DYNAMIC ASYMPTOTIC DIMENSION AND MATUI'S HK
CONJECTURE
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ABSTRACT. We prove that the homology groups of a principal ample groupoid
vanish in dimensions greater than the dynamic asymptotic dimension of the
groupoid (as a side-effect of our methods, we also give a new model of groupoid
homology in terms of the Tor groups of homological algebra, which might be
of independent interest). As a consequence, the K-theory of the C*-algebras
associated with groupoids of finite dynamic asymptotic dimension can be com-
puted from the homology of the underlying groupoid. In particular, principal
ample groupoids with dynamic asymptotic dimension at most two and finitely
generated second homology satisfy Matui’s HK-conjecture.

We also construct explicit maps from the groupoid homology groups to the
K-theory groups of their C*-algebras in degrees zero and one, and investigate
their properties.
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1. INTRODUCTION

Dynamic asymptotic dimension is a notion of dimension for actions of discrete
groups on locally compact spaces, and more generally, for locally compact étale
groupoids introduced by the last named author with Guentner and Yu in [24]. It
is inspired by Gromov’s theory of asymptotic dimension [22, Section 1.3]. At the
same time it is strongly connected to other existing dimension theories for dynamical
systems, for example the conditions introduced by Bartels, Liick and Reich [3] or
Kerr’s tower dimension [28].

The original article [24] focused on the fine structure of C*-algebras associated
with étale groupoids of finite dynamic asymptotic dimension, while later work by the
same set of authors in [23] presented some consequences to K-theory and topology.

In the present work we aim to explore the implications of dynamic asymptotic
dimension for groupoid homology and its relation to the K-theory of groupoid
C*-algebras. A homology theory for étale groupoids was introduced by Crainic
and Moerdijk in [11]. More recently, groupoid homology attracted a considerable
amount of interest from the topological dynamics and operator algebras communi-
ties following the work of Matui [34]. The main contribution of this article is the
following:

Theorem A. Let G be a locally compact, Hausdorff, étale, principal, o-compact,
ample groupoid with dynamic asymptotic dimension at most d. Then H,(G) =0
for n > d and Hy(G) is torsion-free.

Our proof of Theorem A goes via a description of groupoid homology in terms
of semi-simplicial spaces equipped with a G-action. As a byproduct this leads
to a description of these homology groups in terms of the classical Tor groups of
homological algebra, quite analogous to the well-known case of the homology of a
discrete group. While this may be known to experts, it seems worthwhile recording
it as we are not aware of its appearance in the literature.

Theorem B. Let G be a locally compact, Hausdorff, étale, ample groupoid with o-
compact base space. There is a canonical isomorphism H, (G) = Torl(Z[G°], Z[G"]).

Our result allows us to draw some significant consequences to the following con-
jecture formulated by Matui in [36].

Conjecture (Matui). For a minimal, essentially principal, ample groupoid G there
are isomorphisms
KZ(C:(G)) = (—B H2n+i(G), 1=0,1
n=0

The conjecture has been confirmed in several interesting cases [17, 36, 39, 56]
even beyond the originally postulated minimal setting. However, there are also
counterexamples due to Scarparo [48], and Deeley [13]. Scarparo’s counterexamples
seem to be explained by the presence of torsion in isotropy groups, while Deeley’s
come from the presence of torsion phenomena in K-theory. It seems very interesting
to see where exactly the conjecture holds, and to elucidate the obstructions that
exist.

Combining Theorem A with a spectral sequence recently constructed by Proietti
and Yamashita [44], we can confirm the HK-conjecture for a large class of low-
dimensional groupoids:

Corollary C. Let G be a locally compact, Hausdorff, étale, principal, second
countable, ample groupoid with dynamic asymptotic dimension at most 2. If Hs(G)
is finitely generated then the HK-conjecture holds for G, i.e.

Ko(CH(G)) = Ho(G) ® Ha(G), K1(CHG)) = Hy(G).
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Note that having finite dynamic asymptotic dimension forces all the isotropy
groups to be locally finite. Consequently, it is natural to restrict our attention
to the class of principal groupoids to avoid the trouble caused by torsion in the
isotropy groups.

The second theme of this work is an attempt to make the HK-conjecture more
explicit. It is well-known and easy to see that there is a canonical homomorphism

po : Ho(G) — Ko(CF(G)).

In general, not much seems to be known about this map, and there are only partial
results on the existence of maps in higher dimensions. To formulate our progress
in this direction, for an ample groupoid G we denote by [[G]] its topological full
group. Moreover, Matui constructs in [34] an index map I : [[G]] — H1(G).

Theorem D. Let G be a locally compact, Hausdorff, étale, ample groupoid. Then
there exists a homomorphism

p : Hi(G) — K1 (CFH(G))

which factors the canonical map [[G]] — K1(C*(G)) via the index map I : [[G]] —
H,(G).

If moreover G is principal, second countable, and has dynamic asymptotic di-
mension at most 2, then py and p; induce the injection Hy(G) — Ko(C*(G)) and
isomorphism H;(G) — K1 (C*(QG)) from Corollary C.

The construction of p; is straightforward if the index map I is surjective, and
under further structural assumptions on G, Matui was already able to prove this.
Our construction of the map gy is completely general: we in fact give two indepen-
dent constructions, an elementary one based on ideas of Putnam [45], and a more
sophisticated one based on the work of Proietti and Yamashita [44].

It was shown in [24] that the dynamic asymptotic dimension yields an upper
bound for the nuclear dimension of reduced groupoid C*-algebras. In particular,
if G is a second countable, principal, minimal ample groupoid with finite dynamic
asymptotic dimension, then C*(G) is classifiable.! Our result allows us to com-
pletely determine the classifying invariant (usually called the Elliott invariant and
denoted Ell(+)) in the 1-dimensional case:

Corollary E. Let G be a locally compact, Hausdorff, étale, o-compact, principal,
ample groupoid with compact base space and with dynamic asymptotic dimension
at most 1. Then

EI(CY(G)) = (Ho(G), Ho(G) ", [1gw ], H1(G), M(G), p).

In light of these results one is tempted to formulate a stronger version of the
HK-conjecture in low dimensions, by asking that for ample principal groupoids
with H,(G) = 0 for n > 2 the canonical maps y; are isomorphisms. To see that
this cannot be the case, we construct a counterexample using groupoids with topo-
logical property (T) introduced in [14]. The example is based on the construction
of counterexamples to the Baum-Connes conjecture by Higson, Lafforgue and Skan-
dalis [26] and work of Alekseev and Finn-Sell [1].

Theorem F. There exists a locally compact, Hausdorff, étale, second countable,
principal, ample groupoid G with H,(G) = 0 for all n > 2 such that ug : Ho(G) —
Ko(C*(G)) is not surjective.

IThis is due to Kirchberg and Phillips in the purely infinite case [30], [40], and due to many
hands in the finite case, including Elliott, Gong, Lin, and Niu [20], [21], [15], and Tikuisis, White,
and Winter [52] (see [9] for an alternative proof of classification in the finite case).
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As an application of our results, we study a geometric class of examples. Given a
metric space X with bounded geometry, Skandalis, Tu and Yu construct an ample
groupoid G(X) which encodes many coarse geometric properties of the underlying
space X [49]. The following result adds to this list of connections. It might be
known to experts but does not seem to appear in the literature so far (except for
degree zero, which has been treated in [2]).

Theorem G. Let X be a bounded geometry metric space and G(X) be the asso-
ciated coarse groupoid. Then there is a canonical isomorphism

Hy(G(X)) = Hy'(X)

between the groupoid homology of the coarse groupoid and the uniformly finite
homology of X in the sense of Block and Weinberger [5].

As the dynamic asymptotic dimension of the coarse groupoid equals the as-
ymptotic dimension of the underlying metric space (in the sense of Gromov), a
combination of Theorems A (adapted to the non second countable case) and D
yields the following purely geometric corollary.

Corollary H. Let X be a bounded geometry metric space.
(1) If asdim(X) < 2 and Hyf(X) is free, or finitely generated, then

Ko(C3(X)) = Hy'(X) @ H3'(X), K1(CF(X)) = HY'(X).

(2) If asdim(X) < 3, HY(X) is free, or finitely generated, and X is non-
amenable, then

Ko(C3(X)) = Hy'(X),  Ki(CH(X)) = H'(X) @ H"(X).

The first part of this corollary applies for example if X is the fundamental
group of a closed, orientable surface, and the second applies for example if X is
the fundamental group of a closed, orientable, hyperbolic 3-manifold. The reader
might compare this to [16, Theorem B, Theorem F, and Corollary H]: combining
these implies related results after taking a “completed tensor product with C” (in
an appropriate sense) for certain spaces.

Outline of the paper. In Section 2 we give a new picture of Crainic-Moerdijk
homology by defining a G-equivariant homology theory for an appropriate notion
of semi-simplicial G-spaces. This is done in section 2.2, by describing the homol-
ogy groups as the left derived functor of the coinvariants in the sense of classical
homological algebra. The necessary background is given in section 2.1. It turns out
that the groups H,(G) will be naturally isomorphic to the equivariant homology of
a semi-simplicial G-space EG,. We deduce Theorem B from this material.

The central piece of the vanishing result in Theorem A is tackled in Section 3.
There we define a colouring of G, which will induce an appropriate cover of G.
The nerve of this cover in the sense of section 3.3 is a semi-simplicial G-space,
and that defines the homology of the colouring. The central idea is to define an
anti-Cech sequence of G as a sequence of colourings with induced covers that are
bigger and bigger, in the spirit of anti-Cech covers in coarse geometry, introduced
by Roe (see [47, chapter 5]). We show that the inductive limit of an anti-Cech cover
is well defined and that it converges to the Crainic-Moerdijk homology groups for
principal o-compact ample groupoids in theorem 3.29.

Section 4 is dedicated to the two constructions of the map

w1 Hi(G) —» K1(CFHQ)),

from Theorem D, and a proof that these give the same result. We also deduce
Corollary C (in a stronger form) and Corollary E.
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Finally, in section 5 we interpret our results in various different settings, includ-
ing coarse geometry (in particular, we deduce Theorem G and Corollary H) and
Smale spaces, and present the negative results regarding a stronger form of the HK
conjecture announced in Theorem F.

2. MODELS FOR GROUPOID HOMOLOGY

2.1. The category of G-modules and the coinvariant functor. Let us first fix
our notations. A groupoid is a (small) category in which all arrows are invertible.
We will write G and G° for the set of arrows and objects respectively; we usually
also write G for the groupoid and assume the other data is given. We will call G°
the base space. The range and source maps are denoted by 7,5 : G — G, and the
corresponding fibres by G® := r~!(z) and G, := s~ (x). A pair (g,h) € G x G is
composable if s(g) = r(h), in which case the product is written gh. The identity
at x € GO is written e, € G. For subsets A, B of G we write AB = {gh|ge A,he
B,r(h) = s(g)}, and we write gA for {g}A.

We work exclusively with topological groupoids: G and G° carry locally compact
Hausdorff topologies that are compatible, and all structure maps are continuous.
A bisection is a subset B of G such that the restrictions r|p and s|p are homeo-
morphisms onto their images; a groupoid G is étale if the open bisections from a
basis for its topology, and is ample if the compact open bisections form a basis for
the topology.

We will be focusing throughout on (étale) ample groupoids, or equivalently étale
groupoids with a totally disconnected base space. Examples include discrete groups
and totally disconnected spaces, but also action groupoids of discrete groups acting
on Cantor sets by homeomorphisms, coarse groupoids, and more examples associ-
ated to k-graphs and related combinatorial objects.

If G is an ample groupoid, let Z[G] denote the set of compactly supported
continuous functions with integer values,

Z|G] := C.(G,Z),

with the ring structure given by pointwise addition and convolution. This is a ring
(in general without identity) with local units, i.e. for any f1,..., f, € Z[G] there is
an idempotent e € Z[G] such that ef; = fje = f; for all j = 1,...,n. The element
e can always be picked in Z[G°] < Z[G] as the characteristic function on a compact
open subset of G°. Define the augmentation map ¢ : Z[G] — Z[G°] by

(N = Y] flo).

9eGy

We will denote the category of (left, non-degenerate?) Z[G]-modules with Z[G]-
linear maps as morphisms by G-mod. We will often use the term G-module as
shorthand for Z[G]-module.

Definition 2.1. Let M be a Z[G]-module. Define M to be the submodule gener-
ated by the elements of the form

fm—e(f)m, feZ[G], me M.
The group of coinvariants of M is the abelian group
Mg = M/M,.
This naturally defines the coinvariant functor

Coinv : G-mod — Ab.

IfRisa ring with local units, a left R-module M is called non-degenerate whenever RM = M.
All of our modules will be non-degenerate by assumption.
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As it may make the above more conceptual, and as we will need it later, we give
a different description of the coinvaraints functor. Define a right action of Z[G] on
ZIG by a- f:=¢e(af) for a € Z|G"] and f € Z|G], i.e.

(@ f)x)= > alr(g)flg) VfeZ[G),aeZ[G"),z e G .

9eGy

Lemma 2.2. For any (left, non-degenerate) G-module M, there is a canonical
isomorphism Mg =~ Z[G] ® M.
Z[G]

Proof. We leave it to the reader to check that the map
ZIG'] ® M — Mg, a®m+— am + M
Z[G]
is an isomorphism of abelian groups. The inverse is given as follows: for m + M, €
Mg pick a € Z|G°] < Z[G] such that am = m. The inverse map is given by
m + My — a®m. O

We are now going to present a natural source of G-modules: spaces with a
topological action of G.

Recall first that if p: Y — X and ¢ : Z — X are continuous maps, the fibered
product is the space

(1) Yixg Z:={(y,2) : p(y) = q(2)}.
equipped with the subspace topology it inherits from Y x Z.
Recall that a left G-space is the data of a topological space X together with:

e a continuous map p : X — GO, called the anchor map, and
e a continuous map a : Ggx, X — X, satisfying a(g, a(h,z)) = a(gh, z) for
every (g,h,r) € Goxp Goxp X and a(ep(,), ) = @ for every v € X.

A left G-space is étale if the anchor map is étale, i.e. a local homeomorphism. We
will typically suppress a from the notation, for example writing ‘gz’ instead of
‘a(g,z)’. A left G-space is free if gr = x forces g = e,(,, and is proper if the map
axpry: Gy X — X x X is proper. The quotient of a G-space X is written G\ X,
and is the quotient of X by the equivalence relation = ~ gx, equipped with the
quotient topology. If the action of G on X is free and proper, then G\ X is locally
compact and Hausdorff, and the quotient map ¢ : X — G\ X is étale.

Definition 2.3. Let Top. be the category of left G-spaces which are locally com-
pact, Hausdorff and étale, with morphisms being the G-equivariant étale maps.

We denote by Z[X] the abelian group of continuous compactly supported integer
valued functions on X. It is a non-degenerate G-module with respect to the action
defined by

(fa)(x) = ), flg)alg™'z) VfeZ[GlaeZ[X]zeX.
geGP(m)
If f: X — Y is G-equivariant and étale, it induces a Z[G]-linear map f; :
Z[X] — Z[Y] by the formula
fel@(y) = ) alx) VyeY.
zef~1(y)
The sum is finite since a € Z[X] is compactly supported, and fy(a) is continuous
as f is étale.
Lemma 2.4. The assignments X — Z[X] and f — fy define a functor, called the

functor of global sections,
Z[?] : Tops — G-mod.
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The composition of the global section functor and the coinvariant functor is
denoted by Z[?]¢.

Lemma 2.5. If X is a free and proper space in Topy, then there is an isomorphism
of abelian groups
Z| X = Z|G\X].

Proof. Denote by [z] € G\X the class of z € X, and define a Z[G]-linear map
£:Z[X] — Z|G\X] by

NN = Y flgoo) VeeX.

9€Gp(a)
This obviously factors through Z[X]q, giving a map which we still denote by
£:2[X])e — ZIG\X].

Let us build an inverse to . Since the action of G on X is proper, the quotient
is locally compact Hausdorff, and hence a partition of unity argument shows that
the family of functions f € Z[G\X] such that there exists a compact open subset
V € X with supp(f) = q(V)) and such that ¢y, : V' — ¢(V') is a homeomorphism,
generates Z[G\X] as an abelian group. Now given such a function f, we define
fv = foqy € Z[X] and our first goal is to show that the class of fy in Z[X]q
does not depend on the choice of V. So let V' € X be another compact open set
with supp(f) = ¢(V’) and such that g+ : V' — ¢(V’) is a homeomorphism. Then
q(V) = ¢q(V') and hence every element z € V' can be written as x = gy for some
y € V', g € G. Using that G is étale and compactness of V' we can decompose
V =, Vi and V' = |, V;/ such that there exist bisections S; < G implementing a
homeomorphism «; : V; — V/. Hence doing another partition of unity argument,
we may assume that the sets V and V' themselves are related in this way, i.e.
there exists a bisection S € G which induces a homeomorphism ag : V — V' by
as(x) = hax where h € S is the unique element in S n GP(®). But then

fv(x) = flav(z)) = flev(as(z))) = fv(as(z)) VzeV.

This relation can be rewritten as fiy = xg-1 - fy+, and hence we have [fy] = [f1/]
in Z[X]¢ as desired. Let ¢ : Z|G\X] — Z[X]¢ be the map given by (f) = [fv].
If V € X is open such that ¢y, : V — ¢(V') is a homeomorphism, then for a given
x € X there is at most one g € G(,) such that gz € V since the action is free. It
follows that for any function f € Z[G\X] supported in such a V' we have

e = ), flavige) = f(l=])

9€Gp(a)

and hence € o ¢ = id.

Conversely, if f € Z[X] is a function supported in a set of the form S -V for a
bisection S = G and V < X is open such that gy is a homeomorphism onto its
image, then one easily checks that &[f] is supported in ¢(V). Hence [¢(E[f])] =
[E[f] o q,]- Using freeness again, one checks that the latter class equals [xs - f] =
[e(xs-1) - f] = [f]. Since functions f as above generate Z[X| we are done. O

2.2. Semi-simplicial G-spaces and homology. For n a nonnegative integer,
denote by [n] the interval {0,...,n}. Recall (see for example [54, Chapter 8]) the
definition of the semi-simplicial category Ag: its objects are the nonnegative inte-
gers, and Homa_(m,n) consists of the (injective) increasing maps f : [m] — [n].
A semi-simplicial object in a category C is a contravariant functor from Ay to C.
The collection of all semi-simplicial objects in a category is itself a category, with
morphisms given by natural transformations.
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Let €} : [n — 1] — [n] be the only increasing map whose image misses i. We
will omit the superscript n if it does not cause confusion. Any increasing map
f:[m] — [n] has a unique factorization f = e;,&;,...6;, With 0 <ip < ...<i3 <n
(see Lemma 8.1.2 in [54]). Thus, any semi-simplicial object is the data, for all n,
of an object C,, of C, together with arrows €}’ : C;, — C,_; in C, called face maps,
satisfying the (semi-)simplicial identities 5?‘%? = 5?_15?71 if 1 < j. Similarly, if
Cy and D, are semi-simplicial objects in C, a morphism between them is a collection
of morphisms f, : C,, — D,, in C that are compatible with the face maps.

A semi-simplicial object in the category of locally compact Hausdorff topological
spaces will be called a semi-simplicial topological space.

Definition 2.6. A semi-simplicial G-space is a semi-simplicial object in the cate-
gory Topg.
As an example, define EGy to be the semi-simplicial G-space
EG, = Gpxp GpXp oo G (n+1 times)
with
e anchor map p : EG, — G° given by the common range of the tuple,
p(707 ---7'771) = T(VO) = = T(’Yn) for vE EG,,
o left action given by left multiplication by G on all factors,
o if f:[m] — [n], then EG(f) : Gy, = G, is defined by
(’703 cey Vn) e (’Yf(O), afyf(m))
(note that the face maps are given by
8?+1 : (’707 77”) = (’yOa "'a;yiv "'a,yn)
where the hat means that the entry is omitted).

One checks that the moment and the face maps are G-equivariant and étale.

On the other hand, define the classifying space of G, denoted by BGy, to be the
semi-simplicial topological space defined by

BG,, = {(g1,--,9n) € G™ | 7(gi) = s(gi—1) for all i}

with face maps

(92, -, 9n) if1=0,
€ (g1 Gn) = 3 (915 9i-1,9iGi41, - gn) 1 <i<n,
(g1, 9n—-1) if i =n.

The G-action on EG is free and proper and hence G\EG, is a semi-simplicial
topological space. The maps (g1, ..., gn) = [r(91), 91,9192, ..., 91+ gn] and [0, ..., yn] —
(Yo Laa, .o ,7;7117,1) define maps of semi-simplicial topological spaces between BG
and G\EG, that are mutually inverse.

