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Abstract

In this paper we study structural and uniqueness questions for Car-
tan subalgebras of uniform Roe algebras. We characterise when an in-
clusion B € A of C*-algebras is isomorphic to the canonical inclusion
of £*(X) inside a uniform Roe algebra C*(X) associated to a metric
space of bounded geometry. We obtain uniqueness results for ‘Roe
Cartans’ inside uniform Roe algebras up to automorphism for non-
amenable spaces X with property A, and up to inner automorphism
when X has finite decomposition complexity.

1 Introduction

The aim of this paper is to study Cartan subalgebras in uniform Roe al-
gebras, and in particular to what extent the ‘standard’ Cartan subalgebra
is unique. Roe algebras associated to metric spaces were introduced in [29]
for their connections to (higher) index theory and the associated applica-
tions to manifold topology and geometry [30, 46]. The uniform variant of
the Roe algebra has since been fairly extensively studied for its own sake,
and provides an interesting bridge between coarse geometry and C*-algebra
theory.

It is natural to ask how much of the information about a metric space
is remembered by, or can be recovered from, the associated uniform Roe
algebra; this line of research was initiated by Spakula and the second au-
thor in [41]. Such rigidity questions are strongly motivated by the coarse
Baum-Connes conjecture and its variants [19, 45, [39] [13]. Roughly speaking
these conjectures predict that the analytic K-theory of the (uniform) Roe
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algebra provides a faithful model for the large scale algebraic topology of the
underlying space, i.e. they postulate that on the level of K-theory, C}(X)
retains all relevant information about X. If these conjectures have a positive
answer, one can apply powerful analytic tools (positivity and the spectral
theorem) to the study of X, and thus deduce important consequences in
topology and geometry. This latter motivation has been made particularly
stark by recent results of Braga and Farah [5], who show that possible failure
of rigidity is intimately tied to the existence of so-called ghost operators that
are also known to cause problems for the coarse Baum-Connes conjecture
(see [I8, Section 6] and [44], Sections 5-6]).

On the other hand, Cartan subalgebras have been present in the study of
operator algebras since the foundational work of Murray and von Neumann.
Indeed, the prototypical example of a Cartan subalgebra arises from Murray
and von Neumann’s group measure space construction. Reminiscent of the
semidirect product construction in group theory, given a group G acting by
non-singular transformations on a measure space (X, ), one constructs a
single von Neumann algebra L*(X, u) x G containing a copy of L™ (X, u)
and so that the induced action of G on L*(X, i) is by inner automorphisms.
Here L™ (X, uu) is a Cartan subalgebra of L (X, u) x G.

Abstracting the properties of the inclusion L*(X,u) € L*(X,pu) x G,
Vershik defined the concept of a Cartan subalgebra [37], and this was ex-
tensively studied by Feldman and Moore [I4] 15] who showed that these
subalgebras correspond to (twisted) measured orbit equivalence relations.
Thus Cartan subalgebras provide an operator algebraic framework for the
study of dynamical systems. Moreover, a major step in understanding the
range of possible group actions giving rise to the same crossed product al-
gebra involves classifying Cartan subalgebras.

Voisculescu famously showed free group factors have no Cartan subalge-
bras [38], while in the uniqueness direction, a celebrated theorem of Connes,
Feldmann and Weiss shows that injective von Neumann algebras with sepa-
rable predual have unique Cartan subalgebras up to auomorphism [I1], i.e.
if A, B are Cartan subalgebras in an injective von Neumann algebra M, then
there is an automorphism « of M with a(A) = B. In the injective setting, it
will rarely be the case that this automorphism can be taken to be inner (cf.
[15, Theorem 7]), and a major breakthrough was made by Ozawa and Popa
who gave the first example of a II; factor with a unique Cartan subalgebra
up to inner automorphism in [24]. Subsequently Popa’s deformation-rigidity
theory has been used to produce a number of striking uniqueness and non-
uniqueness results for Cartan subalgebras in von Neumann factors: see for



example [25] 36} [10, 26] 27].

Corresponding notions have been developed in the setting of C*-algebras.
Building on Kumjian’s much earlier notion of a C*-diagonal [21I], Renault
defined a Cartan pair in [28], showing that any such pair is isomorphic to
the inclusion Co(G) < C*(G, %) of the Co-functions on the unit space
GO of a twisted, étale, topologically principal groupoid (G, %) into the as-
sociated twisted groupoid C*-algebra. Such a decomposition is particularly
useful in the nuclear case, as it implies that the universal coefficient theo-
rem of Rosenberg and Schochet holds [I]. Recently, there has been growing
interest in studying general existence and uniqueness questions for Cartan
subalgebras in C*-algebras [22, [7]. In contrast to the von Neumann algebraic
setting, even very elementary C*-algebras such as dimension drop algebras
and UHF-algebras have multiple Cartan subalgebras [3, 2]. One key differ-
ence is that separable measure spaces are readily classified, while compact
metrisable spaces are not. Indeed every non-atomic Cartan subalgebra in
a von Neumann algebra with separable predual is abstractly isomorphic to
L*([0,1]). In the references above the spectrum is used to distinguish Car-
tan subalgebras. So in the setting of C*-algebras one should really only
attempt to classify Cartan subalgebras with a specified spectrum.

The key example relevant to this paper is the canonical Cartan subalge-
bra in a uniform Roe algebra. If ' is a countable group, the uniform Roe
algebra C(I") is the reduced group C*-algebra crossed product ¢*(I') %, I,
where the action is by left translation. Thus uniform Roe algebras have a
mixed C*-algebraic (from the reduced crossed product) and von Neumann
algebraic (from ¢*) identity, which suggests they are a good candidate for
pushing uniqueness of Cartan results into the C*-world. The subalgebra
¢*(T") provides a canonical Cartan subalgebra inside C(I'). More gener-
ally, when X is a metric space of bounded geometry, ¢*(X) is a Cartan
subalgebra of C(X); this corresponds to the description of C(X) as a
groupoid C*-algebra due to Skandalis, Tu, and Yu, [35].

Our aim in this paper is to study the following questions.

e What form can general Cartan subalgebras in a uniform Roe algebra
take? This could mean what isomorphism type as an abstract C*-
algebra, or it could mean the more refined spatial theory of how a
Cartan subalgebra can be represented on £2(X).

e When does an abstract Cartan pair B € A come from a uniform Roe
algebra?

e To what extent is the canonical Cartan subalgebra in a uniform Roe
algebra unique? Here uniqueness might mean up to automorphism or



more strongly up to inner automorphism, and might refer to unique-
ness among some class of Cartan subalgebras satisfying additional con-
ditions.

We address the first question in Section [2] where we work in the general-
ity of C*-algebras between the compact and bounded operators on a Hilbert
space. Specialising our results to uniform Roe algebras we obtain the fol-
lowing proposition (which is a combination of the more general statements

Theorem and Proposition .

Proposition A. Let X be a countably infinite metric space of bounded
geometry. Then any Cartan subalgebra B < C;(X) is non-separable and
contains a complete family of orthonormal projections for (?(X).

While Cartan subalgebras in uniform Roe-algebras must be non-separable,
they do not have to be abstractly isomorphic to ¢, and even relatively
straightforward metric spaces admit Cartan subalgebras with exotic spec-
tra. This is the subject of Section

Thus, and as expected in the C*-setting, we must impose additional
structure such as spectral data in order to recognise the canonical Cartan
subalgebra amongst all possible Cartan subalgebras of a uniform Roe alge-
bra. We explore this in Section [, abstracting the following key features of
the inclusion ¢*(X) < C*(X) into the concept of a Roe Cartan pair (see
Definition :

e containment of the compacts as an essential ideal;
e the Cartan subalgebra is abstractly isomorphic to ¢*(N);

e countable generation of the containing algebra over the subalgebra
(“co-separability”).

Such Cartan pairs can only arise from canonical Cartan subalgebras in uni-
form Roe algebras.

Theorem B. Let B < A be a Roe Cartan pair. Then there exists a
bounded geometry metric space Y such that for any irreducible and faith-

ful representation of A on a Hilbert space H there is a unitary isomorphism
v:2(Y) — H such that

v*Bv =4*(Y) and v*Av=CI(Y).

When the algebra A above is already a uniform Roe algebra associated to
a metric space X, then it is natural to ask how X and the space Y produced



by the previous theorem are related. In the presence of Yu’s property A
[46] it follows from the rigidity theorem of Spakula and the second named
author, [41] that X and Y are coarsely equivalent.

Corollary C. Let X be a metric space with bounded geometry and Yu’s
property A. Then if B < C}(A) is a Roe Cartan pair, the bounded geometry
metric space associated to this pair by Theorem [B is coarsely equivalent to
X.

The hypotheses of the above theorem apply broadly. Say for example X
is a finitely generated discrete group I' equipped with some choice of word
metric. Then X has property A if and only if C}(X) is nuclear, if and
only if I" is exact in the sense of Kirchberg and Wassermann [20], as shown
in [23]. The class of exact groups is very large, including for example all
linear groups, all groups with finite asymptotic dimension, and all amenable
groups; see [43] for a survey.

We now turn to uniqueness results for Cartan subalgebras of Roe al-
gebras. Any Cartan subalgebra of a uniform Roe algebra conjugate by an
automorphism to the canonical Cartan must be a Roe Cartan, so we can
only ask for uniqueness for Roe Cartans. Using results of Whyte [42], we
can obtain uniqueness up to automorphism whenever the space X has Yu’s
property A and is non-amenable in the sense of Block and Weinberger [4]
(when X is the metric space associated to a finitely generated group, non-
amenability is precisely failure of amenability of the group [31, Chapter 3]).
In particular, the following corollary (proved in Section [5)) applies to exam-
ples like non-abelian free groups, non-elementary word hyperbolic groups,
and lattices in higher rank semi-simple Lie groups.

