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Abstract

Complexity rank for C∗-algebras was introduced by the second au-

thor and Yu for applications towards the UCT: very roughly, this rank

is at most n if you can repeatedly cut the C∗-algebra in half at most

n times, and end up with something finite dimensional. In this paper,

we study this (“strong”) complexity rank, and also a “weak complexity

rank” that we introduce here.

We first show that for a large class of C∗-algebras, weak complexity

rank one is equivalent to the conjunction of nuclear dimension one and

real rank zero. In particular, this shows that the UCT for all nuclear

C∗-algebras is equivalent to equality of the weak and strong complexity

ranks for Kirchberg algebras with zero K-theory groups. However, we

also show using a K-theoretic obstruction (torsion in K1) that weak

complexity rank one and strong complexity rank one are not the same

in general.

We then use the Kirchberg-Phillips classification theorem to com-

pute the strong complexity rank of all UCT Kirchberg algebras: it is

always one or two, with the rank one case occurring if and only if the

K1-group is torsion free.
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1 Introduction

Background

In recent work, the second author and Yu [31] introduced the notion

of decomposability of a C∗-algebra over a class of C∗-algebras. This

has two sources of inspiration: the first are corresponding notions of

decomposability in coarse geometry introduced by Guentner, Tessera,

and Yu [16, 17] and in dynamics introduced by Guentner, the second

author, and Yu [18]; the second is the class of C∗-algebras of nuclear

dimension (at most) one as introduced by Winter and Zacharias [36].

Before going on with the general discussion, let us state the formal

definition. For a subset S of a C∗-algebra A and a ∈ A, write “a ∈ε S”

to mean that there is s ∈ S with ‖a− s‖ < ε.

Definition 1.1. Let A be a unital C∗-algebra, and let C be a class of

unital C∗-algebras. Then A is decomposable over C if for every finite

subset X of A and every ε > 0 there exist C∗-subalgebras C, D, and E

of A that are in the class C and contain 1A, and a positive contraction

h ∈ E such that:

(i) ‖[h, x]‖ < ε for all x ∈ X;
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(ii) hx ∈ε C, (1− h)x ∈ε D, and h(1− h)x ∈ε E for all x ∈ X;

(iii) for all e in the unit ball of E, e ∈ε C and e ∈ε D.

In words, the definition says that one can use an almost central

element (h above) to locally cut the C∗-algebra A into two pieces (C

and D above) with well-behaved approximate intersection (E above).

The main application of this notion is to the Universal Coefficient

Theorem (UCT) of Rosenberg and Schochet [27]. For this paper we

do not need any details about the UCT; suffice to say that the UCT

is a K-theoretic property that a C∗-algebra may or may not have, and

that whether or not the UCT holds for all nuclear C∗-algebras is an

important open question. The following theorem is the main result of

[31].

Theorem 1.2. If A is a separable unital C∗-algebra that decomposes

over the class of nuclear UCT C∗-algebras, then A itself is nuclear and

satisfies the UCT.

Moreover, all nuclear C∗-algebras satisfy the UCT if and only if

any unital Kirchberg algebra1 with zero K-theory decomposes over the

class of finite-dimensional C∗-algebras.

Due to the importance of the UCT, it thus becomes interesting to

better understand the class of C∗-algebras that decompose over finite-

dimensional C∗-algebras. Inspired by this and coarse geometry [17,

Definition 2.9], it is natural to introduce a complexity hierarchy on

C∗-algebras: we say a C∗-algebra has complexity rank zero if it is

locally finite-dimensional2, and has complexity rank at most n+ 1 if it

decomposes over the class of C∗-algebras of complexity rank at most n;

having complexity rank at most one is then the same as decomposing

over the class of finite-dimensional C∗-algebras. One of our goals in

this paper is to better understand the complexity rank for Kirchberg

algebras, partly due to the connections to the UCT, and partly for the

intrinsic interest of complexity rank as an invariant in its own right.

Results

We first aim to make the connection between decomposability over

the class of finite-dimensional C∗-algebras and nuclear dimension one

more precise. For this purpose, we introduce the notion of weak de-

composability: this is the variant of Definition 1.1 where all conditions

1A unital C∗-algebra A is a Kirchberg algebra if it is separable, nuclear, and if for any

non-zero a ∈ A there are b, c ∈ A with bac = 1A.
2In the separable case, this is the same as being an AF C∗-algebra.
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involving E are dropped (in particular, h is just a positive contraction

in A). The corresponding notion of weak complexity rank one turns

out to be very closely related to nuclear dimension one: here is the

precise result.