A semi-simplicial G-space (X4, {€X};) naturally induces a chain complex of Z[G]-
modules (Z[Xy], x) by composing by the Z[?] functor, where the boundary maps
are

én = (_1)i(a;z)*

-

=0

and thus a chain complex of abelian groups (Z[X*]G,é*) by composing by the
coinvariant functor.

Definition 2.7. Let (X, {d;};) be a semi-simplicial G-space. We define the equi-
variant homology group H, f (X) to be the homology of the chain complex of abelian

groups (Z[X«]a, 0x).
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The relationship with the homology of Matui and Crainic-Moerdijk is now a
consequence of Lemma 2.5. Namely, Matui introduced a chain complex of abelian
groups to compute Crainic-Moerdijk homology groups in the special case of an
ample groupoid. This chain complex is none other than (Z[BGy],€x). As EGy is
a free and proper semi-simplicial G-space with BG, =~ G\EG,, this homology is
isomorphic to HY(EG) =~ H,(BG). In other words, we have proved the following.

Proposition 2.8. Let G be an ample groupoid. The complex introduced by Ma-
tui to compute H.(G) identifies canonically with the homology of the complex
(Z[EG]a, 0%)- O

2.3. Projective resolutions and Tor. The aim of this section is to identify
H,(G) with one of the standard objects studied in homological algebra. These
results will not be used in the rest of the paper; we include them as they can be
derived without too much difficulty from our other methods, and seem interesting.

Remark 2.9. If R is a non-unital ring, then free R-modules are not necessarily pro-
jective. However, for any idempotent e € R it is easily seen that Hompg(Re, M) =~
eM naturally for any R-module M. If N — M is an epimorphism then elements
in eM lift to eN, so it follows that Re is projective. Consequently, if R is a ring
with enough idempotents, i.e. it contains a family (e;);e; of mutually orthogonal
idempotents such that R =~ @,_; Re; = @, ; e; R, then free R-modules are projec-
tive. More generally, a (non-degenerate) R-module is projective exactly when it is
a direct summand of a free R-module.

We will restrict to ample groupoids G with o-compact base space G°. The
main reason is that it implies that GO (resp. G) can be written as a disjoint union
of compact open sets (resp. compact open bisections).® If G° = | |,_; U; with U;
compact and open, then Z[G] = @, Z[G]xv, = @, xv,Z|G]. By the above remark
it follows that free G-modules are projective, and similarly for Z[G"].

To state the main result of this subsection, note that G° admits left and right
actions of G (with the anchor map being the identity) defined by

gr:=r(g) and zg:=s(g).
These actions make Z[G°] into both a left and a right G-module. Thus the Tor
groups Torl] (Z[G°],Z|G"]) (see for example [54, Definition 2.6.4]) of homological
algebra make sense.

Theorem 2.10. Let G be an ample groupoid with o-compact base space. There is
a canonical isomorphism Hy(G) = Tor29N(z[G0], Z[G0)).

The rest of this section will be spent proving this theorem, which will proceed
by a sequence of lemmas. To give the idea of the proof, recall (see for example [54,
Definition 2.6.4 and Theorem 2.7.2]) that Tor2tC! (Z[G°],Z|G"]) can be defined by
starting with an exact sequence

0

. P, P —2>py—2-7[G0) 0
of Z[G]-modules, where each P, is projective. The group TorZl¢N(Z[G°], Z[G]) is
then by definition the n'® homology group of the complex

id®? id®? id®ao
—=LZ[G"] @ P,——=Z[G"] @ P—=Z[G’] ® Py
Z[G] Z[G] Z[G]

3n general, this fails for locally compact, Hausdorff, totally disconnected spaces, such as
Counterexample 65 from [51] (R equipped with a rational sequence topology). One can also
show that if X is this particular example, then Z[X] is not projective as a Z[X]-module, so free
Z[X]-modules are not projective.
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of abelian groups. We will prove Theorem 2.10 by showing that each Z[G]-module
Z|EG,] is projective, and that we have an exact sequence

0

2 Z[BG] —2 = Z[EG,] Z[G°] 0

where the boundary maps are the alternating sums of the face maps. As

Z[G°] @ M = Mg
Z[G]

for any left non-degenerate G-module M by Lemma 2.2, Proposition 2.8 completes
the proof.

We now embark on the details of the proof. Recall that G° is equipped with a
left G-action defined by stipulating that the anchor map is the identity and defining
the moment map by gz := r(g), and that Z[G°] is a left G-module with the induced
structure. Define 0 : Z[EGy] — Z[G°] to be the map induced on functions by the
étale map r : G — G°.

Lemma 2.11. The sequence

25 7[EG] —Z= Z[EGy] —2= 7Z[G°] 0.
s ezact.
Proof. For n = 0, define

h:EGng’EG'fH—l: (gov'-wgn)'_)(T(go)’g()7"'7gn)'
Then one computes on the spatial level that 0*h = ho'~! for 1 < i < n, and 0%h is
the identity map. Hence by functoriality

n n—1

O + hyd = Y (=1)'(@"h)w + Y (=1)'(hd")«

i=0 i=0
= (°h)s + Z(_l)i((aih)* - (hai_l)*)a

and this is the identity. Define also h : G — EGq by h(z) = z. Then the map
rh: G° — GO is the identity, and so Ohs is the identity map on Z[G°].

To summarise, hy is a chain homotopy (as in for example [54, Definition 1.4.4])
between the identity map and the zero map. This implies that the complex has
trivial homology (see for example [54, Lemma 1.4.5]), or, equivalently, is exact. O

For the next lemma, let us define a right action of Z[G°] on Z[G] via

(fo)(g) == f(9)¢(s(g)) VfeZ[G], 6 € Z[G°]

and similarly a left action of Z[G®] on Z[EG,,] via (¢a)(go, ---, gn) := &(1(g0))a(gos -, gn)-
Note that this right action of Z[G"] on Z[G] commutes with the canonical left
action of Z[G] on itself: indeed, the action of Z[G°] is just the action by right-
multiplication of the submodule Z[G°] of Z[G], so this commutativity statement is
associativity of multiplication. For notational convenience, we define EG_; := G°.

Lemma 2.12. With notation as above, for any n = —1 there is a canonical iso-
morphism of Z|G]-modules.

Z[G] ® Z[EGy] = Z[EGn1].
Z[G0]

Proof. For f € Z[G] and a € Z[EG,,], we define
(f,a) : EGpir = Z,  (90s s Gn+1) = [(90)a(gg ' g1s s 95 ' gnr1)-
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Note that (f,b) is in Z[EG,41] by the support conditions defining Z[G] and
Z[EG,]. Note also that if ¢ € Z[G°], then

(fo.a) : (9o, s gnt1) — F(90)0(s(90))algg g1 - 95 ' Gn)
and
(f, ) : (9o, - gnr1) = f(90)d(r(g5  g91))algy " 915 - 90 "gn);

these are the same however, as for any (go, ..., gn11) € EGny1, (g5 g1) = 5(g0)-
Hence by the universal property of the balanced tensor product, we have a well-
defined map
Z|G] ® Z[EG,]— Z[EG+1].
Z[GO]
We claim that this map is an isomorphism.

For injectivity, say we have an element Z?:l fi®a; that goes to zero. Splitting up
the sum further, we may assume that each f; is the characteristic function x g, of a
compact open bisection B; such that B;nB; = @ for ¢ # j. For each i, let ¢; be the
characteristic function of s(B;). As xp, = X B, ®:, we have that x p,®a; = x5, ¢;a;,
we may further assume that each a; is supported in {(go,...,gn) € EGy | 7(g90) €
s(B;)}. Now, we are assuming that > (xp,,ai) = 0. As B, n B; = & for
i # j, the functions (xp,,a;) have disjoint supports, and therefore we have that
(xB;,a;) = 0 for each i. Assume for contradiction that a; # 0, so there exists
(hoy .. hn) € EGy, with a(ho, ..., hy) # 0; our assumptions force r(hg) € s(B;). Let
g € B; be such that s(g) = r(ho). Then (g, gho,...,ghn) € EGpi1 and (xp;,a)
evaluates to a(hg, ..., hy,) # 0 at this point, giving the contradiction and completing
the proof of injectivity.

For surjectivity, as any element of Z[EG,,+1] is a finite Z-linear combination of
characteristic functions of subsets of the form By x - -+ X Bp11 n EG, 41 with each
B; a compact open bisection in G, it suffices to show that any such characteristic
function is in B. Set f € Z[G] to be the characteristic function of By, and a €
Z[EG,] to be the characteristic function of Bo_lBl X o BO_IBn N EG,,. We leave
it to the reader to check that f ® a maps to the function we want. O

For the next lemma, we consider Z[G] as a left Z[G°]-module via the left-
multiplication action induced by the inclusion Z[G"] < Z[G].

Lemma 2.13. If G° is o-compact, then, considered as a (left) module over Z[G"],
Z|G] is projective.

In many interesting cases Z[G] is actually free over Z[G°]: for example, this hap-
pens for transformation groupoids associated to actions of discrete groups. However,
freeness does not seem to be true in general.

Proof. For a compact open bisection U, let xy € Z[G] denote the characteristic
function of that bisection. As G° is o-compact we may choose a covering G =
Ll;c; Ui of G by disjoint compact open bisections, and for each i, let Z[G%|xv,
denote the Z[G°]-submodule of Z[G] generated by xr,. Then as Z[G°]-modules,
we have
ZIG] = D 2w,
i€l

It thus suffices to prove that each Z[G°]xy, is projective. For this, one checks that
Z[G°]xv, is isomorphic as a Z[G®]-module to Z[G°]x,(v,), so projective by Remark
2.9, and we are done. O

Corollary 2.14. If GY is o-compact, the G-module Z|EG,,] is projective for n = 0.
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Proof. We proceed by induction on n. For n = 0, Z[EGy] identifies with Z[G]
as a left Z[G]-module, so free, and thus projective by Remark 2.9. Now assume
we have the result for Z[EG,]. By Remark 2.9, Z[EG,] is a direct summand in
a free Z[G]-module, say @ ; Z[G]. Hence, as Z[G"]-modules, Z[EG,] is a direct
summand in @ ; Z[G] which is projective by Lemma 2.13. Therefore, Z[EG,,] is
projective as a Z|G°]-module. Let then N be a Z[G"]-module such that Z[|EG,,]|®N
is isomorphic as a Z[G°]-module to ), ; Z[G°] for some index set I. It follows that
as Z[G]-modules

(Z[G] ® Z[EGn]) ® (Z[G] .8, N) ~7[G] ® (M@®N)

7[GO] 7Z[G9]
~ 7[G Z[G°
61,8, (@ [6°])
=~ P zZ[G].
el

Hence Z[G] ® Z[EG,] is isomorphic to a direct summand of a free Z[G]-module,
Z[GO]
so projective as a Z[G]-module. Using Lemma 2.12, we are done. O

Proof of Theorem 2.10. Lemma 2.11 and Corollary 2.14 together imply that
0

2L 7[EGy] — 2> Z[EG) Z[GO] 0.

is a resolution of Z[G] by projective modules. The groups Tor2t¢! (Z[G°],Z|G))
are therefore by definition the homology groups of the complex

id®o id®o
.

Z|G°] ® Z[EG] —Z|G°] ® Z[EG) —0.
Z[G] Z[G]

However, using Lemma 2.2, this is the same as the complex
- > Z[BGh )6 — = Z[EGola — 0,

and we have already seen that the homology of this is the same as the homology
H.(G). O

3. COLOURINGS AND HOMOLOGY

The goal of this section is to use what we shall call a colouring of a groupoid G
to produce an associated nerve space, and prove that the nerve is a semi-simplicial
G-space. This lets us define the homology of a colouring in terms of the homology of
the associated semi-simplicial G-space. Throughout most of the section we assume
that G is an ample groupoid with compact base space G°: the most important ex-
ception is the main result—Theorem 3.36—at the end, where we drop the compact
base space assumption.

3.1. Colourings and nerves. In this subsection we introduce colourings of a
groupoid and the associated nerve spaces and homology.

Definition 3.1. A colouring for G is a finite ordered collection C = (Gy, ..., G4) of
compact open subgroupoids of G such that the collection {G§, ..., GY} of unit spaces
covers GY.

Elements of the set {0,...,d} are called the colours of the colouring, and the
colour of G is 1.

We will associate a cover of G to a colouring. Let P(G) denote the collection of
subsets of G.
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Definition 3.2. Let Gy, ..., G4 be a colouring of G. The cover associated to the
colouring is

U:={(gG:9,i) e P(G) x {0,...,d} | g€ G, G = o7}

Typically, we will just write U for an element of I/, and treat U as a (non-empty)
subset of G. In particular, when considering intersections Uy n Uy for Uy, Uy € U we
just mean the intersection of the corresponding subsets of G (ignoring the colour!).
The precise definition however calls for pairs as we want each element of U/ to have
a well-defined colour in {0, ...,d}. Note that an element U € U could be equal to
(9G9 i) and (hGS™ i) for g # h in G, i.c. representations of elements of U/ of the
form ng(g) need not be unique. Note also that the fact that G, ..., GY covers G°
implies that U is a cover of GG, but typically not by open sets: indeed, an element
ng(g) of U is contained in the single range fibre G"(9).

Definition 3.3. Let Gy, ..., G4 be a colouring of G with associated cover U. For
n = 0, set

N, = {(UO,...7U,1) e U+ ‘ ﬁ U; # @}.
1=0

The sequence (N;,)%_ is denoted N, and called the nerve of the colouring.

As noted before, the intersection in the definition above is to be interpreted as the
intersection of the corresponding subsets of G (ignoring the colour). In particular
we allow distinct U; appearing in a tuple as above to have different colours.

Our next goal is to give N, the structure of a semi-simplicial G-space.

Definition 3.4. For each n, the anchor map 7 : A,, — GV takes (U, ..., U,) to the
unique z € GO such that Uy is a subset oft G*. Let Ggx, N,, be the fibered product
as in line (1) above, and define an action by

Gsxr Nn e Nn7 (gu (UO7 ceey Un)) g (gU07 7gUn)

Direct checks show this is a well-defined groupoid action of G on the set A,,. Our
next goal is to introduce a topology on N,,, and prove that the action is continuous.

Definition 3.5. Let i € {0,...,d} and let V be an open subset of G such that Gf(g)
is non-empty for all g € V. Define

U, = {(9G;"9,i) | g e V),

and equip Ny with the topology generated by these sets. For each n > 0, equip
N with the product topology, and give A, € NJ'™ the subspace topology.

Lemma 3.6. For each n, the topology on N,, is locally compact, Hausdorff, and
totally disconnected. Moreover, the action defined in Definition 3.4 above is con-
tinuous.

Proof. We first look at the case n = 0. Given a compact open bisection V € G
with s(V) = G? one readily verifies that the mapping g — (ng(g),i) defines a
homeomorphism V' — Uy;. In particular, the sets Uy; for such compact open
bisections V are themselves compact open Hausdorff subsets of AVy. Consequently,
N is locally compact and locally Hausdorff. To check that it is Hausdorff, it suffices
to check that if (U;); is a net in N that converges to both U and V, then U = V.

Equivalently, say we have a net (ngffgj),ij)j in Ny such that there are h; in G
with g; G5 = h;G5") for all j, and so that g; — g and h; — h. First note that

4and therefore all the U ; are subsets of
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since the net converges, 7; will be eventually constant so we may as well assume
that i; = i for all j; we need to check that ng(g) = th(h).

Say then that gk is in ng(g) with k£ € Gf(g). By symmetry, it suffices to check
that gk is in th(h). As G; is open in G, it is étale, whence for all suitably large
J, we can find k; € Gf(gj) such that k; — k. As ngf(gj) = thf(hj) for all j, we
can also find [; € Gf(hj) for all j so that g;k; = h;l;. Using that G; is compact, we
may pass to a subnet and so assume that (I;) converges to some [ € G;, which is
necessarily in Gf(h). Hence gk = lim g;k; = lim h;l; = hl, and so gk is in th(h) as
required.

The first paragraph of the proof implies that Ny admits a basis of compact open
subsets and hence it is totally disconnected.

Continuity of the action follows on observing that if (g;, thf(h)) is a convergent
net in Gyx, Np, then (gjthf(gjh)) is a convergent net in Ny by continuity of the
multiplication in G.

We now look at the case of general n. The facts that A, is Hausdorff and totally
disconnected, as well as the continuity of the G-action, all follow directly from the
corresponding properties for NVp.

We claim that N, is closed in Ng“; as closed subsets of locally compact spaces
are locally compact, this will suffice to complete the proof. To check closed-
ness, for each j € {0,...,n}, say (g}c)keK is a net such that g;? — gj as k — o,

k k
and such that (g’ng(QO),...,gﬁGf(g")) is in NV, for all k. We need to show that
k k
(gon(go),...,gnt(g")) is also in NV,,. Indeed, as (gng(gf)),...,gﬁGf(g”)) is in NV,
there exist h¥, ..., h* € G; such that
goho = gihi = --- = grhi.
As G; is compact, we may assume that each net (hf) kekx converges to some h; in
G;. Hence
goho = g1h1 = -+ = gnhy
is a point in gOGf(go) AN gnt(g"), which is thus non-empty. Hence
(QOG?(gO), ...,gnt(gn))
is in NV, as required. O
We thus have shown that each of the spaces N, is in the category Top. of

Definition 2.3. To show that A is a semi-simplicial G-space, it remains to build
the face maps and show that they are equivariant and étale.

Definition 3.7. For each n > 1 and each j € {0,...,n}, define the j™ face map to
be the function

a;l :Nn — Nn-1, (UOa-“aUn)H (U()v"'ana"'aUn)a
where the hat “” means to omit the corresponding element.

Lemma 3.8. For each j, 0; as in Definition 3.7 is equivariant and étale, and
moreover

optop =opTlop .y ifi<

Proof. Let (Uy,...,U,) be a point in N, and write Uy = ngf)Eg’“) for each k €
{0,...,n}. For each k, let By be an open bisection containing gi. Then the set

W= {(honéh"), s hnG3") | by € By for each k and () Gy # @}
k=0
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is an open neighbourhood of (Up, ...,U,) in N,,. We claim that ¢’ restricts to a
homeomorphism on W. Indeed, let W; be the image of W under ¢?. Then an inverse

is defined by sending a point (V, ..., V;,—1) in W; to the point (1, ..., thj(h), oy Vi—1)

in W, where thj(h) occurs in the j*" entry, and where h is the unique point in B;
so that r(h) = p(Vo, ..., Vie1).

The G-equivariance and the claimed relations between the face maps are straight-
forward. (|

Definition 3.9. Let C be a colouring of G. The homology of the colouring, denoted
H,(C), is the homology HY (N ) of the semi-simplicial G-space Ay as in Definition
2.7.

The homology groups H,(C) depend strongly on the colouring. For example, C
could just consist of a partition of G° by compact open subsets, in which case one
can check that the groups H,(C) are zero for n > 0. We will, however, eventually
show that an appropriate limit of the homologies H,(C) as the colourings vary
recovers the Cranic-Moerdijk-Matui homology H,(G) for principal and o-compact

G.

3.2. Homology vanishing. Our goal in this subsection is to show that if
C = {Go,...,Ga}

is a colouring of G, then H,(C) = 0 for n > d. We will actually establish something
a little more precise than this, as it will be useful later. The computations in this
section are inspired by classical results in sheaf cohomology: see for example [19,
Section 3.8]. More specifically, the precise formulas we use are adapted from [50,
Tag 01FG].

Throughout this subsection, we fix an ample groupoid G with compact unit space
G°, a colouring C = {Gy,...,G4} as in Definition 3.1, and associated nerve space
N, as in Definition 3.3.

Lemma 3.10. LetU be the cover associated to the colouring C as in Definition 3.2.
Then any two elements of U that are the same colour and intersect non-trivially
are the same. In particular, if (Up,...,U,) is a point of some N,, then any two
elements of the same colour are actually the same.

Proof. Say ng(g) ) th(h) # J; we need to show that ng(g) = th(h). Indeed,
there are kg € G50 and ky € G;™ with gk, = hky,. Tt follows that h='g = kyk; ",
so h™lg is in G4, as G is a subgroupoid. Hence whenever gk is in ng(g), we have
that gk = h(h~1gk) is also in th(h), and so ng(g) c th(h). Hence by symmetry,
gG39 = e ™. O

Definition 3.11. For each n, define the colour map
c: N, —{0,...,d}"", U+ (colour of Uy, ..., colour of U,).

We leave it to the reader to check that ¢ is continuous and invariant under the
action of G.

