(n) = . &l9)*n(g)
G

for all n € C.(G, H).
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Now, via Fell’s trick, the covariant pair (1t ® L,u® A) : (4,G) — B(/*(G, H))
integrates to A x,. G. Consider now the ccp map
bi - B(FA(G,H)) — B(H), b~ TFbT;.
We compute for f e C.(G,A) and ve H:
bio(r@1) x (WBN() = TH(r®1) x (@ N()T;
= Z &i(h)*m(f(g))ugli(g™"h)

g,heG

Using that &; takes values in w(A)’, this equals

> w(f(9) (2 &(h)*ug&(glh)u;“> ug = > 7(£(9))<&, By€iug.

geG heG G

As (&, Eg§i> converges ultraweakly to 1 and as multiplication is separately ultra-
weakly continuous, we get ultraweak convergence

dio(m®1) x (uAN)(f) = (7w xu)(f) as i — 0.

As ultraweak limits do not increase norms and as each ¢; is ccp, we get

|G > w) ()l < limsup i o (1@ 1) x (u@ N ()] < (7@ 1) = (u®N)(F)]-

Hence as (m®1) x (u® A) extends to A x,. G, we get
[(m > w) (N < Iflax.c-

As 7 x u is faithful on A .« G, however, we are done. [l

Finally in this section, we are able to give a characterization of weak containment
in terms of commutant amenability, at least for exact groups.

Theorem 4.17. Let G be an exact discrete group, and let A be a G-C*-algebra.
Then the following are equivalent:

(i) A is commutant amenable;
(i) AXpax G =A X, G;
(ZZZ) A X max G=A Xinj G.

Proof. The implication (i)=(ii) is Proposition [4.16] The implication (ii)=>(iii) is
trivial, so it remains to show that A xpax G = A %y G implies C-amenability. Let
then (7, u) be a covariant pair for (A4, G). We may apply Corollary and Lemma
to get an equivariant ucp map ¢ : {*(G) — w(A). As G is exact, {*(G) is
strongly amenable; postcomposing a net (6; : G — (*(G)) that shows (*(G) is
strongly amenable with ¢ gives C-amenability. O

Remark 4.18. Similar to Remark [2.8] it follows from the above proof that for G exact
we can replace ultraweak convergence of the net 6; : A — 7(A)’ in the definition of
C-amenability by norm convergence.

5. MATSUMURA’S CHARACTERISATIONS OF WEAK CONTAINMENT

In this section, we connect the ideas in the previous section to other forms of
amenability, and related results. The key ideas here are due to Matsumura [20], and
the results are essentially fairly mild generalizations of Matsumura’s. Nonetheless,
our proofs are somewhat different from those of [20]. We also think some of the
generalizations are worthwhile in their own right: for example, we remove some
unitality and nuclearity assumptions, and have some applications to actions of
non-exact groups.
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The key technical tool in this section is a seminal theorem of Haagerup on
the existence of standard forms. We summarize what will be the key points for us
in the next theorem (see Theorem 2.3] for a brief discussion how the following
theorem follows from [13]).

Theorem 5.1. Let A be a G-algebra. There exist standard form representations

m: A > B(H), and w°P:(A°P)* — B(H)

)

on the same Hilbert space H together with a unitary representation u: G — U(H)
with the following properties:

(i) m and 7°P are normal, unital, and faithful;
(ii) (mw,u) and (7°P,u) are covariant with respect to the canonical G-actions on
A** and (Aop)**;
(iii) having identified A** and (A°P)** with their images under m and 7°P, we get
W(A)/ _ (Aop)** and 7rop(Aop)/ = A%,
(iv) if A is commutative, then w(A) = A**.

The cleanest results we can prove on weak containment are in the case when G
is exact and the G-algebra A is commutative, so we turn to this first.

Theorem 5.2. Let G be an exact group, and A a commutative G-algebra. The
following are equivalent:

(i) A is strongly amenable;
(ii) A is amenable;
(iii) A is C-amenable;

(iv) A Xmax G = A %, G;

(1}) A X max G=A Xinj G,'
(vi) A** is strongly amenable;
(vii) A** is amenable;

(viti) A** 4s C-amenable;
(ir) A** Xpax G = A* x,. G;
(x) A* Xpax G = A** x4 G

Pmof That (i) implies (i j is trivial, and that (i) implies (iii)) follows from Remark
That (i) 1mphes is Proposition and (| . 1mp11es (E{) is immediate.

Assume condition we Wlll show condltlon (vi). Indeed, let 7 : A — B(H) be
the restriction of a standard form of A** as in Theorem [5.1] to A, so 7 is covariant
for some unitary representation u on H, and 7(A)’ identifies naturally with A**.
Corollary .11 and Lemma [£.12] give us an equivariant ucp map

¢ LP(G) —» A**,
It follows from Proposition and exactness of G that A** is strongly amenable.

Continuing, (vi) implies (vii) is trivial and (vii) implies is Remark
again, while (viii) implies (ix]) is Proposition again. Also, implies (x)) is
i)

again immediate. Finally, it remains to show that @ implies (fi). For this, note
that Lemma m applies to a standard form representation (m,u) to give us an
equivariant ucp map
¢ LP(G) > A**,
Using Proposition 2.7 and exactness again, this implies that A is amenable. The
proof is completed by appealing to [4, Théoréme 4.9] (and commutativity of A) to
get from there back to strong amenability of A. O

Many of the equivalences of Theorem were known before this paper: notably,
Matsumura showed that and are equivalent when A is unital, and the
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equivalence of (fif) and (and similarly of and ([vil)) is due to Anantharaman-
Delaroche [4, Théoréme 4.9]. Many of the other implications are either trivial, or
probably known to at least some experts, so overall we certainly don’t claim much
profundity!

Nonetheless, we hope collecting these conditions in one place clarifies the theory
somewhat. It is perhaps also interesting that the only real way the proof goes beyond
the classical results of Anantharaman-Delaroche from her seminal 1987 paper [4] are
in the existence of standard forms [13] from 1979 and the adaptations in Corollary
[A11] and Lemma [£.12] of well-known tricks involving injectivity and multiplicative
domains due originally to Lance [18] (see also the exposition in |7, Section 3.6]), and
dating to 1973. Some of this already appears in Matsumura’s work.

In the case where G is not necessarily exact, some of Theorem still holds;
however, some of it becomes false, and other parts are unclear.

Theorem 5.3. Let G be a discrete group, and let A be a commutative G-algebra.
Consider the following conditions:
(i) A** is strongly amenable;
(i) A** is amenable;
(iii) A** is C-amenable;
(iv) A** Xpax G = A* %, G;
(v) A** Xax G = A™ X445 G
(vi) A is strongly amenable;
(vii) A is amenable;
(viii) A is C-amenable.

We have in general that

(3) O < @ < @@,

that

(4) < (< () <
and that the conditions in line (3) imply condition , which in turn implies the
conditions in line (4)).