Theorem 1.3. If A is a separable unital C∗-algebra with real rank

zero and nuclear dimension at most one, then A has weak complexity

rank at most one.

If A is a separable unital C∗-algebra with weak complexity rank at

most one, then A has nuclear dimension at most one. If in addition A

is simple with at most finitely many (and possibly zero) extreme tracial

states, then A has real rank zero.

Having established this, it becomes very natural to ask if weak

complexity rank and complexity rank are actually the same: indeed,

if they were, Theorem 1.2 (plus the fact that all Kirchberg algebras

have nuclear dimension one [6, Theorem G] and real rank zero [37])

would imply the UCT for all nuclear C∗-algebras. The next theorem

shows that equality of the weak complexity rank and complexity rank

in general is too much to ask for.

Theorem 1.4. Let A be a unital C∗-algebra of complexity rank at

most one. Then K1(A) is torsion free.

As there are Kirchberg algebras with arbitrary countable K-theory

groups [24, Section 3], it follows from this and Theorem 1.3 that com-

plexity rank and weak complexity rank are indeed genuinely different.

Nonetheless, Theorems 1.2 and 1.3 show that the UCT for all nuclear

C∗-algebras is equivalent to equality of the weak and strong complexity

ranks for Kirchberg algebras with zero K-theory.

We are unable to shed any more light on the complexity rank of

general Kirchberg algebras than given by the above theorems; thus we

do not make progress on the UCT problem for general nuclear C∗-

algebras. However, if we allow ourselves to assume the UCT, and thus

give ourselves access to the Kirchberg-Phillips classification theorem

[22], then the situation is completely different: we get a complete an-

swer.

Theorem 1.5. All unital UCT Kirchberg algebras have complexity

rank one or two. Moreover, the rank one case occurs if and only if the

K1 group of the C∗-algebra is torsion free.

This theorem provides a striking contrast to the case of nuclear

dimension / weak complexity rank, which are both always one for

Kirchberg algebras.
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Outline of the paper

In Section 2 we discuss the main definitions, and give some basic re-

formulations (the version of decomposability used in this introduction

is one of the stronger ones). We establish some basic consequences

of weak complexity rank for nuclear dimension and existence of pro-

jections, and show that the complexity rank is subadditive on tensor

products.

In Section 3 we study the class of C∗-algebras with weak complexity

rank one in detail, and in particular establish Theorem 1.3. Most of

the section does not need anything beyond basic facts about nuclear

dimension, as established in the seminal paper [36]. However, the

results going from weak complexity rank one to real rank zero are

different: they use deep structure results from [34, 26, 29].

In Section 4 we use techniques from controlled K-theory as devel-

oped in [30] to establish Theorem 1.4. This and the results of the

previous section are interesting partly as they allow us to distinguish

weak complexity rank and complexity rank, and partly as they will be

used for our results on Kirchberg algebras.

In Section 5, we establish Theorem 1.5. This theorem again uses

substantial ingredients, most notably the Kirchberg-Phillips classifica-

tion theorem [22] (see also [25, Chapter 8] and [15]) is used; we note

that we need the existence and uniqueness theorems for morphisms,

not ‘only’ the fact that UCT Kirchberg algebras are classified by K-

theory. As well as this, we also need Rørdam’s crossed product models

for Kirchberg algebras [24], and a technique developed by Enders [14]

to estimate the nuclear dimension of Kirchberg algebras.

Finally in the short Section 6, we list some natural questions.

Notation and conventions

The symbol A is reserved throughout for a C∗-algebra.

Let ε > 0. For a, b ∈ A, we write “a ≈ε b” if ‖a − b‖ < ε. For a

subset S of A and a ∈ A, we write “a ∈ε S” if there exists s ∈ S such

that ‖a − s‖ < ε. For subspaces S and T of A, we write “S ⊆ε T” if

for all elements s of the unit ball of S, there exists t in the unit ball of

T with ‖s− t‖ < ε.