Throughout, we identify the symmetric group S, with the permutations of
{0,...,n}. Fix now o € S,4+1 and for each a € {0,...,n} define a new permutation
o, as follows. Let og be the identity. For each a € {1,...,n}, let o, be the unique
permutation of {0,...,n} such that:

(i) the restriction of o, to {0, ...,a — 1} agrees with the restriction of ¢ to this set;

(ii) the restriction of o, to {a,...,n} is the unique order-preserving bijection

{a,....n} = {0,....,n}\{c(0),...,0(a — 1)}.


https://stacks.math.columbia.edu/tag/01FG
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For a point 2 = (ig, ..., 4,) € {0, ...,d}" !, let 0% € S, 41 be the unique permuta-
tion determined by the conditions below:
(i) (o) Sdgr(r) < Slga(n);
(ii) o® is order-preserving when restricted to each subset S of {0, ...,n} such that
the elements {i; | j € S} all have the same colour (i.e. so that the set {i; | j €
S} consists of a single element of {0, ..., d}).

Definition 3.12. For each n, let ¢ : A, — {0,...,d}"™! be the colour map of
Definition 3.11 and define

N7 o= H({(Goy oo in) [0 < -+ < in}).

Similarly, define
NZ = ({(io, oonyin) | G0 < -+ <iin}).

We note that each N7 and N7 is a semi-simplicial G-space with the restricted
structures from N: indeed, each N and N;Z is a closed, open and G-invariant
subset of NV, as c is continuous and G-invariant, and the face maps of Definition
3.8 clearly restrict to maps N,, — N7 and N7 — N2,

For each a € {0, ...,n} define now hg : N;; = N,41 by the formula

]’La(U) = (UUCCL(U)(O)7 ceey UUZ‘(U)(a—l)’ UUc(U)(a), UUE(U)(a)’ UUZ‘(U)(a-&-l)’ ceey UUZ‘(U)(TL))

(in words, we use Ug(U) to rearrange the order of the components of U, but also
insert U, cw)(q) into the a'™ position).

It is not too difficult to see that each h, is an equivariant étale map, and so
induces a pushforward map (hg)s : Z[N,] = Z[Np+1] of Z[G]-modules. We define

h: ZIN,] — Z[Nos1]

by stipulating that for each = € {0, ..., d}"*1, its restriction to each subset Z[c~!(x)]

equals
n

Z )sign(o2) (ha) «-

On the other hand, define
P ZIN,] = ZINT]
by stipulating that for each = € {0, ..., d}" !, its restriction to each subset Z[c~!(x)]
equals sign(o”)of. Finally, let
ZINZ] = ZN:]

be the canonical inclusion.

Lemma 3.13. Let 0 be the boundary map on Z[Ny]. Then
0h + ho = identity — i o p.

Proof. We look at the restriction of 0h to Z[c¢~!(z)] for some z; it suffices to prove
the given identity for such restrictions. For notational simplicity, let o := o®. We
have then for this restriction that
n+l n
oh = Z Z 1) sign(oy )0k (ha) «
i=0 a=0
We split the terms into three types.
(i) Terms of the form 0% (h,)s where i < a.
(ii) Terms of the form 04" (h,)s where i > a and o4(i) # o(a).
(iii) Terms of the form 02 (h, )+, or of the form 04 (hy)s where o,(i) = o(a).

We look at each type in turn.
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(i) We leave it to the reader to compute that as maps on the spatial level,
0*hg = hq_107+(). Moreover, (0'h,)s occurs in the sum defining dh with sign
(—1)"(—1)%sign(o,), and (h,—1072®), occurs in the sum defining hd with the
sign (—1)%"1(—=1)%sign(o’_,), where ¢/ _, is the permutation defined as
the composition

(0, — 1} =L {0, 7 ooy} =2 {0, .y 0 (), ooy 1)

lg
{0,..,n—1}
with f and g the unique order preserving bijections. One can compute that
sign(o,) = (—1)7+()~sign(a’,_,), essentially as o, can be built from the same
transpostitions as used to construct o/, (conjugated by f and g) together with
a cycle of length |0, (i) — i| + 1, which has sign (—1)7+()~?_ In conclusion, the
term

(=1)%(—=1)%ign(oq)(0hy)«

appearing in the sum defining dh is matched by the term

(=1 (=17 Osign(0},_1) (ha—107 "),
= (=1)* ' (~1)sign(0q) (ha—107"),
appearing in the sum defining hd; as these precisely match other than having
opposing signs, they cancel.

(i) We compute that as maps on the spatial level 0°*1h, = ha07e(®) . Moreover,
(0"F1hy)4 occurs in the sum defining 0h with sign (—1)**1(—1)%sign(o,), and
(ha07 (™), occurs in the sum defining hd with the sign (—1)%(—1)%®sign(d’,),
where o), is the permutation defined as the composition

(0, — 1)~ {0, 7) =22 {0, s 00 (1), ooy )

ig

{0,....,n —1}

with f and g the unique order preserving bijections. Much as in case (i), we
have that sign(o,) = (—1)7+()~%sign(o’_,), and can conclude that the term

(_1)z’+1(_1)asign(o_a)(ai+1ha)*
appearing in the sum defining dh is matched by the term
(_1)‘1(_1)0a(i)Sign(U;)(haaUa(i))* — (_1)!1(_l)isign(aa)haaaa(i))*

appearing in the sum defining h0d; as these precisely match other than having
opposite signs, they cancel.

At this point, one can check that we have canceled all the terms appearing in the
sum defining hd using terms from oh of types (i) and (ii). It remains to consider
terms of type (iii), and show that the sum of these equals

identity —zop
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as claimed. For each a, let i, be the index such that o,(i,) = o(a). The totality of
terms of type (iii) looks like

(30}10)*
n—1

£ (—1) (= 1)sign(oa) (0 Rg)s + (—1) 7 (= 1) sign(0as1)(@7 hagr)a)
a=0

+ (=1)"(=1)"sign(oy,) (0" hp ) -

The first term is the identity, and the last term is ¢ o p (note that o, = o). Hence
it suffices to show that each term

(=) (1) sign(00) (@ ha)s + (— 1)L (=1)" sign(0041) (0 s 1)
in the sum in the middle is zero. Now, one computes on the spatial level that

0% hg 1 = 0%T1h, (this uses Lemma 3.10 to conclude that two coordinates with
the same colour are actually the same), and so it suffices to prove that

(=1)at(=1)%ign(o,) + (=1)*T1(=1)"sign(og41) = 0,

or having simplified slightly, that (—1)%*%*1sign(o,) +sign(oq41) = 0. Indeed, one

checks that o, differs from o, by a cycle moving the element in the it® position
to the a'® (and keeping all other elements in the same order), and such a cycle has
sign (—1)%~% . Hence sign(o,) = sign(ca11)(—1)%~% and we are done. O

Corollary 3.14. The natural inclusion i : ZIN7]| — Z[Ny] is a chain homotopy
equivalence.

Proof. Lemma 3.13 implies in particular that the map ¢ o p is a chain map; as 7 is
an injective chain map, this implies that p : Z[N,,] — Z|N?] is a chain map too.
Lemma 3.13 implies that ¢ o p is chain-homotopic to the identity, while p o ¢ just is
the identity. Hence p provides an inverse to i on the level of chain homotopies. [

Our next goal is to show that the natural inclusion j : Z[N; ] — Z[N{] is again

a chain homotopy equivalence. For each a € {0,...,n — 1}, let us write D? for

the subset of {0, ...,d}" ™! consisting of those tuples (i, ..., i) such that ip < i; <
g =Gg41 < lap2 < 00 < ip. For x € D7, define k% : Z[c™ (x)] — Z[Nyy1] by

k* (UOa aUn) = (UOaUlw-‘anan,UaJrl»anLQa 7Un)

Now define k : Z[N;?] — Z[N,] by stipulating that for each z € {0,...,d}"*!
the restriction of k to Z[c™1(z)] is given by (—1)%kZ if z is in D7 for some a €

{0,...,n — 1}, and by zero otherwise. On the other hand, let
q: ZINT] = ZINT]

be the natural projection that acts as the identity on each Z[c~!(x)] with ¢~} (z) <
N7, and as 0 otherwise.

Lemma 3.15. Let 0 be the boundary map on Z[NZ] and let j : ZIN7]| — ZINT]
be the canonical inclusion. Then

0k + k0 = identity — j o q.

Proof. Tt suffices to check the formula for each restriction to a submodule of the
form Z[c!(z)].

Say first that = = (ig,...,%,) satisfies igp < --- < 4,. Then j o q acts as
the identity on Z[c™!(z)], whence the right hand side is zero. Note that k re-
stricts to zero on Z[c¢™!(z)], whence dk is zero. On the other hand, the image of
Z[c™!(x)] is contained in a direct sum of subgroups of the form Z[c¢~!(y)] where
y = (Jo,-er jn—1) € {0, ...,d}"™ satisfies jo < --- < jn—1. Hence kd = 0 too, and we
are done with this case.
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Say then that « = (ig, ..., n) does not satisfy iy < -+ < i,. Then z is in D? for
some a. We then compute using the assumption that x is in D} that ¢'k” is the
identity map for i € {a,a + 1,a + 2}, and therefore that

n+1
ok = Y (~1)'dik
=0
a—1
= Y (1) (—1)TLkE + (1) (1) + (=1)**! + (—1)*?)identity
1=0
n+1
+ > (= Yol kS
i=a+3
a—1 n+1
(2) = Y (=1)*(=1)'0Lk +identity + > (—1)*(—1)"0Lks.
=0 i=a+3

Looking instead at kd, note first that as z is in D,, we have that 0* = ¢**! when
restricted to ¢ !(x), and so

(3) kazk(i(—niag) —Z )ikdl + Z )ik

1=0 =0 i=a+2
Now, for y € {0,...,d}"*1, let 0’y denote y with the i*" component removed. Then
for0 <i<a-—1, i e D'~} and so ko¥ = (—1)*" kYo% Tt is not difficult to prove

that for such y, ky6’ = 0}kZ. On the other hand, for a+2 < i < n, dix isin D71,
and so koi = (—1)* k‘yal; one computes moreover that for such i, k0. = 0L k2.
Putting this discussion together with the formula in line (3) gives that

I
-

a

ko = ( )z( a 1(;51 kac + Z az-Hkac
=0 i=a+2
a—1 n+1
_ ( )z( a 161 kz + Z az km
1=0 i=a+3

Comparing this with the formula in line (2), it follows that k0 + 0k restricts to the
identity on this summand Z[c~!(x)]. On the other hand, the same is true for the
right hand side ‘identity — j o ¢’, so we are done. O

Corollary 3.16. The inclusion j : Z[N;] — Z[N7] is a chain homotopy equiva-
lence.

Proof. Lemma 3.15 implies that the natural projection ¢ is an inverse on the level
of chain homotopies. O

Theorem 3.17. Let N, be a nerve complex built from a colouring C = (G, ..., Gq).
Then the canonical inclusion N7 — N induces an isomorphism H,(C) = H(N).
In particular, H,(C) =0 forn > d.

Proof. Corollaries 3.14 and 3.16 imply that the inclusion Z[N | — Z[N] is a chain
homotopy equivalence. Functoriality of taking coinvariants then implies that the
naturally induced map Z[N; ]¢ — Z[N«]c is a chain homotopy equivalence, so in
particular induces an isomorphism on homology. The remaining statement follows
as N is empty for n > d. O
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3.3. Maps between nerves and (. In this subsection, we build maps between
our nerve spaces Ny and G that induce maps between the higher nerve spaces N,,
and the spaces EG,, we used to define groupoid homology. This will allow us to
compare the homology of colourings of G' to the homology of G.

Definition 3.18. Let Gy, ..., G4 be a colouring of G as in Definition 3.1, and let
K be a subset of G. We say that the colouring Gy, ..., G4 is:

(i) K-bounded if every G; is contained in K;
(ii) K-Lebesgue if for every x € G, there exists G; such that G* n K is contained
in Gi~

For n = 0, recall that EG,, = {(go, ..., gn) € G""1 | 7(g0) = ... = r(gn)}, equipped
with the subspace topology that it inherits from G™*!. For n > 1 and any subset
K of G, let EGE denote the subspace of EG,, consisting of those tuples (go, ---, gn)
such that g;lgj € K for all i,j. Let EG¥ be just EGy = G, whatever K is.

Lemma 3.19. Say K is a compact open subset of G, and that Gy, ...,Gq is a K-
Lebesgue colouring of G with associated nerve Ny. Then there exists an equivariant
étale map ®g : G — Ny such that:

(i) ®o(g) 2 gK for all g € G;
(ii) for all n, the map

@, : G — Nuy  (905:9n) = (®0(90), -+, Po(gn))

1s a well-defined, equivariant local homeomorphism.

Proof. For each i € {0, ...,d}, define V; := {z € G | G* n K < G;}. We claim that
each V; is open. Indeed, let z € V;. As the set G* n K is compact and discrete, it is
finite. Write g1, ..., g, for the elements of this set, which are all in G; by assumption
that « is in V;. For each j € {1,...,n}, let W; < G, be a compact open bisection
containing g;. We may assume the W; are disjoint by shrinking them if necessary.
Define W := ﬂ;-;l r(W;), which is a compact open neighbourhood of . We may
write the compact open set 71(W) n K as a finite disjoint union of compact open
bisections of the form Wy nr=Y(W),... W, nr=(W), By, ..., B,. Note that no B;
can intersect G* n K, whence none of the sets r(B;) can contain x. Define

V= w( 6 B;).

j=1
This is an open set containing z. Moreover, r~(V) is contained in Wy U -+ U W,,,
and therefore in G;. Hence V is an open neighborhood of x contained in V;, so V;
is open as claimed.

Note now that Vj, ..., Vg covers G° by the assumption that the underlying colour-
ing is K-Lebesgue. As G° has a basis of compact open sets and is compact, there is
a finite cover, say U of G¥ consisting of disjoint compact open sets, and such that
each U € U is contained in some V;. Define E; to be the union of those U € U such
that 4 is the smallest element of {0, ...,d} with U contained in V;. Then the sets
Ey, ..., E4 are a partition of G by compact open subsets, and each E; is contained
in V;.

Now, for each g € G, let i(g) € {0, ...,d} be the unique ¢ such that s(g) is in E;;
as the partition G = | |, E4 is into clopen sets, the map i : G — {0, ...d} this
defines is continuous. Define

®o: G —No, g 9G5).
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We claim this has the right properties. First, note that for g € G, G*(9) nK < Giy)
by definition of i(g) and the cover Vj, ..., V4. Hence

gK = g(G*9) 1 K) € gGy(g) = 9G5(%) = @o(g).

We now show that @ is étale. Continuity of the restriction of ®; to each set
s71(E;) follows from the definition of the topology of Ny, and continuity of ®y on
all of G follows from this as the sets s~(Ey), ..., s 1 (FEy4) are a closed partition of
G. Let now g € G, and let B be a clopen bisection containing g such that the map
i: G —{0,...,d} is constant on B (such exists as i is continuous). Let C' = ®y(B).
Then the map C' — B defined by sending U to the unique element of B n r(U) is
a well-defined continuous inverse to the restriction ®g|p, completing the proof that
Py is étale.

Equivariance of ®q follows as if s(g) = r(h), then s(gh) = s(h) and i(gh) = i(h),
whence

Bo(gh) = ghGi4) = ghGilh) = g®o(h).

To see that @, is well-defined, note that if (go, ..., gn) € EGE, then g;lgj is in
K for all i,j. Hence in particular go is in g; K < ®y(g;) for each ¢, and so gg is in
Do(go) N+ N DPo(gn), and so this set is non-empty. Hence (Po(go), ..., Po(gn)) is
a well-defined element of V,,. Equivariance of ®,, and the fact that it is étale are
straightforward from the corresponding properties for ®q, so we are done. O

Lemma 3.20. Assume that G is principal, and K is a compact open subset of G
that contains G°. Let Gy, ...,Gq be a K-bounded colouring with associated nerve
Ni. Then there exwists an equivariant étale map ¥o : Ny — G with the following
properties:

(i) Oo(U) €U for all U € Ny;

(i) for all n, the map

Uy Noy = EGIET (Ug, oo, Un) > (W0 (Up), ooy Wo(Un)
s a well-defined, equivariant local homeomorphism.

To prove this, we need an ancillary lemma, which is based on the following
structural result from [18, Lemma 3.4].

Lemma 3.21. Let H be a compact, ample, principal groupoid. Then there are
m e N and

(i) disjoint clopen subgroupoids Hy, ..., H,, of H,

(ii) clopen subsets X1, ..., X, of HO (equipped with the induced, i.e. trivial, groupoid

structure), and

(ii1) finite pair groupoids P, ..., P,
such that H identifies with the disjoint union H = |_|;1k Hj. as a topological groupoid,
and such that each Hy s isomorphic as a topological groupoid to Xy X Py. (]

Corollary 3.22. Let H be a compact, ample, principal groupoid, and let H°/H be
the quotient space of H® by the equivalence relation induced by H: precisely x ~ y
if there is h € H with s(h) = x and r(h) = y. Then H°/H is Hausdorff and there
are étale maps o : H'/H — H° and 7 : H® — H such that:

(i) o splits the quotient map 7 : H® — HC°/H (so in particular, 7 is étale);

(i) roT = identity and and soT = o om.

Proof. Assume first that H = X x P, where X is a compact trivial groupoid
and P is the pair groupoid on some finite set {0,...,n}. Then H°/H identifies
homeomorphically with X (so in particular is Hausdorff) via the map

H® - X, (x,(i,1) — .
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Making this identification, we may define o(x) = (z,(0,0)) and 7(z,(i,4)) =
(z,(4,0)). These maps have the right properties when H = X x P.

In the general case, Lemma 3.21 gives a decomposition of H into groupoids of
the form X x P as above, and we may build ¢ and 7 on each separately using the
method above. (]

Proof of Lemma 3.20. Let 7;, o; and 7; be as in Corollary 3.22 for H = G;. Define
Uy Ny — G, G — gri(s(9)).

We first check that this is well-defined. Indeed, if th(h) = ng(g), then r(h) = r(g)
and h~'g e G;. Hence

mi(s(9) = mi(s(h™'g)) = mi(r(h™"g)) = mi(s(h)),
and so 0;(m;(s(g))) and o;(m;(s(h))) are the same. As 7;(x) has source o;(m;(x)) for

all x € GEO), this implies that both 7;(s(g)) and 7;(s(h)) have the same source. As
moreover g and h have the same range, the elements g7;(s(g)) and h7;(s(h)) of G
have the same source and range and are therefore the same as G is principal. Having
seen that Uy is well-defined, equivariance of W is straightforward. The fact that

Uy (U) e U for all U € N follows as if we write U = ng(g), then Uo(U) = g7:(s(g)),
and g7;(s(g)) is in Gf(g), as 7;(s(g)) is in Gf(g).

To see that Uy is étale, let ng(g) be an element of Ny, and and let B be a clopen
bisection of g in G such that the set {th(h) | h € B} is a clopen neighbourhood of
ng(g) in Np; in particular, this implies that s(h) € GY for all h € B. Using that
both s and 7; are étale, we have that s(;(B)) is open, and therefore that ¥y(B) is
open. We claim that the map

Kt Uo(B) —> No, hs hG:™

is a local inverse to Wy; as it is continuous, this will suffice to complete the proof.
Indeed, for any h € B,

K(Wo(hGSM)) = hri(s(h)) G M) = pGe ™),

K2
On the other hand, for h € o(B), as h is in the image of Uy (B), we have that s(h)
is in the image of 0;, and therefore that o;(m;(s(h))) = s(h), and so 7;(s(h)) = s(h).
Hence
Wo(k(h)) = hri(s(h)) = h
and we are done with showing that ¥ is étale.

To see that ¥, is well-defined, we need to check that if (Uy, ..., Uy) is in A,,, then
(To(Uo), .., To(Uy)) is in EfoK_l. Write g; := ¥o(U;) for notational simplicity,
so g; is in U; by the properties of Wy. Let h be an element of Uy n--- n U,,. Then
for all j, the fact that the colouring is K-bounded implies that gj_lh is in K for
each j. Hence for any i, 7, g;lgj = g_lhh_lgj e KK~' completing the proof
that W,, is well-defined. The facts that W,, is étale and equivariant follow from the
corresponding properties for ¥g, so we are done. O

3.4. Anti-Cech homology. In this subsection, we show that the Crainic-Moerdijk-
Matui homology groups H,(G) can be realised by a direct limit of homology groups
of appropriate colourings.

The key definition is as follows.
Definition 3.23. An anti-Cech sequence for G consists of the following data:

(i) a sequence Cp, := (G, ..., G&:’:))ﬁzo of colourings of G with associated se-

m
quence of nerves N, >,E );



DYNAMIC ASYMPTOTIC DIMENSION AND MATUI’'S HK CONJECTURE 23

(ii) for each m a morphism (™) : /\/Z,Emfl) — Ném) of semi-simplicial G-spaces
such that for all U e Ném_l) we have that (™) (U) 2 U, and moreover so
that for any compact open subset K of G, there exists my such that for all
m = mg and all U € ./\/'o(mfl), we have that (™ (U) 2 UK.