Moreover, if A is unital, all the conditions listed above are equivalent, and if
A % 0, they force G to be exact.

Proof. The implication (fif) = (ii) is trivial, and the converse is part of |4, Théoréme
4.9]. The implication = (liii]) is likewise trivial, and the converse is a consequence
of C-amenability of a standard form representation (see Theorem , and the fact
that the bidual of a commutative C*-algebra is again commutative. Thus we have
the equivalences in line .

The implication = is Proposition and = is trivial.

Look finally at the equivalences in line (4)). First note that condition (v)) implies
via Corollary that a standard form representation (Theorem m of A** is
an injective representation. In particular, we can fill in the dashed line below with
a ucp G-map making the diagram commute

EOC(G, A**)

A¥ T B(H)

where the vertical arrow is the canonical inclusion of A** in £*°(G, A**) as constant
functions. As A** is in the multiplicative domain of 7, it follows that 7 (¢ (G, A**))
commutes with m(A**); however, as 7 is a standard form, this implies that the
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image of 7 is exactly m(A**) = A**. In other words, 7 identifies with an equivariant
conditional expectation (G, A**) — A** that splits the constant inclusion. The
existence of such a conditional expectation is equivalent to amenability by [4]
Théoreme 3.3]. Conversely, assuming amenability, we have such an equivariant
conditional expectation. As A is commutative, A** is injective, whence £* (G, A**)
is G-injective by Example|4.6| Hence A** is also G-injective, whence we get condition
by Lemma

To complete the equivalences in line , note that the implications from
to , and from (vii)) to (viii) are straightforward. On the other hand, we have
implications from (fviii) to by C-amenability of a standard form representation,
and from to (vi) by part of [4, Théoreme 4.9].

In the unital case, the implication from to ({il) is trivial, so we are done. [

We also get the following observation in general.

Theorem 5.4. Let A be a commutative G-algebra. The following are equivalent:

(’L) A AN max G = A xinj G,'
(i) A has the G-WEP.

Proof. The implication from ({i) to (ii)) follows as if A — ¢*(G, A**) is the equivariant
inclusion of A as constant functions from G to A and 7 : A — A** < B(H) is the
restriction of a standard form of A** from Theorem to A, then Corollary

gives us a commutative diagram

| O

A4W>B(H)

with ¢ a ccp G-map. As A is in the multiplicative domain of ¢ and the algebra
(*(G, A**) is commutative, ¢ takes image in m(A)" = A**. In other words we have
factored the canonical inclusion A < A** through the G-injective algebra (Example
(G, A**), which easily implies the G-WEP.

The converse is Lemma O

Remark 5.5. Any of the conditions in Theorem imply that A X, G = A %, G:
indeed, they all apply C-amenability of A by that theorem, and this implies A X ax
G = A %, G by Proposition Moreover, the condition that A Xpmax G = A %, G
trivially implies A Xax G = A Xy G for any G-algebra A. Summarizing,

(Theorem conditions) = A Xp.x G = A %, G = (Theorem conditions).

On the other hand, the conditions in Theorem [5.4] are true for A = {*(G) and any
G, while those for Theorem are all false for any non-exact G and A = (*(G),
so we do not have equivalence of the conditions in Theorems and The
exact relationship between the conditions in Theorem and and the condition
A Xmax G = A x,. G is not at all clear in general.

Remark 5.6. The conditions in Theorem are not all equivalent in the non-exact
case without the assumption that A is unital: A = Cy(G) satisfies the conditions in
line for any G, but never satisfies the conditions in line when G is not exact.
The G-algebra A = Cy(G) is also known to fail for at least some non-exact
groups (see |9, Lemma 4.7]), so cannot always be equivalent to the conditions
in line . It is possible that condition is always equivalent to those in line (3]
even for non-unital A; however, it also seems quite plausible that holds for some
non-exact groups and A = Cy(G). This issue seems quite open at the moment.
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Remark 5.7. Note that condition in Theorem is never satisfied for any A
when G is not exact: indeed, it implies that the action of G on the spectrum of
A** a compact space, is amenable, which is well-known to imply exactness. Hence
none of the conditions in Theorem [.3] can be satisfied when A is unital and G is not
exact; the theorem still seems somewhat interesting in this case as simply saying
that none of the conditions are possible. The bottom four conditions are possible for
non-exact G and non-unital A: all happen for A = Cy(G). It is not clear whether
or not condition can ever happen for non-exact G and non-unital A: as already
remarked, it seems plausible that this can happen for some G and A = Cy(G).

‘We now move on to the noncommutative case.

Theorem 5.8. Let G be exact and A a G-algebra. Let A°P be the opposite algebra
of A, and let M be the von Neumann algebra generated by w(A) and n°P(A°P) in
standard forms m and 7P of A** and (A°P)** (see Theorem|5.1). The following
are equivalent:

(i) A is amenable ;
(i) A @max AP is C-amenable;
(Z“) (A ®max AOP) N max G= (A ®max Aop)
(“}) (A ®max Aop) Mmax G = (A ®max Aop)
(v) A** is strongly amenable;
(vi) M is strongly amenable;
(vii) M is amenable;
(viti) M is C-amenable;
(ix) M Xpmax G = M x,. G;
(x) M Xmax G = M xip; G.

Proof. Assume first that A is amenable, let B = A Qmpmax A°P, and let (p,v) :
(B,G) — B(H) be any covariant pair for B. Then p ‘restricts’ to representations
of A and A°P as in |7, Theorem 3.2.6], which we also denote p. Extending p to
A* | we have that p(Z(A**)) commutes with both p(A) and p(A°P), and therefore
p(Z(A**)) < p(B)'. It follows from this that amenability of A implies C-amenability
of A @max A°P, so we get (il) implies .

The implication from (i) to is Proposition and from to is
trivial. Assuming (iv), let 7 : A — B(H) be the restriction of a standard form (see
Theorem of A** to A. Thanks to Theorem and the universal property of the
maximal tensor product we obtain the covariant representation (¢ = T ®max 7°F, u),
of AQ@max A°P. Lemmanow gives us a ucp G-map ¢ : £°(G) — (A ®max A°P)’.
However,

(5) (A ®max AP) = 7(A) " 1P(A) = 7(A) nm(A)" = Z(n(A)) =~ Z(A™).

As G is exact, the existence of an equivariant ucp G-map ¢ : {*(G) — Z(A**)
implies that A** is strongly amenable by Proposition Hence we have shown
that implies .

The implication from to follows as a standard form 7 : A** — B(H)
restricts to a unital equivariant s-homomorphism 7 : Z(A**) — Z(M). The
implications from to (vii) and to are straightforward, and that from
to is Proposition again.

