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Abstract

We introduce a notion of decomposability for a C˚-algebra, and use
it as a tool to study K-theory groups. The decomposability notion is
motivated by the theory of nuclear dimension as introduced by Winter
and Zacharias, and by the theory of dynamical complexity introduced
by Guentner, Yu, and the author. A major inspiration for our K-
theoretic results comes from recent work of Oyono-Oyono and Yu in
the setting of controlled K-theory of filtered C*-algebras; we do not,
however, use that language in this paper.

We give two main applications. The first is a vanishing result
for K-theory that is relevant to the Baum-Connes conjecture. The
second is a permanence result for the Künneth formula in C˚-algebra
K-theory: roughly, this says that if A can be decomposed into a pair of
subalgebras pC,Dq such that C, D, and CXD all satisfy the Künneth
formula, then A itself satisfies the Künneth formula.
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1 Introduction

A general Mayer-Vietoris sequence

Let C and D be C˚-subalgebras of a C˚-algebra A, and consider the following
diagram

K1pC XDq
ι
Ñ K1pCq ‘K1pDq

σ
Ñ K1pAq

B
99K K0pC XDq

ι
Ñ K0pCq ‘K0pDq

of K-theory groups, where the solid arrows labeled ι and σ are defined re-
spectively by

ι : α ÞÑ pα,´αq and σ : pβ, γq ÞÑ β ` γ,

and the dashed arrow labeled B may or may not exist. For example, if C and
D are ideals in A such that A “ C `D, then one can canonically fill in the
dashed arrow so that the sequence above becomes part of the usual six-term
exact Mayer-Vietoris sequence in C˚-algebra K-theory, i.e. the C˚-algebraic
analogue of the Mayer-Vietoris sequence associated to a cover by two open
sets in classical algebraic topology.

The main technical tools developed in this paper are partial exactness re-
sults for this sequence that hold under more general ‘local decomposability’
assumptions. These work even for many simple C˚-algebras, where decom-
positions into ideals are not possible. Looking at the diagram above in more
detail,

K1pC XDq
ι
Ñ K1pCq ‘K1pDq

loooooooomoooooooon

pIIIq

σ
Ñ K1pAq

loomoon

pIIq

B
99K K0pC XDq

looooomooooon

pIq

ι
Ñ K0pCq ‘K0pDq

(1)
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we establish partial exactness results at each of the three places marked (I),
(II), and (III), under progressively more stringent assumptions. Exactness
at point (I) is the easiest to prove, and is automatic: if ιpαq “ 0 for some
α P K0pC XDq, one can always canonically construct a class in K1pAq that
is the ‘reason’ for its being zero in some sense.

For exactness in the positions marked (II) and (III) in line (1), we need
more assumptions. Here are the technical definitions.

Definition 1.1. Let A be a C˚-algebra, and let C be a set of pairs pC,Dq
of C˚-subalgebras of A. Then A decomposes over C if for any δ ą 0 and any
finite subset F of A there exists a positive contraction h in the multiplier
algebra of A and a pair pC,Dq P C such that:

(i) }rh, as} ă δ for all a P F ;

(ii) dpha, Cq ă δ and dpp1´ hqa,Dq ă δ for all a P F .

In words: condition (i) says that h is almost central; and condition (ii)
says that h almost multiplies A into C and 1 ´ h almost multiplies A into
D. The pair th, 1´ hu should be thought of as a ‘local partition of unity’ on
A, splitting it into two ‘parts’ C and D that are simpler than the original.
We discuss examples below, but keep the discussion on an abstract level for
now.

This decomposability notion seems to have interesting connections to the
structure theory of C˚-algebras, but we will not discuss that in this paper
other than briefly in Appendix A. To get applications to K-theory we seem
to also need assumptions on the intersections C X D. Here is one such
assumption.

Definition 1.2. Let A be a C˚-algebra, and let C be a set of pairs pC,Dq
of C˚-subalgebras of A. Then A is excisively decomposable over C if for any
δ ą 0 and any finite subset F of A there exists a positive contraction h in
the multiplier algebra of A and a pair pC,Dq P C satisfying the properties in
Definition 1.1 above, and that in addition satisfies the following:

(iii) dpp1´ hqha, C XDq ă δ and dpp1´ hqh2a, C XDq ă δ for all a P F .

These conditions allow us to prove a version of exactness at position (II)
in line (1): roughly this says that if A is excisively decomposable over C, then
for any class rus in K1pAq one can find a pair pC,Dq P C and build a class
Bpuq P K0pC XDq such that if Bpuq “ 0, then rus is in the image of σ.
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The first of our main results is as follows. It is substantially easier to
prove than our results on the Künneth formula.

Theorem 1.3. Say that A excisively decomposes over a class C of pairs such
that for all pC,Dq in C, C, D, and C XD all have trivial K-theory. Then A
has trivial K-theory.

This result is already quite powerful: for example, it allows one to reprove
the main theorem on the Baum-Connes conjecture of Guentner, Yu, and the
author from [16] without the need for the controlled K-theory methods used
there.

In order to get our results on the Künneth formula, we need an exactness
property at position (III) in line (1); unfortunately, this needs the stronger
assumption on A defined below.

Definition 1.4. Let A be a C˚-algebra and C a set of pairs pC,Dq of C˚-
subalgebras of A. The set C is strongly excisive if for all ε ą 0 there exists
δ ą 0 such that for any C˚-algebra B, if c P C b B and d P D b B satisfy
}c´d} ă δ, then there exists x P pCXDqbB with }x´c} ă ε and }x´d} ă ε.

The C˚-algebra is strongly excisively decomposable over C if it decomposes
over C, and if C is strongly excisive.

Annoyingly, strong excisiveness seems a strong assumption. It is satisfied
for example if for any pair pC,Dq P C, C or D is an ideal (or more gener-
ally, a hereditary subalgebra); however, this is too much to ask if one wants
applications that go beyond well-understood cases. Nonetheless, we are able
to show that it is satisfied in some interesting cases: see the discussion of
examples below.

We now discuss some background on the Künneth formula before describ-
ing our main result in that direction.

The Künneth formula

The main application of the results in this paper is to the external product
map

ˆ : K˚pAbBq Ñ K˚pAq bK˚pBq

in C˚-algebra K-theory. This product map can be seen as a special case of
the Kasparov product, or can be defined in an elementary way as described
for example in [19, Section 4.7]. A C˚-algebra A is said to satisfy the Künneth
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formula if for any C˚-algebra B with free abelian K-groups, the product map
above is an isomorphism.

Study of the Künneth formula seems to have been initiated by Atiyah
[1] in the commutative case, and in general by Schochet [30]. In particular,
these authors showed (in the relevant contexts) that A satisfies the Künneth
formula in the above sense if and only if for any B there is a canonical short
exact sequence

0 Ñ TorpK˚pAq, K˚pBqq Ñ K˚pAq bK˚pBq
ˆ
Ñ K˚pAbBq Ñ 0.

This short exact sequence is a useful computational tool, so it is desirable to
know for which C˚-algebras the Künneth formula holds.

Atiyah essentially showed that all commutative C˚-algebras satisfy the
Künneth formula. It follows that any C˚-algebra1 that is KK-equivalent
to a commutative C˚-algebra satisfies the Künneth formula. The class of
such C˚-algebras is exactly the class satisfying the UCT2, whence the UCT
implies the Künneth formula. Remarkably, Lin recently announced a proof
that the UCT holds for all nuclear C˚-algebras; given this, the Künneth
formula holds for all nuclear C˚-algebras as well. The connection to the
UCT provides another motivation for studying the Künneth formula: the
Künneth formula can be viewed as a weak form of the UCT, and one can see
satisfying the Künneth formula as evidence for satisfying the UCT.

The class of C˚-algebras satisfying the Künneth formula is strictly larger
than the class satisfying the UCT, however. This follows from combining
work of Chabert, Echterhoff, and Oyono-Oyono [7], of Lafforgue [21], and of
Skandalis [31]. Indeed, it follows from the ‘going down functor’ machinery
of [7] that if G is any group that satisfies the Baum-Connes conjecture with
coefficients, then C˚r pGq satisfies the Künneth formula. Thanks to [21], this
applies in particular when G is a hyperbolic group. On the other hand,
results of [31] imply3 that if G is an infinite, hyperbolic, property (T) group,
then C˚r pGq does not satisfy the UCT.

Other results extending the range of validity of the Künneth formula
include work of Bönicke and Dell’Aiera [4], which extends the results of [7]

1For this and the next paragraph, all C˚-algebras are separable.
2This is implicit in the original work of Rosenberg and Schochet [29], and was made

explicit by Skandalis in [31, Proposition 5.3].
3The result as stated here is not exactly in [31], but it follows from Skandalis’s ideas,

plus more recent advances in geometric group theory: see [18, Theorem 6.2.1] for a dis-
cussion of the version stated.
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from groups to groupoids; and work of Oyono-Oyono and Yu [25] which uses
the methods of controlled K-theory developed by those authors [24]. The
latter was the main inspiration for this paper, and we say more on this below.

Despite all these positive results, there are known to be C˚-algebras that
do not satisfy the Künneth formula. The only way we know to produce
such examples is based on the existence of non K-exact C˚-algebras: see the
discussion in [7, Remark 4.3 (1)]. We do not know of an exact C˚-algebra
that does not satisfy the Künneth formula.

Having got through the above discussion, here is our main theorem.

Theorem 1.5. Let A be a C˚-algebra. Assume that A strongly excisively
decomposes over a class C of pairs of C˚-subalgebras such that for each
pC,Dq P C, C, D, and C X D satisfy the Künneth formula. Then A sat-
isfies the Künneth formula.

Examples

In Appendix A, we show that if A is a (separable) C˚-algebra of nuclear
dimension one, then A decomposes over a class that consists of subhomoge-
neous C˚-algebras with one-dimensional spectrum. However, it is not at all
clear if one can also get excisive decompositions, so we do not get applications
to the Künneth formula out of this. The results of Appendix A are included
as a sort of ‘plausibility test’ to show that our notion of decomposability is
natural from the point of view of the structure theory of C˚-algebras, not as
these results can be used directly to get K-theoretic applications.

In Appendix B, we show that decompositions of appropriate groupoids
as introduced in [16, Appendix A] give rise to excisive decompositions of the
associated reduced groupoid C˚-algebras. We use this to show that a large
class of reduced groupoid C˚-algebras satisfy the Künneth formula. This
gives a new proof that a large class of amenable groupoids – those with a
strong form of finite dynamical complexity as in [16, Appendix A] – satisfy
the Künneth formula. Similar results have been proved recently4 by Oyono-
Oyono using the methods of controlled K-theory.

4But not so recently – they came before our results! Still, we hope having two different
approaches is interesting.
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Inspiration and motivation

This paper was inspired by the work of Oyono-Oyono and Yu in [25] on the
Künneth formula in controlled K-theory. It owes a great deal to their work,
both conceptually and in some technical details: in particular, the key idea
to use a sort of approximate Mayer-Vietoris sequence comes directly from
[25], and the difficult proof of Proposition 5.6 is based closely on their work.
A major difference of our work from [25] in that we do not use controlled
K-theory, only usual K-theory groups. We do not use filtrations on our C˚-
algebras, and we do not need (nor do we get results on) a ‘controlled’ version
of the Künneth formula. It is not clear to us what the difference is between
the range of validity of our results and those of [25]; we suspect that there is
a large overlap.

We were motivated largely by the sort of decompositions that arise in
the theory of nuclear dimension [35]. We hope the results are reasonably
natural from the point of ‘pure C˚-algebra theory’ (as opposed to the sort of
C˚-algebra theory that is based around examples associated to metric spaces
or dynamical systems).

Outline of the paper

Section 2 introduces a general notion of ‘boundary classes’, and shows that
such classes have good properties with respect to the sequence of maps in
line (1): roughly, we prove a weak form of exactness at position (II) in
line (1). The discussion in Section 2 leaves open how one might construct
boundary classes: this is done in Section 3 using decompositions. It is now
straightforward to prove Theorem 1.3, our first main goal of the paper.

Until the appendices, the remainder of the paper deals with our approach
to the Künneth formula.

In Section 4, we prove exactness at position (I) in line (1); this is simpler
than exactness at position (II), but is postponed until later as it is not needed
for the proof of Theorem 1.3. We also collect together some other technical
results on the boundary map that are needed later. Exactness at position
(III) in line (1) is handled in Section 5: this is the most difficult of our
exactness properties, both to prove and to use.

Section 6 recalls some basic facts we need about product maps and proves
that these interact well with our boundary classes. Section 7 recalls well-
known material about the inverse Bott map that we need for the technical

7



proofs. Finally, in Sections 8 and 9, we are finally ready to attack Theorem
1.5, proving the surjectivity and injectivity halves respectively.

The paper is completed by two appendices dealing with examples. The
first of these, Appendix A shows that C˚-algebras of nuclear dimension
one are natural examples of (not necessarily excisively) decomposable C˚-
algebras. Appendix B gives examples of (strongly) excisive decompositions
from groupoid theory, and applications to the Künneth formula.

Notation and conventions

Throughout, if A is a C˚-algebra (or more generally, Banach algebra), then
rA denotes A itself if A is unital, and the unitization of A if it is not unital. If
X is a subspace of a C˚-algebra A, then rX is the subspace of rA spanned by
X and the unit. There is a minor ambiguity here about what happens when
C is a C˚-subalgebra of A, and C has its own unit which is not the unit of
A: we adopt the convention that in this case, rC means the C˚-subalgebra
of A generated by C and the unit of rA. This convention will always, and
only, apply to C˚-subalgebras called C, D and C XD (plus suspensions and
matrix algebras of these), so we hope it causes no confusion.

We use 1n and 0n to denote the unit and zero element of Mnp rAq when it
seems helpful to avoid ambiguity, but drop the subscripts whenever things
seem more readable without. We use the usual ‘top-left corner’ identification
of MnpAq with MmpAq for n ď m, usually without comment. We also use
the usual ‘block sum’ convention that if a PMnpAq, and b PMmpAq, then

a‘ b :“

ˆ

a 0
0 b

˙

PMn`mpAq.

The symbol b as applied to C˚-algebras always denotes the spatial tensor
product. If X is a closed subspace of a C˚-algebra A and B is a C˚-algebra,
then X bB denotes the closure of the algebraic tensor product X dB inside
AbB. For a C˚-algebra A, SA :“ C0pRqbA is its suspension, S2A :“ SpSAq
its double suspension, and for a closed subspace X of A, SX :“ C0pRq bX.
Also, K denotes the compact operators, so AbK is the stabilisation of K.

Contrary to the practice in some introductory texts on C˚-algebra K-
theory such as [28] and [33], we will work with K-theory classes defined by
idempotents and invertibles, rather than just by projections and unitaries.
This is because one typically has more concrete formulas available in that
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context, allowing more control. Readers unfamiliar with this approach can
find the necessary background in [2, Chapters II, III and IV], for example.