Definition 3.24. Let A = (C,,)%_, be an anti-Cech sequence for G, with asso-
ciated sequence of morphisms (™) : N,;Em_l) — N,Em). We define the homology of
A, denoted H,(A), to be the corresponding direct limit of the sequence of maps
(™ : HiConr) = Hie(Co))ios.

Anti-Cech sequences always exist under the assumptions that G is principal and
o-compact. This follows from the next three lemmas.

Lemma 3.25. Assume that G is principal, and that K is a compact open subset
of G that contains G° and that satisfies K = K~'. Let Gy, ...,Gq and Hy, ..., H, be
colourings of G with associated nerves Ny and M respectively. Assume moreover
that the colouring Gy, ..., Gq is K-bounded, and that the colouring Hy, ..., H, is K>-
Lebesgue.
Then there exists an equivariant étale map 1o : Nog — Mg with the following

properties:

(i) 10(U) 2 UK for all U € No;

(i) for all n, the map

tn i Np = My, (U, ..., Up) = (t0(Up), oy t0(Un))
18, well-defined, equivariant, and étale.

Proof. Using Lemma 3.20, there is an equivariant étale map ¥y : My — G such
that Wo(U) € U for all U € Ny, and such that for all n, the prescription

U, N — EGE! | Uy, ..., Up) = (Wo(Up), ..., Uo(Uy))

gives gives a well-defined equivariant étale map (Lemma 3.20 has KK ~! in place
of K3, but note that our assumptions imply that K? contains KK~!). Using
Lemma 3.19, there is an equivariant local homeomorphism ®g : G — M such that
gK?3 < ®(g) for all g € G, and so that the prescription

3
(I)n : EGnK - Nna (907 ’gn) = (®0(90)7 7q)0(gn))

is a well-defined equivariant local homeomorphism.

Define then ¢ := ®g o ¥, and note that ¢, := ®,, o ¥, for all n. Each ¢, is then
a well-defined equivariant étale map. Moreover, fix U € Ny and write U = ng(g).
As Uy(U) € U, we may write Uo(U) = gh for some h € Gf(g). Then h~1 is in G,
and so in K as each G is a subset of K. Hence for an arbitrary element gk of
ng(g) with k € G; € K~!, we have that gk = ghh™'k € Uo(U)K?2. As gk was
an arbitrary element of U, this gives that U € Wo(U)K?, and so UK < ¥o(U)K?3.
Using the properties of ¥y and ®(, we thus get that

UK € Wo(U)K® € ®(Wo(U)) = 1o(U)

and are done. (|

Lemma 3.26. Assume that G is principal and that K is a compact open subset of
G that contains G°. Then for any x € G° there is a compact open subset By of G°
containing x and open bisections By, ..., By, such that:

(’L) Tﬁl(Bo) NnK = |_|;L:0 B;;

(ii) for each i, r|p, : B; — By is a homeomorphism;
(iii) for each i +# j, s(B;) N s(Bj) = @.
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Proof. Say the elements of r~1(z) n K are go = ¥,01,...,gn. As G is principal,
we have s(g;) # s(g;) for all ¢ # j. Hence for each g;, we may choose a clopen
bisection D; containing g; such that s(D;) ns(D;) = @ for ¢ # j, so that r|p, is a
homeomorphism, and so that Dy is contained in GV.

Set Cy := ();_,7(B;), which is a clopen set containing z, and for each i, set
C; := B; nr71(Cy), which is a clopen set containing g;. The set r=1(Cy) n K is
compact. We may thus write it as

|i| Oz (] |i| Ej,
i=0 j=0

where each F; is a clopen bisection such that 7| E; is a homeomorphism, and so
that each E; does not intersect r—!(zg). Set

BO = Co\ LWJ T(Ej),
7=0

and set B; := r~1(Bg) n C;. These sets have the right properties. O

Lemma 3.27. Let G be principal, and assume that K is a compact open subset of
G that contains G°. Then there exists a K-Lebesgue colouring Gy, ..., Gq for G.

Proof. Fix x € X, and let By, ..., B, be a collection of sets with the properties in
Lemma 3.26. For each i, let p; : By — B; be the inverse of r|p,. Let P = {0, ...,n}?
be the pair groupoid on the set {0, ...,n}, and define

fiBox P =G, (,(i,5) = pi(w)pj(x) .
It is not difficult to check that f is a homeomorphism onto its image, which is
a compact open subgroupoid of G. Write G, for the image of f. Moreover, by
construction we have that for every y € G9, the set 7~1(y) n K is contained in G,.
The collection {G% | z € G} is an open cover of G°, and thus has a finite
subcover. Let Gy, ..., G4 be the collection of compact open subgroupoids of G whose
base spaces appear in this subcover. This collection has the right properties. O

Corollary 3.28. For any o-compact principal G with compact base space, an anti-
Cech sequence erists.

Proof. As G is o-compact, there is a sequence Lo € L1 € --- of compact open
subsets of G such that each L, equals L;! and contains G°, and such that any
compact subset of G is eventually contained in all of the L,,. Set Ky = Lg. Lemma
3.27 implies that there is a K3-Lebesgue collection of compact open subgroupoids
of G, say Gy, ..., G4, with associated nerve space N,,EO). As this collection is finite,
there exists some compact open subset My of GG that contains all of G, ..., G4, and
that satisfies My = Mgl. Set K1 := Kgu L1 U My. Lemma 3.27 gives a new
colouring that is K3-Lebesgue with associated nerve NS), and Lemma 3.25 gives a
morphism of semi-simplicial étale G-spaces (1) : M,EO) — ./\/,,El) with the properties
there. Now let M; be a compact open subset of G such that M; = Ml_l, and
that contains all the groupoids from this new colouring. Set Ky := K1 u Ly U M,
and use Lemma 3.27 to build a Kj-Lebesgue covering, and Lemma 3.25 to build a

map ¢ from N,,E” to the associated nerve N, >,E2) with the properties in that lemma.
Iterating this process builds an anti-Cech sequence as desired. O

Our main goal in this subsection is to prove the following theorem.

Theorem 3.29. Let G be principal and o-compact, with compact base space. Let
A be an anti-Cech sequence for G. Then the homology groups Hy(A) and Hy(QG)
are isomorphic.
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The proof will proceed by some lemmas. First, we need a definition.

Definition 3.30. Let C be a semi-simplicial G-space and D, be either the nerve
of a colouring N, or one of the EGL for some compact open subset L of G. Let
a, B : Cy — Dy be two morphisms of semi-simplicial G-spaces. Then «a, 8 are close
if there exists a compact open subset K of G, either:

(i) Dy is a nerve N, and for all x € C there exists g € G such that «(z) and
B(x) are both subsets of gK;
(ii) Dy is of for the form EGL, and for all x € Cy, a(z)~B(x) is in K.

Lemma 3.31. Let (N,ﬁm), ™)) be an anti-Cech sequence, and let a, § : Cy — J\f,,gm)
be close morphisms for some m. Let

() . H*(J\/'(m)) N li_r)nH*(./\/(l))

be the natural map to the direct limit, i.e. to the homology of the anti-Cech sequence.
Then the compositions

1 o ay : Hy(C) — li_H)lH*(./\/'(l)) and () o By : Hy(C) — li_r)nH*(N(l))
are the same.

Proof. Let K be as in the definition of closeness for « and 3, and assume also
that K is so large that the colouring underlying N’ is K-bounded. Let [ > m
be large enough so that if ¢ : N — N is the composition of the morphisms
in the definition of the anti-Cech sequence, then for all U € N™), we have that
1(U) 2 UK? (such an [ exists by definition of an anti-Cech sequence). It will suffice
to show that ¢ o & and ¢ o 8 induce the same map Hy(C) — Hy(NW).

Let now x be a point in C,, for some n. For each j € {0,...,n} let 7; : C}, — Cy
be the map corresponding under the semi-simplicial structure to the map {0} —
{0, ...,n} that sends 0 to j (see Section 2.2 for notation). Define z; := m;(x). We
claim that the intersection

(4) () date) o () UB())

is non-empty. Indeed, (a(xo),...,a(z,)) is a point of /\/}f’, whence there is some
Jo in the intersection ﬂ?:o a(z;), and similarly for gg with 8 replacing . As «
and S are close with respect to K, we have that a(xo) and S(zg) are both subsets
of gK for some g € G, whence there are k, and kg in K such that g, = gk, and
g = gks. Hence g, = ggkgk;', so in particular g, is in ggK?. Now, by choice
of ¢, t(B(x;)) 2 B(z;)K? for all j, whence g, is in ¢(8(z;)) for all j. Moreover,
ga € a(z;) < t(a(z;)) for all j, so g is a point in the claimed intersection.
For each n and each i € {0, ...,n}, we define a map

ht:C, — ./\/;521
by the formula
z = (toa(m(x)), ..., v 0 a(mi(x)), Lo f(mi(x)), .., v 0 B(mn (),

which is well-defined by the claim. It is moreover an equivariant local home-
omorphism as ¢, o and § all have these properties. Hence h* induces a map

h : Z[Cy] — Z[N(ﬁ)rl] in the usual way. We define

n

h:=

n
1=

(1)KL, Z[C,] — ZIN .
0
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Direct checks show that h (and the map induced on coinvariants by h) is a chain
homotopy between the maps induced by toa and to 8. Hence to« and ¢o 8 indeed
induce the same map on homology as claimed. (|

For the next lemma, let Ky € K; € Ks... be a sequence of compact open subsets
of G, all of which contain G°, and whose union is G. We then get a sequence
(EGK )oo_ of spaces. Note moreover that the corresponding limit lim H, (GEn)

canonically identifies with H,(G): indeed, this follows directly from the observation
that for each n, EG,, is the increasing union of the EGE=  and the fact that taking
homology groups commutes with direct limits.

Lemma 3.32. Let (GE™)%2_, be a sequence of spaces associated to a nested se-

quence of compact open subsets of G as above. Let o, : Cy — Gka"L) be close
morphisms for some m. Let

K Hy(GEm) — li_H)lH*(GKm>

be the natural map to the direct limit, i.e. to the homology Hy(G) of G. Then the
compositions

Koay : Hy(C) > Hye(G) and kKo By : Hy(C) — Hy(G)
are the same.

Proof. The proof is very similar to that of Lemma 3.31. We leave the details to the
reader. O

Proof of Theorem 3.29. Let A be the given anti-Cech sequence with associated
nerves and morphisms (™) : N,,Em D v,

Let m; = 1. Then the colouring underlying Ny () is K-bounded for some compact
open subset K of G, which we may assume contains G°, and that satisfies K = K1,
Set K; := K?. Then Lemma 3.20 gives a morphism g N GEr. On
the other hand, by definition of an anti-Cech sequence there is mo > my such that
N(m2) is K -Lebesgue, whence Lemma 3.19 gives a morphism &) : GE1 — A/(m2)
Continuing, the colouring underlying A(™2) is K-bounded for some compact open
subset K of G that we may assume contains K; and satisfies K = K~!. Set
K> := K2, so Lemma 3.20 gives a morphism ®® : N{™2) — Gz,

Continuing in this way, we get sequences 1 = m; < my < mg < --- of natural
numbers and K7 € Ky € - -- of compact open subsets of G together with morphisms
N(m1 N(mz)

mg)
o) w(2) o)
el (2
EGH EGY?

We may fill in horizontal arrows in the diagram: on the top row, these should
be appropriate compositions of the morphisms ¢(") coming from the definition of
an anti-Cech sequence, while on the bottom row they should be induced by the
canonical inclusions EGE* — Efo’“+1 coming from the fact that K < K, for
all k. We thus get a (non-commutative!) diagram

(5) AL N
g (2 o®
&M &2
EGK: EGE:
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Notice that the limit of the horizontal maps in the top row is Hy(A). Moreover,
the definition of an anti-Cech sequence and the construction of the sequence (K})
forces G = | J K}, so the limit of the horizontal maps on the bottom row is H,(G).
Now, consider the compositions
)
(6) H,(EGKr) * Hy(N)) —— H,(A) .

where the second arrow is the canonical one that exists by definition of the direct
limit. Any two morphisms into any N (") are close using that all the colourings
are bounded. It follows therefore from Lemma 3.31 that for any k, the diagram

Hy(A) == H+(A)

T |

H,(EGK+) —— H,(EGK++)

commutes; here the vertical maps are the ones in line (6), and the bottom horizontal
line is induced by the canonical inclusion EGE* — EG*K’““. Taking the limit in k
of the maps in line (6), we thus get a well-defined homomorphism

®: Hy(G) > Hyi(A).

Precisely analogously, using Lemma 3.32 in place of Lemma 3.31, we get a homo-
morphism

U: Hy(A) > Hy(G).
We claim that ® and ¥ are mutually inverse, which will complete the proof. Indeed,
for any k, the triangles

./\/:,Emk) _N;Emkﬂ)
EGEx
and
N>l(<7nk+1)
7N

EGEx EGEs
appearing in line (5) commute up to closeness, whence the claim follows directly
from Lemmas 3.31 and 3.32, so we are done. O

3.5. Dynamic asymptotic dimension. In this subsection, we show that the ho-
mology of an ample o-compact principal groupoid vanishes above its dynamic as-
ymptotic dimension, and also that the top-dimensional homology group is torsion
free.

The following definition is [24, Definition 5.1].

Definition 3.33. Let d € N. A (locally compact, Hausdorff, étale) groupoid has
dynamic asymptotic dimension at most d if for any relatively compact open subset
K of G there are open subsets U, ..., Uy of G° that cover r(K) u s(K) and such
that for each ¢, the set {g € K | s(g),r(g) € U;} is contained in a relatively compact
subgroupoid of G.

We record the some basic facts about products of subsets of a groupoid. See for
example [24, Lemma 5.2] for a proof.
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Lemma 3.34. Let G be an étale groupoid, and H and K are subsets of G. Then if
H and K are open (respectively, compact, or relatively compact), the product HK
is open (respectively, compact, or relatively compact).

Moreover, if K is open then the subgroupoid generated by K is also open. O

Here is our key use of dynamic asymptotic dimension.

Lemma 3.35. Let G be an ample groupoid with compact base space which has
dynamic asymptotic dimension at most d. Then for any compact open subset K < G
there exists a K -Lebesgue colouring of G with at most d + 1 elements.

Proof. Say G has dynamic asymptotic dimension at most d, and let K < G be
compact and open. As making K larger only makes the problem more difficult, we
may assume that K = K1, and that K contains G°. Note that K3 is still compact
and open by Lemma 3.34. The definition of dynamic asymptotic dimension at most
d therefore gives an open cover Uy, ..., Uy of G° such that for each i, the subgroupoid
generated by {g € K3 | 7(g),s(g) € U;} is relatively compact. As G is compact and
as its topology has a basis of compact open sets, there is a cover of G° consisting
of compact open sets Vj, ..., Vy such that each V; is contained in U;. For each 1,
let W; = s(r—1(V;) n K). Note that »—1(V;) n K is compact and open, whence
W; is also compact and open as s is an open continuous map. Moreover, W;
contains V; as K contains G°. Let now G; be the subgroupoid of G generated by
{ge K |r(g),s(g) € W;}. We claim that Gy, ..., G4 is a K-Lebesgue colouring of G.

Indeed, each G; is open by Lemma 3.34, as it is generated by an open set.
For compactness, we first claim that G; has compact closure. Indeed, say k;i...k,
is an element of G;, where each k; is in {g € K | s(g),r(g) € W;}. Then by
definition of W;, for each j € {1,...,n} there is an element h; of K such that
hj_lkjh;1 has range and source in U;. Hence for each j € {1,...,n}, hj_lkjhj’l
is in {g € K® | 7(g9),s(g) € U;}. Let H; be the subgroupoid of G generated by
{g € K? | r(g9),s(g) € U}, so H; has compact closure by choice of the cover
Uy, ...,Uy. Moreover,

T ﬁ Byt ) € KHK.
j=1

We now have that G; is contained in K H; K. However, K H; K is relatively compact
by Lemma 3.34, so we see that G; is also relatively compact.

We next claim that there is N € N such that any element of GG; can be written
as a product of at most N elements of {g € K | s(g),7(g) € W;}. Indeed, from
[24, Lemma 8.10] there exists N € N such that each range fibre G¥ has at most
N elements. Now, let g = ki ---k, be an element of GG, where each k; is in K.
Consider the ‘path’ kq, k1ks, ..., k1 - ky,. If this path contains any repetitions, we
may shorten it by just omitting all the elements in between. Hence the length n of
this path can be assumed to be at most the number of elements of G"(9), which is
N as claimed.

To complete the proof that G; is compact, it now suffices to show that it is closed.
For this, let (g;) be a net of elements of G;. Using the previous claim, we may
write g; = kJ...kJ,, where each k% isin {g e K | r(g),s(g) € W;} (possibly identity
elements). Note that the latter set is compact, whence up to passing to subnets,
we may assume that each net (k!) converges to some k; € {g € K | r(g), s(g) € Wi}.
Hence g = k1...ky is in G;, so G; is indeed compact.

Finally, we check that the colouring is K-Lebesgue. Note that for any z € G°, «
is contained in V; for some i, whence s(r~!(x) n K) is contained in W; by definition
of W;. Hence G; contains r~!(x) n K, giving the K-Lebesgue condition. (]
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Theorem 3.36. Let G be a o-compact ample groupoid. If G is principal and has
dynamic asymptotic dimension at most d, then H,(G) = 0 for n > d, and Hy(G)
is torsion-free.

Proof. We first prove the result under the additional assumption that GY is com-

pact. In that case Lemma 3.35 lets us build an anti-Cech sequence A for G consist-

ing of colourings (C(™) each of which only has d+1 colours. As Hy(A) = lim H,(C™)
n—o0

and as Theorem 3.17 implies that H,(C(™) = 0 for all m and all n > d, we see
that H,(A) =0 for all n > d. Theorem 3.29 now gives the vanishing result.
For the claim that H;(G) is torsion-free result, keep notation as above, and let

us write ./\/,,En) for the nerve space associated to C(™). Then we have
Hy(A) = lim Ha(C™) = Tim Hy(ZINS"6) = lim Ha(ZI(NL")” )

= Hy(lim Z[(VE)7]a),

n—o0
where the first equality is just by definition of Hy(A), the second is by definition
of Hy(C™), the third is Theorem 3.17, and the fourth follows as taking homology
commutes with direct limits. Now, using Lemma 2.5, Z[(N, lgn))>]g naturally iden-
tifies with Z[G\(/\/’;n))ﬂ. Each Z[G\(Nén))ﬂ is clearly torsion-free®. Hence the

limit lirréO Z[G\(Nd("))>] is torsion-free. On the other hand, lirréO ZINIY>] =0
for m > d. Hence Hy(A) identifies with a subgroup of lirrolo Z[G\(J\/'(gn)f]7 and so

is itself torsion-free.

Let us now assume that G is only locally compact. In this case use o-compactness
to write G° as an increasing union G° = | J, _\ Ky of compact open subsets. Let
Gm i={9€G|s(g9),7(9) € K;n} denote the restriction of G to K,,. Note that each
G, is a o-compact principal ample groupoid in its own right and it is straight-
forward to check from the definition (see [24, Definition 5.1]) that the dynamic
asymptotic dimension of each G, is dominated by the dynamic asymptotic dimen-
sion of the ambient groupoid G. Then G = [J,,cy Gm and the inclusion maps
Gy, — G induce isomorphisms H,(G) =~ 771Lii1r1OO H,(G,) for each n (see for example

[17, Proposition 4.7]). Applying the compact unit space case from above for each
G, and passing to the limit, we obtain both the vanishing and the torsion-freeness
results for G. (]

4. THE ONE-DIMENSIONAL COMPARISON MAP AND THE HK-CONJECTURE

In this section our first goal is to construct a canonical comparison map
1 ¢ Hi(G) — Ki(CH(G)

for an arbitrary ample groupoid G, extending earlier constructions of Matui under
additional restrictions on the structure of G (see [34, Corollary 7.15] and [35, Theo-
rem 5.2]). In fact we will provide two different constructions. The first approach is
based on relative homology and K-theory groups, and is quite explicit and elemen-
tary; this is carried out in Subsection 4.1. The second (suggested by a referee) has
its origins in the triangulated category perspective on groupoid equivariant Kas-
parov theory as recently exploited by Proietti and Yamashita [44, Corollary 4.4]; it
is carried out in Subsection 4.2. The two approaches turn out to be equivalent, but
this requires some fairly lengthy computations; these are carried out in Subsection
4.3.