The implication from to (ED is trivial, so it remains to get back from @ to .
Indeed, Lemma gives an equivariant ucp map ¢ : £*°(G) — M’, and analogously
to line , M' =~ Z(A**). Proposition again completes the proof. O

r G;

X
ANinj G5

Remark 5.9. The conditions in Theorem [5.8 are not equivalent to strong amenability
of A. This follows from the properties of Suzuki’s examples [25] as discussed in
Section Bl
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When G is not necessarily exact and A is a general C*-algebra, rather little of
Theorems and Theorems seem directly recoverable: some implications do
still hold, of course, as the interested reader can extract from the proof of Theorem

B8 above.

Here are at least some implications that hold in general.

Proposition 5.10. Let A be a G-algebra. The following are equivalent:
(i) A is amenable;

(i) A ®max B is amenable for every G-algebra B;

(74i) A Qmax A°P is amenable;

(iv) A Qmax A°P is C-amenable.

Proof. The implication from (i) to (ii) is well-known, but maybe not explicit in the
literature. It can be proved using Lemma to get a net (&: G — Z(A*))icr
with the properties states there, and the fact that there is a canonical G-embedding
A** e (A @max B)** inducing a G-embedding Z(A**) — Z((A ®max B)**). The
implication from (ii) to (iii) is trivial, and (iii) implies (iv) is Remark [4.14 Finally,
if (iv) holds, we use the same technique from the previous proofs by making use of
the standard representation w: A** — B(H) to build a representation

0 =T Qmax TP : A Qmax AP — B(H)
with
(A ®@max AP) = m(A) nm(A) = Z(A*™).
Then C-amenability for A ®max A°P implies the existence of an approximative net
(&: G = p(A ®max AP) = Z(A**)) giving amenability for A. O

Remark 5.11. It would be interesting to know whether C-amenability passes to
(maximal) tensor products in the sense of the implication (i) = (fi) from Proposition
[b-I0]above, even for trivial actions. Indeed, it would then follow if A is a C-amenable
and nuclear G-algebra, and B is any C*-algebra (with trivial G-action) then

(A Xy G) ®max B = (A N max G) ®max B = (A ®max B) N max G = (A®B) N max G
=(A®B) %, G=(AxG)®B,

where we have used Proposition m (twice), nuclearity of A to replace the maximal
tensor product with the spatial one, and standard facts about commuting tensor
products with trivial G-algebras with crossed products. This implies that A x, G is
nuclear. However, in [4, Théoréme 4.5], Anantharaman-Delaroche proves that this
is equivalent to amenability of A.

To summarize, if we knew the implication = of Proposition also
held for C-amenability, we could conclude that C-amenability and amenability were
equivalent for all actions on nuclear C*-algebras (and therefore also that amenability
was equivalent to A X . G = A x,. G in the nuclear case).

6. CAN NON-EXACT GROUPS ADMIT AMENABLE ACTIONS ON UNITAL
C*-ALGEBRAS?

It is well-known that a group admits a strongly amenable action on a unital
commutative G-algebra if and only if the group is exact. From this, it is clear that
a non-exact group cannot admit a strongly amenable action on a unital G-algebra:
indeed, the action on the unital commutative C*-algebra Z(A) is then also strongly
amenable. For commutative G-algebras, strong amenability and amenability are
equivalent by [4] Théoréme 4.9], and therefore a non-exact group cannot admit an
amenable action on a unital commutative C*-algebra either.

However, as discussed in Section [3] Suzuki’s examples show that amenability
and strong amenability are not equivalent for unital noncommutative (even nuclear)
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G-algebras. It is therefore natural to ask whether a non-exact group can admit an
amenable action on any unital G-algebra.

The purpose of this section is to show that the answer to this question is ‘no’,
even if we replace amenability by the a priori weaker condition of C-amenability.

Theorem 6.1. Say G is a discrete group and A is a unital (nonzero) C-amenable
G-algebra. Then the following hold:

(i) if A is nuclear, the inclusion
Ax,.G— (AR A®) x,. G
induced by the equivariant map A - A® A°P, a — a ® 1, is nuclear;
(ii) if A is exact, then A x,. G is exact;
(iii) G is exact.
We have recalled in Theorem [2.6] that a discrete group G is exact if and only if
¢*(G) is amenable. Thus we have the following result.

Corollary 6.2. For a discrete group G, the following assertions are equivalent:
(i) G is exact;

(i) G admits a strongly amenable action on a unital nonzero C*-algebra;

(i) G admits an amenable action on a unital nonzero C*-algebra;

(iv) G admits a C-amenable action on a unital nonzero C*-algebra.

Proof. The implications (ii)=(iii)=(iv) are straightforward, and (iv)=(i) is The-
orem The implication from (i) to (ii) follows as if G is exact, then (*(G) is
strongly amenable (see Theorem [2.6)). O

For the proof of Theorem we need some technical preparations. For a G-
algebra A, see Definition for the module ¢2(G, A). The proof of the following
lemma is based partly on ideas of Anantharaman-Delaroche from the paper [4].

Lemma 6.3. Say G is a discrete group, and A is a unital C-amenable G-C*-algebra.
Then for any € > 0 and any finite subset G of G there exists a function & € £2(G, A°P)
such that:

(i) & is finitely supported;
(i) §,&) < 1;
(i) for all g€ G, [Laow — (6,3,6)] < e.

Proof. Let m: A — B(H) be the restriction of a standard form representation (see
Theorem of A** to A. Fix ¢ > 0, and finite subsets G of G, and ® of the
state space of A°P respectively. As A is commutant amenable, there exists a finitely
supported function £ : G — 7(A)’ such that (¢,£) < 1 and such that

(6) 6(6 88— 1) < 5

for all g€ G and ¢ € ®. As w(A)’ canonically identifies with (A°P)** we have from
[4) Lemme 1.1] that the finitely supported elements in the unit ball of ¢2(G, A°P)
are dense in the unit ball of /2(G,7(A)’) for the topology defined by the seminorms

Inlly == /9 (n,m))

as 1) ranges over the state space of A°P. Hence there exists a finitely supported
function 7 : G — A°P such that (n,n) < 1, and such that

(") o((§—nE =)' < 2
for all ¢ € ®. For each ¢ € ® and g € G, we have
(8) [6((n, aigmy — <€, ag&))| < |o((n — &, dgm)| + [¢({E, g (€ —m)))I.
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The Cauchy-Schwarz inequality for the state ¢ then implies

|6((n — & Agm)| < &((n = & Agny*(n — &, agm) .
Positivity of ¢ and Cauchy-Schwarz for the inner product on ¢2(G, 7(A)’) gives

S — & @gm)*(n — & agm)) < |agnlec.a0((n — & n — )2,
and hence we get from line @ that

(1 = & @m)| < gl .49 — Em = )2 < 2.