We have attempted to keep the paper self-contained and elementary, using
nothing more complicated than K-theory for C˚-algebras up to the Bott
periodicity theorem.5 The price of keeping things elementary in this sense is
that we seemed to occasionally be forced into technicalities6, particularly in
the proliferation of nested quantifiers. For this reason, we also tried to find
a ‘softer’, or more conceptual, proof that proceeds via the construction of an
appropriate machine, but completely failed! We would be very interested to
see a softer version : ) .
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2 Boundary classes

In this section, we work in the context of general Banach algebras. This is
not needed for our applications, but we hope it clarifies what goes into the
results; it also makes no difference to the proofs.

Definition 2.1. Let A be a Banach algebra, and let C and D be Banach
subalgebras. We define maps on K-theory by

ι : K˚pC XDq Ñ K˚pCq ‘K˚pDq, κ ÞÑ pκ,´κq.

and
σ : K˚pCq ‘K˚pDq Ñ K˚pAq, pκ, λq ÞÑ κ` λ.

5Modulo the comments above about invertibles and idempotents: this just means we
work in a more elementary Banach algebra context much of the time

6and split infinitives
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With notation as above, assume for a moment that C and D are (closed,
two-sided) ideals in A such that A “ C `D. Then there is a Mayer-Vietoris
boundary map B : K1pAq Ñ K0pC XDq that fits into a long exact sequence

¨ ¨ ¨
ι
Ñ K1pCq ‘K1pDq

σ
Ñ K1pAq

B
Ñ K0pC XDq

ι
Ñ K0pCq ‘K0pDq

σ
Ñ ¨ ¨ ¨ .

Our aim in this section is to get analogous results for more general Banach
subalgebras C and D: for at least some classes rus P K1pAq, we want to
(non-canonically) construct a ‘boundary class’ Bpuq P K0pC X Dq that has
similar exactness properties with respect to ι and σ.

First, we need a technical lemma about approximating ‘almost idempo-
tents’ by idempotents. Some variant of this (with sharper estimates!) is
presumably well-known.

Lemma 2.2. For any ε, c ą 0 there exists δ P p0, 1{16q with the following
property. Let A be a Banach algebra and e P A satisfy }e2 ´ e} ă δ and
}e} ď c. Let χ be the characteristic function of tz P C | Repzq ą 1{2u.
Then χpeq (defined via the holomorphic functional calculus) is a well-defined
idempotent, and satisfies }χpeq ´ e} ă ε.

Proof. First note that if δ P p0, 1{16q and if z P C satisfies |z2 ´ z| ă δ,
then |z||z ´ 1| ă δ, and so either |z| ă

?
δ, or |z ´ 1| ă

?
δ. Hence by the

polynomial spectral mapping theorem, if }e2 ´ e} ă δ, then the spectrum of
e is contained in the union of the balls of radius

?
δ and centered at 0 and 1

respectively. As
?
δ ă 1{2, it follows that χ is holomorphic on the spectrum

of e. Hence χpeq makes sense under the assumptions, and is an idempotent
by the functional calculus.

Let now r “ 2
?
δ ă 1{2, and let γ0 and γ1 be positively oriented circles

centered on 0 and 1 respectively, and of radius r. Then by the above remarks,
if }e2´ e} ă δ we have that γ0Y γ1 is a positively oriented contour on which
χ is holomorphic, and that has winding number one around each point of the
spectrum of e. Hence by definition of the holomorphic functional calculus

χpeq ´ e “
1

2πi

ż

γ0Yγ1

pχpzq ´ zqpz ´ eq´1dz.

Estimating the norm of this using that |χpzq ´ z| “ r for z P γ0 Y γ1 gives

}χpeq ´ e} ď
1

2π

ż

γ0Yγ1

r}pz ´ eq´1}|dz|. (2)
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Let us estimate the term }pz´ eq´1} for z P γ0Y γ1. Set w “ 1´ z. Then
we have that w ´ e is also invertible, and

}pz ´ eq´1} “ }pw ´ eqpw ´ eq´1pz ´ eq´1}

ď pc` |w|q}|ppz2 ´ zq ´ pe2 ´ eqq´1}

ď pc` 2q}|ppz2 ´ zq ´ pe2 ´ eqq´1}. (3)

Now, we have that for z P γ0 Y γ1,

|z2 ´ z| “ |z||z ´ 1| ě
1

2
r “

?
δ ą δ ą }e2 ´ e}.

Hence using the Neumann series inverse formula

ppz2 ´ zq ´ pe2 ´ eqq´1 “
1

z2 ´ z

´

1´
e2 ´ e

z2 ´ z

¯´1

“
1

z2 ´ z

8
ÿ

n“0

´ e2 ´ e

z2 ´ z

¯n

we get the estimate

}ppz2 ´ zq ´ pe2 ´ eqq´1} ď
1

|z2 ´ z| ´ }e2 ´ e}
ď

1
1
2
r ´ δ

“
1

?
δ ´ δ

.

Combining this with line (3), we see that for z P γ0 Y γ1,

}pz ´ eq´1} ď
c` 2
?
δ ´ δ

.

To complete the proof, substituting the above estiumate into line (2) gives
that

}χpeq ´ e} ď
1

2π

ż

γ0Yγ1

rpc` 2q
?
δ ´ δ

|dz| “
1

2π

`

Lengthpγ0q ` Lengthpγ1q
˘rpc` 2q
?
δ ´ δ

.

Substituting in Lengthpγ0q “ Lengthpγ1q “ 2πr and r “ 2
?
δ we get

}χpeq ´ e} ď
4
?
δpc` 2q

1´
?
δ

,

which is enough to complete the proof.

Definition 2.3. Let A be a Banach algebra, let B be a Banach subalgebra
of A, let a P A, and let ε ą 0. The element a is ε-in B, denoted a Pε B, if
there exists b P B with }a´ b} ď ε.
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The following lemma uses standard ideas. We give details as arguments
with general idempotents (as opposed to projections) are maybe not so com-
mon in the C˚-algebraic literature.

Lemma 2.4. Let A be a Banach algebra and B a Banach subalgebra. Then
for all c ą 0 and all ε P p0, 1

4c`6
q there exists δ ą 0 with the following property.

Say e PMnpAq is an idempotent which is δ-in MnpBq and such that }e} ď c.
Then there is an idempotent f P MnpBq with }e ´ f} ă ε. Moreover, the
class rf s P K0pBq does not depend on the choice of ε, δ, or f .

Proof. Let δ ą 0, to be chosen depending on c and ε in a moment, and
assume that e is δ-in MnpBq so there is b PMnpBq with }b´ e} ă δ. Then

}b2 ´ b} ď }e}}b´ e} ` }b}}b´ e} ` }b´ e} ď p2c` δ ` 1qδ.

Let χ be the characteristic function of the half-plane tz P C | Repzq ą 1{2u.
Then for suitably small δ (depending only on c and ε), we may apply Lemma
2.2 to get that }b ´ χpbq} ă ε{2. Setting f “ χpbq and assuming also that
δ ă ε{2 we get that

}e´ f} ď }e´ b} ` }b´ f} ă ε

as desired.
To see that rf s P K0pBq does not depend on the choice of f , let f 1 P

MnpBq be another idempotent with }e ´ f 1} ă ε. Then }f ´ f 1} ă 2ε ă
1{p2c` 3q. As }f} ď c` 1, we see that

}f ´ f 1} ă
1

2c` 3
ď

1

}2f ´ 1}
,

whence [2, Proposition 4.3.2] implies that f and f 1 are similar, and so in
particular define the same K-theory class.

Definition 2.5. Let c ą 0, let ε P p0, 1
4c`6

q, and let δ ą 0 be as in Lemma
2.4. Let A be a Banach algebra, and B be a Banach subalgebra of A, and say
e PMnpAq is an idempotent that is δ-in MnpBq. Then we write teuB P K0pBq
for the class of any idempotent f PMnpBq with }e´ f} ă ε.

The key technical definition is as follows.
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Definition 2.6. Let c ą 0, let ε P p0, 1
4c`6

q, and let δ ą 0 be as in Lemma
2.4. Let A be a Banach algebra, let C and D be Banach subalgebras of A,
let u P Mnp rAq be an invertible element for some n. An element v P M2np rAq
is a pδ, c, C,Dq-lift of u if it satisfies the following conditions:

(i) }v} ď c and }v´1} ď c;

(ii) v Pδ M2np rDq;

(iii) v

ˆ

u´1 0
0 u

˙

Pδ M2np rCq;

(iv) v

ˆ

1 0
0 0

˙

v´1 Pδ M2npČC XDq;

(v) with notation as in Definition 2.5, the K-theory class

!

v

ˆ

1 0
0 0

˙

v´1
)

ČCXD
´

„

1 0
0 0



P K0pČC XDq

is actually in the subgroup K0pC XDq.

We may now use such lifts to construct ‘boundary classes’.

Proposition 2.7. Let c ą 0, let ε P p0, 1
4c`6

q. Then there is δ ą 0 satisfying
the conclusion of Lemma 2.4, and with the following properties. Let A be
a Banach algebra, and let u P Mnp rAq be an invertible with }u} ď c and
}u´1} ď c. Assume there exist Banach subalgebras C and D of A and a
pδ, c, C,Dq-lift v of u. Then the K-theory class

Bvu :“
!

v

ˆ

1 0
0 0

˙

v´1
)

ČCXD
´

„

1 0
0 0



P K0pC XDq

has the following properties.

(i) If ι is as in Definition 2.1, then ιpBvuq “ 0 in K0pCq ‘K0pDq.

(ii) If Bvu “ 0, then there is l P N and an invertible x Pε Mn`lp rDq such that

pu‘ 1lqx
´1 Pε M2np rCq. In particular, if σ is as in Definition 2.1, then

σprpu‘ 1lqx
´1s, rxsq “ rus in K1pAq.
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Proof. Let us first consider ιpBvuq. Note first that as v is δ-in M2np rDq, there

is w P M2np rDq such that }w ´ v} ă δ. In particular, w is invertible for δ
suitably small. It follows by definition of the left hand side that

!

v

ˆ

1 0
0 0

˙

v´1
)

rD
“

”

w

ˆ

1 0
0 0

˙

w´1
ı

in K0p rDq for all suitably small δ. Hence as elements of K0p rDq,

!

v

ˆ

1 0
0 0

˙

v´1
)

rD
´

„

1 0
0 0



“

”

w

ˆ

1 0
0 0

˙

w´1
ı

´

„

1 0
0 0



.

However, as w is in M2np rDq,
”

w

ˆ

1 0
0 0

˙

w´1
ı

“

„

1 0
0 0



in K0p rDq, so the

above is the zero class in K0p rDq, hence also in K0pDq.

On the other hand, our assumption that v

ˆ

u´1 0
0 u

˙

is δ-in M2np rCq im-

plies similarly that for all δ suitably small, we have

Bvu “
!

v

ˆ

1 0
0 0

˙

v´1
)

rC
´

„

1 0
0 0



“

!

ˆ

u 0
0 u´1

˙

v´1v

ˆ

1 0
0 0

˙

v´1v

ˆ

u´1 0
0 u

˙

)

rC
´

„

1 0
0 0



,

which is zero as a class in K0pCq. We have shown that the image of Bvu in
both K0pCq and K0pDq is zero, whence ιpBvuq “ 0 as claimed.

Throughout the rest of the proof, whenever we write ‘δn’, it is implicit
that this is a positive number, depending only on c and δ, and that tends to
zero when δ tends to zero as long as c stays in a bounded set.

Now let us assume that Bvu “ 0. This implies that there exists l P N and
an invertible element w of M2n`lpČC XDq such that

›

›

›
w
´

v

ˆ

1 0
0 0

˙

v´1 ‘ 1l

¯

w´1 ´

ˆ

1 0
0 0

˙

‘ 1l

›

›

›
ă δ1

for some δ1 ą 0. Write v “

ˆ

v11 v12
v21 v22

˙

, and let

v1 :“

¨

˚

˚

˝

v11 0 v12 0
0 1l 0 0
v21 0 v22 0
0 0 0 1l

˛

‹

‹

‚

Pδ Mn`l`n`lp rDq

14



(writing the matrix size as n` l` n` l is meant to help understand the size
of the various blocks) and if

w “

¨

˝

w11 w12 w13

w21 w22 w23

w31 w32 w33

˛

‚PMn`n`lpČC XDq

let

w1 :“

¨

˚

˚

˝

w11 0 w12 w13

0 1l 0 0
w21 w22 w23

w31 0 w32 w33

˛

‹

‹

‚

PMn`l`n`lpČC XDq.

Then in Mpn`lq`pn`lqp
rCq we have

›

›

›
w1v1

ˆ

1 0
0 0

˙

v´11 w1 ´

ˆ

1 0
0 0

˙

›

›

›
ă δ2

for some δ2. This implies that for δ suitably small there exist invertible
x, y PMn`lp rDq and δ3 such that

›

›

›
w1v1 ´

ˆ

x 0
0 y

˙

›

›

›
ă δ3.

Now, by assumption

v

ˆ

u´1 0
0 u

˙

Pδ M2np rCq.

Write u1 :“ u‘ 1l PMn`lp rAq. Then

v1

ˆ

u´11 0
0 u1

˙

Pδ Mpn`lq`pn`lqp
rCq.

and thus as w1 is in M2pn`lqp
rCq, we have that

w1v1

ˆ

u´11 0
0 u1

˙

Pδ4 M2pn`lqp
rCq

for some δ4. Hence in particular, xu´11 is invertible for δ suitably small,

is δ4-in Mn`lp rCq, and has norm bounded above by some absolute constant
depending only on c. We now have that for δ suitably small (depending only

on ε and c), u1x
´1 is ε-in Mn`lp rCq and that x is ε-in Mn`lp rDq, completing

the proof.

Definition 2.8. With notation as in Proposition 2.7, we call Bvpuq P K0pCX
Dq the boundary class associated to the data pu, v, C,Dq.
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3 Decompositions and the vanishing theorem

Our main goal in this section is to show that locally excisive decompositions
as in Definitions 1.1 and 1.2 can be used to build lifts as in Definition 2.6,
and thus allow us to build boundary classes.

It would be possible to get analogous results for general Banach algebras,
but it would make the statements and proofs more technical. As our ap-
plications are all to the K-theory of C˚-algebras, at this stage we therefore
specialise to that case.

First, it will be convenient to give a technical variation of Definitions 1.1
and 1.2.

Definition 3.1. Let A be a C˚-algebra, let X Ď A be a subspace, and let
δ ą 0. Then an excisive δ-decomposition of X is a triple

ph,C,Dq

consisting of a positive contraction h in the multiplier algebra of A, and
C˚-subalgebras C and D of A such that

(i) }rh, xs} ď δ}x} for all x P X;

(ii) hx and p1´ hqx are δ}x}-in C and D respectively for all x P X;

(iii) hp1´ hqx and h2p1´ hqx are δ}x}-in C XD for all x P X.

Finally, we say that A excisively decomposes over a class C of pairs of
C˚-subalgebras if for any δ ą 0 and finite dimensional subspace X of A there
exists an excisive δ-decomposition ph,C,Dq of X with pC,Dq in C.