Corollary D. Let X be a countable metric space of bounded geometry,
which has Yu’s property A and is non-amenable. Let B < C¥(X) be a Roe
Cartan subalgebra. Then there is a x-automorphism o of C;(X) such that
a(f*(X)) = B.

Finally we turn to the strong form of uniqueness up to inner automor-
phism. Theorem[E]is the central result of the paper. It uses both Proposition
[A] and Theorem [B] above as ingredients in its proof. Other key ingredients
include the rigidity results from [41], recent work of Spakula and Tikuisis
[40] which provides a criterion for detecting when an operator lies in a uni-
form Roe algebra under the hypothesis of finite decomposition complexity
(FDC), the operator norm localisation property of [8], and results of Braga



and Farah [5]. Finite decomposition complexity was introduced by Guent-
ner, Tessera, and Yu in the course of their work on the stable Borel conjec-
ture [16]. This is a fairly general condition, encompassing all spaces of finite
asymptotic dimension, all word hyperbolic groups, all elementary amenable
groups, and all linear groups (see [I7]). The only known groups without
FDC are again the Gromov monsters, and there are no known examples of
spaces with property A that do not have FDC.

Theorem E. Let X be a bounded geometry metric space with finite decom-
position complexity. Let B < C}(X) be a Roe Cartan subalgebra. Then
there is a unitary operator u € C(X) such that uBu* = {*(X).

It is reasonable to think of Theorem [E] as stronger than Corollary
There are many examples where Theorem [E] applies but Corollary [D] does
not (e.g. all elementary amenable groups), and it gives a stronger conclusion
(uniqueness up to inner automorphism rather than just automorphism).
Nonetheless, it is conceivable that there are examples where Corollary
applies and Theorem [E] does not; moreover, Corollary [D] is easier to prove.

It seems plausible to us that Theorem [E] will fail without some assump-
tion on X, due to the well-known exotic analytic properties of uniform Roe
algebras outside of the property A setting; see for example [33] and [32]. We
would be very interested in any progress towards the construction of exotic
examples, or in showing that they cannot exist.
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2 Cartan subalgebras of C*-algebras containing the
compacts
Our aim in this section is to prove some general structural results about

Cartan subalgebras in C*-algebras that contain the compact operators. We
begin by recalling the definition of a Cartan subalgebra from [28§].



Definition 2.1. Let A be a C*-algebra. A Cartan subalgebra of A is a
C*-subalgebra B < A such that:

(i) B is a maximal abelian self-adjoint subalgebra (MASA) of A;
(ii) B contains an approximate unilﬂ for A

(iii) the normaliser of B in A, defined as
N4(B):={a€ A|aBa* Ua*Ba < B}

generates A as a C*-algebra;
(iv) there is a faithful conditional expectation F : A — B.

A Cartan pair is a nested pair B € A of C*-algebras such that B is a Cartan
subalgebra of A.

For later purposes we make the following definition.

Definition 2.2. We say that a Cartan subalgebra B of A is co-separable if
there is a countable subset S of AE| such that A = C*(S, B).

We need the following routine fact.

Lemma 2.3. Let A < B(H) be a concrete C*-algebra containing the com-
pact operators on H, and let B < A be a maximal abelian subalgebra. Then
any mintmal projection in B is rank one.

Proof. If p € B is minimal and not rank one, then there exists a rank one
projection ¢ € A with ¢ < p. However, ¢ commutes with B = pB® (1 —p)B,
a contradiction. O

Lemma 2.4. Let A € B(H) be a concrete C*-algebra containing the com-
pact operators on H. Let B € A be a maximal abelian subalgebra, equipped
with a conditional expectation E : A — B. Then for any compact operator
a€ A, E(a) is also compact.

Proof. Tt suffices to show that E(e) is compact for any rank one projection
e on H, which we fix from now on. First, we establish the following claim,
called (*) in the rest of the proof: there cannot exist A > 0 such that for any
N € N there are positive and mutually orthogonal contractions by, ...,byx in
B such that |[b;E(e)b;| = A for each i. Indeed, if such a A > 0 exists, then

'We will mainly be interested in the case that A is unital, in which case condition (ii)
is automatic: indeed condition (i) implies that B contains the unit of A.
*Equivalently, of N4 (B).



find by, ...,by with the properties above. Let Tr : B(H); — [0, 0] be the
canonical unbounded trace. Then we have that

N N N
Tr< Z biebi) = Tr( Z b?e) Z b?
i=1 i=1 i=1

where the last inequality follows as mutual orthogonality of the b; gives
I ZZJL b?| = suplY, |b?|, and this is at most one as each b; is a contraction.
On the other hand, using that E is a conditional expectation (so in particular
contractive) and that the b; are in B, we have that

< Tr(e) =1, (2.1)

[biebi|| = [ E(biebi)|| = [[biE(e)bi] = A (2.2)

for each i. Combining this with (2.1)) and using || - |1 for the trace norm, we
have

N N N
1> Tr(Z biebi) = M bietils = Y Jbichi| = N, (2.3)
i=1 i=1 i=1

As N was arbitrary, this is impossible, proving claim ().

We next claim that for any A > 0, the intersection of the spectrum of
E(e) and [A,0) must be finite. Indeed, if not, then fix A > 0 such that
the intersection of the spectrum of E(e) with [\, 00) is infinite. For any N,
there are continuous functions ¢1,...,¢nx : R — [0, 1] supported on [\, o),
with mutually disjoint supports, and with the property that each ¢; attains
the value 1 somewhere on the intersection of the spectrum of E(e) and
[A,00). Setting b; := ¢;(E(e)) the functional calculus gives us that the b;
are positive, mutually orthogonal contractions with ||b; E(e)b;| = X for each
i and so we have contradicted claim ().

Thus the spectrum of E(e) is a countable subset of [0, o), and the only
possible limit point is 0. Given A > 0 in this spectrum, let p := x5} (E(e)) €
B be the associated spectral projection. Suppose by way of reaching a
contradiction that p has infinite rank. By Lemma p is not a minimal
projection in B so has a proper subprojection p; € B. By replacing p; with
p — p1 if necessary we may assume pp is also infinite rank. Repeating this
argument we obtain a strictly decreasing infinite sequence p = p; = ps > - --
of infinite rank projections in B. Set b; := p; — p;—1. Then for any ¢, we
have

1 1
b;E(e)b;| = =||bipb;| = —. 2.4
sl > 5 [oipbil = 5 (24)
This contradicts claim (x). Therefore p is finite rank, and hence E(e) is
compact. ]



Lemma 2.5. Suppose that A < B(H) is a concrete C*-algebra containing
the compact operators on H. Let B < A be a Cartan subalgebra. Then B
contains a complete orthogonal set of rank one projections.

Proof. Write E : A — B for the faithful conditional expectation that comes
with the fact that B is Cartan in A, and let e be a rank one projection. Then
E(e) is compact by Lemma[2.4] and non-zero as E is faithful. It follows from
the spectral theorem that B contains a non-zero finite rank projection, and
thus a minimal non-zero finite rank projection, say ¢, which must be rank
one by Lemma [2.3

Let now S be the collection of all rank one projections in B, which is
non-empty by the above argument. As B is commutative, the projections
in S are all mutually orthogonal, and thus the sum p := qus q converges
strongly to a non-zero projection. Note that as p is a strong limit of operators
in B, it commutes with everything in B. We claim that in fact p commutes
with everything in the normaliser of B in A. Indeed, if not, there exists
a € Na(B) such that pa(l — p) # 0. The definition of p thus gives a rank
one projection ¢ in B such that ga(1—p) # 0. Hence (1 —p)a*qa(1—p) # 0;
note that this operator is positive and rank one, so a non-zero scalar multiple
of a projection, say r. As a normalises B, the element r is in the cut-
down (1 — p)B, which is a commutative C*-algebra as p commutes with
B. Now, r isin A as it is rank one and A contains the compacts. Hence
it is in B as this C*-algebra is maximal abelian in A and as r commutes
with B € pB @® (1 — p)B. However, r is orthogonal to p, a contradiction.
Therefore p commutes with A4 (B).

Finally, as B < A is a Cartan subalgebra, N4(B) generates A as a C*-
algebra, and thus p commutes with everything in A. As A contains the
compacts, this forces p = 1. ]

Recall that if S is a subset of B(H), then C*(.S) denotes the C*-algebra
generated by S, and W*(S) the von Neumann algebra generated by S.

Theorem 2.6. Let A < B(H) be a concrete C*-algebra that contains the
compact operators K(H), and let B < A be a Cartan subalgebra. Then there
exists a complete orthogonal set of rank one projections {p;}icr on H such
that

C*({pitier) € B < vN({pi}icr)-

Proof. Let {p;}ier be the complete set of orthogonal rank one projections
in B given by Lemma As B is a C*-algebra, it contains C*({p;}).
As W*({p;}) is the maximal abelian =-subalgebra of B(H) that contains
C*({p;}), B is contained in W*({p;}). O



Note that the conclusion of Theorem [2.6] on the structure of B is best
possible with those assumptions. Indeed, if {p;}cs is a complete orthogonal
set of rank one projections on H, and B is a C*-subalgebra of B(H) with

C*({pi}) = B < W*({pi}) (2.5)

then A := B + K(H) clearly contains B as a Cartan subalgebra.

On the other hand, we have the following observation giving some suffi-
cient conditions for B to equal W*({p;}), which will play a role later in the
paper.