Similarly,

|, ag (€ —n)))| < %
Hence from line we get

~ ~ 2e
|6((n, Ggny — €€, @)l <
and from this and line @ we get

[o((n, dgny — 1)| <€

forall p € ® and g€ G.
Now, as the finite subset ® of the state space of A°? was arbitrary, and as the
states span (A°P)*, this implies that in the C*-algebra

B:= @ A°P
9egG

we have that zero is in the weak closure of the set
{((77, Ggn)y — 1Aop)g€g € B|n:G — A°P finitely supported and {n,n) < 1}.

Hence by the Hahn-Banach theorem, zero is in the norm closure of the convex hull
of this set.

It follows that for some given € > 0 we can find a finite collection &, ..., &, of
finitely supported functions G — A°P and ty,...,t, € [0,1] with > ¢; = 1 such that
(&, &> < 1 for each ¢, and such that

n

©) [Lamm = Y i, 480

i=1
for all g € G. Define now h : G — A°P by

n

h(g) = D il Ay

i=1

€
< —
2

Then clearly h is finitely supported, and one checks directly that it is positive type.
Hence a GNS-type construction as in |4, Proposition 2.5] gives & € £*(G, A°P) with

h(g) = (€0, ¥g€0)
for all g € G. Note that ({o,&0) = h(e) < 1, whence [[{o//p2(c,a00) < 1. Hence we may
find finitely supported § : G — A°P with (] s2(q,a00) < 1 and [€o —&]r2(q, a00) < €/4.
This gives that (¢,&) < 1 and that for any g € G,

€60, yo) — <€, @ElLace < 200 — Ellaa,aom < 5

by the Cauchy-Schwarz inequality for Hilbert modules (twice); combined with line
([©) above and the fact that " | ¢;(&;, dg&) = (&0, @g&o) for all g € G, this completes
the proof. 0



22 ALCIDES BUSS, SIEGFRIED ECHTERHOFF, AND RUFUS WILLETT

We now fix some notation. For a faithful representation = : A — B(H), let
T A->BHQEG(G)), Fa):v®d, — m(ag-1(a)v®d,
be the usual induced-type representation, so (7,1 ® \) is a covariant pair that
integrates to a faithful representation
Fx(1®N:Ax, G—BH®EG)).

For a finite subset F of G, let My denote B(¢2(F)), i.e. the ‘F-by-F matrices’, and
for each g,h € F, let ey, € M denote the corresponding matrix unit.
The following result is contained in the proof of |7, Lemma 4.2.3].

Lemma 6.4. With notation as above, let F be a finite subset of G. Then there is
a well-defined ccp map determined by the formula

Y Ax. G—>AQMp, adg— Z ag-1(a) ®ep g-1p-
heFngF

Moreover, there is a well-defined cp map determined by the formula
O AQMp — Ax,. G, a®egn— T(ag(a))(1®Agp-1). O

Most of the computations in the proof of the following result are inspired by
[7, Lemma 4.3.3].

Proof of Theorem[6.1} Let m: A — B(H) be the restriction of a standard form of
A** to A; we identify A with its image under this representation when convenient
and write 7 for the usual induced representation

7:A—BHQ®PG)).

Let 7°P : A°? — B(H) be the corresponding faithful representation of A°? on H
coming from the properties of a standard form (see Theorem [5.1)). Assuming first
that A is nuclear, the commuting representations m and 7°P gives rise to a faithful
representation
oc: AR A® — B(H)
on the minimal tensor product of A and A°P. Write B = 0(A ® A°P), and let & be
the corresponding induced representation
5:B—B(H®FAQ)).

Let € > 0 and finite subsets G € G and A < A be given. We claim that there are a
finite subset F' of G and ccp maps

Ax,.G B x,G
K /
A® Mg
such that
|¢9(ady) = (a@1)(1® Ag)| <€

for all a e A and g € G. As A® Mrp is nuclear, this will suffice to complete the
proof.

To prove the claim let d := max,e 4] al| and let £ : G — A°P have the properties as
in Lemma with respect to the finite set G, and the constant €/d, so in particular

(10) - <€a,00 < 3

for all g € G. Let FF < G be a finite set such that F' n gF contains the support of £
for all g € G (for example, F' = supp(§) U e g~ tsupp(€) works). Define first

ViAx, G- AQ Mp
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to be the map ¢ p from Lemma which is ccp. Define X € A°? @ My by
X =Y a1 (6(h) ®enn

heF
and define
k:AQMp - B Mp, ar— X*aX
(here we have included AQ M and A°°®@ Mp in BQ M in the natural ways to make
sense of the product on the right). Clearly k is c¢p. Finally, let ¢p : BRMp — Bx,.G
be as in Lemma applied to the C*-algebra B, and define

¢:AQMp — B x,. G, ¢:=¢pok.

To complete the proof in the nuclear case, it will suffice to show that ¢ and 1 have
the claimed properties.

Indeed, we already have from Lemma that 1 is ccp. As we also already know
from the same lemma that ¢ is cp, to see that it is ccp it suffices to show that
¢(1) < 1. For this, we compute that

6(1) = ér (X*1X) = ¢F(2ah1 (M) @enn) = Y, ER)*Eh) = (&0

heF
<1
as claimed. It remains to show that
|l (ady) —F(a®@ 1) (1@ Ag)| <,
or equivalently that
lgwb(ady) — F(a) (1@ Ag)[ <,
for all a € A and g € G. For this, we compute that
P(ady) = ¢F’€( Z ap-1(a) ®eh,g*1h)
heFngF
=¢F<(Zak1 ®€kk)( Z ap-1(a) e g- 1h><20411 ®€ll)>
keF heFngF leF
—or( Y anr (€ any (€l R) @engn)-
heFngF

Hence using the formula for ¢ in Lemma we get
$(ady) = D, F(E(h)*aay(E(gT h))(1@A,).
heFngF

As F n gF contains the support of £ for all g € G, and as a commutes with the
image of £, we have that this equals

TP ({6, @g€))F(a)(1® Ay).
Hence
lpw(ady) — F(a)(1 @ Ag)| < (maxaealal)|l — <& agd)l,

and so we are done in the nuclear case by the inequality in line .

If we only assume A is exact, we can run much of the above proof, replacing B
with the C*-subalgebra of B(H) generated by 7(A) and 7°P(A°P) to get that for
each finite subset A of A x,. G and € > 0 there are a finite subset F' of G and ccp
maps 1 and ¢ as in the diagram below

Ax, G Bx, G—=BH®P(G)) ,
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where the horizontal maps are the obvious inclusions, and where the diagram ‘almost
commutes’ in the sense that ||¢(a) — a| < € for all a € A (having identified A x, G
with its image in B(H ® ¢?(G)) to make sense of this). Now, as A ® My is exact,
there exists a Hilbert space H' and a nuclear faithful embedding A ® Mpr — B(H').
In the diagram

Ax,. G B x,G@ ——=B(H®?AQ)),
X\ / |
|
AQ Mp B(H')

the dashed arrow can be filled in with a ccp map by Arveson’s extension theorem so
that the right hand quadrilateral honestly commutes. As the map AQ Mr — B(H')
is nuclear, the existence of these diagrams gives that A x,. G is nuclearly embeddable,
so exact.