Remark 3.2. The conditions on multiplying into the intersection in (iii) from
Definition 3.1 might look odd for two reasons. First, they are asymmetric in
h and 1´h: this is a red herring, however, as it would be essentially the same
to require that hp1 ´ hqx and hp1 ´ hq2x are both δ}x}-in C X D. Second,
there are two conditions for C X D, and only one each for C and D. This
seems attributable to the fact that one needs (at least) two polynomials to
generate C0p0, 1q as a C˚-algebra, but only one each for C0p0, 1s and C0r0, 1q.

Remark 3.3. It is tempting to believe thast that if A is decomposable over
a class C as in Definition 1.1, then some additional perturbation argument
shows that is also excisively decomposable over C. We do not believe this is
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true due to the following example, inspired by a suggestion of Ian Putnam (we
warn the reader that we did not check the details of what follows). It seems by
adapting Proposition A.1 that one can show that if A has nuclear dimension
one and real rank zero, then it decomposes over the class C of pairs of its finite
dimensional C˚-subalgebras. In particular, this would apply to any Kirchberg
algebra (see [5, Theorem G] and [27, Proposition 4.1.1]). However, if A
excisively decomposes over a class of pairs of finite-dimensional C˚-algebras,
then a mild elaboration of Proposition 3.7 below shows that K1pAq is torsion
free. As there are Kirchberg algebras with non-trivial torsion K1 group (see
[27, Section 4.3]), this (if correct!) would show that being decomposable over
a collection C and being excisively decomposable over C are not the same.

We need a basic lemma about how excisive decompositions behave under
tensor products. If X is a subspace of a C˚-algebra A, recall that we write
XbB for the norm closure of the subspace of AbB generated by elementary
tensors xb b with x P X and b P B.

Lemma 3.4. Say A is a C˚-algebra, and X is a finite-dimensional subspace
of A. Then there exists a constant MX ą 0 depending only on X such that
if ph,C,Dq is an locally excisive δ-decomposition of X, and if B is any C˚-
algebra, then phb 1, C bB,D bBq is a locally excisive MXδ-decomposition
of X bB.

Proof. Let x1, ..., xn be a basis for X consisting of unit vectors, and let
φ1, ..., φn P A

˚ be linear functionals dual to this basis, so φipxjq “ δij (here
δij is the Kronecker δ function). Let N “ supni“1}φi}. Note first that any
a P X bB can be written

a “
n
ÿ

i“1

xi b bi

for some unique b1, ..., bn P B, and that we have for each i

}bi} “ }pφi b idqpaq} ď }φi}}a} ď N}a}.

To see property (i), note that for any a “
řn
i“1 xi b bi P X bB we have

}rhb 1, as} ď
n
ÿ

i“1

}rh, xis b bi} ď
n
ÿ

i“1

δ}xi}}bi} ď δnN}a}.

To see property (ii) and (iii), let us look at ha for some a P X bB; the cases
of p1´hqa, hp1´hqa, and h2p1´hqa are similar. For each each i P t1, ..., nu

17



choose ci P C with }hxi ´ ci} ă δ. Then if a “
řn
i“1 xi b bi P X b B is as

above and c “
řn
i“1 ci b bi P C bB we have

}phb 1qa´ c} ď
n
ÿ

i“1

}phxi ´ ciq b bi} ď
n
ÿ

i“1

δ}bi} ď δnM}a}

and are done.

Corollary 3.5. Say A is a C˚-algebra that excisively decomposes over C,
and let B be a C˚-algebra. Then A b B excisively decomposes over the set
tpC bB,D bBq | pC,Dq P Cu.

Proof. Let X be a finite-dimensional subspace of A b B, and let δ ą 0. As
the unit sphere of X is compact, there is a finite dimensional subspace Y
of A such that for any x in the unit sphere of X there exists y in the unit
sphere of Y b B such that }y ´ x} ă δ{2. Let MY be as in Lemma 3.4, and
let ph,C,Dq be an excisive δ{p2MY q-decomposition for Y . Then Lemma 3.4
implies that phb 1, C bB,DbBq is an excisive δ-decomposition for X.

Here is the second basic lemma we need.

Lemma 3.6. Say A is a C˚-algebra, X0 is a finite-dimensional subspace
of A, and N ě 2. Then there exists a finite-dimensional subspace X of
A containing X0, such that for any δ ą 0 there exists δ1 ą 0 such that
if ph,C,Dq is a locally excisive δ1-decomposition of X, then ph,C,Dq also
satisfies the following properties:

(i) }rh, xs} ď δ}x} for all x P X0;

(ii) for all n P t1, ..., Nu, hnx (respectively, hnp1´ hqx, and hnp1´ hqx) is
δ}x}-in C (respectively D, and C XD) for all x P X0;

In words, we can bootstrap property (ii) from Definition 3.1 up to a
stronger version of itself. That something like this is possible was pointed
out to me by Aaron Tikuisis and Wilhelm Winter: I was originally working
directly with the bootstrapped version, which led to messier definitions.

Proof. We just sketch the idea, which is elementary, and leave the details to
the reader. Take a basis of X consisting of contractions, and write each of
these as a sum of four positive contractions. Let X 1 be the space of spanned
by all these positive contractions, say ta1, ..., anu. Ley Y be spanned by all

18



mth roots of all of a1, ..., an for m P t1, ..., N ` 1u. Clearly if δ1 ď δ, then as
Y contains X, we have the almost commutation property in the statement.

Let us now look at hnx for x P X. It suffices to look at hna for some a P
ta1, ..., anu. Then using the almost commutation property, we have that hna
is close to pha1{nqn, so for δ1 suitably small, we get what we want. Similarly,
if a P ta1, ..., anu, if we write g “ h´ 1, then

hnp1´ hq “ p1` gqnp´gqa “ ´
n
ÿ

k“0

ˆ

n

k

˙

gk`1a,

and again using the almost commutation property, this is close to
n
ÿ

k“0

ˆ

n

k

˙

pga1{pk`1qqk`1,

so we get the right property for δ1 suitably small. The corresponding property
for the intersection is similar, once we realise that for all n ě 1, hnp1 ´ hq
can be written as a polynomial in hp1´hq and h2p1´hq (proof by induction
on n, for example): we leave the details of this to the reader.

For the remainder of this section, we will apply Lemma 3.4 to tensor
products MnpAq “ AbMnpCq without further comment. We will also abuse
notation, writing things like ‘hu’ for an element u P MnpAq, when we really
mean ‘phb 1nqu’.

The next proposition is the key technical result of this section. It says that
we can use excisive decompositions to build boundary classes as in Definition
2.8. For the statement, recall the notion of a pε, c, C,Dq-lift from Definition
2.6 above.

Proposition 3.7. Let A be a C˚-algebra and let α P K1pAq be a K1-class.

Then there exist n and an invertible element u PMnp rAq, c ą 0, and a finite-
dimensional subspace X of A such that for any ε ą 0 there exists δ ą 0 such
that the following hold.

(i) The class rus equals α.

(ii) If ph,C,Dq is a locally excisive δ-decomposition of X, and if a “ h `
p1´ hqu and b “ h` u´1p1´ hq then

v :“

ˆ

1 a
0 1

˙ˆ

1 0
´b 1

˙ˆ

1 a
0 1

˙ˆ

0 ´1
1 0

˙

is an pε, c, C,Dq-lift for u.
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First we have an ancillary lemma.

Lemma 3.8. Let A be a C˚-algebra and let u be an invertible element of rA
such that u “ 1 ` y and u´1 “ 1 ` z with y, z elements of A with norms
bounded by some c ą 0. Let δ ą 0 and let h be a positive contraction in
MpAq such that }rh, xs} ď δ}x} for all x P ty, zu. Define

a :“ h` p1´ hqu and b :“ h` u´1p1´ hq.

Then ba´ 1 and ab´ 1 are both within 2pc2 ` cqδ of py ` zqhp1´ hq.

Proof. Using that y and z commute, we have that

ra, bs “ p1´ hqyzp1´ hq ´ zp1´ hq2y

“ rp1´ hq, zsyp1´ hq ` zp1´ hqry, p1´ hqs

“ rz, hsyp1´ hq ` zp1´ hqrh, ys,

whence }ab´ ba} ď 2c2δ. Hence it suffices to show that ab´ 1 is within 2cδ
of hp1´ hqpy ` zq. Using that yz “ ´y ´ z, we see that

ab´ 1 “ p1´ hqyh` hzp1´ hq

and using that }ry, hs} ď δ}y} and }rz, hs} ď δ}z}, we are done.

Proof of Proposition 3.7. Let u PMnp rAq be any invertible element such that
rus “ α. Using that GLnpCq is connected, up to a homotopy we may assume
that u and u´1 are of the form 1 ` y and 1 ` z respectively with y, z P A.
Let X0 be the subspace of A spanned by all matrix entries of all monomials
of degree between one and three with entries from ty, zu. Let X be as in
Lemma 3.6 for this X0 and N “ 4. Let then ε ą 0 be given, and let δ ą 0 be
fixed, to be determined by the rest of the proof. Let ph,C,Dq be an excisive
δ-decomposition of X.

Throughout the proof, anything called ‘δn’ is a constant depending on X,
δ and maxt}y}, }z}u, and with the property that δn tends to zero as n tends
to zero, assuming the other inputs are held constant. Note that Lemma 3.4
implies that (abusing notation) there is δ1 such that ph,MnpCq,MnpDqq is an
excisive δ1 decomposition of MnpAq for all n. We check the properties from
Definition 2.6. Property (i) is clear from the formula for v (which implies a
similar formula for v´1).
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For property (ii), one computes

v “

ˆ

ap2´ baq ab´ 1
1´ ba b

˙

“

ˆ

a 0
0 b

˙

`

ˆ

ap1´ baq ab´ 1
1´ ba 0

˙

. (4)

As a “ 1 ` p1 ´ hqy and b “ 1 ` zp1 ´ hq, we have that a and b are both

δ2-in Mnp rDq for some δ2. Hence also

ˆ

a 0
0 b

˙

is δ2-in M2np rDq. On the other

hand, Lemmas 3.8 and 3.6 implies that 1 ´ ba and 1 ´ ab are δ3-in M2np rDq

for some δ3 by choice of X. It follows from this and that a is δ2-in Mnp rDq

that

ˆ

ap1´ baq ab´ 1
1´ ba 0

˙

is δ4-in M2np rDq for some δ4.

For part (iii), we compute

v

ˆ

u´1 0
0 u´1

˙

“

ˆ

au´1 0
0 bu

˙

`

ˆ

ap1´ baqu´1 pab´ 1qu
p1´ baqu´1 0

˙

. (5)

We have that au´1 “ 1`hz and that }bu´p1`yhq} ă δ5 for some δ5. Hence

the first term in line (5) is δ6-in M2np rCq for some δ6. For the second term,
using Lemma 3.8 we have that up to some δ7, p1´baqu

´1 and pab´1qu equal

py ` zqhp1´ hqp1` zq and py ` zqhp1´ hqp1` yq.

On the other hand }ap1 ´ baqu´1 ´ p1 ` hzqpy ` zqhp1 ´ hq} ă δ7 for some
δ8. The claim follows from all of this and the choice of X.

For parts (iv) and (v), note that

v´1 “

ˆ

0 ´1
1 0

˙ˆ

1 ´a
0 1

˙ˆ

1 0
b 1

˙ˆ

1 ´a
0 1

˙

“

ˆ

b 1´ ba
ab´ 1 ap2´ baq

˙

“

ˆ

b 0
0 a

˙

`

ˆ

0 1´ ba
ab´ 1 ap1´ baq

˙

.

Using this and the formula in line (4) we have that v

ˆ

1 0
0 0

˙

v´1 ´

ˆ

1 0
0 0

˙

equals
ˆ

ab´ 1 0
0 0

˙

`

ˆ

ap1´ baqb 0
p1´ baqb 0

˙

`

ˆ

0 ap1´ baq
0 0

˙

`

ˆ

0 ap1´ baq2

0 p1´ baq2

˙

. (6)
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Now, using Lemma 3.8 and the fact that h almost commutes with y and
z, every term appearing in within some δ9 of something of the form p1 ´
hqhpCphqqCpy, zq, where pC is a polynomial of degree at most 3 in h (possibly
with a constant term), qC is a noncommutative polynomial of degree at
most 3 with no constant term, and moreover the coefficients in pC and qD
are universally bounded. Hence by choice of X, all the terms are δ10-in
MnpC XDq, for some δ10. This completes the proof.

We are now ready for the proof of Theorem 1.3 from the introduction.

Theorem 3.9. Say that A excisively decomposes over a class C of pairs such
that for all pC,Dq in C, C, D, and C XD all have trivial K-theory. Then A
has trivial K-theory.

Proof. It suffices to show that K1pAq “ K1pSAq “ 0. For K1pAq, let α P
K1pAq be an arbitrary class. Then using Proposition 3.7 we may build a
boundary class Bvpuq P K0pCXDq. As K0pCXDq “ 0, this class Bvpuq is zero.
Hence by Proposition 2.7 it is in the image of σ : K1pCq ‘K1pDq Ñ K1pAq.
However, K1pCq “ K1pDq by assumption, so we are done with this case.

The case of K1pSAq is almost the same. Indeed, Corollary 3.5 implies
that SA excisively decomposes over the set tpSC, SDq | pC,Dq P Cu, and we
have that SC, SD, and SC XSD “ SpC XDq all have trivial K-theory.

We remark that Theorem 1.3 can be used to simplify the proof of the main
theorem of [16], in particular obviating the need for filtrations and controlled
K-theory in the proof, and replacing the material of [16, Section 7] entirely.
Further applications are certainly possible, but we will not pursue this here.

4 More on boundary classes

In this section we collect together further technical results on boundary
classes that are needed for the proof of Theorem 1.5 on the Künneth for-
mula. We state results for Banach algebras when it makes no difference to
the proof, and C˚-algebras when the proof is simpler in that case.

The first result corresponds to exactness at position (I) in line (1) from
the introduction. For the statement, recall the notion of lifts from Definition
2.6.
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Proposition 4.1. Let A be a Banach algebra and let C and D be Banach
subalgebras of A. Assume that p, q P MnpČC XDq are idempotents such that
rps´ rqs P K0pCXDq. Assume moreover that with ι as in Definition 2.1 that
ιprps ´ rqsq “ 0.

Then there exist k P N, an invertible element u of Mn`kp rAq, an invertible

element v of M2pn`kqp
rAq and c ą 0 such that for any δ ą 0, v and v´1 are

pδ, c, C,Dq-lifts of u and u´1 respectively, and such that Bvu “ rps ´ rqs and
Bv´1pu´1q “ rqs ´ rps.

Proof. As ιprps ´ rqsq “ 0, there exist natural numbers l ď k and invertible

elements uC PMn`kp rCq, uD PMn`kp rDq such that

uCpp‘ 1lqu
´1
C “ q ‘ 1l “ uDpp‘ 1lqu

´1
D .