Proposition 2.7. Let B < B(H) be a concrete C*-algebra such that there
is a complete orthogonal set {p;}icr of rank one projections such that

C*({pi}) = B < W*({pi}). (2.6)

Assume moreover that either:

(i) B is closed in the strong topologﬁ' or
(i) B is abstractly =-isomorphic to £*(X) for some set X.

Then B equals W*({p;}).

Proof. As the strong closure of C*({p;}) equals W*({p;}), part (i) is clear.
For part (ii), let ¢ : B — ¢*(X) be an abstract =-isomorphism. As ¢ must
take the family {p;}ie; of minimal projections in B bijectively to the family
{gz}zex of minimal projections in ¢*(X), it induces a bijection f: I — X.
Note that if S S I and qf(g) = Dl qf(;) i the corresponding projection
in /*(X), then d)‘l(qf(s)) is a projection on H that commutes with the set
{pi}ier, and that satisfies

&mem={? ig- (2.7)

This is only possible if qb_l(qf(g)) equals the projection pg := >, _gp; on
H. Hence pg is in B, and as S was arbitrary, B contains all projections in
W*({pi}). The projections in W*({p;}) span a norm-dense subset, however,
so this gives us B = W*({p;}). O

3When B is contained in a C*-algebra A < B(H) containing the compact operators
as in Theorem [2:6] this can be defined in a representation independent way using that
b, — b strongly if and only if b, f — bf in norm for each finite rank f € A; this can be
made sense of in a representation independent way as the finite rank operators are the
unique minimal algebraic ideal of A.
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The next lemma adds another assumption on A in order to limit the
structure of B a little more. In order to state it, we introduce a little
more notation. We will work on a separable Hilbert space, so any complete
orthogonal set of projections can, and will, be indexed by N. With this
additional assumption we use the notation of Theorem and let {pp}_,
be as in the conclusion, so in particular

C*({pn}) = B < W*({pn}). (2.8)

Assume moreover A is unital, whence B is too. Then the spectrum of B
is a compact Hausdorff set B that contains a copy of N as an open, dense,
discrete subset; indeed, this follows as C*({py}) is an essential ideal in B,
and the spectrum of C*({p,}) identifies with N. Write By := B\N, so that
By, is a closed subset of B; by density of N in B, note that every point in
]EA?OO is a limit of a net from I. Since a uniform Roe algebra satisfies the
conditions on A below, the following result also proves Proposition [A] from
the introduction.

Proposition 2.8. Let A < B(H) be a concrete unital C*-algebra contain-
ing the compact operators, and assume that H is infinite dimensional and
separable. Let B € A be a Cartan subalgebra, with

C*({pn}) € B < W¥({pn}). (2.9)

as above. Assume moreover that there is another complete orthogonal set of
projections {qn }_y for H such that A contains W*({qn}). Then no element
of By is the limit of a sequence from N. In particular B is non-separable.

The assumptions of the lemma apply if A is the uniform Roe algebra
of a bounded geometry metric space (see Definition below), and B any
Cartan subalgebra of A. One can think of the lemma as saying that the
topology of the spectrum of B must be fairly complicated, and in particular
B cannot be separable. Unfortunately, it does not imply that B is all of £*
as we will see in Example below.

Proof. We will identify B =Nu éw, and write {pp}nen for the complete
orthogonal set of projections that we started with; in terms of the spectrum
B=Nu éoo of B, p, can be thought of as the characteristic function of the
singleton {n}. For each r € N, let Q, € W*({q,}) be defined by

Qri=q +: g (2.10)

and set Qg = 0.

11



Assume for contradiction that there is some point x4 € éoo and a se-
quence in N that converges to it. We will iteratively construct strictly in-
creasing subsequences (n)5_; and (my){, of the given sequence converg-
ing to xo, a strictly increasing sequence (r1);2; in N u {0}, and a sequence
(er)L, of mutually orthogonal finite rank projections in W*({¢;}) with the
following properties:

(i) [|pn,€xpn,l > 3/4 for all k;
(ii) [|pmgejpm, | < (1/4)277 for all k and all j € {1,...,k};
(iii) er <1 —Qy, for all k;

(iv) |pm; Qrpm;| > 3/4 for all j e {1,....k — 1}.

Indeed, to start the process off with k = 1, set r; = 0, so Q,, = 0. Let ng
be the first element of the given sequence that converges to x+, and choose
e1 = Q, where r is large enough that (fi)) holds. Now choose m; large enough
in the given sequence so that holds. Note that and are vacuous.
Now, say we have constructed the desired elements up to stage k. Choose
rg.1 > T large enough so that holds. Choose ng;1 > ny far enough
along the sequence converging to xo so that |pp, , Qr Py, | < 1/4. Then
choose eg41 so that (i) and hold. Finally, choose my1 > my far enough
along the given sequence so that holds. It is not too difficult to show
that the resulting sequences have the claimed properties.

Now, given the above, set e := Zle er, which converges strongly to
an element of W*({g;}). Let E : A — B be the conditional expectation.
Thinking of elements of B as functions on N, we have that E(e) is the
function f : n — |ppepn|. On the one hand, note that (i) gives

|pry,epn | = Py expn, || > 3/4 (2.11)
for each k. On the other hand, we have

k 0
Ipmgepm|l < D IPmieipmil + 1Pmi (D €5)pml
j=1 7j=k+1
(i), (i) 1
< Z + Hpmk(l - Q"'k+1)pmk H (2'12)
(iv) 1
< 5 (2.13)

Now, as both sequences (ng) and (my) converge to o, we have that

f(xe) = lim f(ng) = lim |py,epn,| = 3/4 (2.14)
k—o0 k—o0

12



from (2.11]), and that

f(ze) = lm f(my) = lim ||pp, epm, | <1/2 (2.15)
k—0o0 k—0o0
from (2.12]), giving us the desired contradiction. O

3 An exotic Cartan subalgebra of a uniform Roe
algebra

In this short section we give an example of a Cartan subalgebra of a uniform
Roe algebra with ‘exotic’ spectrum. We begin by recalling the definitions of
bounded geometry metric spaces and the associated uniform Roe algebras.

Definition 3.1. A metric space X has bounded geometry if for all r > 0
there is n,- € N such that all balls in X of radius r have at most n, elements.

A function f : X — Y between metric spaces is uniformly expansive if
for all » > 0 we have that

sup dy (f(z), f(y)) < .

zyeX, dx (zy)<r

A function f : X — Y is a coarse equivalence if it is uniformly expansive,
and if there is a uniformly expansive function g : Y — X such that

supdx (z,9(f(z))) <o and supdy(y, f(9(y))) < ©.

zeX yeY
Metric spaces X and Y are called coarsely equivalent when there exists a
coarse equivalence f: X —» Y.

Definition 3.2. Let X be a bounded geometry metric space, and let a
be a bounded operator on £2(X), which we think of as an X-by-X matrix
a = (azy)zyex. The propagation of a is

prop(a) := sup{d(z,y) | azy # 0} € [0, 0].

Let C,[X] denote the collection of bounded operators on ¢?(X) with finite
propagation; this is a =-algebra. The uniform Roe algebra of X, denoted
C(X), is the closure of C,[X] for the operator norm.

As a special case, note that if X is a finitely generated group I' equipped
with some word metic, then C;f(X) is naturally =-isomorphic to ¢*(I") %, I';
this is proved for example in [6, Proposition 5.1.3].

13



The uniform Roe algebra of a bounded geometry metric space always
contains the compact operators K(¢2(X)), as an essential ideal (note that
KC(£2(X)) is also the unique minimal C*-ideal), and hence fits into the frame-
work of the previous section. Moreover, the subalgebra ¢*(X) of multipli-
cation operators is a Cartan subalgebra (we prove this in more generality
in Proposition below); hence in particular Proposition applies to
uniform Roe algebras.

Example 3.3. Let
X ={n*|neN} (3.1)

be the space of square numbersﬂ equipped with the metric it inherits as a
subspace of N. Note that we have

CHX) = 17(X) + K(*(X)). (3.2)

This follows as the points of X get more and more widely spaced, whence
the only finite propagation operators are those of the form ‘diagonal plus
finite rank’.
Now, for each n € N, let &, = %(5(%_1)2 +6(2ny2) and 1, = %(5(%_1)2—
d(2n)2), SO the set
S:={&,nn | ne N} (3.3)

is an orthonormal basis for £2(X). Let ¢*°(S) be the corresponding C*-
algebra of multiplication operators on £2(X), and let B = C*(X) n £*(9).
Thinking of ¢*(X) as decomposed into a direct sum of two dimensional
subspaces

C(X) = @D A({(2n - 1)% (20)%)) (3.4)

n=1

operators in £*(5) look like

I (ZZ 2’;) , (3.5)

n=1

where (a,) and (by,) are arbitrary bounded sequences. Elements of B look
like this, except now we must also ask that b, — 0 as n — oo (it is straight-
forward to check that this is a necessary and sufficient for such an operator
to be in C}(X)).

We claim the algebra B is a Cartan subalgebra of C;(X). This follows
from the computations below.

4There is nothing particularly special about the sequence (n2) here: any strictly in-
creasing subsequence (an) of N such that |an+1 — an| — o0 as n — o would work just as
well.
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(i) It is maximal abelian: The algebra B contains Cy(S). The commu-
tant of Co(S) in B(£*(X)) is £*(S), and thus B contains everything in
C#(X) that commutes with Cy(S), and in particular contains every-
thing that commutes with B itself.

(i) The normaliser N (x)(B) generates Cj(X): Indeed, thinking of op-
erators in B as matrices as in (3.5)) above, we see that the normaliser
of B in C}(X) contains all products of matrices of the form

cn 0 dp, 0
H(O Cn) and H(O _dn>, (3.6)
n=1 n=1

where (¢,), (d,) are arbitrary bounded sequences. Clearly then the
C*-algebra generated by the normaliser Nex(x)(B) contains £2(X).
It also straightforward to see that it contains K(¢*(X)), and so by

(3.2) is all of C¥(X).