Finally, for exactness of G, we note that the above maps restricted to Cf(G) <
A %, G show that C*(G) is nuclearly embedded in B(H ® ¢*(G)) (whether or not
A is exact), as the ‘downwards’ map ¢ takes image in Mp(C) when restricted to
C*(G). Hence C*(Q) is exact, and thus G is itself exact as it is discrete. O

Remark 6.5. In [4, Théoréme 4.5], Anantharaman-Delaroche proves (among other
things) that if A is a nuclear G-algebra, then A x,. G is nuclear if and only if the
action of G on A is amenable. On the other hand, if A is unital, nuclear and
commutant amenable, we get nuclearity of the inclusion

Ax, G- (A® A%) x, G.

It would be interesting if this could somehow be improved to show nuclearity of
A %, G: indeed, we would then get that commutant amenability and amenability
are equivalent for all unital and nuclear G-algebras, and moreover that for such
G-algebras, equality of A X .« G and A x, G is equivalent to the conditions in
Theorem [5.8 when G is exact. This is related to Remark .11 above.

Remark 6.6. Exel [11] Definition 20.4] has introduced a different notion of amenabil-
ity for G-algebras (and more generally for Fell bundles) under the name of the
approzimation property. He asked whether the existence of a unital G-algebra with
his approximation property implies exactness of G. The answer is ‘yes’. Indeed,
the relationship between versions of the approximation property and amenability
were extensively studied in [1]. In particular, the results of [1, Theorem 6.11 and
Corollary 6.16] imply that Exel’s approximation property implies amenability, so
Theorem gives the solution to this question.

7. CHARACTERIZING EQUIVARIANT INJECTIVITY AND THE EQUIVARIANT WEP

In this section, we study G-injectivity and the G-WEP in more detail. In
particular, we give complete characterizations of both in terms of amenability and
the respective non-equivariant versions. We also collect together many equivalent
conditions in the special case of nuclear G-algebras and exact groups.

The following definition is partly inspired by work of Anantharaman-Delaroche [3]
Section 2] in the setting of von Neumann algebras, and of Kirchberg [17, Proposition
3.1] in the non-equivariant setting.

Definition 7.1. Let ¢ : A — B be a G-embedding of G-algebras. The embedding
is relatively G-injective (respectively, weakly relatively G-injective) if there exists
a ccp G-map P : B — A splitting ¢ (respectively, a ccp G-map P : B — A** such
that Po¢: A — A** is the canonical inclusion).
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Remark 7.2. Comparing Definitions and a G-algebra A is G-injective
(respectively, has the G-WEP) if any G-embedding A < B of G-algebras is relatively
G-injective (respectively, relatively weakly G-injective).

Our main goals in this section are the following results. Note the different role
played by exactness in the first two theorems: this is essentially due to the fact
that if G admits an action on some A such that A** is G-injective, then G must be
exact; this is not true for the G-WEP, however.

Theorem 7.3. For a unital G-algebra A, the following are equivalent:

(i) A is amenable and has the WEP;
(ii) A has the G-WEP and G is ezact.

Theorem 7.4. For a G-algebra A, the following are equivalent:
(i) A is amenable and A** is injective;
(i) A** is G-injective.
Moreover, if there is a unital G-algebra satisfying these conditions, then G is exact.

The following theorem, which is essentially ‘just’ a compilation of our results and
other results of Claire Anantharaman-Delaroche from [2] and [4], summarises some
of the known facts about amenable actions of exact groups on nuclear C*-algebras,
and the relationships to G-injectivity and the G-WEP.

Theorem 7.5. If G is an exact group and A is a nuclear G-algebra, then the
following assertions are equivalent:
(i) A is amenable;
(ii) A has the G-WEP;
(iii) A*¥* is G-injective;
(iv) A** is strongly amenable;
(v) A** is amenable;
(vi) A %, G is nuclear;
(vii) A**xG is injective.
Here A**xG denotes the von Neumann algebra crossed product of A** with G.

Remark 7.6. We cannot add the condition that A is strongly amenable to the
equivalent conditions in Theorem by Suzuki’s examples in |25]. We do not know
if we can add A Xpax G = A X, G to this list of equivalent conditions: compare

Remarks [5.11] and [6.5]

The proofs will proceed via a series of ancillary lemmas and propositions. The first
few results compare G-injectivity and the G-WEP to the non-equivariant versions
(sometimes also in the presence of amenability).

Lemma 7.7. Let G be a group, H € G a subgroup and A a G-algebra. If A has
the G-WEP (respectively, is G-injective), then A also has the H-WEP (respectively,
is H-injective) with the restricted action.

Proof. Let 7 : A — B(K) be a faithful representation (ignoring the G-action). Equip
B :=(*(G,B(K)) with the translation G-action defined by

(W) (h) := f(g™"h)
and then consider the canonical G-embedding

7: A— B, 7(a)(g):= 71'(0[;1((1)).

If A has the G-WEP, then there exists a ccp G-map P: B — A** with P o 7 equal
to the canonical embedding A < A**. Note that B is H-injective as an H-algebra
with the restricted H-action: this is proved in |9, Remark 6.3]. Hence if A embeds
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H-equivariantly into some H-algebra C', then by the H-injectivity of B the dashed
arrow below can be filled in
T N
AN
AN
~ N\

A—">B
with a ccp H-map. Composing this with P : B — A** yields the desired ccp H-map
C — A** extending the canonical inclusion A — A**.
The assertion on injectivity can be proved in essentially the same way. O

Corollary 7.8. If a G-algebra has the G-WEP (respectively, is G-injective) then it
has the WEP (respectively, is injective).

Proof. Take H to be the trivial group in Lemma [7.7] O

The following result is closely related to |2, Proposition 4.1]; we need something
a little different, however, so give a direct proof. The statement essentially says that
a non-equivariant ccp splitting can be bootstrapped up to an equivariant splitting
in the presence of amenability.

Lemma 7.9. Let A be an amenable G-algebra. Let A € B (respectively, A** < B)
be a G-embedding. Then if the embedding is relatively weakly injective (respectively,
relatively injective), it is also relatively weakly G-injective (respectively, relatively
G-injective).

Proof. We will just look at the case where A** < B is a relatively injective G-
embedding; the other case is essentially the same. Relative injectivity gives us a ccp
map ¢ : B — A** such that the restriction of ¢ to A** is the identity; our task is
to replace ¢ with a ccp G-map without changing it on A**.