The unitization of a C∗-algebra A is denoted A+; we use this con-

vention even if A already has a unit, in which case A+ is canonically

isomorphic to A ⊕ C. The multiplier algebra of a C∗-algebra A is

written M(A). The symbol K denotes the compact operators on a

separable infinite-dimensional Hilbert space. For C∗-algebras A and
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B, A ⊗ B is always the spatial (i.e. minimal) tensor product. For a

unitary u ∈ M(A), Adu : A → A denotes the conjugation automor-

phism defined by a 7→ uau∗.

For a C∗-algebra A, K0(A) and K1(A) are its even and odd (topo-

logical) K-theory groups, and K∗(A) := K0(A) ⊕K1(A) is the corre-

sponding graded group; here ‘graded’ means that the direct sum de-

composition is remembered as part of the structure. Homomorphisms

α : K∗(A)→ K∗(B) will always be assumed to be graded, i.e. satisfy-

ing α(Ki(A)) ⊆ Ki(A) for i ∈ {0, 1}.

Acknowledgments

The authors gratefully acknowledge support from the US NSF un-

der DMS 1901522. The second author is grateful to Dominik Enders,

Wilhelm Winter, and Guoliang Yu for conversations (in some cases,

occurring some time ago) that influenced the results in this paper.

2 Definitions and basic properties

In this section, we introduce the main definitions that we will study in

this paper.

Definition 2.1. Let C be a class of C∗-algebras. A C∗-algebra A is

locally in C if for any finite subset X of A and any ε > 0 there is a

C∗-subalgebra C of A that is in C, and such that x ∈ε C for all x ∈ X.

Definition 2.2. Let C be a class of unital C∗-algebras. A unital C∗-

algebra A decomposes over C if for every finite subset X of A and every

ε > 0 there exist C∗-subalgebras C, D, and E of A that are in the class

C, and a positive contraction h ∈ A such that:

(i) ‖[h, x]‖ < ε for all x ∈ X;

(ii) hx ∈ε C, (1− h)x ∈ε D, and h(1− h)x ∈ε E for all x ∈ X;

(iii) E ⊆ε C and E ⊆ε D;

(iv) for all e ∈ E1, he ∈ε E.

We now come to the fundamental definition for this paper.

Definition 2.3. For an ordinal number α:

(i) if α = 0, let D0 be the class of unital C∗-algebras that are locally

finite dimensional;

(ii) for any α > 0, let Dα be the class of unital C∗-algebras that

decompose over C∗-algebras in
⋃
β<αDβ .
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A unital C∗-algebra has finite complexity if it is in Dα for some α, in

which case its complexity rank is the smallest possible α.

Remark 2.4. Definition 2.3 is partly motivated by a notion of geometric

complexity due to Guentner, Tessera, and Yu [17, Definition 2.9]. In

our previous work [31], we showed that if X is a bounded geometry

metric space then the geometric complexity of X in the sense of [17,

Definition 2.9] is an upper bound for the complexity rank of the uniform

Roe algebra C∗u(X). We will not pursue this further here, however.

We record two straightforward lemmas. These will not be used

until much later in the paper.

Lemma 2.5. Let A1, ..., An be unital C∗-algebras, and A = A1⊕· · ·⊕
An be their direct sum. Then for any ordinal α, A is in Dα if and only

if each Ai is in Dα.

Proof. This follows from a straightforward transfinite induction on α

that we leave to the reader.

Lemma 2.6. Any unital C∗-algebra that is locally in Dα is in Dα. In

particular, Dα is closed under inductive limits.

Proof. As the definitions are all local in nature, this is immediate.

2.1 Stronger formulations

In this subsection, we show that the definition of decomposability boot-

straps up to stronger versions of itself. We then show that the class of

C∗-algebras of complexity rank at most one admits a particularly nice

characterization.

We need four very well-known lemmas; we record them for the

reader’s convenience as we will use them over and over again.

Lemma 2.7. Let a and b be bounded operators on a Hilbert space with

b normal. Then any z in the spectrum of a is contained within distance

‖a− b‖ of the spectrum of b.

Proof. We need to show that if z is further than ‖a−b‖ from the spec-

trum of b, then a− z is invertible. Indeed, in this case the continuous

functional calculus implies that ‖(b− z)−1‖ < ‖a− b‖−1. Hence

‖(a− z)(b− z)−1 − 1‖ ≤ ‖(a− z)− (b− z)‖‖(b− z)−1‖ < 1,

whence (a− z)(b− z)−1 is invertible, and so a− z is invertible too.
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Lemma 2.8. Let a ∈ A be an element in a C∗-algebra, let ε > 0, and

let B be a C∗-subalgebra of A such that a ∈ε B.