(iii) There is a faithful conditional expectation C(X) — B. Let E :
B(#%(X)) — £*(S) be the canonical conditional expectation, which is
faithful. We need to check that E takes C¥(X) onto B (and not onto
some larger subalgebra of £*°(S)). Looking at line above, E takes
K(#2(X)) to Co(S) < B, so it suffices to check that E({*(X)) € B.
With respect to a matrix decomposition as in above, an arbitrary
element of ¢ (X) looks like

L[l (C‘O” bi) (3.7)

for some bounded sequences (a,) and (b,). The computation of the
image of this element under F may be performed one matrix at a time.
Doing this, with E,, the restriction of E to the bounded operators on
2({(2n — 1)2,(2n)?}), we see that

(5 21006 230
LG ai

- ) (3.8)

[\D\)—‘

and this is certainly in B.
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Remark 3.4. The Cartan subalgebra B above is co-separable in the sense of
Definition[2.2] and indeed we do not know if it is possible for the uniform Roe
algebra of a bounded geometry metric space to admit a Cartan subalgebra
that is not co-separable. To see co-separability of B, let Sy be a countable
subset of Nex(x)(B) that generates K(#%(X)), and with our usual matrix
conventions, let s be the element

si= ] <(1) _01> (3.9)

of £*°(X), which normalizes B. Set S = Sp u {s}. We claim that S and B
together generate C;f(X). By assumption on Sp and line (3.2)), it suffices to
show that the C*-algebra generated by s and B contains ¢*(X). Let then

L[l (“O” bi) (3.10)

be an arbitrary element of /*(X), and note that

a, 0\ 1 an + by 0
H(o bn>_2n< 0 an—l—bn>
neN neN

1 an — by, 0 )
+32H< 5 an_bn) , (3.11)

neN

as the two products of matrices on the right hand side are in B, we are done.

Remark 3.5. Recall from [21] and [28, Page 55] that a Cartan subalgebra
B € A in a C*-algebra is a C*-diagonal if every pure state on B extends
uniquely to a (necessarily pure) state on A. The usual Cartan subalgebra
¢*(X) in a uniform Roe algebra C(X) is a C*-diagonal, as is not difficult to
check directly (this also follows from [28| Proposition 5.11], and the fact that
the underlying coarse groupoid is principal). The exotic Cartan subalgebra
of Example is not a C*-diagonal, however. To see this, fix a non-principal
ultrafilter w on N, and note that the state on B defined on matrices as in

line (3.5)) above by
an, by, .
(G o) tme. o1

n=1

is pure: indeed, the fact that the sequence (b,) of off-diagonal entries is in
Co(N) implies that it is a *-homomorphism. However, it admits two different

16



pure extensions to C;(X): indeed, if a € C(X) has diagonal entries given
by a,,2 2, these can be defined by

a — hm a(anl)Q (2n71)2 and a — hIIl a(2n)2 (Zn)Q. (313)

We do not know if there exist uniform Roe algebras that admit exotic C*-
diagonals.

4 Abstract coarse structures and Roe Cartan sub-
algebras

Our goal in this section is to prove that C*-algebras containing the com-
pact operators as an essential ideal and a co-separable Cartan masa which
is abstractly isomorphic to £*(N) are essentially the same thing as bounded
geometry metric spaces (considered up to bijective coarse equivalence). Ac-
tually, we work a little more generally than this, using the language of
abstract coarse structures as this seems to give slightly cleaner results.

The following definition is due to Roe [31, Chapter 2].

Definition 4.1. Let X be a set. A coarse structure on X is a collection £
of subsets of X x X such that:

(i) for all E,F € £ the union E U F is in &;
(ii) for all E, F € &, the composition

EoF :={(z,z) e X x X |Jy e X with (x,y) € F and (y,z2) € F}
(4.1)
isin &;
(iii) for all E € &, the inverse

El:={(z,y)e X x X | (y,z) € E} (4.2)

is in &;
(iv) forall E€e &, if F € E, then F € &;
(v) & contains the diagonal {(z,z) e X x X |z € X}.

A set X together with a coarse structure £ is called a coarse space; when it
is unlikely to cause confusion, we will leave £ implicit, and just say that X
is a coarse space.

A coarse space (X, E) is:
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(a) of bounded geometry if for all E € &, the cardinalities of the ‘slices’
E, ={(y,z)e F|ye X} and E* := {(z,y) e E |y € X} (4.3)

are bounded independently of x;
(b) connected if for every x,y € X, £ contains {(x,y)};

(c) countably generated if there is a countable collection S of subsets of
X x X such that £ is generated by S (i.e. such that £ is the intersection
of all coarse structures containing S).

The basic example of a coarse structure is the bounded coarse structure
on a metric space (X, d), defined by

Eq:={FE < X x X | d|g is bounded} (4.4)

(it is straightforward to check that this is a coarse structure). A coarse
space (X, &) is metrisable if there exists a metric on d on X such that &
is the associated bounded coarse structure. Note that the bounded coarse
structure associated to a metric has bounded geometry if and only if the
metric does in the usual sense of Definition [3.1] above. The bounded coarse
structure is connected and generated by the countably many sets

E, :={(z,y) e X x X | d(z,y) < n}, (4.5)

for n € N, ¢ = 0. Conversely, one has the following result: see [31, Theorem
2.55] for a proof.

Theorem 4.2. A coarse space X is metrizable if and only if it is connected
and countably generated. L]

The following combinatorial lemma (a standard ‘greedy algorithm’ ar-
gument) will be used several times below.

Lemma 4.3. Let (X,€) be a bounded geometry coarse space and E be an
element of £. Then there exists N € N and a decomposition

N
E = |:|1 E, (4.6)

of E into disjoint subsets such that for each x € X and each n, there is at
most one element in each set

E,n{(z,y) |ye X} and E,n{(y,z)]|ye X} (4.7)

(in words, E,, intersects each row and column in X x X at most once).
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Proof. Set Ey to be the empty set. Having chosen disjoint subsets Fy, E1, ..., By,
of E, set E,+1 to be a maximal subset of E\(E; U --- U E,) that intersects
each row and column at most once. We claim that for some N, FE, is
empty for all n > N. Indeed, if not, then for every N, there is some el-
ement (zy,yn) in Ey, and in particular that has not appeared in any of
Eq, ..., En_1. Maximality of these sets implies that for each n € {1,..., N—1}
there is either x,, such that (x,,yy) is in E,, or y, such that (zy,y,) is in
E,. This implies that at least one of the sets

{(zy,y) e E|ye X} or {(z,yn)e E|xe X} (4.8)

has cardinality at least |(N — 1)/2|. As this happens for all N, this contra-
dicts that (X, ) has bounded geometry. O

We now turn to bounded operators. We start with a basic class of
operators.

Definition 4.4. Let V = {&;};c; be an orthonormal basis for a Hilbert space
H. For any bounded operator a on H, let a;; = ({;, a;) be the corresponding
matrix entries. We will say that a matrix (a;j), or the operator defining it
(if one exists) is supported on a single diagonal if for each i there is at most
one j such that a;; # 0, and at most one k such that ax; # 0 (in words, a
has at most one non-zero matrix entry in each row and column).

The following elementary lemma is well-known.

Lemma 4.5. Let V = {&;}icr be an orthonormal basis for H, and let {p; }icr
be the corresponding complete set of orthogonal rank one projections.

(i) Let B < B(H) be a C*-algebra such that
C*({pi}) = B = W*({pi}). (4.9)

Then if a € B(H) normalises B, we have that a is supported on a single
diagonal with respect to the basis V.

(1t) Let (a;j)ijer be a matriz supported on a single diagonal (not necessar-
ily coming from a bounded operator). Then matriz multiplication by
(aij) defines a bounded operator a if and only if its matriz entries are
uniformly bounded, and in this case, |al| = sup, ; |a;;]|.

Proof. For each i € I and a € B(H), the operators ap;a* and a*p;a have
matrix entries given by

(apia™) i = ajiar; and (a*p;a)jr = Gija (4.10)
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respectively. As B € W*({p;}), in order for these operators to be in B for
some fixed ¢ the entries can only be non-zero if j = k, which can only happen
if @ has at most one non-zero entry in each row and column.

For part (ii), assume a is supported on a single diagonal. Note that
ai = ay(i)i&(), where t(i) is the unique element of I such that a); # 0, or
a&; = 0 if no such (i) exists. Moreover, if i # j, then a&; is orthogonal to
a&;. Hence for any element v = >}, _; \;&; of H,

D agidiv P < sup ag P AP

iel (i) exists i€l t(i) exists i€l

sup Jag; | v]*. (4.11)
7’7]

Jav]?

This gives [la| < sup; ;|a;;|; the opposite inequality follows as [a] = [(&;, a;)|
for any 1, j. O

As a special case of Definition we equip ¢?(X) with its canonical
orthonormal basis {0;}.ex, so the matrix entries of a bounded operator
a on (%(X) are ayy = {8;,ad,y. It is routine to extend the definition of
uniform Roe algebras from metric spaces to general coarse spaces of bounded
geometry; we set out the details below.

Definition 4.6. Let (X,&) be a coarse space. An operator a € B(/2(X))
has finite propagation if

{(x,y) e X x X | azy #0} € &. (4.12)

From the axioms for a coarse structure, it is not difficult to check that
the collection of finite propagation operators is a =-algebra, leading to the
following definition.