5In fact, it is even free: it can be regarded as a commutative ring (with pointwise multiplication)
that is generated by idempotents, and hence its underlying group is free abelian by [4, Theorem
1.1].
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In the remaining Subsection 4.4, we apply these results and our vanishing results
from Theorem 3.36 to deduce a general theorem on validity of the HK conjecture for
low-dimensional groupoids. The result is actually more precise than this: it shows
not only that the HK conjecture is true, but identifies the isomorphisms with the
comparison maps we have constructed.

4.1. Comparison maps from relative K-theory. In this subsection, we give
an elementary construction of a map py : H1(G) — K1 (C*(G)) that works for any
ample groupoid. This is based on two ingredients: a suitable description of the
K-theory of the mapping cone of the inclusion ¢ : Co(G°) — C*(G), and a relative
version of groupoid homology with respect to an open subgroupoid.

Let us start with our description of the Ky-group of a mapping cone, which
is inspired by results of Putnam in [45]. Recently, Haslehurst has independently
developed a similar description to ours [25]. Neither Putnam’s nor Haslehurst’s
constructions are quite the same as ours, but the latter in particular has substantial
overlap. We will thus omit some details below that can be filled in using techniques
from Haslehurst’s paper [25, Section 3]; full details can also be found in the first
version of the current paper on the arXiv.

For a C*-algebra (or Hilbert module) B, define IB := C([0, 1], B), and recall
that the mapping cone of a *-homomorphism ¢ : A — B is

(7) C(¢) :={(ao,b) e A® IB | ¢(ao) = b(0), b(1) = 0}.

Definition 4.1. Given a *-homomorphism of C*-algebras ¢: A — B, we define
the relative K-theory groups with respect to ¢ by

(8) K+(A, B; ¢) := K4(C(9)).

The first coordinate projection e : A@IB — A restricts to a surjection C(¢) —
A with kernel ¥B := Cy((0,1), B). This induces a six-term exact sequence in
K-theory

9) K1(B) — Ko(A, B; ¢) — Ko(A)

ol |
K,(A) =— K (A, B; ¢) =<— Ko(B).

Our first aim is to give a different picture of the relative Ky-group. In what
follows, when ¢: A — B is a *-homomorphism, we abuse notation by letting ¢ also
denote the induced homomorphism M,,(A4) — M, (B) for n € N.

Definition 4.2. Let ¢: A — B be a *-homomorphism between C*-algebras. For
n € N, let V, (4, B;¢) denote the set of triples (p,v,q) where p,q € M, (A) are
projections and v € M, (B) satisfies vv* = ¢(p), and v*v = ¢(q). For each n, regard
Vi.(A, B; ¢) as a subset of V,,+1(A, B; ¢) via the usual top-left corner inclusion, and
define

Voc(AaBagb) = U Vn(AaBa¢)v

neN

equipped with the inductive limit topology. Let ~}, denote homotopy in Vi, (A, B; ¢),°
and let ~ be the equivalence relation on Vi, (A, B; @) defined as follows: (p,v,q) ~
(p',v',q") exactly when there are projections r, 7’ € M,,(A) such that

(10) (P, v,9) ® (r,0(r), 1) ~u (0,0, ¢ ) @ (1", ("), 7).

6A homotopy in Vo (A, B; ¢) is automatically contained in Vi, (A, B; ¢) for some n € N, so one
can also take this as the definition of homotopy.
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In the special case where ¢ is an inclusion of a C*-subalgebra, we simply write
Vo (A, B) instead of Vi, (A, B;¢). Moreover, if (p,v,q) € Vo(A, B) then p = vo*
and ¢ = v*v. Hence we will simply denote the elements of Vi, (A, B) by v.

We equip Vi, (A4, B; ¢)/~ with the block sum operation defined by

| (p O vy 0 g 0 [
[p17U1>Q1]@[p27U2aQ2] = [(0 p2) 5 (0 ,U2> 5 (O q2>]7

it is straightforward to check that this makes V, (A, B;¢)/~ into a well-defined
monoid with identity [0, 0, 0].

Our goal is to construct an isomorphism 7 : K.(4, B;¢) — Vi (A4, B;¢)/ ~
when ¢ is non-degenerate, and A has an approximate unit of projections; we will
apply our construction to the canonical *-homomorphism ¢ : Co(G°) — C*(G) for
an ample groupoid G, so these assumptions are satisfied. For this, we need an
ancillary construction.

Let ¢: A — B be a *-homomorphism and define the double of ¢ to be

(1) D(6) = {(an.b.ar) € A®IB@®A| $(ao) = b(0) and d(ay) = b(1)}.

With C(¢) as in line (7), we obtain a short exact sequence
(12) 0——> C(¢) —> D(¢) —“> A —0

with morphisms defined by ¢ : (ag,b) — (ag,b,0) and e! : (ag,b,a1) — aj. Let
c: B — IB denote the constant s-homomorphism. Then the short exact sequence
in line (12) is split by the map s: a — (a,c(¢(a)),a). Hence the composition

(13) Ky(A,B;¢) =5 Ko (D(8)) = Ky (D(¢))/54(K+(A))

is an isomorphism.

We let U, (A) denote the unitary group of M, (A) for a unital C*-algebra A,
and let V(A) denote the the semigroup of equivalence classes of projections in
Unen Mn(A), so that Ko(A) is the Grothendieck group of V(A) whenever A is
unital, or more generally, when A has an approximate unit consisting of projections.

Assume now that A is a C*-algebra with an approximate unit consisting of pro-
jections, and let ¢ : A — B be a non-degenerate #-homomorphism; note then that
B and so D(¢) also have approximate units consisting of projections, so in particu-
lar Ko(D(¢)) is the Grothendieck group of V(D(¢)). Let (po, p,p1) € Mn(D(¢)) be
a projection representing a K-theory class. Using for example [27, Corollary 4.1.8],
there is a continuous path of unitaries (ut)seqo,1] in M, (B) such that

Pt = uypous = ufPp(po)us, forte[0,1] and wug=1.
We define n : V(D(¢)) — Vo (A, B; ¢) by the formula

(14) n(p07 pypl) = (pOa ¢(p0)U1,p1)-
Here then is our promised picture of relative K-theory. Due to similarities to

Haslehurst’s methods [25], we do not give a proof here: the interested reader can
find a complete proof in the original arXiv version of this paper.

Theorem 4.3. Let ¢ : A — B be a non-degenerate %-homomorphism, where A has
an approximate unit consisting of projections.

With notation as in line (13), the map n from line (14) above descends to a
well-defined monoid isomorphism

 Ko(D(9)) | Vio(A, B ¢)
" s0(Ko(A)) ~

In particular, Voo (A, B; @)/~ is an abelian group that is isomorphic to Ko(A, B; ¢).
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Moreover, the siz term exact sequence from line (9) identifies with an exact
sequence

K(4) 2 16, (B) — VEABO)  e() 0, gy )
where the map K1(B) — w is given by [u]1 — [P ® 1ar,,u,p ® 1pg, ] for
u € Uy (od(p)Bo(p)) (where p € A is a projection); and w — Ky(A) is given

by [p,v,q] = [plo — [d]o- O

Remark 4.4. We note the following basic properties of cycles (p1,v1,¢1) and
(p2,v2,q2) in Vo (A, B; ¢); these can be justified using the same sort of rotation
homotopies that establish the analogous properties for the classical Ky and K3
groups.

(i) If p1pa = q1g2 = 0, then in Vy, (A, B; ¢)/~ we have that
[p1,v1, 1] + [P2,v2,q2] = [p1 + @1, v1 + v2,p2 + @2].
(ii) If po = ¢1, then
[p1,v1,q1] + [P2,v2, q2] = [p1, v1v2, p2].

Let us now turn to the second ingredient in the construction of the comparison
map p1 : H1(G) — K1(C*(G)): relative groupoid homology. To define it, we return
to Matui’s picture of groupoid homology as it allows for an elementary description.
For an open subgroupoid H € G the canonical inclusion induces for each n > 0 a
short exact sequence of abelian groups

(15) 0 — Z[H™] - Z[G™] — Z[G™]/Z[H™] — 0.

Let Z,[G,H] denote the quotient group. One easily checks that Z[H™)] is
invariant under the boundary maps 0, for Z[G(™], and hence we obtain induced
maps ¢, turning (Z[G, H], d,,) into a chain complex such that the sequence (15) is
an exact sequence of chain complexes.

Definition 4.5. Let G be an ample groupoid. The relative homology of G with
respect to an open subgroupoid H is defined as the homology of the chain complex
(Z|G, H],2.), ie.

H, (G, H) := ker(0;,)/im(0;,;1)-

From the short exact sequence (15) we obtain a long exact sequence of homology
groups

-— Hi(H) - H1(G) — H1(G,H) — Ho(H) — Ho(G) — Ho(G, H)

Important for us is the special case where H = G°: there one easily checks
that Ho(G,G%) = 0, and H{(G,G°) ~ Z[G]/im(d2). We are now ready to put
everything together and construct the map p; : H1(G) — K1 (C*(G)).

Lemma 4.6. Let G be an ample groupoid. Then there exists a well-defined homo-
morphism
p: Z[G] = Vo (Co(G°), CF (@) /~

determined by p(lw) = [13,] and p(—1w) = [1w] for every compact open bisection
W cd.

Moreover, im(02) < ker(p) and hence p factors through a well-defined homomor-
phism

p: Hi(G,G%) = Z[G]/im(22) — Vi (C(G), CF(G)) /~ .
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Proof. As G is an ample groupoid, every function f € Z[G] can be written (non-
uniquely) as a linear combination f = >, A\;1w, where A1,..., A\, € Zand Wy,..., W,
are pairwise disjoint compact open bisections of G. We have to show that the re-
sulting class of the partial isometry

@ Nwoe P i1y
{i]X\; =0} {i|x; <0} )
in Vo, (Co(G®), C¥(Q))/~ only depends on f and not on the particular choice of the
bisections W;. Let us first note the following: If W is a compact open bisection of
G such that W = U uV for compact open subsets U,V € W, then 1y = 1y +1y ~
ly @ 1y by Remark 4.4, part (i).

With this in mind we can establish the lemma: Let f € Z[G]. We may assume
that f > 0. Suppose we have f = > Nily, = > u;ly, for Aj,pu; € N and two
families (U;); and (V;); of pairwise disjoint compact open bisections of G. Since
G is ample we may choose a common refinement of these two families by compact
open bisections (Wy)x. Let 1y be equal to \; if Wy, < U, and equal to p; if Wi, < V.
Then we have

Emlw, ~PE D wlw,~Pu; D 1w~ Puyly,.
k J

3 {kWrSV;} J {kIWLSV5}

Similarly, we obtain @, nxlw, ~ @, Aily,, from which we conclude that p is
indeed well-defined. It is a group homomorphism by construction.

For the second part let U and V' be compact open bisections of G such that
s(U) = r(V). Then we have p(d2(1yxvync®)) = p(lv — lyy + 1y) = 0 since
ly @1y =~ 1lyly = 1yy by Remark 4.4, part (ii). O

Theorem 4.7. Let G be an ample groupoid. Then there exists a canonical homo-
morphism

w1 Hi(G) — K1 (CHG)).

Proof. Let + : Co(G°) — C¥(G) denote the canonical inclusion, which is non-
degenerate. As G is ample, Cy(G) contains an approximate identity of projections.
By Theorem 4.3 and Lemma 4.6 we obtain a commutative diagram with exact rows
(16)

0 —— Hl(G) _— Hl(G, GO) _— HQ(GO) E— Ho(G)

i lr |2 |2

0 — K1(CF(G)) — Vau(Co(G?), CF(G))/~ — Ko(Co(G?)) = Ko(CH(G))

where the top row is part of the long exact sequence for the pair (G,G°). By
exactness, there exists a unique homomorphism p; : Hi(G) — K1 (C*(@)) filling
in the dashed arrow such that the diagram commutes. O

4.2. Comparison maps from the ABC spectral sequence. In this subsection
we recall the spectral sequence constructed by Proietti and Yamashita in [44, Corol-
lary 4.4] (which is in turn based on the ABC spectral sequence of Meyer [37]), and
show that this gives rise to canonical comparison maps py : Hy(G) — Ki(C*(G))
for k € {0,1}. This approach to the construction of comparison maps was suggested
by the referee.

Throughout this section, G is a second countable ample groupoid. We will need
to work extensively with G-C*-algebras and the G-equivariant Kasparov category
KK€: see [31] for background. We will also need to treat KK as a triangulated
category as described in [44, Section A.4]. For background on the material we will
need about triangulated categories and homological ideals and functors, see [38].



34 C. BONICKE, C. DELL’AIERA, J. GABE, AND R. WILLETT

Let Z be the homological ideal (see [38, Definition 2.20 and Remark 2.21]) in
K K€ defined as the kernel of the restriction functor F := Res&o : KK — KK,
If we define also E := Ind$, : KKG — KK (sce [7, Section 2.1] for a detailed
treatment of this), then (E, F) form an adjoint pair as established in [6, Section
6] (see also [7, Theorem 2.3]). Define L := Eo F : KKY — KK&, and for an
object B of KK, let eg € KK%(L(B), B) be the counit of adjunction, which is
computed explicitly in [7, Theorem 2.3].

Now, as a consequence of [44, Proposition 3.1] we see there is an (even) Z-
projective resolution in the sense of [44, Definition 2.14] of the object A = Co(G°)
in KK¢

(17) A<= Po<;—Pi<g—Po<j—--,

where for each p e N, P, := LP*1(A) and
P

(18) 6p = Z(_l)le(GL"*i(A))-
i=0

Moreover, one computes from the explicit description of Ind$e in [7, Section 2.1]
that LP*1(A) identifies canonically with Co(G®*+1), where we recall that

GP = {(g1, s Gp) € GP | 5(g;) = 1(gi41) for all i e {1,....,n — 1}}

and we write G(© and G° interchangeably. Here and throughout, we equip G®)
with the left G-action induced by

(19) g: <h17h27"'7hp) = (gh17h27 "'ahp)

and Cy(GP)) with the corresponding G-action. We will have need of the following
definition and lemma multiple times.

Definition 4.8. Let X and Y be locally compact spaces and let p: Y — X be an
étale map. Equip C.(Y) with the Cy(X)-valued inner product defined” by

Em) = Y &Wny)
yep~!({z})
The corresponding completion is a Hilbert Cp(X)-module that we will denote
L2(Y, p).

Let now A be a G-C*-algebra, and let r*A be the pullback along r : G — G°
(see for example [29, 2.7(d)]). The reduced crossed product of A by G, denoted
A %, G, is defined to be a certain completion of C.(G) - r* A, where the latter is
equipped with a natural =-algebra structure: we refer the reader to [29, Section 3]
for more details. For an element f € C.(G) - r*A and h € G, we write f(h) for
the corresponding element of (r*A); = A, ). In the special case A = Co(G®))
with the left G-action from line (19), we see that f(h) identifies with an element of
Co(G™ M), x,. G®=1). The next lemma is well-known and will be used by us several
times below: it follows from direct checks based on the formulas we give that we
leave to the reader.

Lemma 4.9. For each p > 2, let pr : G?®) — G®=1 be the map (9151 9p) —
(925, 9p), and let pr : G - GO = G° be the map g — s(g). For each p > 1,
feC(G)-1*Co(G?), ¢ € L2(GW),pr), and g € G define

(K;P(f)g)(glw'wgp) = Z f(h)(glu"'agp)é-(h_lgl?gQu"'7917)'

heGr(n)

"The function (&, m) is well-defined as the sum is finite; it is continuous as p is étale; and it is
compactly supported as it is supported in p(supp(§) m supp(n)).
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This extends to an injective representation
fip : Co(GP)) %, G — L(L*(GP pr))

whose image is exvactly K(L?(G®) pr)).
In particular, the Kasparov class

[kp, L2(GP),pr),0] € KK (Co(GP) %, G,Co(GPD))

is an isomorphism, induced by a canonical Morita equivalence Co(G®) x, G M
Co(G(p_1)>. O

We will need to work with a phantom tower in the sense of [37, Definition 3.1]
associated to the Z-projective resolution in line (17) above. This is an augmentation
of that resolution to a diagram of the form

A 8 N
IEPZENN
Py 51

satisfying certain conditions: we refer the reader to [37] for more details. Note
that as in [37] we are using circled arrows for morphisms of degree one and plain
arrows for morphisms of degree zero, but the circles are not in the same place
as those of [37, Definition 3.1]. This is because (following [44]), we are working
with even Z-projective resolutions, whereas in [37, Definition 3.1], Meyer works
with odd resolutions, where the maps J, in line (17) have degree one (compare
[44, Definition 2.15]). Analogously to the explanation below [44, Definition 2.15],
it is straightforward to switch between these two degree conventions for phantom
towers: if ¥ : KK — KK© is the suspension automorphism, and we are given a
phantom tower associated to an odd Z-projective resolution with objects N, and
P, as in [37, Definition 3.1], replacing these by £¥7P N, and ¥~P P, yields a phantom
tower associated to the corresponding even resolution as in diagram (20) above.

Now, following [37, Lemma 3.2], the Z-projective resolution in line (17) can
be augmented in an essentially unique way to a phantom tower as in line (20).
Let J : KKS — Ab%? be the functor from KKC to the category of Z/2-graded
abelian groups defined by J := K, ojg, where jg : KK¢ — KK is descent (see for
example [7, Section 1.3]), and Ky : KK — Ab%/? s K-theory; note that on objects,
J(A) := K4« (A %, G). This is a stable homological functor (see [38, Definitions 2.12
and 2.14]), so we may use it to build the ABC spectral sequence of [37, Sections 4
and 5] based on the phantom tower from line (20). If G is amenable and has torsion-
free isotropy groups, [44, Corollary 4.4] shows that the ABC spectral sequence for
A = Cy(GY) is a convergent spectral sequence

(21) Epq = Kpig(CF(G)).
We call this the Proietti- Yamashita (or PY) spectral sequence.
As we will need to do explicit computations, let us give more details about

how the general construction of the ABC spectral sequence specialises to our case,
following [37, Sections 4 and 5]. For each p,q € N as in [37, page 189], define®

Ko(Co(G™)) g even
0 q odd

2

! N, g .
PARNNA
1 % Py 5

L

(20)

P

T

E} = KiP, %, G) = {

8Note that the conventions of [37, Sections 4 and 5] would use “Kpiq” where we have “K,”
in the definitions of Ezl,q and of Dzl,q; the difference comes from our choice of using even projective
resolutions - which necessitates introducing p-fold desuspensions - as explained above
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Where the isomorphism uses the canonical Morita equivalence P, x,.G = Co(GP+1))x
[eRS C'O(G )) from Lemma 4.9. Define also

D, = Kq(Nps1 %, G).

Continuing following [37, page 189], there is an exact couple (see for example [54

Section 5.9] for background)
D——=D

9

with morphisms 4 : D}, — Dy, defined by i, := J (1 p+1) Jpq : D}, — E},
defined by jpq 1= Jq(gbp) and kpg : E} . — D}, defined by kpq := Jo (). As in

[44, Corollary 4.4], one computes that the second page E? has entries given by
B2~ H,(G) gqeven
P 1 0 q odd

With notation as in [37, page 172], [37, Theorem 5.1] implies that the filtration on
Kp1¢(C¥(G)) that corresponds to the convergence in line (21) above is given by
(J : T (A))ken; moreover, using the discussion on [37, pages 176-177], we see that
foreach £k > 1

(22) J 1 TF(A) = Kernel(J(tf_ 0+ 010) : Ky(A %, G) = Ky (Ni, %, G)),

while J : Z°(A) = 0 by definition.
Now, following the proof of [37, Proposition 4.1] and using that in our case the
spectral sequence converges, for each r,p,q with 0 < p < 7, the map®

(23) KD = 7,(0,) : B — DIt

p—1lq
induced by k on the (r + 1) page has image equal to
Jy  IPTH(A) o o
Jg :IP(A) — P
(for p =0, Lz_l o--- 0.} should be interpreted as the identity map on A).
Now, taking p =0, ¢ =0, and r = 2 we get a canonical map

Jo : T(Co(G?))
Jo : I°(Co(GY))’
which is induced exactly by J(dg). Note however that by definition Jq : Z°(Co(G?)) =
0, and by definition of J, Jy : Z(Co(G?)) is a subgroup of Ko(C#(G)). Hence we
may identify po with the map

po : Ho(G) — Ko(CF(G))
induced by &y € KK%(Co(G),Co(G®)). Let us record this more explicitly in a

lemma.