(i) If a is positive, then there is positive b ∈ B such that ‖b‖ ≤ ‖a‖
and a ≈2ε b.

(ii) If a is a projection and ε < 1/2, there is a projection p ∈ B such

that a ≈2ε p.

Proof. For part (i), let b0 ∈ B be such that a ≈ε b0. Let b1 = 1
2 (b0+b∗0),

which is self-adjoint and still satisfies b1 ≈ε a. Then b1 has spectrum

contained in [−ε, ‖a‖ + ε] by Lemma 2.7. Hence if f : R → R is the

function that is 0 on (−∞, 0], linear on [0, ‖a‖], and 1 on [‖a‖,∞), then

by the functional calculus b := f(b1) is a positive contraction such that

b ≈ε b1 ≈ε a.

Part (ii) is essentially the same: this time b1 as above has spectrum

contained in (−ε, ε)∪ (1− ε, 1 + ε), and if f = χ(1/2,∞), then p := f(b1)

is a projection in B such that p ≈2ε a.

Lemma 2.9. Let a be a self-adjoint element of a C∗-algebra A such

that ‖a2 − a‖ ≤ ε < 1/4. Then there is a projection p ∈ A such that

p ≈√ε a.

Proof. Let t be in the spectrum of a. Then |t(1 − t)| ≤ ε, so either

|t| ≤
√
ε, or |1 − t| ≤

√
ε, and so the spectrum of a is contained in

[−
√
ε,
√
ε] ∪ [1−

√
ε, 1 +

√
ε]. As

√
ε < 1/2, the characteristic function

χ of (1/2,∞) is continuous on the spectrum of a, and the functional

calculus implies that p := χ(a) satisfies p ≈√ε a.

Lemma 2.10. Let A be a C∗-algebra. Let p, q be projections in A, and

assume that ‖p− q‖ ≤ ε < 1/4. Then there is a unitary u ∈ A+ (or in

A itself if it is already unital) with ‖u− 1‖ ≤ 10ε such that p = uqu∗.

Proof. Passing to A+ if necessary, we may assume A is unital. Let

v = (1−p)(1−q)+pq. Then one computes that v−1 = p(q−p)+(p−q)q,
so ‖v − 1‖ < 2ε < 1. Hence v is invertible. Moreover, one checks that

vp = pq = qv, so vpv−1 = q and also v∗vp = v∗qv = (qv)∗v =

(vp)∗v = pv∗v. Let now u := v(v∗v)−1/2. Then u is unitary, and the

previous computations show that up = v(v∗v)−1/2p = vp(v∗v)−1/2 =

qv(v∗v)−1/2 = qu, so upu∗ = q. Note moreover that

‖v∗v − 1‖ ≤ ‖v∗ − 1‖‖v‖+ ‖v − 1‖ < ε(1 + 1 + 2ε) ≤ 2ε(1 + ε) < 3ε
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as ε < 1/4. Hence by the functional calculus

(1 + 3ε)−1/2 ≤ (v∗v)−1/2 ≤ (1− 3ε)−1/2

and so by elementary estimates using that ε < 1/4, ‖1− (v∗v)−1/2‖ <
4ε. It follows that

‖1− u‖ ≤ ‖v‖‖1− (v∗v)−1/2‖+ ‖1− v‖ ≤ (1 + 2ε)4ε+ 2ε = 10ε

as claimed.

We hope the following lemma clarifies the definition of decompos-

ability.

Lemma 2.11. Let C be a class of unital C∗-algebras. A unital C∗-

algebra A decomposes over C if and only if it satisfies the following

condition.

For every finite subset X of A and every ε > 0 there exist C∗-

subalgebras C, D, and E of A that are in the class C, and a positive

contraction h ∈ A such that:

(i) ‖[h, x]‖ < ε for all x ∈ X;

(ii) hx ∈ε C, (1− h)x ∈ε D, and h(1− h)x ∈ε E for all x ∈ X;

(iii) E ⊆ε C and E ⊆ε D;

(iv) h = hE + p and 1 − h = (1E − hE) + q, where hE is a positive

contraction in E, and p ∈ C and q ∈ D are projections that are

orthogonal to 1E, and satisfy 1A = 1E + p+ q.

Schematically, we thus have a spectral decomposition of h that

‘looks like’3 the following.