Definition 4.7. Let (X,€) be a coarse space. Let C,[X;&] denote the
x-algebra of finite propagation operators on B(¢£2(X)) as in Definition
The wuniform Roe algebra of X, denoted C;(X;E), is the norm closure of
CulX; €]

Note that if a coarse space (X, &) is metrisable, then C}(X;E&) is the
usual uniform Roe algebra associated to any choice of metric d on X which
induces £. Condition in Definition above implies that we always
have that the multiplication operators ¢*(X) < B(¢?(X)) are contained in
CulX;&].

The following special class of operators in C,[X; E] will be useful for us.
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Definition 4.8. Let (X, &) be a bounded geometry coarse space. For any
E e &£ with at most one entry in each row and column, define a matrix (vfy)
by the formula

E . _ 1 (l‘,y)EE
Vgy .—{ 0 (z.9)¢ E ° (4.13)

Let vF denote the unique bounded operator on ¢?(X) associated to this
matrix by Lemma [£.4]

We now have the following useful structure lemma for C(X;€) that
holds whenever X has bounded geometry.

Lemma 4.9. With notation as in Definition @ v¥ is a partial isometry
in Cyu[X;&] that normalizes £*(X). Moreover, if S € & is a collection of
subsets of X x X, each with at most one entry in each row and column, and
that generates the coarse structure, then the collection

(WP | Ee S} ul®(X) (4.14)

generates Cy[X;E] as a =-algebra (and therefore generates C(X;E) as a
C*-algebra).

Proof. That each v¥ is a partial isometry in C,[X; £] follows from straight-
forward computations, and each normalises {*°(X) by Lemma part (i).
Let now a be an arbitrary element of C,[X;&], so the set E = {(z,y) €
X x X | agy # 0} is in £. Bounded geometry and Lemma give us a
decomposition

N
E=|]|Ex (4.15)
n=1

with the property that each F,, has at most one element in each row and
column. For each n € {1,..., N} define f, € {*(X) by

| azy 3Jye X such that (z,y) € E,
fnl@) = { 0 otherwise, (4.16)
this being well defined by the hypothesis on F,.
Then one checks that the operator
N
D far® (4.17)
n=1
has the same matrix entries as a, and thus the two are equal. ]
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Just as in the case of metric spaces, the canonical copy of /*(X) forms
a Cartan masa in the uniform Roe algebra.

Proposition 4.10. Let (X,€) be a bounded geometry coarse structure.
Then £*(X) is a Cartan subalgebra in Cj(X;E). Moreover, if X is con-
nected, then C(X;E) contains the compact operators.

Proof. 1t is well-known that /(X)) is a unital, maximal abelian C*-subalgebra
of B(£?(X)) that is the image of a faithful conditional expectation B(£?(X)) —
(*(X), so it certainly also has these properties when considered as a C*-
subalgebra of C;(X;E&). The normaliser of {*(X) generates C;(X;E) by
Lemma completing the proof that ¢*°(X) is a Cartan subalgebra. As-
suming that X is connected, then with notation as in Definition [4.§ we get
that for any (z,y) € X x X the operator v{@¥} is in C,[X;€]. These
operators generate the compact operators, so we are done. ]

To summarise, given a connected coarse space (X,&) of bounded ge-
ometry, (*(X) < C}(X,€) is a Cartan pair with the compact operators
contained in C¥(X,£). Our main goal of this section is to prove a sort of
converse.

Definition 4.11. Let A be a unital C*-algebra containing a copy K of
the compact operators on some Hilbert space as an essential ideal, and let
B < A be a Cartan subalgebra. Let X = {p,}.ex be the setﬂ of minimal
projections in B, and for each a € N4(B) and each € > 0, define

Eoe:={(z,y) € X x X | |pzapy| = €}. (4.18)
Define £4 to be the coarse structure on X generated by the collection
{Fac|aeNa(B) and € > 0}. (4.19)

Remark 4.12. With notation as in Definition[4.11], fix a faithful irreducible
representation of X on some Hilbert space H; such a representation exists,
is unique up to unitary equivalence, and necessarily consists of an isomor-
phism K = K(H) of K with the compact operators on H (see for example
[12, Section 4.1]). As K is an ideal in A, this representation extends uniquely
to a representation of A on H, which is also irreducible, and which is nec-
essarily faithful as IC is essential in A. Identify A with its image under this
representation. We may now apply Theorem this implies in particular

5We treat X as its own index set; apologies for this abuse of notation. It is non-empty,
as we will see in Remark @
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that the set {p;},ex of minimal projections in B identifies with a complete
collection of orthogonal rank one projections on H, and that

C*({p=}) = B = W*({pa})- (4.20)

Lemma 4.13. With notation as in Definition the coarse space (X,E4)
18 connected and has bounded geometry.

Proof. Fix a representation H of A with the properties in Remark For
each x, choose a unit vector &, in the range of p,, so the collection {&,},ex
is an orthonormal basis for H. Use this basis to write operators on H as
matrices (agy)zyex as in Definition Note that |azy| = ||pzapy| for any
z,ye X.

Now, as A contains the compact operators, for any (z,y) € X x X,
the operator v{(@¥)} whose matrix has a single entry equal to one in the
(z,y)™ position and zeros elsewhere is in A, and is moreover in N4(B) by
Lemma this implies that {(x,y)} is in €4, and thus the coarse space X
is connected.

Let S be the collection of all elements E of £4 such that E has at most
one element in each row and column. Then Lemma [4.5| implies that each
Eqisin S as a ranges over N4 (B) and € over (0, ), whence S generates E4.
Note that S is closed under all the operations defining a coarse structure,
except (possibly) unions. It follows that £4 consists precisely of finite unions
of sets from .S, and thus has bounded geometry. O

Lemma 4.14. With notation as in Definition[{.11}, identify A with its image
i some representation on a Hilbert space H with the properties in Remark
. For each x € X, choose a unit vector &, in the range of py, 50 {z}zex
is an orthonormal basis of H, and define a unitary isomorphism

w: (X)) > H, §,—&. (4.21)

Consider C¥(X;E4) and its Cartan subalgebra ¢*(X) as represented on
?%(X) in the canonical way. Then v*Bv is contained in (*(X), and v* Av
is contained in C¥(X;E4).

Proof. Note that u*pu is the orthogonal projection onto the span of §,,
whence u*(W*({pz}))u = ¢*(X). Hence by line (4.20) above, uBu* <
(*(X). To see that uAu* < C(X;E,), it suffices to show that u*N4(B)u
is contained in Cj(X;E4). Let then a be an element of N4(B) and let
e > 0. Then as the matrix associated to a has at most one non-zero entry in
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each row and column, Lemma implies that the operator a(® with matrix
entries

(e) ._ ) Qay |azy| = €
A { 0 lan| <e (4.22)
is well-defined, bounded, and that the collection (a(®)).-q satisfies |a(®) —
a| — 0 as e — 0. Clearly each conjugate u*a(9u is in C*(X;E4), however,
so we are done. O

If B is abstractly isomorphic to some ¢*(I) for some set I, then we can
do better. In this case B € A is unitarily equivalent to £°(X) € C; (X, E4).

Proposition 4.15. With notation as in Lemma assume moreover
that B is abstractly isomorphic to £ (I) for some set I. Then the inclusions
u*Bu € {*(X), and u*Au < C}(X;E4) are equalities.

Proof. The fact that u*Bu = (*(X) follows from part (ii) of Proposition
To see that u*Au = C(X;E4), Lemma implies that it suffices to
show that for each a € Ny(B) and each € > 0, if E = E,, then the partial
isometry v¥ is in u* Au. Define f € £*(X) by

o ((;ny)*1 Jy € X such that |agzy| =€
fw) = { 0 otherwise ' (4.23)

this definition makes sense as Lemma [4.5|implies that the matrix underlying
a has at most one non-zero entry in each row. Noting that f € (*(X) =
uw*Bu < u*Au, we get that v¥ = fu*au is in u*Au and so the proof is
complete. O

The next definition and theorem formalise much of the above discussion.

Definition 4.16. Let A be the collection of triples (A, B, K), where A is
a unital C*-algebra, B < A is a Cartan subalgebra abstractly =-isomorphic
to ¢*(I) for some set I, and K is an essential ideal of A that is abstractly
x-isomorphic to the compact operators on some Hilbert space. Let X be the
collection of connected, bounded geometry coarse spaces (X, E).

Define correspondences

DX A (X,E) > (CHX;E),07(X), K(E(X)) (4.24)
(notation on the right as in Definition and
U:A— X, (ABK)— (X&) (4.25)

(notation on the right as in Definition [4.11]).
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Theorem 4.17. The two correspondences ® : X — A and ¥ : A — X are
well-defined. Moreover, the compositions ®oWV and Wo® are both ‘tsomorphic
to the identity’ in the following precise senses.

For ® o W: for any triple (A, B,K) € A, let H be a representation as in
Remark ' then there is a unitary isomorphism u : £2(X) — H such that

u*Au = CHX;E4), u*Bu=1I1"(X), and u*Ku=K(*(X)). (4.26)

For Wod: for any (X,€) € X, letting A = C}(X;E) and identifying the set
of minimal projections in £*°(X) with X, we have that € = E4.