Define
u :“ p1´ p‘ 1lqu

´1
C ` pp‘ 1lqu

´1
D PMn`kp rAq,

so u is invertible with inverse u´1 “ uCp1´p‘1lq`uDpp‘1lq, as the reader
can directly check. Define now

v :“

ˆ

pp‘ 1lqu
´1
D p‘ 1l ´ 1

1´ q ‘ 1l uDpp‘ 1lq

˙

PM2pn`kqp
rDq.

Note that v is invertible: indeed, direct computations show that

v´1 :“

ˆ

uDpp‘ 1lq 1´ q ‘ 1l
1´ pn ‘ 1l pp‘ 1lqu

´1
D

˙

.

We also compute that

v

ˆ

u´1 0
0 u

˙

“

ˆ

p‘ 1l p1´ p‘ 1lqu
´1
C

uCp1´ p‘ 1lq q ‘ 1l

˙

,

which is an element of M2pn`kqp
rCq, so at this point we have properties (i),

(ii), and (iii) from Definition 2.6.
To complete the proof, we compute using the formulas above for v and

v´1 that

v

ˆ

1 0
0 0

˙

v´1 “

ˆ

p‘ 1l 0
0 1´ q ‘ 1l

˙

,
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which is in M2pn`kqp
ČC XDq. Moreover, as a class in K0pČC XDq,

”

v

ˆ

1 0
0 0

˙

v´1
ı

´

„

1 0
0 0



“ rps ´ rqs,

so in particular this class is in K0pCXDq, completing the proof that v satisfies
the conditions from Definition 2.6, and that Bvpuq “ rps ´ rqs.

The computations with v´1 and u´1 replacing v and u are similar: we
leave them to the reader.

Lemma 4.2. Let A be a Banach algebra, let c ą 0, and let ε P p0, 1
4c`6

q. Let
δ ą 0 satisfy the conclusion of Proposition 2.7. Assume that for i P t1, ...,mu,

ui P Mni
p rAq is an invertible elements such that }u} ď c and }u´1} ď c, and

let C and D be Banach subalgebras of A such that for each i there is a
pδ, c, C,Dq-lift vi of ui. Let s P M2pn1`¨¨¨`nmq be the self-inverse permutation
matrix defined by the following diagram in the sizes of the matrix blocks

n1

��

n1

**

n2

}}

n2

((

¨ ¨ ¨ ¨ ¨ ¨ nm

ss

nm

��
n1

OO

n2

==

¨ ¨ ¨ nm

33

n1

jj

n2

hh

¨ ¨ ¨ nm

OO

and define
v1 ‘ ¨ ¨ ¨‘ vm :“ spv1 ‘ ¨ ¨ ¨ ‘ vmqs

Then v :“ v1 ‘ ¨ ¨ ¨‘ vm is a pδ, c, C,Dq-lift of u :“ u1 ‘ ¨ ¨ ¨ ‘ um, and

Bvu “
n
ÿ

i“1

Bvipuiq

in K0pC XDq.

Proof. We leave the direct and elementary checks involved in this to the
reader.

We conclude this section with a technical result on inverses that we will
need later.

Lemma 4.3. Assume that the assumptions of Proposition 3.7 are satisfied.
Then on shrinking δ, we may assume that v´1 is also an pε, c, C,Dq-lift of
u´1, and moreover that

Bvpuq “ ´Bv´1pu´1q

as elements of K0pC XDq.
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Proof. Checking that

v´1 “

ˆ

0 ´1
1 0

˙ˆ

1 ´a
0 1

˙ˆ

1 0
b 1

˙ˆ

1 ´a
0 1

˙

satisfies the properties from Definition 2.6 with respect to u´1 is essentially
the same as checking the corresponding properties for v and u in the proof
of Proposition 3.7. We leave the details to the reader.

It remains to establish the formula Bvpuq “ ´Bv´1pu´1q. For t P r0, 1s,
define

vt :“

ˆ

1 ta
0 1

˙ˆ

1 0
´tb 1

˙ˆ

1 ta
0 1

˙ˆ

0 ´1
1 0

˙

.

Analogous computations we used to establish to property (iii) in the proof

of Proposition 3.7 show that v´1t v

ˆ

1 0
0 0

˙

v´1vt is in M2npČC XDq up to an

error we can make as small as we like depending on δ, and that the difference

v´1t v

ˆ

1 0
0 0

˙

v´1vt ´ v
´1
t

ˆ

1 0
0 0

˙

vt

is in M2npC XDq, again up to an error that we can make as small as we like
by making δ small (and keeping c and X fixed). Hence for all t P r0, 1s we
get that the classes

!

v´1t v

ˆ

1 0
0 0

˙

v´1vt

)

ČCXD
´

!

v´1t

ˆ

1 0
0 0

˙

vt

)

ČCXD

of K0pC X Dq are well-defined. They are moreover all the same, as the
elements defining them are homotopic. However, the above equals δvpuq
when t “ 0, and equals ´δv´1pu´1q when t “ 1, so we are done.

5 Decompositions and the summation map

In this section, we prove a technical result, based very closely on [25, Lemma
2.9], and corresponding to exactness at position (III) in line (1) from the
introduction.

The statements are a little involved. The basic idea of the result is that
it gives conditions under which one has some sort of exactness

K1pC XDq
ι
Ñ K1pCq ‘K1pDq

σ
Ñ K1pAq
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of the sequence of maps from Definition 2.1. Roughly, it says that if X is a
finite dimensional subspace of A and if ph,C,Dq is a suitable decomposition
of X as in Definition 1.1, then if σpκ, λq “ 0 and there is a ‘reason’ for this
element being zero in the subspace X, then pκ, λq is in the image of ι. This
result is weak: it seems the quantifiers are in the wrong order for it to be
useful; nonetheless, it plays a crucial role in the injectivity half of theorem
1.5.

We need a stronger version of excisiveness. The following definition is
closely related to the so-called CIA property as used in the definition of
‘nuclear Mayer-Vietoris pairs’ in [25, Definition 4.8].

Definition 5.1. Let f : p0,8q Ñ p0,8q be a function such that fptq Ñ 0
as t Ñ 0, which we call a decay function. A pair pC,Dq of C˚-subalgebras
of a C˚-algebra A is f -excisive if for any C˚-algebra B and any c P C b B,
d P D bB there exists x P pC XDq bB such that

maxt}x´ c}, }x´ d}u ď fp}c´ d}q.

A C˚-algebra A strongly excisively decomposes over a class C of pairs of C˚-
subalgebras if there is a decay function f such that A decomposes over C and
each pC,Dq P C is f -excisive.

Remark 5.2. If A strongly excisively decomposes over C, then it is straightfor-
ward to check that it excisively decomposes over C in the sense of Definition
3.1.

The following lemma is very similar to Lemma 3.4 and Corollary 3.5.

Lemma 5.3. Say A is a C˚-algebra, and X is a finite-dimensional subspace
of A. Then there exists a constant MX ą 0 depending only on X such that if
ph,C,Dq is an f -excisive δ-decomposition of X, and if B is any C˚-algebra,
then phb 1, C bB,D bBq is an f -excisive MXδ-decomposition of X bB.

Moreover, say A is a C˚-algebra, f a decay function, and B is a C˚-
algebra. Then for any finite dimensional subspace X of A b B and δ ą 0
there is a finite-dimensional subspace Y of A and δ1 ą 0 such that if ph,C,Dq
is an f -excisive δ1-decomposition of Y , then ph b 1, C b B,D b Bq is an f -
excisive δ-decomposition of X.

Proof. The first part is essentially the same as Lemma 3.4. For the second
part, let δ ą 0. As the unit sphere of X is compact, there is a finite-
dimensional subspace Y of A such that every point of the unit sphere of X
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is within δ{2 of a point of the unit sphere of Y b B. Using the first part, it
id not difficult to see that this Y works for δ1 “ δ{p2MY q.

We need two preliminary lemmas before we get to the main result.
For the first lemma, recall that invertible elements of C˚-algebras of the

form

ˆ

u 0
0 u´1

˙

are equal to zero in K-theory for purely algebraic reasons

(compare [22, Lemma 2.5 and Lemma 3.1]). The following lemma thus says
that any invertible element u of a C˚-algebra that is zero in K1 by virtue of a
homotopy is also zero in K1 for purely algebraic reasons, up to an arbitrarily
good approximation7.

Lemma 5.4. Let c, ε ą 0. Then there exists δ ą 0 with the following prop-
erty. Let X be a subspace of a C˚-algebra A and let tututPr0,1s be a homotopy

of invertibles in Mnp rAq such that u1 “ 1n, such that each ut and u´1t is δ-in

t1` x PMnp rAq | x PMnpXqu, and each is of norm at most c.

Then there exists m P N and invertible elements a Pδ t1 ` x P Mmnp rAq |

x P MnmpXqu and b Pδ t1 ` x P Mpm`1qnp
rAq | x P Mpm`1qnpXqu such that a,

b, a´1 and b´1 all have norm at most c, and such that the difference

ˆ

u0 0
0 1p2m`1qn

˙

´

¨

˚

˚

˝

1n 0 0 0
0 a 0 0
0 0 a´1 0
0 0 0 1n

˛

‹

‹

‚

ˆ

b 0
0 b´1

˙

in M2pm`1qnp
rAq has norm at most ε.

Proof. Let δ ą 0 (to be chosen later), and choose a partition 0 “ t0 ă ... ă
tm “ 1 of the interval r0, 1s with the property that for any i, }uti`1

´uti} ă δ.
Define

a :“

¨

˚

˚

˚

˝

u´1t1 0 . . . 0
0 u´1t2 . . . 0
...

...
. . .

...
0 0 . . . u´1tm

˛

‹

‹

‹

‚

PMmnp rAq.

7But not exactly! – otherwise the algebraic and topological K1 groups of a C˚-algebra
would always be the same.

27



b :“

¨

˚

˚

˚

˝

ut0 0 . . . 0
0 ut1 . . . 0
...

...
. . .

...
0 0 . . . utm

˛

‹

‹

‹

‚

PMpm`1qnp
rAq.

Then we have that

ˆ

u0 0
0 1p2m`1qn

˙

´

¨

˚

˚

˝

1n 0 0 0
0 a 0 0
0 0 a´1 0
0 0 0 1n

˛

‹

‹

‚

ˆ

b 0
0 b´1

˙

equals
¨

˚

˚

˚

˚

˚

˝

0pm`1qn 0 0 ¨ ¨ ¨ 0
0 1´ ut1u

´1
t0 0 ¨ ¨ ¨ 0

0 0 1´ ut2u
´1
t1 ¨ ¨ ¨ 0

...
...

...
. . .

...
0 0 0 ¨ ¨ ¨ 1´ u´1tm

˛

‹

‹

‹

‹

‹

‚

.

Recalling that utm “ 1, the latter element has norm bounded above by

max
i
}1´ uti`1

u´1ti } “ max
i
}uti ´ uti`1

}}u´1ti } ă δc,

which we can make as small as we like by decreasing the size of δ.

The next lemma uses decompositions and the Whitehead trick to split up

an element of the form

ˆ

a 0
0 a´1

˙

using decompositions as in Definition 3.1.

Lemma 5.5. Say A is a C˚-algebra and X a finite-dimensional subspace
of A. Then there is a finite-dimensional subspace Y of A such that for any
ε ą 0 there exists δ ą 0 so that the following holds. Assume that a P Mnp rAq
is an invertible element such that a and a´1 have norm at most c, and are
δ-in the set t1 ` x P Mnp rAq | x P MnpXqu. Assume that ph,C,Dq is a δ-
decomposition of Y . Then there are homotopies tvCt utPr0,1s and tvDt utPr0,1s of
invertible elements such that:

(i) for each t, vCt Pε t1` c | c PM2npCqu and vDt Pε t1` d | d PM2npDqu;

(ii)

ˆ

a 0
0 a´1

˙

“ vC0 v
D
0 ;
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(iii) vC1 “ vD1 “ 12n;

(iv) for each t the norms of vCt and vDt are both at most p3` cq5.

Proof. Let Y0 be the subspace of A spanned by all monomials of degree
between one and four with entries from X. Let Y be as in Lemma 3.6 for
this Y0 and N “ 4. Let then ε ą 0 be given, and let δ ą 0 be fixed,
to be determined by the rest of the proof. Let ph,C,Dq be an excisive δ-
decomposition of X.

Write a “ 1` x and a´1 “ 1` y with x, y Pδ MnpXq. Consider the usual
(‘Whitehead trick’) product decomposition

ˆ

a 0
0 a´1

˙

“

ˆ

a 0
0 a´1

˙

“

ˆ

1 a
0 1

˙ˆ

1 0
´a´1 1

˙ˆ

1 a
0 1

˙ˆ

0 ´1
1 0

˙

. (7)

Set xC :“ 1 ` hx and xD :“ p1 ´ hqx, so that xC ` xD “ a. Similarly, set
yC :“ 1` hy and yD “ p1´ hqy, so that yC ` yD “ a´1. For any element z
of a C˚-algebra, set

Xpzq :“

ˆ

1 z
0 1

˙

and Y pzq :“

ˆ

1 0
z 0

˙

.

Then using that Xpz1 ` z2q “ Xpz1qXpz2q and similarly for Y , the product
in line (7) equals

XpxDqXpxCqY p´yCqY p´yDqXpxCqXpxDq

ˆ

0 ´1
1 0

˙

.

Rewriting further, this equals the product of

vC :“ XpxDqXpxCqY p´yCqXpxCq

ˆ

0 ´1
1 0

˙

Xp´xDq,

and

vD :“ XpxDq

ˆ

0 1
´1 0

˙

Xp´xCqY p´yDqXpxCqXpxDq

ˆ

0 ´1
1 0

˙

.

We claim this vC and vD have the properties required of vC0 and vD0 in the

statement. The norm estimates are clear, as is the equation

ˆ

a 0
0 a´1

˙

“
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vC0 v
D
0 . For the remainder of the proof, any constant called δn depends only

on c, X, and δ, and tends to zero as δ tends to zero.
We first claim that vC is ε-in the set t1 ` c | c P M2npCqu for δ suitably

small. Note that using Lemma 5.3, h commutes with x and y up to some
error δ1. Using this, plus the fact that xy “ yx “ ´y´x, one computes that

XpxCqY p´yCqXpxCq

ˆ

0 ´1
1 0

˙

is within some δ2 of an element of the form
ˆ

1 0
0 1

˙

`

ˆ

h 0
0 h

˙

Z1,

where all entries of Z1 are products of a noncommutative polynomial in x
and y of degree at most two and with no constant term, with a polynomial in
h of degree at most two. Hence up to error some δ3, we have that vC agrees
with

XpxDq
´

ˆ

1 0
0 1

˙

`

ˆ

h 0
0 h

˙

Z
¯

Xp´xDq,

and that up to some δ4, this is the same as
ˆ

1 0
0 1

˙

`

ˆ

h 0
0 h

˙

Z2,

where every entry of Z2 is a product of a noncommutative polynomial in x
and y of degree at most four and with no constant term, with a polynomial
in h of degree at most four. The claim follows from this, and the choice of
X.