Lemma 4.10. Let 6y € KK%(Co(G), Co(G°)
co-unit of adjunction. Let [Xg] e KK(Co(G?),

from the canonical Morita equivalence Co(G°)
there is a canonical homomorphism

po : Ho(G) — Ko(CF(G))

(24) Jo(B_yo-0u)(Jq : TPTH(A)) =

(25) po : Ho(G) = Eg g —

K9 (L(Co(G)), Co(G?)) be the
0( )%, G) be the KK class arising
Co(G) %, G of Lemma 4.9. Then

CBII

22

9As mentioned by Meyer on [37, page 193], this map is functorially determined by A, and does
not depend on any of the choices of projective resolution or phantom tower involved.
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defined by taking the composition
Jo(d0) © Ko([Xe]) : Ko(Co(GY)) — Ko(CH(Q)),

then identifying Ko(Co(G®)) = Z[G°], and noting that this map descends to the
quotient Hy(G) of Z[G"]. O

On the other hand, taking p = 1, ¢ = 0, and r = 2 in lines (23) and (24), we get
a canonical map
J1: I%(Co(G?))
J1: IHCo(GY))

induced by J(¢1) and taking image in J1(¢§) (J1(A)) < Jo(N1), which is isomorphic
to the right hand side in line (26) above. Note that by definition (compare line (22)),
the group J; : Z1(C°(G?)) is the kernel of the map

Jl(L(]j) : Jl(A) — JQ(Nl)

(26) w1 Hi(G) = Eio -

However, thanks to exactness of the first triangle

1
Lo
¢ >N

Py

from line (20) and the fact that J is homological, we have an exact sequence

(27) A

T (o)
Jy(Py) ——

J1(4) Jo(N1) .

The group J;(Py) is by definition equal to K1(Co(G) %, G), which is isomorphic to
K1(Co(G®)) by the Morita equivalence from Lemma 4.9, so is zero as G is ample.
Hence by exactness, Ji(13) is injective, and so J; : Z1(Cy(GY)) = 0. Putting this
information into line (26), together with the fact that J; : Z2(C%(G?)) is naturally
a subgroup of K;(C}*(G)), we get a canonical map

pa s Hi(G) — K1 (CF(G))

induced by ¢ € KK (Co(G®), Ny). Let us again record this more explicitly as a
lemma.

Lemma 4.11. Let ¢ € KK%(Co(G®?),N;) = KK%(Py, Ny) be the morphism
from the following part of a phantom tower for A = Cy(G°)

L1 l,2
A 5 Ny > N, )
B 5 Py 5 P,

(28)

Let Jy (:3)|"™710)) be the corestriction of J(13) to an isomorphism J1(A) — Image(J1(1d)) <

Jo(N1). Let [Xgo] € KK(Co(G),Co(GP) x, G) be the K K -isomorphism arising
from the canonical Morita equivalence Cy(G) X Co(GP) %, G of Lemma 4.9.
Then there is a canonical homomorphism

p1 : Hi(G) — K1 (CFH(G))
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defined by taking the composition'°
(J1 ()TN ™ o o (1) 0 Ko([Xgem 1) - Ker(Jo(61)) — K1(CEH(G)),

and noting that this restriction passes to the quotient by the image of Jo(d2) :
Ko(Co(GP) %, G) — Ko(Co(G) x, G)M . O

Remark 4.12. In the context of the HK conjecture, it is natural to ask if there
are “higher” maps py : Hy(G) — Ki(C¥(Q)) arising from the Proietti-Yamashita
spectral sequence in a canonical way. This does not seem clear, even for k = 2:
here lines (23) and (24) would give a map

Jo : 3(Co(G?))

Jo 1 I2(Co(G?))

For k = 0 and k = 1, the denominator on the right hand side turned out to be the
zero group; for k = 2, this is no longer clear, so the natural map arising from the
spectral sequence could a priori take its image in a proper quotient of Ko(C*(G)),
not in Ko(C*(Q)) itself. For k = 3, the situation is similar: one has

J1: I (Co(G?))

J1: I3(Co(GY))

and this map a priori takes values in a quotient of K1 (C(G)) (note that we need to
increase to r = 3 so the condition “0 < p < r” needed to apply line (23) is satisfied;
as the differentials on the E? page are all zero for degree reasons, we still have an

identification Hs(G) = Ego however). For k = 4, the situation seems worse: one
has

pe s Ha(G) = E22,0 -

ps : H3(G) = Eg,o -

Jo : I5<00(G0))

Jo : Z%(Co(G))

but Eio could in principle be a proper subquotient of H4(G), so a priori one
only gets a map from a subquotient of Hy(G) to a subquotient of Ko(C*(G)); the
situation is similar to this for all k > 4.

The recent principal counterexamples to the HK conjecture of Deeley [13] sug-
gest that the a priori obstructions to the existence of the higher comparison maps
discussed above really do pertain; however, we did not yet attempt the relevant
computations.

.4
pa: By —

4.3. Identification of the comparison maps. Our goal in this subsection is to
identify the map po : Ho(G) — Ko(C}(G)) of Lemma 4.10 with the comparison
map constructed by Matui, and to identify the map p; : H1(G) — K1(C*(G))
of Lemma 4.11 with the explicitly constructed comparison map of Theorem 4.7.
Much of what follows is essentially routine “book-keeping” computations; however,
as some of it is of quite an involved nature, we thought it was worthwhile to record
the details.

The special cases L?(G,r) and L?(G,s) of Definition 4.8 will be particularly
important for us: we introduce the shorthand K, := K(L?(G,r)) and K, :=
K(L?(G, s)) for the compact operators on these modules. These C*-algebras are
equipped with the canonical G-actions coming from the left action of G on it-
self for L2(G,r), and the right action of G on itself for L?(G,s). We also write
M, : Co(G) — K, and M : Cp(G) — Kj; the former is equivariant, while the lat-
ter is only equivariant if we consider Cy(G) as a G-C*-algebra via the right action

10Note that the restriction to the kernel Ker(Jo(61)) of J(61) is needed to ensure that the
image of Jo(¢1) o K4 ([X4(2)]) is contained in the image of J1(1$); we mention this fact explicitly
as it is slightly buried in the spectral sequence machinery.

U This last holds as commutativity of the rightmost triangle in diagram (28) and exactness of
the second triangle from the right imply that J(¢1)0J(d2) = J(¢1)oJ(p2)oJ(¢2) = 00J(3h2) = 0.
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of G on itself (however, we will never do this: Cy(G) always either has the left
G-action in what follows, or the trivial action if we have passed through descent).
With notation as in Lemma 4.10, u is the map induced on Hy(G) by

(29) Jo(do) o Ko([Xc]) = Ko([Xc] ® ja(do)),

where 8y € KKY(Co(G),Co(G?)) equals the counit of adjunction ec,(go) for the
adjoint pair (F, F) discussed at the start of Subsection 4.2. Using the description
of this counit in [7, Theorem 2.3], one computes that

(30) o = [M,, L*(G,r),0].

For the statement of the next lemma, let + : Co(G®) — C*(G) denote the canon-
ical inclusion. Recall also (compare [7, Section 1.3]) that the descent of a Hilbert
G-A-module F is defined to be E %, G := E®4 A x,.G. To have concrete formulas
to work with, let £ denote the upper-semicontinuous field of Hilbert modules over
GO associated with E. Then E x, G can alternatively be constructed as the com-
pletion of the vector space of compactly supported continuous sections I'.(G;7*E)
with respect to the A x,. G-valued inner product

&9 = D) a1 (), € (hg)ya, ),

hEGT(g)

for £,& € To(G;r*E) and g € G. Moreover, if 7 : B — L(FE) is a G-equivariant
representation of B, then for f € T'.(G;r*B), £ € T.(G;7r*E), and g € G, the formula
(f-O9) = D, mm(f()Wa(E(h"g))
heGT(9)
defines a representation 7 x,. G: B x,. G — L(E %, G).
The next lemma follows from direct (if somewhat lengthy) computations that
we leave to the reader.

Lemma 4.13. For ¢ € L?(G,s), f € C.(G), ge G, and h e G™9) define
(W(E® 1)(g)(h) = E(R)F(hg).
Then w extends to a unitary isomorphism of Hilbert C}(G)-modules
w: LA(G,s)®, CHG) = L*(G,r) %, G.
Moreover, for k1 as in Lemma 4.9, w satisfies
w(k1(a) ® Lox (g )w™ = (M, x, G)(a)

for alla € Co(G) x,.G. In particular, there is a x-homomorphism B : Ky — K, x,.G
defined by

B:Ks>K, %G, k—wk® 1C;;=(G))w*.
Finally, w*(K, x, G)w = K(L*(G, s) ®, C*(G)), and so the element [L*(G,s) ®,
CH(@G), adyx oM, xG,0] € KK (K, x,.G,C¥(Q)) is an isomorphism in KK, induced
by a Morita equivalence bimodule. O

We are now ready to show that the description of pg arising from the spectral
sequence agrees with the classical map Hy(G) — Ko(C*(G)) introduced by Matui.

Proposition 4.14. The map o : Ho(G) — Ko(C*(G)) of Lemma 4.10 is the map
induced by the canonical inclusion 1 : Co(G®) — C*(G) on the level of Ko-groups.

Proof. Lemma 4.13 implies that jo(dp) is represented by the class
[Hl ® IC;!‘(G)a LQ(Ga S) ®L C;k(G)a O] € KK(CO(G) Ay Ga O:(G))7

(where we have used the isomorphism K, = Cy(G) %, G, which is a special case
of Lemma 4.9). Lemma 4.9 implies that [X¢] is represented by the opposite of
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the Morita equivalence Kasparov cycle (k1, L?(G,s),0). Hence [Xg] ® jg(do) is
represented by the tensor product of these, which one computes directly is the
cycle (1,C*(G),0) in KK (Co(G®),C*(G)). The image of this under the K-theory
functor is indeed the map induced by ¢, so we are done. O

We now move on to pu;. Let us start by more explicitly describing the exact
triangle

1

(31) Co(GY) o N

A

Co(G)

from line (27) above. Note that the class [id, L?(G,7),0] € KK%(K,,Co(G)) is
an isomorphism (as it arises from an equivariant Morita equivalence) and from the
formula in line (30) for o we clearly have

[M,,K,,0]®[id, L*(G,r),0] = do,

so up to replacing Co(G?) by K, using the isomorphism [id, L?(G,r),0] e K K%(K,., Co(G?)),
we may replace the exact triangle in line (31) above with

(32) K, 3 N,

Co(G)

where M, € KK%(Cy(G),K,) is the class corresponding to the #-homomorphism
M, : Cy(G) — K,., and we have abused notation slightly by keeping the same label
for the top horizontal map. The remaining parts of the diagram can be described
explicitly in terms of the mapping cone of M,.; we recall this next.

Now, by definition of the exact triangles in K K¢ (see [44, Appendix A.4]), in
diagram (32) we may take N7 = C(M,), and ¢} and ¢; are then the K K-classes
given by the left and right maps respectively in the canonical short exact sequence

0 SK, —“ > C(M,) —<> Co(G) — 0.

Hence we may replace the first part of the phantom tower in line (28) above with
the diagram

K, 5 C(M,)

Co(G) Co(G™).

1

According to the proof of [37, Lemma 3.2], the morphism ¢, appearing above is
unique, subject to the condition that the right hand triangle commutes (and the
various other conditions defining a phantom tower, which are satisfied by the dia-
gram above). Our next task towards computing p1 is to give an explicit description
of 11; for this, it will be helpful to see why M, o d; = 0 (note that this is indeed
the case, by definition of an Z-projective resolution).

We first find an explicit representation for 6, € KK%(Co(G?),Co(G)). Let
pry : Gs X, G — G be the projection onto the first factor, and define

Fo:= L*(Gy %, G,pry).
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Similarly, let pry : Gy X, G — G be the projection on the second factor and define
Fy = L*(G, x, G, pry).

Equip Fy with the G-action defined by the left translation action of G on the first
factor, and F; with the G-action defined by the diagonal left action of G; note that
both Fy and F are then G-Cy(G) Hilbert modules, where the action on Cy(G) is
(as usual) induced from the left action of G on itself. Define a representation

7o : Co(G?)) — L(Fy)
by pointwise multiplication, and a representation
T : Co(G?)) — L(F)
by
(m1())€)(g:h) == f(g, 9~ h)E(g, h);

both of these representations are equivariant and take values in the compact opera-
tors on the corresponding modules. Using the explicit description of the induction
functor from [7, Section 2.1] and of the co-unit of adjunction from [7, Theorem 2.3],
one computes that the elements L(ec,(goy) and €1, (goy) of KK (Co(G?), Co(G))
satisfy

€L(Co(c0)) = [0, Fo, 0]
and

L(ecy(aoy) = [m1, F1,0];

from the formula in line (18), we thus have that
(33) 61 = [mo, Fo, 0] — [m1, F1,0].

On the other hand, from the fact that line (17) is a projective resolution, we have
that 0; ® 8o = 0; as we are identifying dp with [M,,K,,0] € KK%(Cy(G),K,), we
therefore see that

[0 ® 1k, Fo ®um, Kr, 0] = [m1 ® 1x,, F1 ®um, Ki, 0]

in KK%(Cy(G®),K,.). In order to construct ¢; and also its image under the
descent morphism, we need to make this identity explicit; this is our next task.

We may identify L?(G, s) ®, C#(G) with the completion of C.(Gs %, G) for the
inner product valued in the dense subset C.(G) of C¥(G) defined by

Emslg)i= > D, &k Nk, h'g).

heGr(9) keG 5(n)

Similarly, L?(G,r) ®, C#(G) identifies with the completion of C.(G, x,. G) for the
inner product defined by

Emrlg) =D, D &k b n(k,h'g).

heGr(9) keGs(h)

Given these descriptions, direct checks show that the map G, x, G — G, %X, G,
(g,h) — (9,9~ *h) induces a unitary C*(G)-module isomorphism

w: L*(G,5) ®, CHG) - L*(G,r)®, C¥(G).
Lemma 4.15. There is a unitary, equivariant, isomorphism
u: FoQum, K — F1 Qu,. Ki
such that u(my ® 1k, )u* = m ® 1k
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Moreover ifLQ(G(Q), pr) and ko are as in Lemma 4.9, then there is a commutative
diagram

(FO ®MT Kr) Ay G®zd LQ(GaT) NTGM (Fl @)Mr Kr) Aoy G®1d LQ(G; 7‘) Xy G

Jov |

L2(G®), pr) @, L3(G, ) ®, CF(G) — == L2(G), pr) @u, L3(G,7) @, C(G)

where all the maps are unitary isomorphisms. The maps Oy and ©O1 satisfy
@0(7‘(0 X G)@ak = K2 ® 1KS®LC;"(G)

and
O1(m 1, G)OF = k2 ® 1k o c*(q)

respectively. The map w : L*(G, s) ®, C}(G) — L*(G,r) ®, C¥(G) is that defined
above, and satisfies

Proof. We begin by defining a unitary isomorphism of Hilbert Cp(G°)-modules
U: Fy®u, L*(G,r) — Fy ®um, L*(G,7)

such that U(my ® 1)U* = m ® 1 as follows: a straightforward computation gives
identifications

(34) Fo@nr, LA(G,r) = L2(G®) ropr)), Fi®u, L*(G,r) = L*(G,x,G,ropry).

It is then easy to see that the map G, x, G — G| (g,h) — (g, g~ 'h) gives rise to
the desired equivalence.

Now recall, that K, splits as a tensor product L*(G,7) ®c, oy L*(G,r)°P. After
making this identification we can define u as

Fy ®nm, LQ(G, 7") ®CO(G°) LQ(G7 T‘)Op U@>1 Fy R, L2(G, T‘) ®CO(GO) LQ(G, T)Op.

We now move on to the commutative diagram. Notice that (Fy ®u, K;) %, G ®
(L?(G,7) x, G) = (Fy ®u, L2(G, 7)) %, G, and similarly (F} @, K;) %, G ®
(L?(G,7) %, G) = (F1 ®un, L*(G,7)) x, G. Applying these identifications to the
top row of the diagram in the lemma and using identifications similar to the ones
in line (34) in the bottom row (and slightly abusing notation by still denoting the
maps Og and O1) shows that it will be enough to exhibit a commutative diagram
of the form

(Fo @1, LG, 1)) %, G — 2%~ (Fy @y, LH(G, 1)) %, G

Jov Je

L*(G?) s 0pr)®, C*(G) — W I2(G®,ropr)®, CF(G)

where W is induced by the map G3 X sopr,r G — G® Xropr,r G, (h1,h2,g9) —
(h1,he,hy'g). Similar to the discussion just prior to the present lemma, the mod-
ules involved in the diagram all have a canonical dense subspace of compactly
supported functions defined on a suitable fibred product of G or G, x, G with
G. Hence it will be enough to describe a “dual” commutative diagram of homeo-
morphisms
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Gg)prl X, G <T (Gr %y G)ropry Xr G

eﬁ elT
Gy %r G 4 G2, %, G
The map % inducing U x,. G is given by
% (1, ha,g) = (h1,h7  ha, g)
and the map w inducing W is given by
w(h1, ha,g) = (h1,h2, byt g).

If we set 0g(h1,ha,g) := (h1, ha, hihag) and 01(hy, ha, g) := (h1,h] 'ha, hig), then
the diagram commutes. It follows that the induced diagram of Hilbert modules
commutes. Moreover, direct checks show that O intertwines the representations
moX,-G and m2®1L2(G’S)®LC§(G) and O, intertwines w1 x,.G and K2®1L2(G’T)®LC;I<(G).

Using this lemma, we may finally compute an explicit formula for both ; and
its descent jg(11). Define

Fi = I((Fo @, K») ® (F1 @1, K,))

with the IK,-valued inner product given by adding the componentwise inner prod-
ucts pointwise for each ¢t € [0, 1]. Define F' to be the collection of all triples (&g, n,&1)
in the direct sum Fy @ Fx @ F} such that'?

(o ®1k,,0) =n(0) and 7n(1) = (0,6 ® 1k, ).
Let D(M,) be as in line (11), and define a D(M,.)-valued inner product on F by

(&7 0,6, €&V, 6" = (€. 6m . 0O ime s €. 60r )

Direct checks then show that F' is a well-defined Hilbert G-D(M,.)-module.
Now, with u as in Lemma 4.15 consider the unitary

O *
V= (u 16 ) € L((Fo®um, K;) @ (Fy ®u, K)),

which commutes with the direct sum action of G. This is a self-adjoint unitary, so
by the spectral theorem we can write V = p — ¢*3, where p and ¢ are orthogonal
projections that commute with the G-action and satisfy p + ¢ = 1. For ¢ € [0, 1],
define V; = p + €™q, so {Vi}te[o,1] is a path of G-invariant unitaries connecting
Vo=1and Vi = V. For f e Co(G?), ne Fk, and t € [0, 1], define

(M (f)n)(t) := Vi(mo(f) ® 1k, , 0) V"

This defines a G-equivariant representation 7k : C’O(G(z)) — Fx. Moreover, it is
compatible with the representations 7y and 71 of C’O(G(Q)) on Fy and Fj respec-
tively, in the sense that for f € Co(G®) and (&, 7, &) € F, the formula

7 (f)(60,m,61) == (mo(f)éo, T (f)n, T1(f)E1)

12Note that even though K, is typically non-unital, {; ® 1k,. still makes sense as an element
of F; @, Kr for i € {0,1} - for example, one can show that if (u;);es is an approximate unit for
K, then (& ® uj) ey is Cauchy in F; @, Ky, and then define & ® 1k,. to be its limit.

1 * 1 _ak
13There are also concrete formulas: p= % (u ul > and g = % <—u Qlt )



44 C. BONICKE, C. DELL’AIERA, J. GABE, AND R. WILLETT

defines a Hilbert G-D(M)-module representation 7x : Co(G®)) — L(F). This
representation takes values in the compact operators on F, and thus we get a well-
defined Kasparov element

¥ = [rp, F,0] € KK (Co(G?), D(M,)).

The short exact sequence of line (12) and split exactness of K K-theory then gives
a canonical isomorphism
(35)

KK%(Co(G®), D(M,)) = KK%(Co(G®), Co(G)) @ KK (Co(GP),C(M,.)).

Write 1) for the image of ¢ in KK%(Cy(G®), C(M,)) under the canonical quotient
map arising from the direct sum decomposition above.

Lemma 4.16. The element 1 fits into the canonical phantom tower in KKC as
the map labeled 1

(36) K, 5 c(M,)

M, / X

Co(G) Co(GP).

31

Proof. As we already noted, the proof of [37, Lemma 3.2] shows that ; always
exists, and is uniquely determined by the property 1; ® [e°] = §;. We thus need
to show that 1 ® [e°] = §;.