Proof. The correspondence ¢ : X — A takes values in A by Proposition
The correspondence ¥ : A — X takes values in X by Lemma

The statement about the composition ® o ¥ follows immediately from
Proposition

To see the stated property for ¥ o @, we first show that £4 < £. Given
a € Nex(x,6)(€*(X)) and € > 0, find b € C,[X; €] such that [la —b] < e.
Therefore

{(2,9) | laay] = €} € {(2,9) | buy # 0} € &, (4.27)

and hence E, . € £. Therefore £4 < £.
For the reverse inclusion, let E be an arbitrary element of £. Lemma [£.3]
gives us a decomposition

N
E=|]|En (4.28)
n=1

of E into sets FE,, whose intersection with each row and column contains at
most one element. Then with the notation of Definition vEr is a well-
defined partial isometry in Nes x,¢)(¢*(X)) for each n. With the notation
of Definition we have that E, s, 1o = Ep, and thus F, is contained in
€. As this is true for each n, E is contained in £4, and we are done. L]

Finally we characterise when the coarse structure (X,€4) is metrisable
in terms of the Cartan pair B € A. First, a general lemma.

Lemma 4.18. With notation as in Lemma assume moreover that
B is abstractly isomorphic to {*(I) for some set I. Then any normaliser
a € Na(B), can be approximated arbitrarily well in norm by products fv,
where b e B and v is a partial isometry in A normalising B.

Proof. Given any normaliser ¢ € N (x ¢,)((*(X)), and € > 0, define £ =
{(z,y) € X x X : |cxy| = €} so that v¥ is a partial isometry in C(X,E4)
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normalising ¢*(X). Define

dJye X 0
flay = { G WER G ? (4.29)
0, otherwise

(the y above being unique if it exists by Lemma (1)), so that |lc— fv*| <e.
The result then transfers from (*(X) < C}(X,£4) to B < A by Proposition
4,10l [

Lemma 4.19. Let (A, B,K) and (X, &) correspond to each other under the
constructions of Definition and Theorem[{.17. Then B is co-separable
in A if and only if €4 is countably generated. In particular, B is co-separable
in A if and only if E4 is metrisable.

Proof. Suppose first that £4 is countably generated, say by E', E2,.... Then
Lemma allows us to decompose each E™ into finitely many parts

Nm
E"=| | B} (4.30)
n=1

such that each E)* only intersects each row and column at most once.
Lemma then gives us a countable set of operators {vFn | m > 1,1 <
n < Np,} that together with B =~ (*(X) generate A =~ C}(X,&). Hence B
is co-separable in A.

Conversely, suppose B is co-separable in A. Using Lemma [4.18] we can
find a countable set S of partial isometries in A normalising B, such that
C*(S, B) = A. Moreover we may assume that S is closed under taking finite
products. Then, for by,by € B and s1, s5 € S, we have

b1S1b282 = bys15] 10282 = by (s1b28])s159, (4.31)

which is of the form bs for b = b;s1b2s7 € B and s = s152 € S. As such, the
collection of finite linear combinations {}}" ; b;s; | b; € B, s; € S} has dense
linear span in A.

Let D be the coarse structure generated by the countable family of sets
Es1={(z,y) | |Say| = 1} = {(z,y) | 52y # 0} indexed by s € S. Each Ej; is
in £4, so D < £4. For the reverse inclusion, given a normaliser a € N4(B)
and € > 0, find a finite linear combination Y ;| b;s; with b; € B and s; € S
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such that |a — > | bisi|| < ¢/2. Then

{(2,9) | azy| = e} < J{(2,9) | [(bisi)ay| = €/2n}

IN

H
Il
—

(4.32)

N

N
1Cs
2
m
>/

Therefore £4 = D, and hence £4 is countably generated.

The remaining comment about metrisability is immediate from Theorem
4.2 O

In the light of the previous results, it makes sense to encapsulate the
key features of a Cartan pair which enable us to obtain a bounded geometry
metric space in the following definition.

Definition 4.20. An inclusion B € A of C*-algebras is a Roe Cartan pair
if:

(i) A is unital;
(ii) A contains the C*-algebra of compact operators on a separable infinite
dimensional Hilbert space as an essential ideal’}

(iii) B is a co-separable Cartan subalgebra of A abstractly isomorphic to
(*(N).

A subalgebra B of a uniform Roe algebra C}} (X)) is a Roe Cartan subalgebra,
if B< C}(X) is a Roe Cartan pair.

With this definition, Theorem [B]is an immediate consequence of Theo-
rem and Lemma[d.19] Corollary[C|says that in the situation of Theorem
if additionally X has Yu’s property (A), or equivalently, A is nuclear ([0,
Theorem 5.5.7]), then X and Y are coarsely equivalent. This is immediate
from [41, Theorem 1.4].

5 Uniqueness of Cartan subalgebras up to auto-
morphism
In this short section we prove Corollary [D| This is a reasonably straightfor-

ward consequence of the results of the previous section combined with the
main results of [41] and a theorem of Whyte [42, Theorem 4.1].

Sand therefore as its unique minimal ideal.
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First, we give a slight variation of [42] Theorem 4.1]; this is probably
well-known to experts. Unexplained terminology in the proof can be found
in the cited papers of Block and Weinberger, and of Whyte.

Theorem 5.1. Let X and Y be bounded geometry metric spaces, at least
one of which is non-amenable. Let f : X — Y be a coarse equivalence. Then
there is a bijective coarse equivalence from X to'Y that is close to f.

Proof. For a bounded geometry metric space Z, let Hy ! (Z) denote the uni-
formly finite homology of Z (with integer coefficients) in the sense of Block
and Weinberger [4, Section 2], and let [Z] € H| f (Z) be the fundamental class
of Z, i.e. the 0-cycle defined by the constant function on X with value one
everywhere. From the discussion around [4, Proposition 2.1],if f : X — Y is
a coarse embeddin then f induces a map fx : H/ (X) — HY (V). Whyte
proves in [42] Theorem 4.1] that if f: X — Y is a quasi-isometry between
uniformly discreteﬂ bounded geometry metric spaces with f.[X] = [Y],
then there is a bi-Lipschitz map X — Y that is close to f. Let us sketch
why Whyte’s arguments also imply the result in the statement.

Now, with no real changes, Whyte’s proof of [42 Theorem 4.1] as stated
above shows that if f : X — Y is a map between bounded geometry (not
necessarily uniformly discrete) metric spaces such that

(i) folXT =Y,
(ii) f is a coarse embedding (so induces maps on Hy / ),
(iii) f has coarsely dense image (meaning that sup,.x d(z, f(Y)) < ),
and
(iv) there is a map ¢ : Y — X such that go f and f o g are close to the
identities and ¢ has the properties (i), (ii), and (iii) above,

then there is a bijection close to f. Note, however, that if f: X — Y isa
coarse equivalence, then it will have have properties (ii), (iii) and (iv) above,
and that any map close to a coarse equivalence is a coarse equivalence, so we
get the following statement: if f: X — Y is a coarse equivalence between
bounded geometry metric spaces with f.[X]| = [Y], then there is a bijective
coarse equivalence X — Y that is close to f.

To complete the argument we must show that (i) above is always satisfied
under our hypotheses. Indeed, note that amenability is invariant under
coarse equivalence of bounded geometry metric spaces, as follows for example

"“Coarse embedding” is the current terminology for what Block and Weinberger call
an effectively proper Lipschitz map.
8 A metric space X is uniformly discrete if inf, yex zxqy d(z,y) > 0.

28



from [4, Proposition 2.1 and Theorem 3.1]. Hence if one of X or Y as in our
set up is non-amenable, then the other is. Moreover, Block and Weinberger
show in [4] Theorem 3.1] that X is non-amenable if and only if Hé‘f(X) =0,
and thus condition (i) from Whyte’s theorem is vacuous in our set-up. This
completes the proof. ]

Proof of Corollary[D. Let Y be asin Theorem and identify B with £*(Y),
and A with C}(Y). Choose an orthonormal basis {£,},cy for H that is
compatible with the identification B =~ ¢®(Y’). Precisely, if the minimal
projection in B corresponding to the characteristic function of {y} is py,
then choose &, to be a unit vector in the image of p,.

As X has property A, X and Y are coarsely equivalent by [41l, Theorem
1.4], and so Theorem gives us a bijective coarse equivalence f: X — Y.

Now define a map u : £>(X) — (*(X) by ud, = &f(,). This is a unitary
isomorphism, as f is a bijection. Using that f is a coarse equivalence,
it follows that conjugation by u takes A to C*(Y), or in other words, u
conjugates A to itself. Define a : A — A by a(a) = uau*; we then have
a(l*(X)) = wl*(X)u* = B as required. O

Remark 5.2. It does not seem to be clear if the unitary u produced by the
above proof is actually in A (or can be chosen to be in A), so we cannot
conclude that the automorphism « in the statement of Corollary [D|is inner.
Note that while any automorphism of a uniform Roe algebra C(X) is in-
duced by a unitary u : £2(X) — ¢2(X) (see [41, Lemma 3.1]) there are often
many non-inner automorphisms of C¥(X). For an illustrative example, take
X = Z and the automorphism given by conjugation by the unitary

w: L2(Z) — 12(Z), 6p > 6_p.

This is not inner. One can see this, for example, as it is non-trivial on K-
theory. Indeed, the Pimsner-Voiculescu sequence implies that K;(C¥(X))
is isomorphic to Z, and generated by the class [v] of the bilateral shift on
¢%(Z); we have uvu* = v*, so conjugation by u takes [v] to —[v].

6 Uniqueness of Cartan subalgebras up to inner

automorphism

In this section, we prove our main result, Theorem
The following notation will be in use for the rest of the section. Let
B < C}(X) satisfy the assumptions of Theorem [El Theorem [B| (with H =
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?%(X)) implies that there is a bounded geometry metric space Y, and a
unitary isomorphism v : £2(Y) — £?(X) such that

P (Y)w* =B and oC;(Y)v* = Ch(X). (6.1)
Lemma 6.1. With notation as above, the space Y has FDC.