The computations showing that vD is ε-in the set t1 ` d | d P M2npDqu
for δ suitably small are similar. Indeed, we first we note that

Y p´yDq “

ˆ

1 0
0 1

˙

`

ˆ

1´ h 0
0 1´ h

˙ˆ

0 0
´y 0

˙

,

whence Xp´xCqY p´yDqXpxCq is within δ5 of an element of the form
ˆ

1 0
0 1

˙

`

ˆ

1´ h 0
0 1´ h

˙

Z3

where every entry of Z3 is a product of a noncommutative polynomial in x
and y of degree at most two and with no constant term, with a polynomial
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in h of degree at most two. Hence Xp´xCqY p´yDqXpxCqXpxDq is within δ6
of an element of the form

ˆ

1 0
0 1

˙

`

ˆ

1´ h 0
0 1´ h

˙

Z4,

where every entry of Z3 is a product of a noncommutative polynomial in x
and y of degree at most three and with no constant term, with a polynomial
in h of degree at most three. The same is true therefore of

ˆ

0 1
´1 0

˙

Xp´xCqY p´yDqXpxCqXpxDq

ˆ

0 ´1
1 0

˙

.

We thus get that vD is within δ7 of an element of the form
ˆ

1 0
0 1

˙

`

ˆ

1´ h 0
0 1´ h

˙

Z5,

where every entry of Z5 is a product of a noncommutative polynomial in x
and y of degree at most four and with no constant term, with a polynomial
in h of degree at most four.

To construct homotopies with the required properties, define xCt :“ 1 `
p1´tqhx, xDt :“ p1´tqp1´hqx, yCt :“ 1`p1´tqhy, and yDt ;“ p1´tqp1´hqy.
Define moreover

vCt :“ XpxDt qXpx
C
t qY p´y

C
t qXpx

C
t q

ˆ

0 ´1
1 0

˙

Xp´xDt q

and

vDt :“ XpxDt q

ˆ

0 1
´1 0

˙

Xp´xCt qY p´y
D
t qXpx

C
t qXpx

D
t q

ˆ

0 ´1
1 0

˙

.

Using precisely analogous computations to those we have already done, one
sees that these elements have the claimed properties: we leave the remaining
details to the reader.

Here is the key technical result of this section.

Proposition 5.6. Let A be a C˚-algebra, let f : p0,8q Ñ p0,8q be a function
such that fptq Ñ 0 as t Ñ 0, let ε ą 0, let c ą 0, and let X be a finite-
dimensional subspace of A. Then there exists a finite-dimensional subspace
Y of A and δ ą 0 with the following property.
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Assume that for some n P N there is a homotopy tututPr0,1s of invertible

elements in Mnp rAq with u1 “ 1n, and such that each ut and u´1t are δ-in the

set t1 ` x P Mnp rAq | x P MnpXqu, and have norm at most some c. Then if
ph,C,Dq is a δ-decomposition of X with pC,Dq f -excisive then the following
holds.

Say l ă n and uC PMn´lp rCq and uD PMn´lp rDq are invertible, such that
they and their inverses have norm at most c, and such that }u0´uCuD‘1l} ă

δ. Then there exists k P N and an invertible element x P MkpČC XDq such
that if rxs P K1pC XDq is the corresponding class, then with notation as in
Definition 2.1,

ιrxs “ pruCs, ruDsq P K1pCq ‘K1pDq.

Proof. Applying Lemma 5.4 to the homotopy tutu we get m P N and in-

vertible elements a Pδ t1 ` x P Mnp rAq | x P MmnpXqu an b Pδ t1 ` x P

Mpm`1qnp
rAq | x PMnpXqu such that

ˆ

u0 0
0 1p2m`1qn

˙

´

¨

˚

˚

˝

1n 0 0 0
0 a 0 0
0 0 a´1 0
0 0 0 1n

˛

‹

‹

‚

ˆ

b 0
0 b´1

˙

has norm at most δ. Let Ya and Yb have the properties in Lemma 7 with
respect to a and b, and let Y :“ Ya ` Yb, a finite dimensional subspace of A.
Let then c and ε be given, and let δ be fixed, to be determined by the rest of
the proof. Let ph,C,Dq be a δ-decomposition of Y with pC,Dq f -excisive.

As usual, throughout the proof any constant called δn depends on f , c, Y ,
and δ, and tends to zero as δ tends to zero. Applying (a very slight variation

of) Lemma 7 to

ˆ

a 0
0 a´1

˙

and

ˆ

b 0
0 b´1

˙

, we get elements vC,at and vD,at ,

and vC,bt and vD,bt for t P r0, 1s satisfying the conditions there for some δ1.
Moreover, if we write vC,a :“ vC,a1 and similarly for the other terms, then

¨

˚

˚

˝

1n 0 0 0
0 a 0 0
0 0 a´1 0
0 0 0 1n

˛

‹

‹

‚

ˆ

b 0
0 b´1

˙

“ vD,avC,avC,bvD,b

“ vD,avC,avC,bpvD,aq´1
looooooooooomooooooooooon

“:vC

vD,avD,b
looomooon

“:vD

.

32



Note that vC and vD are δ2-in M2np rCq and M2np rDq respectively, that they
define the trivial class in K1pCq and K1pDq respectively, and that they and
their inverses have norm at most p3` cq20.

Let uC and uD have the properties in the statement. Replacing uC and
uD by their block sums with 1l, we may (for notational simplicity) assume
that l “ 0. Now, we have that uCuD and vCvD are within some δ3 of each
other. Hence 1 ´ v´1C uC and 1 ´ vDu

´1
D are within some δ4 of each other.

Applying our f -excisiveness assumption, there exists an element y in some
matrix algebra over C X D that is within some δ5 of both. Set x “ 1 ` y.
Then x is an invertible element of some matrix algebra over ČC XD (as long
as δ is suitably small) that is close to both v´1C uC and to vDu

´1
D . Hence for

suitably small δ, we have that as classes in K1pCq

rxs “ rv´1C uCs “ ruCs,

where the second equality follows as vC represents the trivial class in K1pCq.
Similarly, in K1pDq,

rxs “ rvDu
´1
D s “ ru

´1
D s.

It follows from the last two displayed lines that

ιrxs “ pruCs, ruDsq

as required.

6 The product map

In this section we recall some facts about the product map

ˆ : K˚pAq bK˚pBq Ñ K˚pAbBq

and discuss how it interacts with the boundary classes of Definition 2.8.
We first recall concrete formulas for some of the special cases of this

product. See for example [19, Section 4.7] for background on this, and [19,
Proposition 4.8.3] for the particular ‘K1 bK0’ formula that we use.

Fix some standard identification MnpCqbMmpCq –MnmpCq (compatibly
as n and m vary), and use this to identify MnpAqbMmpBq with MnmpAbBq
for any C˚-algebras A and B. Any two such identifications differ by an inner
automorphism, so the choice does not matter on the level of K-theory. We
will use these identifications without comment from now on.
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We recall a basic lemma that is useful for setting up products in the
non-unital case: see [19, Lemma 4.7.2] for a proof.

Lemma 6.1. For a non-unital C˚-algebra A, let εA : rA Ñ C denote the
canonical quotient map. For non-unital C˚-algebras A and B, define φ to be
the ˚-homomorphism

pεA b idq ‘ pidb εBq : rAb rB Ñ A‘B.

(where we have identified A b C with A and similarly for B to make sense
of this). Then the map

K˚pAbBq Ñ K˚p rAb rBq

induced by the canonical inclusion A b B Ñ rA b rB is an isomorphism onto
Kernelpφ˚q.

A precisely analogous statement holds if A is unital and B is non-unital
on replacing φ by the canonical quotient map id b εB : A b rB Ñ A, and
similarly if A is not unital, and B is unital.

Definition 6.2. Let A and B be unital C˚-algebras, and let p PMnpAq and
q PMnpBq be idempotents. Then the product of the corresponding K-theory
classes rps P K0pAq and rqs P K0pBq is defined to be

rps ˆ rqs :“ rpb qs P K0pAbBq.

Similarly, if A and B are unital and u PMnpAq is invertible and p PMmpBq
an idempotent, define

u b p :“ ub p` 1b p1´ pq PMnmpAbBq.

Note that ubp is invertible, with inverse u´1bp. The product of rus P K1pAq
and rps P K0pBq is defined to be

rus ˆ rps :“ ru b ps P K1pAbBq.

One checks that these formulas defined on generators extend to well-defined
homomorphisms

ˆ : K0pAqbK0pBq Ñ K0pAbBq and ˆ : K1pAqbK0pBq Ñ K1pAbBq.
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Assume now that A and B are non-unital. Then one checks that for
either pi, jq “ p0, 0q, or pi, jq “ p1, 1q, the canonical composition

KipAq bKjpBq Ñ Kip rAq bKjp rBq
ˆ
Ñ Ki`jp rAb rBq

takes image in the subgroup Kernelpφ˚q of the right hand side, where φ is as
in Lemma 6.1 (and similarly if just one of A or B is non-unital, and the other
has unit). Using the identification Kernelpφ˚q – Ki`jpAbBq of Lemma 6.1,
we thus get a general product map

ˆ : KipAq bKjpBq Ñ Ki`jpAbBq

if pi, jq P tp1, 0q, p0, 0qu.

For the next definition, for any C˚-algebra, let

β´1 : K˚pS
2Aq Ñ K˚pAq

be the inverse of the Bott periodicity isomorphism.

Definition 6.3. Let A and B be C˚-algebras. Define

KpAq b1 KpBq :“
`

K1pAq bK0pBq
˘

‘
`

K1pSAq bK0pSBq
˘

.

Define a ‘product’ map

π : KpAq b1 KpBq Ñ K1pAbBq

to be the composition

`

K1pAq bK0pBq
˘

‘
`

K1pSAq bK0pSBq
˘ ˆ‘ˆ

ÝÑ K1pAbBq ‘K1pS
2pAbBqq

id‘β´1

ÝÑ K1pAbBq ‘K1pAbBq
add
ÝÑ K1pAbBq

We define

KpAq b0 KpBq :“
`

K0pAq bK0pBq
˘

‘
`

K0pSAq bK0pSBq
˘

and
π : KpAq b0 KpBq Ñ K0pAbBq

completely analogously.
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Note that naturality of the product map with respect to suspensions and
Bott periodicity gives that the map π above identifies with the usual product
map

`

K1pAq bK0pBq
˘

‘
`

K0pAq bK1pBq
˘

Ñ K1pAbBq

under the usual canonical identifications relating suspensions to dimension
shifts in K-theory, and similarly in the K0 case.

We need a tensor product lemma. Recall that if C,D are C˚-subalgebras
of a C˚-algebra A, and if B is another C˚-algebra, then there is a natural
inclusion

pC XDq bB Ď pC bBq X pD bBq.

This inclusion need not be an equality above in general: see for example [20].
However, excisive pairs clearly behave well in this setting as in the following
lemma.

Lemma 6.4. Let pC,Dq be an excisive pair of C˚-subalgebras as in Definition
5.1. Then the natural inclusion

pC XDq bB Ď pC bBq X pD bBq

is the identity.

Proof. Excisiveness implies that the image of the inclusion is dense. The
image is a C˚-subalgebra, however, so closed.

The next lemma is the key technical result of this section. Morally, it can
be thought of as saying that if notation is as in Proposition 2.7 and if p an
idempotent in some matrix algebra over B, then the diagram

K1pAq bK0pBq
Bv //

ˆ

��

K0pC XDq

ˆ

��
K1pAbBq

Bvbp // K0ppC XDq bBq

makes some sort of sense, and commutes, when one inputs the class rusbrps P
K1pAq bK0pBq.

Lemma 6.5. Let A be a unital C˚-algebra, let c ą 0, and let ε P p0, 1
4c`6

q.
Then there exists δ ą 0 satisfying the assumptions of Proposition 2.7, and
with the following additional property. Assume that u P MnpAq is invertible
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and that v PM2npAq is a pδ, c, C,Dq-lift for u as in the conclusion of Propo-
sition 2.7. Let B be a C˚-algebra, and let p PMmpBq be an idempotent with
}p} ď c.

Then (with notation as in Definition 6.2) v b p is a pε, c, C,Dq-lift for
u b p, and we have

Bvpuq ˆ rps “ Bvbppu b pq

as classes in K0ppC XDq bBq.

Proof. We leave it to the reader to check that v b p is a pε, c, C,Dq-lift of
u b p for suitably small δ ą 0 (depending only on ε and c). Computing, we
see that

Bvbppu b pq

“

!

`

v b p` 1b p1´ pq
˘

ˆ

1 0
0 0

˙

`

v´1 b p` 1b p1´ pq
˘

)

pČCXDqbB
´

„

1 0
0 0



“

!

v

ˆ

1 0
0 0

˙

v´1 b p`

ˆ

1 0
0 0

˙

b p1´ pq
)

pČCXDqbB
´

„

1 0
0 0



.

Using that the two terms inside the curved brackets are orthogonal, we have

!

v

ˆ

1 0
0 0

˙

v´1 b p`

ˆ

1 0
0 0

˙

b p1´ pq
)

pČCXDqbB

“

!

v

ˆ

1 0
0 0

˙

v´1 b p
)

pČCXDqbB
`

”

ˆ

1 0
0 0

˙

b p1´ pq
ı

.

As
”

ˆ

1 0
0 0

˙

b p1´ pq
ı

´

„

1 0
0 0



“ ´

”

ˆ

1 0
0 0

˙

b p
ı

,

we get that

Bvbppu b pq “
!

v

ˆ

1 0
0 0

˙

v´1 b p
)

pČCXDqbB
´

”

ˆ

1 0
0 0

˙

b p
ı

“

˜

!

v

ˆ

1 0
0 0

˙

v´1
)

ČCXD
´

„

1 0
0 0



¸

ˆ rps,

which is exactly Bvpuq ˆ rps as claimed.

We also need compatibility results for the maps ι and σ of Definition 2.1
and the maps π of Definition 6.3. These are recorded by the following lemma.
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Lemma 6.6. Let C and D be an excisive pair of C˚-subalgebras of a C˚-
algebra A, and let B be a C˚-algebra. Then for i P t0, 1u, the diagrams

KpC XDq bi KpBq
ιbid //

π

��

KpCq bi KpBq ‘KpDq bi KpBq

π

��
KippC XDq bBq

ι // K1pC bBq ‘K1pD bBq

and

KpCq bi KpBq ‘KpDq bi KpBq
σbid //

π

��

KpAq bi KpBq

π

��
KipC bBq ‘KipD bBq

σ // KipAbBq

commute (where we have the canonical identification of Lemma 6.4 amongst
others to make sense of this).

Proof. This follows directly from naturality of the product maps and Bott
maps in K-theory.

7 The inverse Bott map

For a C˚-algebra A, let

β´1 : K˚pS
2Aq Ñ K˚pAq

be the inverse Bott isomorphism. It will be convenient to have a model for
β´1 based on an asymptotic family. In this section, we recall some facts about
asymptotic families and their action on K-theory (in the ‘naive’, rather than
E-theoretic, picture). We then discuss how the inverse Bott map can be
represented by an asymptotic family with good properties.