We have canonical quotient maps f7 : D(M,.) — Cy(G) defined by f7 : (ag,b,a1) —
a; for j € {0,1}. Let s : Co(G) — D(M,), a — (a,c(M,(a)),a) be the canonical
splitting of the short exact sequence from line (12). Clearly f®os = f!os, whence
the map

@ (/1= [F1]) : KK (Co(G®), D(M)) — KK (Co(G®), Co(@))

vanishes on s, (KK%(Co(G?),Co(G))). Let i : C(M,) — D(M,), (ag,b) —
(ag,b,0) be the canonical inclusion. Then according to the isomorphism in line
(35) we have 1) = i (1) @ sx () for some a € KK (Co(GP), Cy(@)), so the above-
discussed vanishing of - ® ([f°] — [f!]) on the image of s, gives

PR T- D) =i @ (1= ') = v & (U o] — [f* 0],

On the other hand, we clearly have f9o0i =e" and f' oi = 0, so the above implies
that

v (=[] = v @[]
It thus suffices to show that ¢ @ ([f°] — [f!]) = 61. For this, we note that [ f/] =
[Fj,m;,0] for j € {0,1} so we need to show that

51 = [ﬂ-Oa FOa 0] - [7'('1, F17O]7
this is exactly the formula in line (33), so we are done. 0

Our next goal is to compute the image of the diagram in line (36) under descent.

Unfortunately, this necessitates more notation. Let ¢ : Co(G°) — C#(G) denote

the canonical inclusion, and let C'(¢) and D(¢) be the corresponding C*-algebras
from lines (7) and (11). Define X to consist of all triples (&g, n,&1) in

L*(G,s)®1(L*(G,s)®, CHG)) ® L*(G, s)
such that & ® 1ox ) = n(i) for i € {0,1}. Direct checks based on Lemma 4.13

shows that this is canonically a Morita equivalence D(M,.) x, G-D(¢)-bimodule.
Similarly, if X¢ consists of all pairs in L*(G,s) ® I(L?*(G, s) ®, C*(G)) such that
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§o®1 () = n(0) and n(1) = 0, we see that X is a Morita equivalence C(M,) G-
C(t) bimodule. Moreover, if Xg is the Morita equivalence Cy(G) x,. G-Co(G°)
bimodule from Lemma 4.9, then the following diagram (built from the general
short exact sequence of line (12)) is easily seen to commute in KK

(37) 0——=C(M,) x.G——D(M,) x.G—Cy(G) x, G——=0

ix lx x|

0 C() D(x) Co(G")

0.

For ease of notation let Es and E,. denote the Hilbert C*(G)-modules L?(G, s)®,
C*(G) and L*(G,r) ®, C*(G), respectively. Let E be the collection of triples

(503 n, fl) in
(38) L*(G,s)®1(E;® E,) ® L*(G,r)

such that (§o ® 1ox(g),0) = 7(0) and (0,1 ® 1ox () = n(1); this is a Hilbert
D(t)-module in the natural way. It is moreover equipped with a left Cy(G)-action
defined as follows. Let w : Es — FE,. be the unitary isomorphism from Lemma 4.15,
and define

0 w*
V= (w O>e£(ES®ET).

As in the discussion defining ’(Z, we may write v = p — ¢ for complementary projec-
tions p and ¢, and define v; := p + €™*q. Then the formula

(39) T 1= Ms @ vi(Ms ® 1o (), 0)vf © M,

defines the desired Cy(G)-action on E. Define ¥ := [rp, E,0] € KK (Co(G), D(¢)),
and define ¥ to be the image of ¥ in K K (Cy(G), C(¢)) under the canonical quotient
map arising from the direct sum decomposition

KK(Cy(G),D(1)) = KK(Co(G),C(1)) @ KK(Co(G),Co(G?))

that in turn arises from the split short exact sequence in line (12).

The next lemma is the last main ingredient needed to compute p;. To state it, let
L:XCHG) — C(v) and € : C(1) — Co(G®) be the canonical maps associated to the
mapping cone. Let also [s] and [r] respectively denote the elements [M,, L?(G, s), 0]
and [M,, L?(G,r),0] of KK (Cy(G),Co(G?)).

Lemma 4.17. After applying the canonical Morita isomorphisms C(M,.) x, G %e

C(v) discussed above, the Morita isomorphism K, x, G Hex CH(G) of Lemma

Xae2
4.13, and Co(G) 1, G X8 Cp(GO) and Co(G?) x, G~ £* Co(G) of Lemma 4.9,
the image of the commutative diagram (36) above under descent jg : KK — KK
identifies with

(40) C*(@) 5 C(v)

Co(G?) 0] Co(G)

Proof. That the left triangle in line (36) has image equal to the left triangle in line
(40) under descent (and modulo the given Morita equivalences) follows from the
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commutative diagram of short exact sequences in K K

(41) 0——=3K, %, G —= C(M,) %, G —= Co(G) x, G —= 0

0— = XC*(G) o) Co(GO) 0.

We next claim that jo(v) ®c(m,)x.¢ [Xc] = [Xe@] ®cy () ¥. Thanks to the
commutative diagram in line (37) above, it suffices to show that

(42) jo() ®pasync [Xp] = [Xao] ®cy(a) ¥

This will moreover show that the bottom horizontal arrow in line (40) is cor-
rectly labeled, as it is clear that if fO, f! : D(1) — Co(G°) are the canonical
*-homomorphisms, then ¥ ® ([f°] — [f1]) = [s] — [r]; thus to complete the proof it
suffices to establish the identity in line (42).

The Kasparov product jg(zz) ®p(M, )%, [Xp] is represented by the triple

(mp ¥, GR®1,F %, G® Xp,0).
Our first goal is to identify this triple with the triple
(k2 ® (1@ v(L,000f ®1), L*(G?), pr) ®z,, E,0),

where we emphasise that we are using the representation 75 = (M, [(M;®1, M, ®
1), M,) (as opposed to g defined in line (39)).

In fact we will deal with the ambient modules of E and F' respectively, which
allows us to treat each component separately to improve readability. We first deal
with the first and third components. For these we have isomorphisms

(43) (Fo %, G) @, L*(G,s) — LGP, pr) @ LG, 5)

(44) (Fl Ay G) ®/€1 Lz(Ga S) - L2(G(2)v pr) ®M7‘ L2(G7 T)

identifying the first and third components of F x, G® Xp and L*(G®), pr)®;, E,
respectively. These isomorphisms are produced in a similar fashion so will only
explain the procedure for (44): We apply the isomorphism w from Lemma 4.13 to
the transformation groupoid G, x, G of the left action of G on itself (in place of G)
to obtain an isomorphism

L*(Gr %y G, 8) ®cy(y Co(G) x1. G 5 Fy %, (Grx, G) = Fy %, G,

where S : G, x,.G — G denotes the source map of G, x,. G given by S(g,h) = g~ 'h.
Using this we get a chain of identifications

(Fy %, G) ®s, L*(G,8) = L*(Gy %, G, S) @1, Co(G) x, G ®4, L*(G,3)
=~ L*(G, %, G,S)®n. L*(G,s)
~ L2(G?, pr) ®um. L*(G, s)
A tedious but routine calculation shows that this isomorphism intertwines the ac-
tions m; x G®1 and ko ® 1.
It remains to identify the middle components of F'x,G®Xp and L?(G?), pr)®z

E, respectively. For every t € [0,1] we have the following chain of isomorphisms,
where we use Lemma 4.13 in line 2 and the isomorphisms O and ©; from Lemma
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4.15 in line 4.

(Fo @, Kr @ F1 @, Ki) % G Qadw Es

(Fo ®u, K @ Fi ®ur, K) %, G ®ia (L2(G,7) 1, G)

~((Fo ®u, Ky) % G®ig L*(G,7) %, G) @ ((F1 ®m, Kr) % G ®ig L*(G,7) %, G)
~L*(G®,pr) @u.e1 Bs ® L (G, pr) @, 01 By

=~L*(G®, pr) ®,e1,M,1) (s @ Er)

The commutative diagram in Lemma 4.15 together with the construction of the
families of unitaries (V;); and (v;); imply that (09 @ ©1)((V: ¥, G @ 1r2(aryxa) =
(112(G pry @ 1) (O ® ©O1) and hence the chain of isomorphisms above intertwines
the representations (V;(mo®1,0)V;*) x,, G®1 and ky ®v;(1,0)v¥ of Co(GP) %, G.
This completes the identification of the Kasparov triples.

Finally, we apply a standard trick in K K-theory to replace the representing
module by a non-degenerate one, i.e. we pass to the module

(‘%2 ® (17 vt(lv O)U;ka 1)) (LQ(G(2)7 pI‘) ®7}E E)
The latter module however is easily seen to be isomorphic to

LQ(G(Q), pr) Qnp F,

lle

in such a way that the isomorphism intertwines the representations ko®(1, v4(1,0)v, 1)
and ko ® 1g. O

Finally, we are ready to give our concrete formula for the comparison map p;.

Proposition 4.18. The map p1 from Lemma 4.11 agrees with the canonical ho-
momorphism from Theorem 4.7.

Proof. According to the description in Theorem 4.7, it will suffice to show that
for any compact open bisection V in G, if i is as in Theorem 4.3 we have that
n([1v]® W) = [13] in V. (Co(GY), C*(G))/ ~.

Now, if we write Ay : C — L(ng(1y)E) for the unital scalar representation, then

[1v] ® U= [Av, WE(lv)E, 0]
Recalling (see lines (38) and (39)) that mp = M @ vi(M;s ® 1ox gy, 0)vf © M, we
compute that M(1y)-L*(G,s) = 1,1)Co(G°) as a right Co(G?)-module, and that
M, (1y) - L*(G,r) = 1,4, Co(G°) as a right Cy(G°)-module. On the other hand
vt (Ms(1v) ® Lox (), 0)vf - (L*(G,5) ®, C*(G)® L*(G,r) ®, C¥(G)) is isomorphic
to p:(CH(G) ® C*(G)) as a right C*(G)-module, where

1@+mwmw>wmmw)em@w»

Pe-=35 isin(wt)ly (1 = cos(mt))1r(v)

It follows that [1y,]@W € KK (C, D(1)) is represented by the class of the projection
leovy O 0 0
(M D)@ tenne(p 1)) ) e
On the other hand, note that p; = wpouj, where

L 2=1,0n(1—€m) 15(1— €'t
Ut 1= D) lv(l _ eiﬂt) 2 lr(V)(l _ ei‘n't) ’

80 (ut)tefo,1] defines a continuous path of unitaries in M(C*(G)) (or in the uniti-
zation of this C*-algebra if it is not unital). It follows from the definition of 7 given
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in line (14) that

n([lv] @ ¥) = l(lsg/) 8) ull.

Ly 0 (0 1%
(0 0)“1_<0 0)’

so we see that 7([1y] ® ¥) = [1%]. O

Computing,

4.4. The HK-conjecture in low dimensions. In this subsection, we apply the
previous result and Theorem 3.36 to deduce consequences for the HK conjecture.

As discussed in Subsection 4.2, a recent result of Proietti and Yamashita in [44]
established the existence of a convergent spectral sequence

(45) E2, = Hy(G,Ky(A) = Kpiq(A %, G)

for any G-algebra A, provided that G is a second countable ample groupoid with
torsion free isotropy, which satisfies the strong Baum-Connes conjecture.

Combining this with our results from previous sections we obtain the following
application to the HK-conjecture. The reader should compare this to [44, Remark
4.5], which establishes a similar result on the HK conjecture under a vanishing
hypothesis on Hy(G) for k > 3; the main difference between Theorem 4.19 below
and [44, Remark 4.5] is that the former gives a concrete criterion when vanishing
holds.

Theorem 4.19. Let G be a second countable principal ample groupoid with dynamic
asymptotic dimension at most two. Then there is a short eract sequence

0 — Ho(G) 5 Ko(CH(G)) — Ha(G) — 0,

and py : Hi(G) — K1(C*(G)) is an isomorphism. If moreover Hy(G) is free (e.g.
if it is finitely generated), then the HK-conjecture holds for G, i.e.

Ko(CH(G)) = Ho(G) ® Ho(G) and K1(C*(Q)) = Hy(G).

Proof. First of all we can apply the spectral sequence (45) since G is principal and
any groupoid with finite dynamic asymptotic dimension is in particular amenable
(this follows from the proof of [23, Theorem A.9]), and hence satisfies the strong
Baum-Connes conjecture by the main result of [53]. Since H,(G) =0 for all n > 3
by Theorem 3.36 the spectral sequence (45) collapses on the second page and we
conclude that K;(C*(G)) = Hy(G) and that Ko(C*(G)) fits into a short exact
sequence

If moreover Hy(G) is free abelian (which holds if it is finitely generated, as it is

torsion-free by Theorem 3.36), then the sequence above splits and we get a direct
sum decomposition Ko(C*(G)) =~ Ho(G) @ Ha(G). O

With a view towards the classification program for simple nuclear C*-algebras,
we obtain the following consequence.

Corollary 4.20. Let G be a second countable, principal, ample groupoid with com-
pact base space and dynamic asymptotic dimension at most one. Then

EI(CH(G)) = (Ho(G), Ho(G) ", [1go], H1(G), M(G), p),

where M (G) is the set of all G-invariant probability measures on G° and p : M (G) x
Hy(G) — R is the pairing given by p(u, [flo) = § fdu.
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Proof. We have canonical isomorphisms p; : H;(G) = K;(C*(G)). The isomor-
phism g clearly extends to an isomorphism of ordered groups respecting the po-
sition of the unit. Since G is principal, there is an affine homeomorphism between
the set M (G) of G-invariant probability measures on G® and the tracial state space
T(C*(Q)) of the reduced groupoid C*-algebra (see, for instance, [32, Section 4.1]).
Finally, from the definition of g it is clear that the pairings are compatible. U

5. EXAMPLES AND APPLICATIONS

In this final section we discuss several applications of our results for specific
classes of groupoids and exhibit some interesting examples.

5.1. Free actions on totally disconnected spaces. In [10, Theorem 1.3], Con-
ley et. al. show that for a large class of countable groups I', any free action on a
second countable, locally compact, zero-dimensional space has dynamic asymptotic
dimension at most the asymptotic dimension of I', and that the latter is finite. If
X is compact, for example a Cantor set, then the dynamic asymptotic dimension
will therefore be exactly equal to the asymptotic dimension of I' by [24, Theorem
6.5]. The class described by the authors of [10] is technical and we refer there for
details; suffice to say that it includes many interesting examples such as all poly-
cylic groups, all virtually nilpotent groups, the lamplighter group (Z/2Z)!Z, and
the Baumslag-Solitar group BS(1,2).

Hence for such actions, Theorem 3.36 implies that H,(I',Z[X]) = 0 for all
n > asdim(T").

5.2. Smale spaces with totally disconnected stable sets. A Smale space con-
sists of a self-homeomorphism ¢ : X — X of a compact metric space X, such that
the space can be locally decomposed into the product of a coordinate whose points
get closer together as ¢ is iteratively applied, and a coordinate whose points get
farther apart under the map ¢. We refer to [46] for basic definitions and details.
Given a Smale space (X, ¢) one can define two equivalence relations on X as follows:

x ~ y if and only if lin;o d(p"(z),¢"(y)) =0, and

x ~, y if and only if lirrgo d(e™(z), o "(y)) = 0.

Let X*®(x) and X*(x) denote the stable and unstable equivalence classes of a
point = € X respectively. Upon choosing a finite set P of ¢-periodic points one
can construct étale principal groupoids G*(X, P) and G*(X, P) with unit space
X¥(P) = Upep X?(2) and X“(P) = J,ep X“(P), respectively. In particular, if
these unit spaces are totally disconnected, the groupoids are ample. Note further,
that for an irreducible Smale space (X, ¢), the groupoids G*(X, P) and G*(X, P)
only depend on P up to equivalence. In particular, the choice of P is irrelevant when
computing their homology. Deeley and Strung prove in [12] that for an irreducible
Smale space one has the estimate

dad(G"(X, P)) < dim X.

Combining this with our Theorem 3.36 and Corollary 4.19, and also [43, Theo-
rem 4.1] we can compute the K-theory of the resulting C*-algebras from Putnam’s
homology for Smale spaces.

Corollary 5.1. Let (X, ) be an irreducible Smale space with totally disconnected
stable sets. Then H(X,p) = 0 for all n > dim(X); and if dim(X) < 2 and
Hs (X, ) is free abelian (e.g. when it is finitely generated), then

Ko(C*(G"(X, P))) = H5 (X, ) ® H3 (X, ¢) and K1 (C*(G*(X, P))) = H{ (X, ).
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This result includes most of the previously known examples (see e.g. [56]) that
were based on separate computations of the K-theory and homology, and hence
provides a more conceptual explanation.

5.3. Bounded geometry metric spaces. A metric space X has bounded geom-
etry if for each r > 0 there is a uniform bound on the cardinalities of all r-balls
in X; important examples come from groups with word metric, or from suitable
discretisations of Riemannian manifolds.

Skandalis, Tu, and Yu [49] construct an ample groupoid G(X ) which captures the
coarse geometry of X. In particular, the reduced groupoid C*-algebra C*(G(X))
can be canonically identified with the uniform Roe algebra C¥(X). Let us briefly
recall the construction. Let SX denote the Stone-Cech compactification of X,
i.e. the maximal ideal space of ¢*(X). For each r > 0, let E, be the closure of
{(z,y) € X x X | d(x,y) < r}inside BX x BX,* which is a compact open set. Then
the coarse groupoid G(X) of X has as underlying set | J~ , E,. The operations are
the restriction of the pair groupoid operations from SX x X, and the topology is
the weak topology coming from the union U:O:O E,., ie. a subset U of G is open if
and only if U n E,. is open for each r. Then G(X) is a principal, ample, o-compact
groupoid with compact base space homeomorphic to X, see [47, Theorem 10.20].

Our first goal is to identify the groupoid homology H, (G (X)) with the uniformly
finite homology of X introduced by Block and Weinberger in [5, Section 2]. We
begin by recalling the relevant definitions. Let C,(X) denote the collection of
all bounded functions ¢ : X"*! — Z such that there exists » > 0 such that if
e(xgy ..., Tn) # 0, then the diameter of the set {zg,...,z,} is at most r. For each
i€{0,....,n}, let 0 : X"t — X" be defined by 0% (20, ..., Zn) := (L0, -+, Tiy ey Tn)-
Define 0% : C\,(X) — Cp,—1(X) by

(Ghe) = >, cfx)
Jty=x
and define 0 : Cp,(X) — Cp—1(X) by 0 := 3,1 (—1)?0%. Then we have do d = 0,
so we get a chain complex. The uniformly finite homology of X, denoted HYf(X),
is by definition the associated homology of this complex.
Having introduced all the main actors we can now prove the following theorem.

Theorem 5.2. Let G(X) be the coarse groupoid associated to a bounded geometry
metric space X. Then there is a canonical isomorphism Hy(G(X)) = HY(X).

Proof. For brevity let us denote the coarse groupoid by G throughout the proof.
Now, for a € Z[EG,,], define a € Z[EG,,] by

a ah?h a"'ahn :IEGO
Cb(go, ...,gn) = { OZ}LEGI ( g1 qg ) ig . A

Omne can check (we leave this to the reader) that the equivalence classes [a] and
[a] in Z[EG,]¢ of @ and a respectively are the same, and moreover that @ is the
unique element of [a] that is supported on {(go, ..., gn) € EG,, | go € G°}.

We define maps o : Z[EGy]e — Cn(X) and 8 : Cp(X) — Z[EG,]¢ as follows.
First,

(a[a])(an ey xn) = 6((x0, ‘TO)7 ) (IO; In))

This makes sense using that G contains the pair groupoid X x X. We note that
ala] is bounded as @ is. Moreover, the fact that @ has compact support implies
that it is supported in a set of the form Ey x E,, x --- x E, n EG), for compact

14The authors of [49] take the closure in B(X x X) instead of in SX X BX, but by [47,
Proposition 10.15] these closures are canonically homeomorphic, so it does not matter which of
them one uses.
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open sets F,, as in the definition of G. It follows that «a[a] is supported on the set
of tuples with diameter at most 2 max{ry, ..., r,} and is thus a well-defined element
of Cp(X).

To define 8, let first ((z, zo), (z, 1), ..., (x,x,)) € EG,, where each pair (z,x;) is
in the pair groupoid. For c e C},(X), define

(B) (&, 50), (3, 31), o (2, 2)) 5= { el - n)

Tr = To
T # X

Due to the support condition on elements of C,,(X), there exists r > 0 such that
c is supported in the set {(zo,...,x,) € X" ™! | d(z;,z;) < r for all 4,5}. One can
check using the bounded geometry condition that this implies that the closure of
the support S of Bc in EG,, n (X x X)"*! canonically identifies with the Stone-
Cech compactification of S, and thus that Sc extends uniquely to a function on the
compact open set S as it is bounded, and so a function on EG,, by setting it to be
zero outside S. We also denote (B¢ the corresponding class in Z[EG,]q-

Now, having built the maps « and 3, note that both define maps of complexes
as the face maps in both cases are given by omitting the i*" element in a tuple.
To see that they are mutually inverse isomorphisms, one computes directly that
a(B(c)) = ¢, and that B(afa]) = [a@]; we leave this to the reader. The result
follows. O

Having identified the homology groups of the coarse groupoid with a more classi-
cal object, we would now like to apply our main results and draw some consequences
for the computation of the K-theory groups of uniform Roe algebras C;¥(X) which
can be canonically identified with C*(G(X)). Since the spectral sequence (45) is
only available in the case of second countable groupoids we need to do some addi-
tional work. To this end it is useful to consider a slightly different construction of
the coarse groupoid.