Let (?(G, A**) be as in Definition equipped with the associated action
& defined there. For each b € B, define a multiplication-type operator m(b) on
(G, A**) by the formula

(m()€)(9) = ay(¢(B4-1(0)))E(9)-
Then it is not difficult to see that m defines a ccp map m : B — B(£2(G, A**)) from
B to the adjointable operators on £?(G, A**). Let now (&;)ic; be a net as in the
definition of amenability, so each &; is a finitely supported function & : G — Z(A**)
such that (§;, &) < 1 for all ¢, and so that (&, &, (&;)) converges ultraweakly to 1
for all g € G. For each i, define a map

Yi: B — AT, b (& m(D)6).

One then checks that the net (¢;) consists of ccp maps, and so, by [7, Theorem
1.3.7] and after passing to a subnet if necessary, has an ultraweak limit point, which
is also a ccp map ¢ : B — A**. We claim that this limit has the right properties.

First, let us check that if a is an element of A** then ¢(a) = a. Indeed, in this
case m(a) is just the operator of left-multiplication by a, and so we have

( ) <§’Lva£74> - Z gz agz )
geG

for all i. As ¢ takes values in Z(A**), this just equals {§;,&;>a, however, which
converges ultraweakly to a as ¢ tends to infinity.
It remains to check that w is equivariant. Let then b€ B and h € G. Then

Di(Br(b)) = i m(Br(D)&i) = ' &i(9)* agd(By-11(b))Ei(9)-

geG



INJECTIVITY, CROSSED PRODUCTS, AND AMENABLE GROUP ACTIONS 27

Making the substitution & = h~'g, this equals
7 (k) ane (B (0)€s(h) = (X @10 (K)* ard(B+ (0) @-160) ()

keG keG
= Qp, (<&h71§i, m(b)ahq £1>)

To prove equivariance, it thus suffices to show that

(11) (ap-1&i,m(b)ap-1&) — (&, m(b)&i)
tends ultraweakly to zero. This follows as we have the identity

Q18 — &y ap1& — &y = an({&i, &) + (&ir &) — (&iy Op—1&i) — (A&, i),
and the right hand side tends ultraweakly to zero. The expression in line (11))

therefore tends ultrweakly to zero using appropriate versions of the Cauchy-Schwarz
inequality similarly to the proof of Lemma [6.3 ]

Corollary 7.10. Let A be an amenable G-algebra. Then if A has the WEP
(respectively, if A** is injective), then A has the G-WEP (respectively, A** is
G-injective). O

The next lemma is closely related to Lemma

Lemma 7.11. Let A be a G-algebra and assume A is G-injective (respectively, has
the G-WEP). Let C be any unital G-algebra. Then there is a ucp G-map C' — Z(A)
(respectively, C — Z(A**)).

Proof. Assume first that A has the G-WEP. Let B be the G-algebra B :=C® A
equipped with the diagonal action v ® a where v denotes the action on C, and «
the action on A. Consider the canonical G-embedding

t:A—> B, a—~1®a.

Since A has the G-WEP, there is a ccp G-map P: B — A** such that P o coincides
with the canonical embedding A — A**. Fix an approximate unit (e;);es for A,
and for each 4, define

P :C— A", ¢— Plc®e;).

The net (P;) of ccp maps has a point-ultraweak limit, say @ : C — A**, which we
claim is the required map. As @ is automatically ccp, we must check three things:
that @ has image in Z(A**); @ is unital; and that @ is equivariant.

Indeed, note first that the subalgebra {1®a | a € A} of B is in the multiplicative
domain of P, whence for each a € A, ce C, and i € I,

aP;(c) — Pi(c)a = aP(c®e;) — P(c®e;)a = P(c® (ae; — e;a)),

which tends to zero (in norm) as ¢ tends to infinity. Hence the image of Q commutes
with A, and thus with all of A**, so is central. To see that @ is unital, note that
P;(1) = P(1®e;) = e;, and that any approximate unit for A converges ultraweakly
to the unit of A**. Finally, to see that @ is equivariant, we note that P is equivariant,
whence if o denotes the G-actions on both A and A**, and  the action on C, then
for any ce C and i € I, we have

ag(PA)) — Pil35(0)) = ag(Ple®@ei)) — P(3,() @ €5)) = P(ry(c) ® (ag(ei) — €2)),
which tends to zero (in norm) as ¢ tends to infinity.

The case where A is G-injective is similar and easier because in this case A is
now unital (see Lemma above). Indeed, consider again the same embedding
t: A — B as above. Notice that A, B and ¢ are unital. Since A is now G-injective,
we get a ucp G-map P: B — A satisfying P ot = id4. Since ¢ is unital, so is P
and the same argument as before shows that P(C) € Z(A). Composing with the
canonical embedding C' — B yields the desired ucp G-map Q : C — Z(A). O
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Corollary 7.12. If G is an exact group and A is a G-algebra that is G-injective
(respectively, has the G-WEP), then it is strongly amenable (respectively, amenable).

Proof. This follows directly from Proposition 2.7 and Lemma in the special
case C = {*(G). O

We are finally ready to prove our main theorems from the start of this section.

Proof of Theorem[7.3 Assume first that A has the G-WEP and that G is exact.
Then A has the WEP by Corollary [7.8] and is amenable by Corollary [7.12}
Conversely, if A has the WEP and is amenable, then it has the G-WEP by
Corollary As A is unital, the existence of an amenable action implies that G
is exact by Theorem O

Remark 7.13. Say G is an exact group. Then the above proof shows that for any
(not necessarily unital) G-algebra A, the following are equivalent:

(i) A is amenable and has the WEP;
(ii) A has the G-WEP.

In other words, if we are willing to assume exactness, we can drop the unitality
assumption from Theorem The above equivalences do not hold (for unital
algebras) in the non-exact case: indeed, A = ¢*(G) is G-injective, so in particular
has the G-WEP, but it is not amenable if G is not exact. On the other hand, the
equivalence of

(i) A is amenable and has the WEP, and
(ii) A has the G-WEP and G is exact

from Theorem [7.3| do not hold in the non-unital case: A = Cy(G) is amenable and
has the WEP, so satisfies the first condition whether GG is exact or not.

Proof of Theorem[7.]} Assume first that A** is G-injective. Then A** is injective
by Corollary Moreover, G-injectivity of A** gives an equivariant conditional
expectation ¢*(G, A**) — A** as in |4 Théoréme 3.3, part (e)], which implies

amenability.

Conversely, say A** is injective and amenable. Then A** is G-injective by
Corollary

Finally, note, if A is unital, then amenability of A implies exactness of G by
Theorem O

Proof of Theorem[7.5 As A is nuclear, it has the WEP (see for example [7, Corollary
3.6.8]). Hence the equivalence of (fij) and follows from Theorem Similarly,
if A is nuclear than A** is injective, and so the equivalence of and (fij) follows
from Theorem [T.4l

The fact that implies follows from Corollary [7.12] and implies (v]) is
trivial. Assuming that A** is amenable, note that the universal property of A****
gives a normal equivariant surjective *-homomorphism A**** — A** gplitting the
canonical inclusion A** < A****  This restricts to a normal *-homomorphism
Z(A***%) o Z(A**), from which it follows that A is amenable, giving (). We now
have that conditions ({il) through are equivalent.