Recall (see for example [13, Definition 1.3]) that an asymptotic family
between C˚-algebras A and B is a collection of maps tαt : A Ñ ButPr1,8q
such that:

(i) for each a P A, the map t ÞÑ αtpaq is continuous and bounded;

(ii) for all a1, a2 P A and z1, z2 P C, the quantities

αtpa1a2q ´ αtpa1qαtpa2q, αtpa
˚
1q ´ αtpa1q

˚
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and
αtpz1a1 ` z2a2q ´ z1αtpa1q ´ z2αtpa2q

all tend to zero as t tends to infinity.

An asymptotic family tαt : AÑ Bu defines a ˚-homomorphism

α : AÑ
Cbpr1,8q, Bq

C0pr1,8q, Bq
, a ÞÑ rt ÞÑ αtpaqs.

Conversely, choosing a continuous section s : Cbpr1,8q,Bq
C0pr1,8q,Bq

Ñ Cbpr1,8q, Bq (such

exists by the Bartle-Graves selection theorem), any such homomorphism α
determines an asymptotic family by the formula αtpaq :“ pspαpaqqptq. If s
and s1 are two different choices of section and tαtu and tα1tu the corresponding
asymptotic families, then αtpaq´α

1
tpaq Ñ 0 as tÑ 8. Compare for example

[13, pages 4-5]
We may use this correspondence to define the tensor product of an asymp-

totic family and a ˚-homomorphism. Say tαt : A Ñ Bu is an asymptotic
family, and φ : C Ñ D a ˚-homomorphism with D nuclear. Then we get a
natural ˚-homomorphism

Cbpr1,8q, Bq

C0pr1,8q, Bq
bD Ñ

Cbpr1,8q, B bDq

C0pr1,8q, B bDq

using that ¨ bD agrees with the maximal tensor product ¨ bmaxD (compare
[13, Proposition 4.3]), and therefore a ˚-homomorphism

α b φ : Ab C Ñ
Cbpr1,8q, Bq

C0pr1,8q, Bq
bD Ñ

Cbpr1,8q, B bDq

C0pr1,8q, B bDq
.

Any choice of corresponding asymptotic family will be denoted tαt b φ :
Ab C Ñ B bDu, and any such choice satisfies

pαt b φqpab cq ´ αtpcq b φpcq Ñ 0 as tÑ 8

on elementary tensors.
An asymptotic family tαt : A Ñ ButPr1,8q canonically defines a map

α˚ : K˚pAq Ñ K˚pBq. One way to define α˚ uses the composition product
in E-theory and the identification of E˚pC, Aq with K˚pAq. However, there
is also a more naive and direct way. This is certainly very well-known, but
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we are not sure exactly where to point in the literature for a description, so
we describe it here for the reader’s convenience.

Assume for simplicity that A and B are not unital (this is the only case we
will need), and that tαt : A Ñ Bu is an asymptotic family. We extend tαtu
to unitisations and matrix algebras just as we would for a ˚-homomorphism.
Note that as A and B are not unital, the extended asymptotic morphism on
unitisations takes units to units.

If e PMnp rAq is an idempotent, then }αtpeq
2´αtpeq} Ñ 0 as tÑ 8. Hence

if χ is the characterisitic function of the half-plane tz P C | Repzq ą 1{2u
then χpαtpeqq (defined using the holomorphic functional calculus) is a well-
defined idempotent in MnpBq for all t suitably large. If res ´ rf s is a formal

difference of idempotents in Mnp rAq defining a class in K0pAq, then one sees
that for all t suitably large the formal difference

rχpαtpeqqs ´ rχpαtpfqqs P K0p rBq

is in the kernel of the natural map K0p rBq Ñ K0pCq induced by the canonical

quotient rB Ñ C. We define α˚pres ´ rf sq :“ rχpαtpeqqs ´ rχpαtpfqqs for any
suitably large t. The choice of t does not matter, as for any t1 ě t, the path
tχpαspeqqusPrt,t1s is a homotopy of idempotents, and similarly for f .

Similarly (and more straightforwardly), if u P Mnp rAq is invertible, then
as the extension of αt to unitisations is unital, for all suitably large t, αtpuq P

Mnp rBq is invertible, and we get a well-defined class α˚rus :“ rαtpuqs for any
suitably large t. In this way, we get a well-defined homomorphism

α˚ : K˚pAq Ñ K˚pBq.

Lemma 7.1. Let c, ε ą 0. Then there is δ ą 0 with the following property.
Let tαt : AÑ Bu be an asymptotic family between non-unital C˚-algebras,

and let pCA, DAq be a pair of C˚-subalgebras of A and pCB, DBq a pair of C˚-
subalgebras of B such that for all c P CA and d P DA,

dpαtpcq, CBq and dpαtpdq, DBq

tend to zero as t tends to infinity. Assume that u P M2np rAq is an invertible
element with }u} ď c and }u´1} ď c, and let v be a pδ{2, c{2, CA, DAq-lift

of u. Then for all suitably large t, αtpvq P M2np rBq is a pδ, c, CB, DBq-lift of
αtpuq, and moreover

Bαtpvqpαtpuqq “ α˚pBvpuqq

in K0pCB XDBq for all suitably large t.
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Proof. Note first that as the extension of tαtu to unitisations is unital, and
as αt is asymptotically multiplicaitve, αtpuq and αtpvq are invertible for all
suitably large t.

We first claim that asymptotic families are ‘asymptotically contractive’
in the following sense: for any a P A and any ε ą 0 we have }αtpaq} ă }a}` ε
for all suitably large t. Indeed, let

α : AÑ
Cbpr1,8q, Bq

C0pr1,8q, Bq
, a ÞÑ rt ÞÑ αtpaqs

be the corresponding ˚-homomorphism described above. As α is a ˚-homomorphism,
it is contractive. Hence by definition of the quotient norm, for any ε ą 0 there
is b P C0pr1,8q, Bq such that

sup
tPr1,8q

}αtpaq ´ bptq} ă }αpaq} ` ε ď }a} ` ε.

The claim follows from this.
Now, it follows from the claim and the fact that for all d P DA, dpαtpdq, DBq

tends to zero as t tends to infinity, that we have that αtpvq is δ-in M2npĂDBq for
all suitably large t. Similarly, and using also the asymptotic multiplicativity
and unitality of tαtu, we get that

αtpvq

ˆ

αtpuq
´1 0

0 αtpuq

˙

Pδ M2npĂCBq

for all suitably large t. The remaining conditions from Definition 2.6 follow
similarly.

To see that Bαtpvqpαtpuqq “ α˚pBvpuqq for t large enough, note that for
suitably large t, the former is represented by

!

αtpvq

ˆ

1 0
0 0

˙

αtpvq
´1
)

ČCBXDB

´

„

1 0
0 0



. (8)

For the latter, one starts by choosing an idempotent f P M2np ČCA XDAq

suitably close to v

ˆ

1 0
0 0

˙

v´1 as in Lemma 2.4 so that

!

v

ˆ

1 0
0 0

˙

v´1
)

ČCAXDA

“ rf s
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in K0p ČCA XDAq. Then α˚pBvpuqq is represented by

χpαtpfqq ´

„

1 0
0 0



(9)

for t suitably large, where χ is as usual the characteristic function of tz P C |
Repzq ą 1{2u. Now, as }αtpfq} is uniformly bounded in t and as }αtpfq

2 ´

αtpfq} Ñ 0, we may apply Lemma 2.2 to conclude that }αtpfq´χpαtpfqq} Ñ
0. On the other hand, by making δ suitably small and t large, and using
the ‘asymptotic contractiveness’ claim at the start of the proof, we can make
αtpfq as close as we like to

αtpvq

ˆ

1 0
0 0

˙

αtpvq
´1.

Comparing lines (8) and (9), the proof is complete.

We need the fact that Bott periodicity is induced by an appropriate
asymptotic morphism. The following lemma is well-known.

Lemma 7.2. For any C˚-algebra A there is an associated asymptotic family

αt : S2A AbK

with the following properties:

(i) the map α˚ induced on K-theory by tαtu is the inverse Bott map β´1;

(ii) if B is a C˚-subalgebra of A and tαAt u and tαBt u are the asymptotic
families associated to A and B respectively, then for all b P S2B, αAt pbq´
αBt pbq Ñ 0 as tÑ 8;

(iii) for any finite-dimensional subspace X of A and any element of S2X,

suptdpαtpxq, X bKq | x P S2X, }x} ď 1u

tends to zero as t tends to infinity;

(iv) fixing an inductive limit description K “
Ť8

n“1MnpCq, then for all t
and all a P S2A, αtpaq has image in the ˚-subalgebra

Ť8

n“1MnpAq of
AbK.
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Proof. There are several different ways to do this. We sketch one from [11]
based on the representation theory of the Heisenberg group. As in [11, Sec-
tion 4], one may canonically construct a continuous field of C˚-algebras over
r0, 1s with the fibre at 0 equal to S2C, and all other fibres equal to K. As
explained in [8, Appendix 2.B] or [9, pages 101-2], such a deformation (non-
canonically) gives rise to an asymptotic family tαt : S2CÑ AbKu, and this
family induces the map on K-theory described in general in [11, Section 3],
which is shown in [11, Theorem 4.5] to be the inverse of the Bott periodicity
isomorphism.

This gives us our asymptotic family tαtu for the case A “ C. In the
general case, we may take αAt to be a choice of asymptotic family tαtb idA :
S2Cb AÑ K b Au described at the start of the section.

Note that the construction is not canonical at two places: going from a de-
formation to an asymptotic family, and taking the tensor product. However,
any two asymptotic families tαtu, tα

1
tu constructed from different choices

will satisfy αtpaq ´ α1tpaq Ñ 0 as t Ñ 8 for all a P S2A. It follows that the
asymptotic families so constructed satisfy (i), (ii), and (iii).

To make it also satisfy (iv), let tktutPr1,8q be a continuous family of positive
contractions in

Ť

MnpAq Ď K such that for all k P K, ktkkt´k Ñ 0 as Ñ 8.
For each a P A, choose a homeomorphism sa : r1,8q Ñ r1,8q such that

αtpaq ´ p1b ksaptqqαtpaqp1b ksaptqq Ñ 0

as tÑ 8. Replacing αt with the map

a ÞÑ p1b ksaptqqαtpaqp1b ksaptqq,

we get the result.

8 Surjectivity of the product map

In this section, we are finally ready to prove the first half of Theorem 1.5.

Theorem 8.1. Let A be a C˚-algebra, and say A strongly excisively decom-
poses over a class C of pairs of C˚-subalgebras such that for each pC,Dq P C,
C, D, and C XD satisfy the Künneth formula. Then for any C˚-algebra B
with free abelian K-theory, the product map

ˆ : K˚pAq bK˚pBq Ñ K˚pAbBq

is surjective.
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Proof. It suffices to show that the product maps

π : KpAq b0 KpBq Ñ K0pAbBq and π : KpAq b1 KpBq Ñ K1pAbBq

of Definition 6.3 are surjective for any B with K˚pBq free. Replacing B with
its suspension, it moreover suffices to show that the second of the maps above
is surjective. Let then α be an arbitrary class in K1pAbBq.

Let X Ď AbB and u PMnp rAq be as in Proposition 3.7 for this α. Using
Lemma 5.3, for any δ ą 0 there is an f -excisive decomposition ph b 1, C b
B,DbBq of X. Fix such a decomposition for a very small δ ą 0 (how small
will be determined by the rest of the proof).

Using Proposition 3.7 we may build an element v Pδ1 M2npČAbBq with
the properties stated there, for some constant δ1 that tends to zero as δ tends
to zero. We may use v to construct an element Bvu P K1ppC XDq bBq as in
Proposition 2.7 (here we use the identification pCXDqbB “ CbBXDbB
of Lemma 6.4), and have that if

ι : K0ppC XDq bBq Ñ K0pC bBq ‘K0pD bBq

is the map from Definition 2.1, then ιpBvuq “ 0.
Using that the product map π for C X D is surjective, we may lift Bvu

to an element κ of KpC XDq b1 KpBq. With notation as in Definition 6.3,
Lemma 6.6 gives that the following diagram

KpC XDq b0 KpBq
ιbid //

π

��

KpCq b0 KpBq ‘KpDq b0 KpBq

π

��
K0ppC XDq bBq

ι // K0pC bBq ‘K0pD bBq

commutates. Hence

πppιb idqpκqq “ ιpπpκqq “ ιpBvuq “ 0.

Using that the product maps for C and D are injective, this gives us that
pιb idqpκq “ 0.

Now, we may write

κ “
k
ÿ

i“1

κi b λi `
m
ÿ

i“k`1

κi b λi
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for some k ď m, where κi P K0pC X Dq for i ď k, κi P K0pSpC X Dqq for
i ą k, and similarly λi P K0pBq for i ď k and λi P K0pSBq for i ą k. As
K˚pBq is free, we may assume moreover that the set tλ1, ..., λnu generates a
free direct summand of K0pBq ‘K0pSBq. We then have that

pιb idqpκq “
m
ÿ

i“1

ιpκiq b λi “ 0,

which forces ιpκiq “ 0 for each i by assumption that tλ1, ..., λmu generates a
free direct summand of K0pBq ‘ K0pSBq. Applying Lemma 4.1 to each κi
separately gives us l1, ..., lm P N and invertible elements w1, ..., wm with

wi P

#

Mlip
rAq i ď k

Mlip
ĂSAq i ą k

and corresponding lifts v1, ..., vm with

vi P

#

M2lip
rAq i ď k

M2lip
ĂSAq i ą k

such that Bvipwiq “ κi and Bv´1
i
pw´1i q “ ´κi. It will be important that there

is c ą 0 such that for i ď k, each vi is an pε, c, C,Dq-lift of ui for any ε ą 0,
and similarly for i ą k, with SC and SD in place of C and D.

Now, write κi “ rpis ´ rqis for projections pi and qi in matrix algebras

over rB for i ď k, and over ĄSB for i ą k. Let tαt : S2pAbBq AbB bKu
be an asymptotic family inducing the inverse Bott map as in Lemma 7.2.
With notation as in Definition 6.2, let us define

u :“ u‘ pw´11 b p1q ‘ pw1 b q1q ‘ ¨ ¨ ¨ ‘ pw
´1
k b pkq‘ pwk b qkq

‘ αtpw
´1
k`1 b pk`1q ‘ αtpwk`1 b qk`1q ‘ ¨ ¨ ¨ ‘ αtpw

´1
m b pmq ‘ αtpwm b qmq,

and with notation also as in Lemma 4.2 define

v :“ v ‘ pv´11 b p1q‘ pv1 b q1q‘ ¨ ¨ ¨‘ pv´1k b pkq‘ pvk b qkq

αtpv
´1
k`1 b pk`1q‘ αtpvk`1 b qk`1q‘ ¨ ¨ ¨‘ αtpv

´1
m b pmq‘ αtpvm b qmq

which we can think of as elements of Mntp
rAb rBq and Mntp

rAb rBq respectively
for some nt P N depending on t (recall from Lemma 7.2 that each αt :
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S2pA b Bq Ñ A b B b K takes image in MmtpA b Bq for some mt P N
depending on t). Then Lemma 4.2 gives that as long as our original δ was
sufficiently small, we have

Bvpuq “ Bvpuq `
k
ÿ

i“1

Bv´1
i bpi

pw´1i b piq `
k
ÿ

i“1

Bvibqipwi b qiq

`

m
ÿ

i“k`1

Bαtpv
´1
i bpiq

αtpw
´1
i b piq `

m
ÿ

i“k`1

Bαtpvibqiqαtpwi b qiq.