Following [49, Section 2.2], let I'x denote the collection of all subsets A € X x
X such that the first coordinate map r : X x X — X and second coordinate
maps s : X x X — X are both injective when restricted to A, and such that
SUP(y yyea d(T,y) < 00. As in [49, Section 3.1], every A € I'x defines a bijection
ta : s(A) — r(A) with the property that sup,c,4)d(x,ta(x)) < 0. Every such

bijection extends to a homeomorphism ¢4 : s(A) — r(A) between the respective
closures in SX. As in [49, Definition 3.1], we write ¢(X) for the collection {¢4 |
A e T'x}, which is a pseudogroup, i.e. closed under compositions and inverses. As
in [49, Section 3.2], the coarse groupoid G(X) of X can be realized as the groupoid
of germs associated to this pseudogroup (see [49, Section 2.6] for the construction
of the groupoid of germs associated to a pseudogroup and [49, Proposition 3.2] for
the identification of the two constructions).

Now, as in [49, Section 3.3], let us say that a sub-pseudogroup &7 of ¥(X)
is admissible if Umedz = G(X). Define G, to be the spectrum of the C*-
subalgebra of Cy(G (X)) generated by {xz | ¢a € A}, and let X be the spectrum
of the C*-subalgebra of C(8X) = (*(X) generated {xz, | ¢4 € A}. The following

comes from [49, Lemma 3.3] and its proof.

Lemma 5.3. Let &7 be an admissible sub-pseudogroup of 4(X). Then the groupoid
operations naturally factor through the canonical quotient maps G(X) — G and
G(X)(O) — X, making G an étale, locally compact, Hausdorff groupoid with
base space X o7, which is moreover second countable if < is countable.

Moreover, the quotient map p : BX = G(X)©) — X, gives rise to an action of
G on BX, and there is a canonical isomorphism of topological groupoids G(X) =~
BX X Gd
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Proof. The only part not explicitly in [49, Lemma 3.3] or its proof is the second
countability statement. This follows as if & is countable, then the C*-subalgebra
of Co(G(X)) generated by {x7 | ¢4 € A} is separable. O

Lemma 5.4. Let X be a bounded geometry metric space. Then there exists a
countable admissible sub-pseudogroup of of 4(X) such that G4 is principal.

Proof. First, choose a countable admissible sub-pseudogroup &7’ of 4(X) as follows.
For each n € N, a greedy algorithm based on bounded geometry (compare the
discussion in [49, Section 2.2, part (a)]) gives a finite decomposition of {(z,y) €
X x X | d(z,y) < n} such that

{(z,y) € X x X | d(w,y) <n} =] | A"
i=1

and so that each Agn) isin I'x. Let &7’ be the sub-pseudogroup of ¢ (X) generated

by all the AZ(-"). It is countable (as generated by a countable set) and it is admissible
by construction. Given ¢ € & we can apply [42, Proposition 2.7] to decompose its
domain dom(¢) = Ag g L A1 4 L Ay L1 As 4 into disjoint clopen sets, where Ag 4
is the set of fixed points of ¢ and ¢(A; ) N A; 4 = & for i = 1,2,3. Let &7 be the
sub-pseudogroup generated by </’ and {ida, , | ¢ € &',0 <i < 4}. Then &7 is still
countable and admissible. We claim that G, is principal. So let [¢,w] € G4 such
that its source and range are are equal, i.e. ¢(w) = w. We may assume that ¢ € &7’
as there is nothing to show if ¢ was already the identity function on some clopen
set. We then have ¢[4, , = id4, , and hence [¢,w] = [id,w] as desired. O

Let us now assume that X has asymptotic dimension at most d, or equivalently
(see [24, Theorem 6.4]) that G(X) has dynamic asymptotic dimension at most
d. For each n € N, let E,, := {(z,y) € X x X | d(z,y) < n}, where the closure is
taken in X x BX. Then E, is a compact open subset of G(X). Hence using the
assumption that the dynamic asymptotic dimension of G(X) is at most d, there

exists a decomposition fX = Uén) IR Ué") of X into compact open subsets
such that for for each i € {0,...,d} and each n € N, the subgroupoid of G(X)
generated by {g € E, | r(g9),s(g) € Ui(")} is compact and open. Note that as each
Ui(") is clopen in X, each Ui(") is the closure of Vi(n) = UZ-(") n X (this follows as
clopen sets in X are in one-one correspondence with arbitrary subsets of X in this
way). Let & denote the sub-pseudogroup of 4(X) generated by &/ as in Lemma
5.4, and by {idvﬁn) |neN,ie{0,..,d}}.
Then we have the following result.

Lemma 5.5. Let X be a bounded geometry metric space with asymptotic dimension
at most d. Then there is a second countable, étale, locally compact, Hausdorff
principal groupoid G with dynamic asymptotic dimension at most d, and such that
G acts on BX giving rise to a canonical isomorphism X x G =~ G(X).

Proof. We claim that G = Gg works. Note that & is countable (as generated by a
countable set) and admissible (as it contains &7, which is admissible). Hence most
of the statement follows from Lemma 5.3. As we are only adding further identity
functions in the passage from o7 to %, we also retain principality by the same proof
as in Lemma 5.4. We only need to show that the dynamic asymptotic dimension
of G is at most d.

For each n € N, let us write [E,] for the image of F,, € G(X) under the quotient
map G(X) —» Gg. Then [E,] is compact and open: indeed, with notation as in
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the construction of &7 its characteristic function is equal to

Mn
2 XA(")’
i=1 ‘

and so in Cy(Gg) € Co(G(X)). Moreover, Gg is the union of the [E,] (as G(X) is
the union of the F,,). Hence to show that G has dynamic asymptotic dimension
at most d, it suffices to show that for each n we can find an open cover Wy, ..., Wy
of X4 such that for each i the subgroupoid G; of G4 generated by

{9 €[En] | s(g),r(g9) € Wi}

has compact closure. For this, let us take W; = Ui(n), noting that each Ui(n) makes
sense as a clopen subset of X z by construction of . Then we have a decomposition

d
Xe=| U™
i=0

coming from the corresponding decomposition of 5X. Finally, note that each G; is
contained in the image of the subgroupoid G; of G(X) generated by

(g€ Ey | s(g),(9) € U™}

under the canonical quotient map G(X) — G». As G, is compact (by choice of
the Ui(n)), and as this quotient map is continuous, we are done. O

We can now use this observation to deduce the existence of a convergent spectral
sequence also for the (non-second countable) coarse groupoid:

Proposition 5.6. Let X be a discrete metric space with bounded geometry and
finite asymptotic dimension. Then there exists a convergent spectral sequence

E;, = HY'(X)® K,4(C) = K,y (CF(X)).

Proof. By Lemma 5.5 we can write G(X) = Gx X for a principal second countable
ample groupoid G with finite dynamic asymptotic dimension. Further, we can write
BX as an inverse limit X = lim Y; of G-invariant second countable spaces Y;. Since

G is in particular amenable, it satisfies the strong Baum-Connes conjecture. Hence
(45), for each i € I, provides a convergent spectral sequence

E2, (i) = Hy(G, K,(C(Y)) = Kpio(C(Y:) 6, G).

The spectral sequence (45) is a special case of the ABC spectral sequence con-
structed by Meyer in [37, Theorem 4.3], and hence it is functorial in the coefficient
variable. Consequently, the abelian groups Eg,q(i) together with the differential
maps form a directed system of spectral sequences. Hence we obtain a spectral
sequence with E;{q = limy Eg’q(i) in the limit. Each of the spectral sequences
(Equ (1)) converges by [37, Theorem 5.1] and as explained on page 172 of [37], the
associated filtrations are functorial in the appropriate sense. Hence taking lim-
its again, we obtain an induced filtration of lim K,4,(C(Y;) %, G). Now since
E? (i) = 0 for all p > asdim(X) and all 4 € I by Theorem 3.36, the induced filtra-
tion of lim K, ,(C(Y;) %, G) is finite and hence we obtain a convergent spectral
sequence in the limit:

(46) B2, = lim Hy(G, Ky(C(¥:))) = lim Ky (C(Yi) % G).

There are canonical identifications lim; H, (G, C(Y;,Z)) = lim; H,(G x Y;) =
H,(G(X)) and by Theorem 5.2 we can identify the latter group with H(X). On
the right hand-side we have lim; K, (C(Y;) %, G) = K4 (C*(G(X))) = K. (C*(X))
and hence we are done. t
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Corollary 5.7. Let X be a bounded geometry metric space with asymptotic dimen-
sion d. Then HY(X) =0 for all n > d and H{(X) is torsion-free. Moreover,

(1) if asdim(X) < 2 and HY(X) is free, or finitely generated, then
Ko(C (X)) = Hy'(X) @ Hy' (X), and K:(C(X)) = HY'(X),

(2) if asdim(X) < 3, X is non-amenable, and HY (X) is free, or finitely gen-
erated, then

Ko(C3 (X)) = HY (X), and K1(C}(X)) = H'(X) ® Hy' (X).

Proof. The first case follows from Theorem 3.36 and Corollary 4.19 as in our earlier
examples. For (2) note that if asdim(X) < 3 then the only possibly non-zero
differentials on the E®-page are the maps dj ,, : HY*(X) — Hy'(X) for [ > 0. The

sequence converges on the F*-page and hence there are short exact sequences

0 — coker(dj o) — Ko(C¥(X)) — Hy*(X) — 0,and

0 — H'(X) — K1(C} (X)) — ker(d3 ) — 0

For a non-amenable space X the group HY(X) vanishes by [5, Theorem 3.1]. Since
HY(X) is free the result follows. O

Examples 5.8. Let I" be a countable group equipped with a left invariant bounded
geometry metric'®. Let I' act on the group /* (T, Z) of bounded Z-valued functions
on I' via the action induced by the left translation action of I' on itself. Then it
is well-known that H(T) identifies with the group homology Hy(T',¢*(T',Z)) of T
with coefficients in £*(T",Z): see for example [8, last paragraph on page 1515] (this
discusses the case of HYf with real coefficients, but the same argument works for
integer coefficients).

Now, assume that I' is a d-dimensional Poincaré duality group, for example if I"
is the fundamental group of a closed d-manifold with contractible universal cover.
Then

HY(T) ~ Hy(T,¢*(T, 7)) =~ H'(T,(*(, 7)) =~ (* (T, Z2)" ~ 7,

where the first isomorphism is the general fact noted above, the second is Poincaré
duality, the third is the definition of the zeroth cohomology group, and the fourth
is straightforward. In particular, H3(T') is free.

This discussion applies in particular if I' is the fundamental group of a closed
orientable surface. In this case I' is quasi-isometric to either the hyperbolic plane
or to the Euclidean plane, whence the asymptotic dimension of I' is two, and we
may apply the first part of Corollary 5.7 to conclude that

Ko(CH(1) = HE (D) @ Z, and K, (CH(T) = HY(D),

If moreover the underlying surface has genus at least two, then I' is non-amenable,
so HY(T) vanishes, and K(C*(I')) = Z.

The discussion also applies if ' is the fundamental group of a closed, orientable,
hyperbolic 3-manifold. In this case I' is non-amenable, and I' is quasi-isometric
to hyperbolic 3-space, so of asymptotic dimension three. We may thus apply the
second part of Corollary 5.7 to conclude that

Ko(CH(T)) = HY(T), and K, (C*(I)) =~ HY(T) @ Z.

158uch a metric exists and is essentially unique by [55, Proposition 2.3.3], for example.
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5.4. Examples with topological property (T). The HK-conjecture asserts that
for a principal ample groupoid we have abstract isomorphisms P jeN Hy4i(G) =
K;(C#(G)). If G has homological dimension 1 one might be tempted to strengthen
this conjecture and ask for the canonical maps pg and u; to be isomorphisms. Here,
we show that this strong version of the conjecture fails.

In order to exhibit the examples we need some preliminary facts about topologi-
cal property (T). Topological property (T) for groupoids was introduced in [14, Def-
inition 3.6], and we refer the reader there for the definition. Let Rg = {m, | z € G}
denote the family of regular representations of G, i.e.

ot Co(G) = B((Gr)), malf)dg = >, F(h)dng.

hEGT<g)

Then we have the following generalization of [14, Proposition 4.19].

Lemma 5.9. Let G be an ample groupoid with compact unit space acting on a
compact space X. If G has property (T) with respect to Rg then G x X has
property (T) with respect to Raw x -

Proof. Let p : X — G° denote the anchor map of the action. Let (K,c) be a
Kazhdan pair for Rg. Now let
L:={(g,2)eGxX|geK}=(GxX)n (K x X),

which is compact. We claim that L is a Kazhdan set for Rgxx. Indeed consider
the regular representation 7% : Co(G x X) — B((*(G,))) associated with an
arbitrary point z € X and let £ € £2(G,(,)) be a unit vector. Since (K, ¢) is Kazhdan
for R¢, there exists a function f € C.(G) with support in K such that || f]|; <1
and

17ty (F)E = i) (R (HEN = €,
where U : C.(G) — C(G°) is given by ¥(f)(z) = Ygece f(g). Since K is compact
we can cover it with finitely many compact open bisections Vi,...,V, and using

a partition of unity argument, we can write f = > f; where supp(f;) € V;. Then
there must be some 1 < ¢ < n such that

c
5ty (fi)6 = Tt (W (£)EN =
Using that f; is supported in a bisection one directly verifies that
W,?i@(fi) = Wgyg(m)(\:[l(fi))wz?(x)(lvi) and W(f;) = U(fi)l. v

and combining this with the previous observation, we conclude that there exists an
i such that

c
Ity (1€ = Ty (L&l = —

Now let V; x X denote the compact open set (V; x X) nG x X and let f/':= 1y, x.
Then f’ is clearly supported in L with ||f’||; < 1 and since 7G*X(f) = ﬂﬁw)(lw)

and 7G*X(U(f) = ﬂﬁw)(lr(vi)) we conclude that

I X (F)€ = (R ()] =

Hence (L, £) is a Kazhdan pair for Rgw x. O

Sla

Now let T' be a residually finite group and £ = (NV;); a sequence of finite index
normal subgroups. Let Ny, denote the trivial subgroup of I' and let m; : T' — I'/N;
be the quotient map. We denote by G the associated HLS groupoid, i.e. the group
bundle | |,y {0} I'/N; equipped with the topology generated by the singleton sets
{(¢,7)} for i € N and v € T, and the tails {(¢,7;(y)) | # > N} for each fixed vy € T
and N € N. It is well-known that this groupoid is Hausdorff if and only if for each
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v € I'\{e} the set {i € N | v € N;} is finite. This is in particular the case if the
sequence is nested and has trivial intersection.

Following a construction of Alekseev and Finn-Sell in [1] we associate a principal
groupoid to this data as follows. Let X := | |,y oy I')/Ni- Then X carries a
canonical action of the HLS groupoid G, given by left multiplication. For vV, €
F/J\/vZ let

Sh(yN;) = U mi (YNy)
i=i
be the shadow of vN; in X. Now let X be the spectrum of the smallest G c-invariant
C*-subalgebra B < ¢*(X) containing

{53; | QTGX}U{lSh(«/Ni) "YEF,ZGN}

Since B is G-invariant, X also carries an action of G, and we can form the
transformation groupoid G := G x X. As explained just after Remark 2.2 in [1],
this groupoid is principal. Moreover, X < X is a dense open G-invariant subset
with complement X \X =~ I, = lim I'/N;. Hence we obtain isomorphisms

Glx = |_| I'/N; x T/N; and Q\)?\Xgl"le‘g.

i€ENuU{o0}
The following result relies on property (7) as defined in [33, Definition 4.3.1].

Proposition 5.10. Suppose I' is a finitely generated, residually finite group and
L = (N;); is a sequence of finite index normal subgroups with property (7). Then
the following hold:

(1) G has topological property (T') with respect to the family of regular repre-
sentations in the sense of [14].
(2) The sequence

Ko(CF(9]x)) = Ko(CF(G)) = Ko(CF (G5 x))
is not exact in the middle.

Proof. Since the regular representations of G extend to C¥(G) by definition of the
reduced groupoid C*-algebra, the result follows from [14, Proposition 4.15] and
Lemma 5.9. Part (2) follows from (1) and [14, Proposition 7.14]. O

We can now provide some concrete principal ample groupoids where g is not
surjective.

Let T' = F5 and choose a nested sequence (N;); of finite index normal subgroups
in Fy with property (7) such that the associated HLS groupoid is Hausdorff.

Example 5.11. To have a concrete example of such a sequence in mind consider
the nested family (L;); of finite index normal subgroups L; := ker(SLs(Z) —
SLy(Z/5%)) of SLy(Z). Embed Fy in SLy(Z) as a finite index normal subgroup and
let N; := L; nFy. Then (NV;); is a nested family of finite index normal subgroups
of Fo with trivial intersection. Since Fy has finite index in SLy(Z) and SLy(Z)
has property (7) with respect to the family (L;); we conclude that Fs has (7) with
respect to the family (N;);.

Let us first compute the homology of the associated groupoid G. Consider the
long exact sequence in homology

e Hn(g|X) - Hn(g) - Hn(g|5(\\X) - Hn—l(g|X) o Ho(g|52\X)
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corresponding to the decomposition X=Xu )A(\X Since G|x is a disjoint union
of principal and proper groupoids, we have

H,(Glx)= @ H.(/N;xT/N;)=0foraln=>1, and

eNu{oo}

ieNu{oo} ieNu{oo}

From the long exact sequence we conclude that for all n > 2 the restriction to the
boundary induces isomorphisms

H,(G) = H,(Fs x Far).

It is a well-known fact that H, (Fy x @E) ~ H,(Fy, C(I@ﬁ, 7)) and the homology
of the free group Fy is well-known to be trivial for all n > 2. Hence H,(G) = 0 for
all n > 2. . .

Now by construction Hyo(Fe x Fap) = C(For, Z)/{f —~.f | 7 € F2) and from the
Pimsner-Voiculescu exact sequence for actions of free groups from [41, Theorem 3.5]
we obtain Ko(C(Faz) %, Fa) = C(Far, Z)/im(8) where

B:C(Far,Z)? — C(Far,Z), (fiofa) > fr—a ' fi+ fa— b\ fo

We clearly have im(8) = {(f —~.f | 7 € F2) so that after the identification above,
Lo is the identity.
Now consider the commutative diagram

Ho(Glx) Ho(Gl5 )

S

Ko(C¥(G|x)) = Ko(CE(9) — Ko(C¥(Glz x))

The top row is exact in the middle, as it is part of the long exact sequence in
homology corresponding to the open invariant subset X < X. The bottom row
however is not exact in the middle by Proposition 5.10. The map on the right hand
side is an isomorphism by our reasoning above.

We claim that the map ,ug is not surjective. Suppose for contradiction that it
was. Let z € Ko(C/*(G)) be an element which maps to zero in Ko(C¥* (Q\)?\X) but

is not in the image of iy. Since ug is surjective, we can find an element y € Hy(G)
such that ,ug(y) = x. But then by commutativity of the right hand square we
have £10(p(y)) = 0 and since i is injective we conclude that p(y) is zero and hence
y = i(z) for some z € Hy(G|x). Moreover, by commutativity of the left square we
have = = pud (y) = io(uo(2)), which contradicts our assumption that x ¢ im(ig).

Remark 5.12. At this point, it seems there are three known reasons for failure
of the HK conjecture. The first, due to Scarparo [48] is the presence of torsion in
isotropy groups. The second, due to Deeley [13] is due to torsion phenomena in
K-theory; however, Deeley’s results do not contradict the “rational” HK conjecture
one gets after tensoring with Q, analogously to the classical fact that the Chern
character is a rational isomorphism between K-theory and cohomology. The third is
exotic analytic phenomena connected to the failure of the Baum-Connes conjecture
as discussed above (this is admittedly not exactly a failure of the HK conjecture,
but it seems to us as evidence that the HK conjecture should sometimes fail when
the Baum-Connes conjecture fails). Based on these counterexamples, the following
“folk conjecture” (arrived at independently by several people) seems reasonable: if



58 C. BONICKE, C. DELL’AIERA, J. GABE, AND R. WILLETT

G is an ample, second countable groupoid with torsion free isotropy and satisfying
the strong Baum-Connes conjecture, then there are isomorphisms

K)(CHG))®Q= @ Hi(G;Q) and K (CH(G)®Q= @ Hi(G;Q).

k even k odd
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