Finally, note that the equivalence of ({il) to both and was established by
Anantharaman-Delaroche in [4, Théoréme 4.5]. O

Remark 7.14. In Theorem [7.3] we have compared the G-WEP for A to the WEP
for A and amenability type conditions. It is also natural to compare the G-WEP
for A to the WEP for the crossed products A x, G and A X, G.
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We first note that if A is amenable and has the WEP, then A X, G = A x,. G
has the WEP. This was proved by Bhattarcharya and Farenick in [6]. One can also
give a short argument using that a C*-algebra B has the WEP if and only if

B @max C*(Fm) =B ® C*(]FOO)

(see for example |7, Corollary 13.2.5]). If G is exact, we already know from Theorem
[73] that A has the G-WEP if and only if A is amenable and has the WEP. In
particular, if A has the G-WEP and G is exact, then A X .« G = A %, G has the
WEP.

On the other hand, is is shown in [9] Proposition 5.4] that if A x;,; G has the
WEP, then A xpax G = A Xin; G. Moreover, if A xjn; G has the WEP, then so
does A because A is a C*-subalgebra of A x;,; G with a conditional expectation
A x5 G — A. Hence if G is exact and A %, G has the WEP, then we have that
A Xmax G = A Xinj G = A X, G and that A has the WEP.

Summarizing the above discussion, if GG is an exact group, then we know that

A has G-WEP = A x, G has WEP
and that
A %, Ghas WEP = A has WEP and A X, G = A x,.G.

If A is commutative, the latter condition also implies that A is amenable by Theorem
and therefore that A has G-WEP by Theorem The precise situation is not
clear in general, however.

If G is not exact, then things are murky. For example, it is not clear whether the
C*-algebras £*°(G) Xmax G or £*(G) x,. G could have the WEP if the G-action on
A = {*(G) is not amenable.

8. HAMANA’S THEORY OF INJECTIVE ENVELOPES

In this section, we discuss the relation of the notion of injectivity that we have
been using with Hamana’s from [15] (they turn out to be the same, fortunately). We
also use some of our work above to address some questions about injective envelopes
that seem to be of interest in their own right.

Hamana’s definition of G-injectivity is as follows. Consider a diagram
(12) C

AR
g
where B, C, and A are operator systems equipped with G-actions by complete order
automorphisms, ¢ is a complete order injection, and ¢ is a ucp G-map. Then B is
G-injective if the dashed arrow can be filled in with a ucp G-map.

On the other hand, in Definition [4.2] we say that a G-C*-algebra is injective if in
a diagram of the form where C is a G-C*-algebra, ¢ is an injective equivariant
x-homomorphism, and ¢ is the identity map, the dashed arrow can be filled in with
a ccp G-map.

Now, both Hamana’s definition and our definition make sense for unital G-
algebras. Fortunately, the two notions coincide (even with respect to their domains
of definition: this follows as injectivity of a G-algebra B in our sense forces B to be
unital by Lemma and injectivity of a G-operator system B in Hamana’s sense
forces B to admit a structure of a (unital) G-algebra by the proof of [23] Theorem
15.2]).

Proposition 8.1. A unital G-C*-algebra B is injective in the sense of Definition
if and only if it is injective in the sense of Hamana.



30 ALCIDES BUSS, SIEGFRIED ECHTERHOFF, AND RUFUS WILLETT

Proof. First assume that B satisfies Definition so is in particular unital by
Remark In [9, Corollary 2.4] (compare also |15, Lemma 2.2]) it is shown that
any (unital) G-algebra B admits a (unital) embedding B — By into a G-algebra
By that is injective in Hamana’s sense. Definition [1.2] gives an equivariant ucp map
E : By — B splitting this inclusion. Consider now a diagram as in line where
¢ and ¢ satisfy the conditions in Hamana’s definition of injectivity. Consider the
diagram

N\ N
?BHBH

As Bpy is injective in Hamana’s sense, the long diagonal arrow can be filled in
with an equivariant ucp map, say . The required map ¢ can then be defined by
¢ := F o1; it is not difficult to check that this works.

Conversely, say B is injective in Hamana’s sense. We need to show that any
injective equivariant =-homomorphism B — C' admits an equivariant ccp splitting.
We have an extended diagram

C
N
N
|
o N

B——B
where the vertical map is the unitisation of the map we started with, and the
horizontal map is the canonical projection of the unitisation of a unital C*-algebra
onto the original algebra (which is a *-homomorphism). Thanks to Hamana’s
definition, the dashed arrow can be filled in with a ucp G-map; the restriction of
this arrow to C' is the required map. O

We now turn to G-injective envelopes. Recall that in |15, Theorem 2.5], Hamana
proves that every G-operator system (and in particular, every unital G-algebra) A
has a G-injective envelope I¢(A). This is a G-algebra I (A) which is G-injective,
equipped with a canonical unital G-embedding A — I (A), and has the universal
property that whenever A — B is a ucp G-map into an injective operator system,
there is a unique equivariant ucp extension I(A) — B.

The following theorem provides a nice addition to the equivalent conditions in
Theorem

Theorem 8.2. Let G be an exact group, and let A be a nuclear G-algebra. The
following are equivalent:
(i) A** is G-injective;
(i) A has the G-WEP;
(iii) there is a G-embedding Ig(A) — A** extending the inclusion A — A**;
(iv) the inclusion A — Ig(A) is relatively weakly G-injective in the sense of

Definition [71}

Proof. The equivalence of (fi)) and is already proved in Theorem Starting
with (i), note that if A** is G-injective, then the universal property of I(A) implies
that we have a G-embedding Ig(A) — A** extending the canonical embedding
A — A* Hence (i) implies . It is clear that implies .

Finally, we claim that implies . Indeed, if A embeds into some G-algebra
B, since I (A) is G-injective, the inclusion A — I5(A) extends to a ccp G-map
B — I5(A). Composing this with the map Ig(A) — A** given by yields the
desired ccp G-map B — A** extending the inclusion A «— A**. O
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We conclude this section with two results that can be seen as generalizations of
results of Kalantar and Kennedy in their seminal work on the Furstenberg boundary
[16]. The only new idea needed for the proofs in both cases is Corollary

The first generalization of the work of Kalantar and Kennedy is as follows. In
[16, Theorem 4.5], Kalantar and Kennedy prove that G is exact if only if its action
on the Furstenberg boundary 0rG is amenable. Recalling that C(0rG) is the
G-injective envelope of C (see [16, Theorem 3.11]), the following result is a natural
extension.