On the other hand, Lemmas 6.5, 7.1, and 7.2 give that for suitably large t
this equals

Bvpuq `
k
ÿ

i“1

Bv´1
i bpi

pw´1i b piq `
k
ÿ

i“1

Bvibqipwi b qiq

`

m
ÿ

i“k`1

α˚pBv´1
i bpi

pw´1i b piqq `
m
ÿ

i“k`1

α˚pBvibqipwi b qiqq

“ Bvpuq `
k
ÿ

i“1

Bv´1
i
pw´1i q ˆ rpis `

k
ÿ

i“1

Bvipwiq ˆ rqis

`

m
ÿ

i“k`1

α˚pBv´1
i
pw´1i q ˆ rpisq `

m
ÿ

i“k`1

α˚pBvipwiq ˆ rqisq

“ Bvpuq `
k
ÿ

i“1

p´κiq ˆ rpis `
k
ÿ

i“1

κi ˆ rqis

`

m
ÿ

i“k`1

β´1pp´κi ˆ rpisq `
m
ÿ

i“k`1

β´1pκi ˆ rqisq

“ Bvpuq ´
k
ÿ

i“1

κi ˆ λi ´
m
ÿ

i“k`1

β´1pκi ˆ λiq

“ Bvpuq ´ πpκq,

and this is zero.
We have just shown that Bvpuq “ 0. Noting that rus defines a class

in K1pA b rBq by Lemma 6.1, it follows at this point from Proposition 2.7
that (as long as the original δ ą 0 was suitably small) there exists µ P

46



K1pC b rBq ‘K1pD b rBq such that σpµq “ rus. Moreover, if we define

ν :“
m
ÿ

i“1

rwis b rpis `
m
ÿ

i“1

rw´1i s b rqis “
m
ÿ

i“1

rwis b λi P KpAq b1 KpBq

then we have by definition of u that

σpµq “ rus “ rus ´ πpνq.

Using surjectivity of the product maps for C and D, and with notation as in
Definition 6.3, we may lift µ to some ξ P KpCq b1 KpBq ‘KpDq b1 KpBq.
Lemma 6.6 gives commutativity of the diagram

KpCq b1 KpBq ‘KpDq b1 KpBq
σbid //

π

��

KpAq b1 KpBq

π

��
K1pC bBq ‘K1pD bBq

σ // K1pAbBq

,

which implies that

rus “ πpνq`σpµq “ πpνq`σpπpξqq “ πpνq`πppσbidqpξqq “ πpζ`pσbidqpξqq,

so we have that rus is in the image of the map π, and are done.

9 Injectivity of the product map

Finally, in this section we complete the main part of the paper by proving
the injectivity half of Theorem 1.5.

Theorem 9.1. Let A be a C˚-algebra, and say A strongly excisively decom-
poses over a class C of pairs of C˚-subalgebras such that for each pC,Dq P C,
C, D, and C XD satisfy the Künneth formula. Then for any C˚-algebra B
with free abelian K-theory, the product map

ˆ : K˚pAq bK˚pBq Ñ K˚pAbBq

is injective.
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Proof. With notation as in Definition 6.3, it suffices to show that the maps

π : KpAq b0 KpBq Ñ K0pAbBq and π : KpAq b1 KpBq Ñ K1pAbBq

defined there are injective for any B with K˚pBq free abelian. On replacing
B with its suspension, it suffices just to show injectivity in the K1 case.

Consider then an element κ P KpAq b1 KpBq such that πpκq “ 0. To
complete the proof, it suffices to show that κ “ 0. Fix a very small δ ą 0, to
be determined by the rest of the proof.

We may assume κ is of the form

κ “
k
ÿ

i“1

κi b prpis ´ rqisq `
m
ÿ

i“k`1

κi b prpis ´ rqisq,

where for some n P N, each κi is an element of K1pAq for i ď k or of K1pSAq

for i ą k, and each pair pi, qi consists of projections in Mnp rBq for i ă k

or in MnpĄSBq for i ą k, so that the difference is in MnpBq or MnpSBq as
appropriate, and so that the collection prpis ´ rqisq

n
i“1 constitutes part of a

basis for the free abelian group K0pBq ‘ K0pSBq. Using Proposition 3.7,
we may assume that for i ď k there is a finite-dimensional subspace X0,i of

A and invertible ui P Mnp rAq with the properties stated there for κi and δ;
and similarly for each i ą k, a finite-dimensional subspace X1,i of SA and

invertible ui P MnpĂSAq with the properties stated in Proposition 3.7 with
respect to κi and δ.

With notation ‘b’ as in Definition 6.2, and with

tαt : S2
p rAb rBq Ñ rAb rB bKu

an asymptotic family for rA b rB as in Lemma 7.2 that realizes the inverse
Bott periodicity isomorphism, define

ut :“
k
à

i“1

ui b pi ‘
k
à

i“1

u´1i b qi `
m
à

i“k`1

αtpui b piq ‘
m
à

i“k`1

αtpu
´1
i b qiq. (10)

Then for all t suitably large, ruts defines a class in K1p rAb rBq, which we may
consider as a class in K1pAbBq thanks to Lemma 6.1.

By definition of π, there is t0 P r1,8q such that πpκq “ ruts for all t ě t0,
and so that the map

rt0,8q Ñ
8
ď

n“1

MnpAq, t ÞÑ ut
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is a continuous path of invertibles. As rut0s “ πpκq “ 0, we may assume
moreover that there exist l, p P N and a homotopy twsusPr0,1s of invertible

elements in Mpp rA b rBq such that w0 ‘ 1l “ ut0 , such that w1 “ 1p, such

that each ws and w´1s are in t1` x P Mpp rAb rBq | x P MppAb rBqu. Let X3

be a finite-dimensional subspace of Ab rB such that all ws and w´1s are δ-in

t1 ` x P Mpp rA b rBq | x P MppX3qu. Using part (iii) of Lemma 7.2, there is

moreover a finite-dimensional subspace X4 of A b rB such that for all t ě t0
there exists nt P N such that ut and u´1t are δ-in MntpX4q.

Now, using Lemma 5.3, for any δ ą 0 there exists an f -excisive decompo-
sition ph,C,Dq such that p1bh, SC, SDq is also an f -excisive δ-decomposition

of X1, and such that phb 1, C b rB,Db rBq is an f -excisive decomposition of
both X3 and X4. If δ is small enough, Proposition 3.7 then lets us build for
each i an invertible element vi in either M2np rAq or M2npĂSAq as appropriate,
and with the properties stated there relative to each ui and also so that v´1i
has the relevant properties for u´1i as in Lemma 4.3. With notation as in
Lemma 4.2, define also

v :“
k
ð

i“1

pvi b piq‘

n
ð

i“k

pv´1i b qiq and vS :“
m
ð

i“k`1

pvi b piq‘

m
ð

i“k`1

pv´1i b qiq

elements of some matrix algebra over rAb rB and ĂSAbĄSB respectively. Define
also

u :“
k
à

i“1

ui b pi ‘
k
à

i“1

u´1i b qi

and

uS :“
m
à

i“k`1

ui b pi ‘
m
à

i“k`1

u´1i b qi.

Then as long as δ ą 0, Lemmas 4.2 and 6.5 give boundary classes Bvu P
K0ppC XDq b rBq and BvSpuSq P K0pSpC XDq bĄSBq.

Now, with β´1 the inverse Bott periodicity map, the element

pid‘ β´1qpBvu, BvSpuSqq P K0ppC XDq b rBq

is necessarily zero. Indeed, using Lemmas 7.1 and 4.2, this element is repre-
sented by

Bvu` BαtvSpαtpuSqqq “ Bv‘αtpvSqpu‘ αtpuSqq
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for suitably large t. With notation as in line (10), this equals Bv‘αtpvSqputq.
Now, we can drag a homotopy between ut and 1 through the construction
of Proposition 3.7 to produce a homotopy between this element and 1 (this
uses our choice of ph,C,Dq, and the fact that there is a homotopy through
invertibles between ut and 1 that is close to p1nt`MntpX3qqYp1nt`MntpX4qq

for some appropriate nt P N).
Lemmas 6.5 and 4.2 give then that

π

˜

m
ÿ

i“1

Bvipuiq b prpis ´ rqisq

¸

“ pid‘ β´1qpBvu, BvSpuSqq

whence the class

π

˜

m
ÿ

i“1

Bvipuiq b prpis ´ rqisq

¸

P K0ppC XDq b rBq

is zero also. Hence by injectivity of the product map for CXD, we have that

m
ÿ

i“1

Bvipuiq b prpis ´ rqisq

is zero in KpC X Dq b0 KpBq. Using the assumption that the collection
prpis´rqisq

m
i“1 forms part of a basis for K0pBq‘K0pSBq, we get that Bvipuiq “

0 in K0pC X Dq ‘ K0pSpC X Dqq for each i. Hence Proposition 2.7 gives

us j, l P N and invertible elements si in either Mj`lp rDq or Mj`lpĄSDq as

appropriate such that for each i we have that pui‘1lqs
´1
i is in either Mj`lp rCq

or Mj`lpĂSCq as appropriate. Applying the same reasoning with the roles of
ui and u´1i interchanged, we similarly get invertible elements ti in either

Mj`lp rDq of Mj`lpĄSDq as appropriate such that for each i, we have that

pu´1i ‘ 1lqt
´1
i is in either Mj`lp rCq or Mj`lpĂSCq as appropriate.

Now, consider the class λ P
`

KpCq b1KpBq
˘

‘
`

KpDq b1KpBq
˘

defined
by λ “ pλC , λDq where

λC :“
m
ÿ

i“1

rpui ‘ 1lqs
´1
i s b rpis `

m
ÿ

i“1

rpu´1i ‘ 1lqt
´1
i s b rqis

and

λD :“
m
ÿ

i“1

rsis b rpis `
m
ÿ

i“1

rtis b rqis,
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and note that κ “ σpλq. The image of λ under the product map

ˆ : KpCq b1 KpBq ‘KpDq b1 KpBq

Ñ
`

K1pC bBq ‘K1pSC b SBq
˘

‘
`

K1pD bBq ‘K1pSD b SBq
˘

is represented by the invertible element

x :“

˜

m
à

i“1

`

pui ‘ 1lqs
´1
i b pi

˘

‘

m
à

i“1

`

pu´1i ‘ 1lqt
´1
i b qi

˘

,

m
à

i“1

`

si b pi
˘

‘

m
à

i“1

`

ti b qi
˘

¸

.

We have that πpλq equals the image of the class above under the map

id‘ β´1 :
`

K1pC bBq ‘K1pSC b SBq
˘

‘
`

K1pD bBq ‘K1pSD b SBq
˘

Ñ K1pC bBq ‘K1pD bBq,

which, with notation as in Lemma 7.2, is represented concretely by the in-
vertible element pid ‘ αtqpxq for all suitably large t. On the other hand,
using almost multiplicativity of the asymptotic family tαtu and comparing
this with the formula for ut in line (10), we see that ut can be made arbitrarily
close to

pid‘ αtq

˜

´ m
à

i“1

`

pui ‘ 1lqs
´1
i b pi

˘

‘

m
à

i“1

`

pu´1i ‘ 1lqt
´1
i b qi

˘

¯

¨

´ m
à

i“1

`

si b pi
˘

‘

m
à

i“1

`

ti b qi
˘

¯

¸

by increasing t (up to taking block sum with 1q for some q depending on t).
Using the fact that for each fixed t there is nt P N such that, ut is

homotopic to the identity through invertibles that are δ-in

t1` x PMntpAb rBq | x PMntpX3q YMntpX4qu

via the concatenation of the homotopies tususPrt0,ts and tws‘1nt´pusPr0,1s and
our assumption on ph,C,Dq, we are thus in a position to apply Proposition

5.6 to conclude that there exists a class µ P K1ppC X Dq b rBq such that

51



ιpµq “ πpλq. Using surjectivity of the product map for C XD, we may lift µ

to some element ν of KpC XDq b1 Kp rBq. Using Lemma 6.6, we have that

πpλq “ ιpµq “ ιpπpνqq “ πpιpνqq.

Hence by injectivity of the product maps for C and D, this forces λ “ ιpνq.
Finally, we have that κ “ σpλq and so

κ “ σpλq “ σpιpνqq.

However, σ ˝ ι is clearly the zero map on K-theory, so we are done.

A Nuclear dimension

In this appendix, we give examples of (a priori, non-excisive) decompositions
coming from nuclear dimension one as in [35].

For the statement of the next result, if A is a C˚-algebra, let A8 denote
the quotient

ś

NA{‘NA of the product of countably many copies of A by the
direct sum. If pBnq is a sequence of C˚-suablgebras of A, we let B8 denote
the C˚-subalgebra

ś

NBn{ ‘N Bn of A8.
The following fact was told to me by Wilhelm Winter8.

Proposition A.1. Let A be a separable9 unital C˚-algebra of nuclear dimen-
sion one. Then there exist

(i) a positive contraction h P A8 X A
1, and

(ii) sequences pCnq, pDnq of C˚-subalgebras of A

such that:

1. each Cn and each Dn is a quotient of a cone over a finite-dimensional
C˚-algebra,

2. for all a P A, ha P C8, p1´ hqa P D8,

Proof. Using [35, Theorem 3.2] (and that A is separable) there exists a se-
quence pψn, φn, Fnq where:

8Professor Winter probably knows a better proof!
9Not really necessary, but the statement would be a little fiddlier otherwise.
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(i) each Fn is a finite-dimensional C˚-algebra that decomposes as a direct

sum Fn “ F
p0q
n ‘ F

p1q
n ;

(ii) each ψn is a ccp map AÑ Fn such that the induced diagonal map

ψ : AÑ F8

is order zero;

(iii) each φn is a map Fn Ñ A such that the restriction φ
piq
n of φn to F

piq
n is

ccp and order zero;

(iv) for each a P A, φnψnpaq Ñ a as nÑ 8.

Let φ : F8 Ñ A8, and φpiq : F
piq
8 Ñ A8 denote the induced maps, let

κpiq : F8 Ñ F
piq
8 denote the canonical quotient, and consider the composition

θpiq :“ φpiq ˝ κpiq ˝ ψ : AÑ A8.

Each θpiq is then ccp and order zero, and we have moreover that θp0q ` θp1q :
AÑ A8 agrees with the canonical diagonal inclusion.