Proof. As X has FDC, it has Yu’s property A by [16, Theorem 4.4]. Corol-
lary [C] then implies that X and Y are coarsely equivalent. In particular as
X has FDC, and as FDC is invariant under coarse equivalences [16], 3.3],
this implies that Y has FDC too. O

At this point, we have two spaces X and Y with FDC, and a unitary
isomorphism v : £2(Y) — ¢2(X) that conjugates C(Y) to C(X). Our task
is to show that there is some unitary v € C¥(X) that conjugates vf* (Y )v*
to £ (X).

We will need some more notation that will be used throughout the rest
of this section. For each y € Y, let ¢, € B(¢*(Y)) denote the orthogonal
projection onto the span of §,. Similarly, for each x € X, let p, € B(¢*(X))
be the orthogonal projection onto the span of §,. For a subset C' of X
(respectively, of Y') define

pe = Z D (respectively, qc = Z qy) (6.2)
zeC yeC

for the corresponding multiplication operator on ¢2(X) (respectively, on

C2(Y)).

The proof splits fairly cleanly into three main steps.

1. Uniform approximability. For each subset C of Y, we know that vgov*
is in the uniform Roe algebra of X, whence the following holds: “Ve >
0, VC € Y, ds > 0 such that vyov™ can be approximated within e by
an operator in C; (X') with propagation at most s”. A-priori s depends
on € and C. Our first aim is to improve this statement, so that s only
depends on €. This can be achieved with no assumptions on X and Y
beyond that they are bounded geometry metric spaces using a result
of Braga and Farah [5 Lemma 4.9].

2. The operator norm localisation property. The operator norm localisa-
tion property was introduced by Chen, Tessera, Wang, and Yu [8]; it is
known to be implied by FDdﬂ The key application here is roughly the

9The converse is open.
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following statement: “VYe > 0, 3r > 0 such that Vy € Y, 3X, < X of
diameter at most 7 such that |vg,v*px,|| = 1 — ¢”. This says roughly
that we can match points in Y to uniformly bounded subsets of X.
We need a stronger, somewhat more quantitative version of this that
also works for subsets of X other than singletons {x}; see Lemma

3. Completion of the proof. To finish the proof, the above step can be
combined with Hall’s marriage theorem to get an injection f:Y — X
with f(y) € X, for all z. As the situation is symmetric, we get a similar
injection g : X — Y, and so a bijection h : X — Y from Ko6nig’s proof
of the Cantor-Schréder Bernstein theorem. This h defines a unitary
w : £2(X) — £2(Y) by wd, = 8, which conjugates (*(X) to £*(Y).
To complete the proof, it suffices to show that u := vw is contained
in C¥(X): this is achieved using the quantitative results from the
previous step to get a weak form of finite propagation for u, and then
appealing to an approximation result due to Spakula and Tikuisis [40,
Theorem 2.8] to show that this weak property is enough.

Step one: uniform approximability

Here is the result of Braga and Farah that we will use; it is a special case of
[0, Lemma 4.9].

Lemma 6.2. Let Z be a bounded geometry metric space. Suppose (ap)n_q is
a sequence of finite rank operators on (*(Z) such that for every bounded se-
quence (A\p)X_, of complex numbers, the series > | Anay, converges strongly
to an operator in C;(Z). Then for every e > 0 there exists s > 0 such that
for every bounded sequence (\,)y_, there is a € C;(X) of propagation at

most s and | Y°_1 Apan — a| <e. O

The content of the theorem is in the order of quantifiers. The corre-
sponding statement with s depending also on the bounded sequence (\,)5"_;
is immediate. Here is the consequence we need.

Corollary 6.3. For any € > 0 there exists s > 0 such that for any D € Y
there is a € C} (X)) with propagation at most s, and |vgpv* — a| < e.

Proof. The family {vg,v*},ey has the property that for any bounded se-
quence (Ay)yey of complex numbers, Zer Ayvqyv* converges strongly to
v*(Dyey Ayay)v € C5(X). The corollary is then immediate form Lemma
6.2 ]
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Step two: the operator norm localisation property

We now recall the definition of the operator norm localisation property
(ONL) from [8, Definition 2.2]. The version we give below is equivalent
to the usual one by [8 Proposition 2.4]. By [9, Corollary 3.4] FDC implies
ONL, so both our spaces X and Y have ONL by Lemma [6.1

Definition 6.4. A bounded geometry metric space Z has the operator norm
localisation property (ONL) if for any € € (0,1) and any s > 0 there is r > 0
such that for any operator a € C}(Z) with propagation at most s there
exists a unit vector ¢ € £2(Z) with

lag]l = (1 —¢)|all (6.3)
and with & supported in a set of diameter at most .

Again, the point is order of quantifiers; with r also depending on a the
analogous statement is automatic.

Lemma 6.5. (i) For any € € (0,1) there exists r > 0 such that for any
non-empty D €'Y there is E € X with diam(E) < r and

lvgpv*pe| = (1 —¢). (6.4)

(ii) For any € € (0,1) there exists r > 0 such that for any C < X and
D CY there is E < X with diam(E) <1 and

lvapv*ponel = (1 = €)|vgpv*pe| — e (6.5)

Proof. We look at part first. Fix € > 0. Using Corollary there exists
s > 0 (depending only on €) such that for any D € Y, there is ag € C;}(X)
with propagation at most s such that |vgpv* — agl| < €/2. As pc has
propagation zero, it follows that if a := agpc then a still has propagation at
most s, and as |pc| < 1 we have that

|lvapv*pe — all < €/2. (6.6)

Using the operator norm localisation property, there exists > 0 (depending
only on s and €) such that there is a unit vector ¢ € £2(X) with support in
a set £ € X of diameter at most r such that |a&|| = (1 — ¢)||la|. Hence in
particular we get

laps] > (1 = &)lal. (6.7)
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Now, from line we have
|lvgpv*pepr — apg| < €/2. (6.8)
As popE = ponE, this implies that
lvgpv*ponel > |ape| — €/2. (6.9)
Combining this with line gives
lvapv*ponel > (1 = €)lall — €/2, (6.10)

and applying line again gives

lvgpv*qenel > (1 — €)|lvppv*qe| — (1 — €)e/2 — €/2 (6.11)
> (1 —¢)|vppvrac| —e, (6.12)
proving .

Part follows immediately from part . Indeed, if D = & there is
nothing to prove. Otherwise, let > 0 be as in the statement of part for
the ‘error parameter’ €/2, and take C' = X. O

We can interchange the roles of X and Y in the previous argument,
leading to the following lemma.

Lemma 6.6. For any € € (0,1) there exists r > 0 such that for any C < X
and any D € Y, there is F €'Y with

lvapnrv*pel = (1 = €)|vapvpol —e. (6.13)
and diam(F) < r. O

Proof. In the previous lemma we regarded v*¢*(Y)v as an ‘exotic Cartan’
in C * (X), but we could equally well regard v¢*(X)v* as an exotic Cartan
in C¥(Y). As Y also has ONL, we obtain that for every e € (0,1), there
exists r > 0 such that for any C' € X and D € Y, there exists F' € Y of
diameter at most r such that

lvpcv*qpar] = (1 = €)|vpcvapl. (6.14)
The result follows as |[vpcv*qp~r| = |gp~rvpcv®| = |vgp~rv*pe|, and
likewise for the right hand side. O
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We need some more notation. For each y € Y and § > 0, define
Xy = o€ X | [vg,o*p,|? > o). (6.15)
Analogously, define
Yoo ={y €Y | [v*povgy|* = 6}. (6.16)

One should think of X, 5 as being the part of X that is ‘d-close’ to y in some
sense, and similarly for Y, ;. We extend these notions to sets by defining
XD,zS = UyeD Xy’(; for D € X, and qu = U:JceC Xc’(; for C c X.

Lemma 6.7. With notation as in lines (6.15) and (6.16) as above:

(i) for each € > 0, there is 0 > 0 such that for ally €Y, HU(IyU*PXy,gHQ >
1—¢;

(ii) for each & > 0 there exists r > 0 such that for all y € Y, the diameter
of Xy is at most r.

Proof. Applying part ({i)) of Lemmawith D = {y}, there is r > 0 depend-
ing only on € such that for each y € Y there is £ € X with diam(F) < r
and

oo pal® > 1 ¢/2. (6.17)
Let &, be any unit vector in the range of the rank one projection vg,v*, and
note that

lvgyo*pel* = [pevayv™|* = Ipe&y), (6.18)
so line ([6.17)) above says that
DIy @)P =1 —¢/2. (6.19)

rel

Notice that this implies that X, o S F, proving after relabelling € as
24, as otherwise the sum above differs from 1 =Y _y |£,(x)[? by a term of
size at least €/2, a contradiction.

Let N € N be an absolute bound on the cardinalities of all balls of radius
rin X, and let § < 5% (which only depends on r and ¢, so only on €). Then

logyv*xx, s I° = > 1)

Xy 5

> Y le@P

zeEN Xy s

=Y lG@P = > 1@ (6.20)
el zeE\X 5
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Now, on the one hand line (6.19) gives Y. 5 |& (%) = 1 — €/2, and on
the other hand [§,(2)|?> = |psvgu*|? < § for all z ¢ X, 5. Moreover,
|E| < N whence ), E\X, s &y(x)]? < N§&. The previous displayed inequality
thus implies ’
€
Jogy" x5, 7 51— § — NG (6.21)

and the right hand side is at least 1 — € by choice of §, proving . O
We now bootstrap Lemma to subsets.