Theorem 8.3. The following are equivalent for a discrete group G.
(i) G is exact;
(ii) G acts strongly amenably (respectively, amenably, or C-amenably) on the
injective envelope I (A) of every nonzero G-algebra A.
(iii) G acts strongly amenably (respectively, amenably, or C-amenably) on the
injective envelope Ig(A) of some nonzero G-algebra A.

Proof. Assume G is exact, and let A be a G-algebra. Then as I (A) is G-injective,
Corollary [7.12] gives that I (A) is strongly amenable. Hence (i) implies (ii). Since
every injective C*-algebra is unital by Lemma (iii) implies (i) follows from
Theorem [6.11 (]

The second concerns a conjecture of Ozawa. In [22], Ozawa conjectures that every
exact C*-algebra B embeds into a nuclear C*-algebra N (B) with B € N(B) < I(B).
Here I(B) denotes the injective envelope of B, see [14], which is the natural non-
equivariant version of the G-injective envelope discussed above.

The above conjecture was established for B = C*(G) for any discrete group G by
Kalantar and Kennedy in |16, Theorem 1.3] using the Furstenberg boundary drG.

Using the above observations we can prove Ozawa’s conjecture for all crossed
products of commutative G-algebras by exact discrete groups.

Corollary 8.4. Ozawa’s conjecture holds for all C*-algebras B of the form B =
A %, G, where A is a commutative G-algebra and G is an exact group.

Proof. Let Ig(A) be the G-injective envelope of A. Since A is commutative, so
is I¢(A). In particular, I¢(A) is a nuclear C*-algebra. By Theorem [8.3| (or
Corollary([7.12), I(A) is (strongly) amenable, so that the crossed product I (A) x, G
is nuclear by [4, Théoréme 4.5] (see also Theorem above). On the other hand,
by Hamana’s results in |15, Theorem 3.4] we have that

Ax,G<CIg(A) %, G<SI(Ax,Q),
so that Ozawa’s conjecture holds with N(B) = Ig(A4) %, G. O

The above proof carries over to every G-algebra A for which I5(A) is nuclear.
However, injective C*-algebras are rarely nuclear outside of the commutative case,
so we thought it seemed simpler to state the result when A (and therefore also
I (A)) is commutative.

REFERENCES

[1] Fernando Abadie, Alcides Buss, and Damidn Ferraro, Amenability and approximation proper-
ties for partial actions and Fell bundles, 2019. Preprint.

[2] Claire Anantharaman-Delaroche, Action moyennable d’un groupe localement compact sur une
algébre de von Neumann, Math. Scand. 45 (1979), 289-304.

(3] , Action moyennable d’un groupe localement compact sur une algébre de von Neumann
II, Math. Scand. 50 (1982), 251-268.
[4] , Systémes dynamiques non commutatifs et moyennabilité, Math. Ann. 279 (1987),

297-315.



32 ALCIDES BUSS, SIEGFRIED ECHTERHOFF, AND RUFUS WILLETT

(5] , Amenability and exactness for dynamical systems and their C*-algebras, Trans.
Amer. Math. Soc. 354 (2002June), 4153-4178.

[6] Angshuman Bhattacharya and Douglas Farenick, Crossed products of C*-algebras with the
weak expectation property, New York J. Math. 19 (2013), 423-429.

[7] Nathanial Brown and Narutaka Ozawa, C*-algebras and finite-dimensional approzimations,

Graduate Studies in Mathematics, vol. 88, American Mathematical Society, 2008.

[8] Alcides Buss, Siegfried Echterhoff, and Rufus Willett, Ezotic crossed produts and
the Baum-Connes conjecture, J. Reine Angew. Math. (2015), Online preprint: DOI
10.1515/crelle-2015-0061.

9] , The mazximal injective crossed product, 2018. arXiv:1808.06804.

[10] , The minimal exact crossed product, 2018. arXiv:1804.02725.

[11] Ruy Exel, Partial dynamical systems and fell bundles, 2014.

[12] Erik Guentner and Jerome Kaminker, Ezactness and the Novikov conjecture, Topology 41
(2002), no. 2, 411-418.

[13] Uffe Haagerup, The standard form of von Neumann algebras, Math. Scand. 37 (1975), 271-283.

[14] Masamichi Hamana, Injective envelopes of C*-algebras, J. Math. Soc. Japan 15 (1979), no. 4,
181-197.

[15] , Injective envelopes of C* -dynamical systems, Tohoku Math. J. 37 (1985), 463—487.

[16] Mehrdad Kalantar and Matthew Kennedy, Boundaries of reduced C*-algebras of discrete
groups, J. Reine Angew. Math. 727 (2017), 247-267.

[17] Eberhard Kirchberg, On non-semisplit extensions, tensor products, and exactness of group
C*-algebras, Invent. Math. 112 (1993), 449-489.

[18] E. Christopher Lance, On nuclear C*-algebras, J. Funct. Anal. 12 (1973), 157-176.

[19] —, Hilbert c*-modules (a toolkit for operator algebraists), Cambridge University Press,
1995.

[20] Masayoshi Matsumura, A characterization of amenability of group actions on C*-algebras, J.
Operator Theory 72 (2014), no. 1, 41-47.

[21] Narutaka Ozawa, Amenable actions and exactness for discrete groups, C. R. Acad. Sci. Paris
Sér. I Math. 330 (2000), 691-695.

[22] , Boundaries of recduced free group C*-algebras, Bull. London Math. Soc. 39 (2007),
35-38.

[23] Vern Paulsen, Completely bounded maps and operator algebras, Cambridge University Press,
2003.

[24] Mikael Rgrdam and Adam Sierakowski, Purely infinite C*-algebras arising from crossed
products, Ergodic Theory Dynam. Systems 32 (2012), 273-293.

[25] Yuhei Suzuki, Simple equivariant C* -algebras whose full and reduced crossed products coincide,
2018. arXiv:1801.06949v1.

[26] Some notes on property A (2009)

E-mail address: alcides.buss@ufsc.br

DEPARTAMENTO DE MATEMATICA, UNIVERSIDADE FEDERAL DE SANTA CATARINA, 88.040-900
FLORIANOPOLIS-SC, BRAZIL

E-mail address: echters@uni-muenster.de

MATHEMATISCHES INSTITUT, WESTFALISCHE WILHELMS-UNIVERSITAT MUNSTER, EINSTEINSTR.
62, 48149 MUNSTER, GERMANY

E-mail address: rufus@math.hawaii.edu

MATHEMATICS DEPARTMENT, UNIVERSITY OF HAWAI‘T AT MANOA, KELLER 401A, 2565 Mc-
CARTHY MALL, HonoLuLu, HI 96822, USA



	1. Introduction
	2. Notation, basic definitions and preliminaries
	3. Suzuki's examples
	4. Weak containment
	5. Matsumura's characterisations of weak containment
	6. Can non-exact groups admit amenable actions on unital C*-algebras?
	7. Characterizing equivariant injectivity and the equivariant WEP
	8. Hamana's theory of injective envelopes
	References