Now, let Mi :“ MpC˚pθpiqpAqqq be the multiplier algebra of the C˚-
subalgebra C˚pθpiqpAqq of A8 generated by θpiqpAq. Using [34, Theorem 2.3]
if we set hi :“ θpiqp1q, then hi is a positive contraction in C˚pθpiqpAqq X A1,
and there exists a unital10 ˚-homomorphism πpiq : AÑMi X thiu

1 such that

θpiqpaq “ hiπ
piq
paq

for all a P A. As 1 “ θp0qp1q ` θp1qp1q “ h1 ` h2, we will switch notation and
write h :“ h1, so 1´ h “ h2, so for all a P A,

a “ hπp0qpaq ` p1´ hqπp1qpaq. (11)

Note in particular that h commutes with both θp1qpAq (as h “ h1 and h1
commutes with this collection), and with θp2qpAq (as 1 ´ h “ h2, and h2
commutes with this collection). Hence h commutes with θp1qpAq ` θp2qpAq Ě
A, so in particular h is in A8 X A

1.

10Unitality follows from the proof in the given reference, but does not appear explicitly
in the statement.
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Now, let us think of πpiq : A Ñ Mi as having image in the double dual
pA8q

˚˚ by postcomposing with the canonical embedding Mi Ñ pA8q
˚˚. Let

us replace πpiq with the map

a ÞÑ χr0,1sztiuphqπ
piq
paq ` χtiuphqa. (12)

Then the equation in line (11) still holds for all a P A. Let B be the unital
C˚-algebra generated by h, A, πp0qpAq and πp1qpAq, and note that h is central
in B. For each λ P r0, 1s in the spectrum of h in C˚ph, 1q, let Iλ be the C˚-
ideal in B generated by the corresponding maximal ideal in C˚ph, 1q (with
Iλ “ B if λ is not in the spectrum of h). Then in B{Iλ, the equation in line
(11) descends to

a “ λπp0qpaq ` p1´ λqπp1qpaq.

If λ P p0, 1q and a “ u P A is unitary, this writes the image of u in B{Iλ
as a convex combination of two elements in the unit ball; as unitaries are
always extreme points in the unit ball of a C˚-algebra [3, Theorem II.3.2.17],
this is impossible unless πp0qpuq “ πp1qpuq “ u modulo Iλ for all λ P p0, 1q.
As the unitaries span any unital C˚-algebra [3, Proposition II.3.2.12], this
forces πp0qpaq “ πp1qpaq “ a modulo Iλ for all a P A and all λ P p0, 1q. On
the other hand, if λ “ 0, we clearly get πp1qpaq “ a modulo I0 for all a P A,
while πp0qpaq “ a modulo I0 follows from the replacement we made in line
(12). Similarly, if λ “ 0, we also get that πp0qpaq “ a and πp1qpaq “ a modulo
I1. Putting this together, we have that the postcomposition of either πp0q or
πp1q with the natural diagonal ˚-homomorphism

Φ : B Ñ
ź

λPspectrumphq

B{Iλ

agrees with the natural map A Ñ
ś

λPr0,1sB{Iλ induced by the inclusion

A Ñ B. However, as C˚ph, 1q is contained in the center of B, the map Φ is
injective by [10, Theorem 7.4.2]. Hence we get that both πp0q and πp1q agree
with the diagonal inclusion AÑ A8, and thus have the equations

θp0qpaq “ ha and θp1qpaq “ p1´ hqa

for all a P A.
To complete the proof, therefore, we need to find sequences pCnq and

pDnq of C˚-subalgebras of A with the right properties. For each n and each

i P t0, 1u, consider φ
piq
n : F

piq
n Ñ A. As this is order zero, [34, Corollary
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3.1] gives a ˚-homomorphism ρ
piq
n : C0p0, 1s b F

piq
n Ñ A such that φ

piq
n pbq “

ρ
piq
n px b bq for all b P A, where x P C0p0, 1s is the identity function. Set

Cn :“ ρ
p0q
n pC0p0, 1s b F

p0q
n q and Dn “ ρ

p1q
n pC0p0, 1s b F

p0q
n q, which contain the

images of φ
p0q
n and φ

p1q
n respectively. It is straightforward to check that pCnq

and pDnq have the right properties.

The following corollary is reasonably straightforward by lifting the ele-
ment h P A8 to a positive contraction phnq P

ś

nA: we leave the details to
the reader.

Corollary A.2. Let A be a separable C˚-algebra of nuclear dimension one,
and let C be the class of pairs pC,Dq of C˚-subalgebras of A such that each
of C and D is isomorphic to a quotient of a cone over a finite dimensional
C˚-algebra. Then A decomposes over C.

B Finite dynamical complexity

In this appendix, we give examples of excisive decompositions coming from
decompositions of groupoids as introduced in [16]. Our conventions on
groupoids will be as in [16, Appendix A] and [26, Section 2.3].

The following is a slight variant of [16, Definition A.4].

Definition B.1. Let G be a locally compact, Hausdorff, étale groupoid, let
H be an open subgroupoid of G, and let C be a set of open subgroupoids of
G. We say that H is decomposable over C if for any open, relatively compact
subset K of H there exists an open cover Hp0q “ U0 Y U1 of the unit space
of H such that for each i P t0, 1u the subgroupoid of H generated by

th P K | sphq P Uiu

is contained in an element of C.

The first technical result of this section is as follows. See Definitions 1.1
and 1.4 for terminology.

Proposition B.2. Say G is a second countable, locally compact, Hausdorff
étale groupoid that that decomposes over a set D of open subgroupoids of G.
Then the reduced groupoid C˚-algebra C˚r pGq decomposes over the class of
pairs

C :“ tpC˚r pH1q, C
˚
r pH2qq | H1, H2 P Du.

Moreover, if every groupoid in D is clopen, then C is excisive.
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The proof will proceed via some lemmas. First we give the existence of
decompositions.

Lemma B.3. Say G is a locally compact, Hausdorff étale groupoid that de-
composes over a set D of subgroupoids of G in the sense of Definition B.1.
Then the reduced groupoid C˚-algebra C˚r pGq decomposes over the class of
pairs

C :“ tpC˚r pH1q, C
˚
r pH2qq | H1, H2 P Du.

Proof. Let X be a finite-dimensional subspace of C˚r pGq. Up to an approx-
imation, we may assume that there is an open relatively compact subset K
of G such that every element of X is an element of CcpGq supported in K.
Using (a very slight variation on) [16, Lemma A.12], for any ε ą 0, there is
an open cover Gp0q “ U0YU1 of the base space of G and a pair of continuous
compactly supported functions tφ0, φ1 : Gp0q Ñ r0, 1su with the following
properties.

(i) each φi is supported in Ui;

(ii) for each i P t0, 1u, the set tk P K | rpkq P Uiu generates an open
subgroupoid of G that is contained in some element Hi of D;

(iii) for each x P Gp0q, φ0pxq ` φ1pxq “ 1 and for each k P K, φ0prpkqq `
φ1prpkqq “ 1;

(iv) for any k P K and i P t0, 1u, |φipspkqq ´ φiprpkqq| ă ε.

We claim that for any δ ą 0, for ε suitably small, ph,C,Dq “ pφ0, C
˚
r pH1q, C

˚
r pH2qq

is a δ-decomposition.
Indeed, the fact that }rh, as ď δ}a} for all a P X follows from condition

(iv) above and [17, Lemma 8.20]. We have moreover that for any a P X,
ha “ φ0a, and this is supported in tk P K | rpkq P U0u by condition (i),
whence is in C˚r pH0q by condition (ii). On the other hand, p1 ´ hqa “ φ1a
for any a P X by condition (iii), whence p1 ´ hqa is in C˚r pH1q by the same
argument.

The next lemma is presumably well-known.

Lemma B.4. Let G be a locally compact, Hausdorff, étale groupoid, and let
H Ď G be a clopen subgroupoid. Then the restriction map E : CcpGq Ñ
CcpHq extends to a conditional expectation E : C˚r pGq Ñ C˚r pHq.
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Proof. For x P Hp0q, let πx : C˚r pHq Ñ Bp`2pHxqq be the associated regular
representation defined by

pπxpbqξqphq :“
ÿ

kPHx

bphk´1qξphq

as in [26, Section 2.3.4]. Let ξ, η P `2pHxq, and consider

xξ, πxpEpaqqηy`2pHxq “
ÿ

h,kPHx

Epaqphk´1qηpkqξphq “
ÿ

h,kPGx

aphk´1qη̃pkqξ̃phq

where ξ̃ P `2pGxq is the function defined by extending ξ by zero onGxzHx, and
the second equality uses that H is a subgroupoid to deduce that if h, k P H,
then hk´1 is in H. Hence if |piGx is the corresponding representation of G on
`2pGxq, we have

xξ, πxpEpaqqηy`2pHxq “ xξ̃, π
G
x paqη̃y,

and so

}Epaq} “ sup
}ξ}“}η}“1

|xξ, πxpEpaqqηy`2pHxq| “ sup
}ξ}“}η}“1

|xξ̃, πGx paqη̃y| ď }a}.

Hence E is contractive, and so in particular extends to an idempotent linear
contraction E : C˚r pGq Ñ C˚r pHq. This extended map is necessarily a con-
traction by a classical theorem of Tomiyama: see for example [6, Theorem
1.5.10].

Lemma B.5. Say G is a locally compact, Hausdorff, étale groupoid. Then
the set of pairs of C˚-subalgebras of C˚r pGq of the form pC˚r pH1q, C

˚
r pH2qq with

H1, H2 Ď G both open subgroupoids, and at least one of them also closed, is
strongly excisive as in Definition 1.4.

Proof. Say B is an arbitrary C˚-algebra, and consider c P C˚r pH1q b B and
d P C˚r pH2q b B. Say without loss of generality that H2 is closed, and
let E : C˚r pGq Ñ C˚r pH2q be the conditional expectation of Lemma B.4.
As E is just defined on CcpGq by restriction of functions, it follows that
E takes C˚r pH1q into itself, and therefore into C˚r pH1q X C˚r pH2q. Hence
by functoriality of tensor product maps, we see that E b id restricted to
C˚r pH1q bB is a map

E b id : C˚r pH1q bB Ñ pC˚r pH1q X C
˚
r pH2qq bB
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and in particular pE b idqpdq is in pC˚r pH1q X C˚r pH2qq b B. On the other
hand, as Eb id is contractive (see for example [6, Theorem 3.5.3]) and takes
C˚r pH1q to itself, so we get that

}c´ pE b idqpdq} “ }pE b idqpc´ dq} ď }c´ d}

and
}d´ pE b idqpdq} ď }c´ d} ` }c´ pE b idqpdq} ď 2}c´ d}

so we are done.

Proposition B.2 now follows directly from Lemmas B.3, B.4, and B.5.
We spend the rest of this appendix deriving some consequences of Propo-

sition B.2.

Corollary B.6. Say G is an ample second countable, locally compact, Haus-
dorff étale groupoid. Let K be the class of clopen subgroupoids of G, such
that for any H P K, and any clopen subgroupoid K of H, C˚r pKq satisfies the
Künneth formula. Then K is closed under decomposability.

Proof. Say H is a clopen subgroupoid of G that decomposes over K. Then
C˚r pHq strongly excisively decomposes over the class tpC˚r pK1q, C

˚
r pK2qq |

K1, K2 P Ku by Proposition B.2, and so C˚r pHq satisfies Künneth by Theorem
1.5. The same argument also applies to any clopen subgroupoid of H: indeed,
any clopen subgroupoid ofH is easily seen to also decompose over K (compare
the proof of [16, Lemma 3.16]).

Finally, we finish with an example that is closely related to the notion of
finite dynamical complexity for groupoids introduced in [16, Definition A.4]

Definition B.7. SayG is an ample, locally compact, Hausdorff étale groupoid
with finite dynamical complexity. Let C be the class of compact open sub-
groupoids of G, and let D be the smallest class of clopen subgroupoids of
G containing C and closed under decomposability. Then G has strong finite
dynamical complexity if G itself is contained in D.

The following result is not new: groupoids as in the statement are amenable
by [16, Theorem A.9], and therefore their C˚-algebras satisfy the UCT by a
famous result of Tu [32, Proposition 10.7] (at least in the second countable
case). Nonetheless, it seems interesting to give a relatively direct proof based
on the internal structure of the C˚-algebra.
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Theorem B.8. Say G is a principal, locally compact, Hausdorff étale groupoid
with strong finite dynamical complexity. Then C˚r pGq satisfies the Künneth
formula.

Proof. Let K be as in Corollary B.6, and let C be the class of compact open
subgroupoids of C. Then for any H P K, the reduced C˚-algebra C˚r pHq
is principal and proper, so Morita equivalent to the continuous functions
CpHp0q{Hq on the orbit space by [23, Example 2.5 and Theorem 2.8] (the
second countability assumptions in that paper are not necessary in the étale
case [12]). Hence C˚r pHq satisfies the Künneth formula. As C is closed under
taking clopen subgroupoids, K contains C.

Hence if D is as in Definition B.7, then K contains D by Corollary B.6.
However, strong finite dynamical complexity implies that G itself is in D, so
we are done.

Example B.9. Let X be a bounded geometry metric space, and assume that
X has finite decomposition complexity as introduced in [14] and studied in
[15]. Then the associated coarse groupoid GpXq has strong finite dynamical
complexity by the proof of [16, Theorem A.4]. Hence the associated groupoid
C˚-algebra C˚r pGpXqq, which canonically identifies with the uniform Roe
algebra C˚upXq, satisfies the Künneth formula by Theorem B.8.

References

[1] M. Atiyah. Vector bundles and the Künneth formula. Topology, 1:245–
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the Künneth formula, and the Baum-Connes conjecture. Geom. Funct.
Anal., 14(3):491–528, 2004.

[8] A. Connes. Noncommutative Geometry. Academic Press, 1994.
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[13] E. Guentner, N. Higson, and J. Trout. Equivariant E-theory. Mem.
Amer. Math. Soc., 148(703), 2000.

[14] E. Guentner, R. Tessera, and G. Yu. A notion of geometric complexity
and its application to topological rigidity. Invent. Math., 189(2):315–
357, 2012.

[15] E. Guentner, R. Tessera, and G. Yu. Discrete groups with finite decom-
position complexity. Groups, Geometry and Dynamics, 7(2):377–402,
2013.

[16] E. Guentner, R. Willett, and G. Yu. Finite dynamical complexity and
controlled operator K-theory. arXiv:1609.02093, 2016.

[17] E. Guentner, R. Willett, and G. Yu. Dynamic asymptotic dimension:
relation to dynamics, topology, coarse geometry, and C˚-algebras. Math.
Ann., 367(1):785–829, 2017.

60



[18] N. Higson and E. Guentner. Group C˚-algebras and K-theory. In Non-
commutative Geometry, number 1831 in Springer Lecture Notes, pages
137–252. Springer, 2004.

[19] N. Higson and J. Roe. Analytic K-homology. Oxford University Press,
2000.

[20] S.-H. Kye. Counterexamples in intersections for C˚-tensor products.
Proc. Edinburgh Math. Soc., 27:301–302, 1984.

[21] V. Lafforgue. La conjecture de Baum-Connes à coefficients pour les
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tions and the Künneth formula. Pacific J. Math., 98(2):443–458, 1982.

61



[31] G. Skandalis. Une notion de nucléarité en K-théorie (d’après J. Cuntz).
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