Lemma 6.8. For any € > 0, there is 6 > 0 such that for any subset D of
Y,
lvgpv* (1 = pxp )| <€ (6.22)

and for any subset C' of X

|v* pev(l = qve )| < e (6.23)

Proof. Fix v > 0, to be chosen later in a way depending only on e. Using
Lemma there is r > 0 such that for any C < X and D < Y we have
F Y with diam(F') < r such that

[vapnrv*pe| = (1=7vapv*pel - 7. (6:24)

Hence

lvgpnrv*xc| +
1—7 ’

Let M be some large positive number, to be chosen later (in a way that

depends only on r and +, so only on ~, so only on €). Applying Lemma

gives 0y > 0 such that |vgv*px, , | = 1— 47 for all y € Y, whence in

particular for any y € D

lvgpv*xel < (6.25)

y,0y

lvayv™ (1 = pxp o )| < Jvgyv™(1 = px, ;)| < 1/M. (6.26)
Now, apply line (6.25) with C' = X\Xp s, and line (6.26) to get

|[F'|supyep [vayv* (1 — pxp 5 )+
I—n

[vapv*(1 - pxps, )l <

1
< |F| 37 +7.

- (6.27)
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Let N be a bound on the cardinalities of all r-balls in Y, and set M = N /~.
Then the above says that
oapv™(1 = pxp, ) < (6.28)
4D Pxpsy, ) < 1 *7' .
Choosing v < 2 ~, this proves the first claim of the lemma.
Interchanging the roles of X and Y, exactly as in Lemma we can
run the proof of Lemmal6.7) and the proof above, to obtain dx > 0 such that
|[v*pev(l = gve, )| < € forall C = X. Then, we take § = min(dx,dy). O

Step 3: completion of the proof

To complete the proof, we first give an application of Hall’s marriage theorem
to construct appropriate maps.

Lemma 6.9. There exists 6 > 0 and injections f : Y - X and g: X - Y
such that f(y) € X5 for allyeY and g(x) € Yy 5 for allz € X.

Proof. Fix e = 1/2 (any € < 1 would work), and let § satisfy the condition
in Lemma for this e. We first claim that for any finite D € Y, the
cardinality of Xps is at least as large as that of D, or in other words
that that the rank of px, ; is at least as big as that of vgpv*. If not,
then the rank of vgpv* is strictly larger than that of px,, ,; this forces the
images of vgpv* and 1 — px,,; to have non-trivial intersection and thus
lvgpv*(1 — pxp 5)| = 1, contradicting the inequality in the first statement
of Lemma [6.8

Consider now the function ¢ : Y — P(X) defined by ¢(y) = X, 5. Then
for any finite subset D € Y,

’U ¢>(y)‘ =

yeD

> |D|. (6.29)

The existence of f follows from Hall’s marriage theorem.
The existence of g follows in exactly the same way, using the second
statement in Lemma [6.8 O

Corollary 6.10. There exists § > 0, r > 0 and a bijection h : X — Y
such that for any v € X, Xj (g5 is contained in the ball B(x;r) around x of
radius 7.

Proof. et 6§ > 0and f : Y — X and g : X — Y be injections as in
Lemma Konig’s proof of the Cantor-Scroder-Bernstein theorem gives

36



us a bijection h : X — Y with the property that for each x € X, either
h(z) = g(z), or x is in the image of f and h(z) = f~!(z).

To complete the proof we must show that there exists r > 0 such that
for every x € X, Xj,(;) s is contained in the ball B(z;r) centered at x with
radius r. Indeed, let 7 equal the supremum of the diameters of the sets X, s
as y ranges over Y; r is finite by part (ii) of Lemma Note first that
if x € X is such that h(x) = f~1(x) for some z € X, then f(h(z)) = = is
an element of Xy, s by the properties of f. This implies that Xj ;s is
contained in B(z;r) by choice of r. On the other hand, say = € X is such
that h(x) = g(x). Then, by the defining property of g, g(x) € Y, 5, from
which it follows that [v*pevgy|* = 6. Hence ||pyvgy)v*|* = 8, which
says exactly that @ is in Xy, s. The result follows by assumption on the
diameter of all of the X 5. O

Now let h : X — Y be any bijection as in the conclusion of Corollary
for some appropriate § > 0. Let w : £2(X) — (*(Y) be the unitary
defined by wd, = d(y). Clearly then w*(*(Y)w = (*(X), and as also
vl*(Y)v* = B we thus get that w*v*Bvw = (*(X). To complete the
proof, it suffices to show that the unitary

u = w*v* (6.30)

is in C*(X). To this end, we need a general approximation result of Spakula
and Tikuisis from [40, Theorem 2.8, part (i) implies (iv)].

Theorem 6.11 (Spakula and Tikuisis). Let Z be a bounded geometry metric
space with FDC, and let a € B({*(Z)) be such that for any € > 0 there exists
s > 0 such that if C, D < Z satisfy d(C, D) > s, then |[xcaxp| < €. Then
a is in CH(X).

We finally have all the ingredients in place to prove our main result.

Proof of Theorem [E, Let h and § be as in the conclusion of Corollary
and let u be the associated unitary as in line . We claim first that for
any € > 0 there is ¢ > 0 such that for any subset C € X if Ny(C) := {z €
X | d(z,C) < t} then we have

lvgnc)yv™ (1 = p, o))l < e (6.31)

Indeed, applying Lemma with D = h(C) gives us v > 0 such that

vane)yv* (1 = pxye )l < € (6.32)
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Now, we may assume that v < § and thus we have that Xj,;) , 2 Xp(2)s
for all z € C. Let r be such that X, s is contained in B(z;7) (such exists
by Corollary , and let s be such that Xj ), has diameter at most s
for all z € C' (such an s exists by Lemma part ) Hence each X},
is contained in B(x;s + r). The claim follows with ¢t = s + 7.

Now, from the claim we have that for any € > 0 there is ¢ > 0 such that
for any subset C € X we have

Y

lvwpcw*™v* (1 = pny))| < e (6.33)

Hence for any € > 0 there is ¢ > 0 such that for any subset C' € X we have

lpcu(l =Pyl <€ (6.34)

and this in turn implies that for any € > 0 there is £ > 0 such that for any
subsets C, D € X with d(C, D) > t we have that

[xcuxpl <e. (6.35)
Hence by Theorem u is in C}(X) and we are done. O

Remark 6.12. Other than the implication FDC = ONL, the FDC assump-
tion is only used to access the work of Spakula and Tikuisis [40] in Theorem
Accordingly if the assumptions needed for Theorem could be
weakened to just X having property A, then Theorem [E] and Corollary [6.13]
below would also be true under this assumption (note that ONL is equiva-

lent to property A for bounded geometry metric spaces by the main result
of [34]).

We end the paper with the following ‘rigidity’ corollary of Theorem [E]

Corollary 6.13. Say X and Y are bounded geometry metric spaces. Then
the following are equivalent:

(i) there is a bijective coarse equivalence between X and Y';
(7i) the coarse groupoids associated to X and'Y (see [35] or [31, Chapter
10]) are isomorphic;
(iii) there is a x-isomorphism from C}(X) to Ci(Y) that takes ¢*(X) to
1*(Y).

Moreover, if X has FDC, then these statements statements are equivalent
to

(iv) there is a x-isomorphism from C;(X) to C¥(Y).
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The equivalence of (i), (ii), and (iii) in the above is fairly well-known: it
seems to have been observed independently by several people. We are not
sure if it has explicitly appeared in the literature before: see [5, Theorem 8.1]
for a closely related, and overlapping, result. The content of the corollary is
the equivalence of these with (iv) when X has FDC. As in Remark [6.12] the
assumption could be weakened from FDC to property A if this were true of
the result of Spakula and Tikuisis.

Proof of Corollary[6.13. The fact that (i) implies (ii) implies (iii) is straight-
forward. The implication (iii) implies (i) follows as such a #-isomorphism
induces a bijection between the minimal projections in £*°(X) and those in
¢*(Y), and thus a bijection f : X — Y. We claim that f is uniformly ex-
pansive in the sense of Definition Indeed, if not, then there is » > 0 and

a sequence ((xgn),:cgn)))le of pairs in X x X such that dX(xgn), xén)) <r

for all n, but such that dy(f(:cgn)),f(ﬂjén))) — o0 as n — . Passing to a
subsequence and using bounded geometry, we may assume that no point
of X appears twice in the set {x(ln),x;n) | n € N}. Now, consider the
X x X matrix defined by the condition that @y m) o) = 1 for all n, and
all other matrix entries zero. Our assumptions that no element appears
twice in {xgn),mgn) | n € N} implies that this matrix is supported on a sin-
gle diagonal, and thus defined a bounded operator a on ¢2(X) by Lemma
Moreover, the fact that d(xgn), xgn)) < r for all n implies that @ is in
Cu[X]. On the other hand, our isomorphism takes a to an operator in C*(Y")
whose (f (:ngn)), f (acgn)))th matrix entry is one for all n. The assumption that
dy (f (:ng”)), f (xgn))) — oo implies that this is impossible, however. A pre-
cisely analogous argument now shows that f~! is also uniformly expansive,
so f is a coarse equivalence as required.

As (iii) implies (iv) is trivial, it suffices to prove (iv) implies (iii). Assume
that C(X) and C;(Y) are =-isomorphic. As in [41, Lemma 3.1], there is a
unitary isomorphism v : £2(X) — £2(Y) such that vC}(X)v* = C#(Y). Let
B = vl{*(X)v*, which satisfies the assumptions of Theorem [E} this needs
that Y has FDC, which follows from [41, Theorem 1.4] and the fact that
FDC is a coarse invariant. Hence there is v € C}(Y) with uBu* = {*(Y).
Now, we have that uvl®(X)v*u* = (*(Y). Then ad(uv) is an isomorphism
from C;(X) onto C;f * (Y') mapping ¢*(X) onto £°(Y). O
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