, he
P

> <
"

'

1-hr >

1- HE HE
L u

0

c
A
D

E

3The picture is maybe slightly misleading in that E is not obviously contained in (or

equal to) the intersection C ∩D; however, this can be arranged if C is the class of finite-

dimensional C∗-algebras as in Lemma 2.14 below.
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Proof of Lemma 2.11. Let ε > 0, and let X be a finite subset of A. Let

δ > 0, to be determined in the course of the proof in a way depending

only on ε. Let C, D, and E be C∗-algebras in C and h be a positive

contraction that have the properties in Definition 2.2 with respect to

the finite set X ∪ {1A} and δ. Throughout the proof, the notation δn
refers to a quantity that converges to zero as δ tends to zero, and that

depends only on δ.

Now, as 1E ∈δ C, Lemma 2.8 part (ii) gives δ1 and a projection

pE ∈ C such that ‖pE − 1E‖ < δ1. Hence by Lemma 2.10 there is

a unitary u ∈ A and δ2 > 0 such that ‖u − 1A‖ < δ2, and so that

u1Eu
∗ = pE . Similarly, there is a projection qE ∈ D and a unitary

v ∈ A such that ‖v− 1A‖ < δ3 for some δ3, and such that v1Ev
∗ = qE .

Hence replacing C with u∗Cu and D with v∗Dv, we may assume that

C, D, E and h satisfy the conditions in Definition 2.2 for X and some

δ4 > 0, and moreover that 1E ∈ C ∩D.

As 1Eh1E ∈δ E, Lemma 2.8 gives a positive contraction hE ∈ E
with 1Eh1E ≈2δ hE . Moreover, as h1E ∈δ E, we have (1A−1E)h1E ≈δ
0 and taking adjoints gives 1Eh(1A − 1E) ≈δ 0. Hence if we write

hE⊥ := (1A − 1E)h(1A − 1E) then

h ≈2δ 1Eh1E + (1A − 1E)h(1A − 1E) ≈2δ hE + h⊥E .

Replacing h with hE +hE⊥ , we may assume h is a sum of two positive

contractions, one of which is in E, and one of which is orthogonal to

E; in particular, h multiplies E into itself. Note then that

h(1− h) = hE(1E − hE) + h2E⊥ − hE⊥

and so hE(1E − hE) + h2E⊥ − hE⊥ ∈δ4 E. As hE(1E − hE) is in E,

we thus see that h2E⊥ − hE⊥ ≈δ4 0. As long as δ4 < 1/4 Lemma 2.9

implies there is δ5 and a projection p ∈ (1A−1E)A(1A−1E) such that

p ≈δ5 hE⊥ Now, as h = h · 1A ∈δ5 C and as hE ∈ E ⊆δ4 C, we have

that there is δ6 such that p ∈δ6 C. As 1E ∈ C and as p is orthogonal

to 1E , Lemma 2.8 part (ii) a projection pC ∈ (1C − 1E)C(1C − 1E)

and δ7 > 0 such that pC ≈δ7 p. Hence Lemma 2.10 gives a unitary

u ∈ (1A − 1E)A(1A − 1E) and δ8 such that ‖(1A − 1E)− u‖ < δ8, and

such that upCu
∗ = p. Replacing C by (1E + u)C(1E + u∗), we may

assume that C contains p.

On the other hand, we have 1A − h = 1E − hE + (1A − 1E − p).
Write q = (1A − 1E − q). Arguing analogously to the above, we also

see that q ∈δ9 D for some δ9, and so that there exists a unitary v ∈
(1A − 1E)A(1A − 1E) such that ‖(1A − 1E) − q‖ < δ10 for some δ10.
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Replacing D by (1E + v)D(1E + v∗) and taking the original δ small

enough, we are done.

We are now able to deduce the definition of decomposability that

we used in the introduction.

Corollary 2.12. Let C be a class of unital C∗-algebras. A unital C∗-

algebra A decomposes over C if and only if it satisfies the following

condition.

For every finite subset X of A and every ε > 0 there exist C∗-

subalgebras C, D, and E of A that are in the class C and contain 1A,

and a positive contraction h ∈ E such that:

(i) ‖[h, x]‖ < ε for all x ∈ X;

(ii) hx ∈ε C, (1− h)x ∈ε D, and h(1− h)x ∈ε E for all x ∈ X;

(iii) E ⊆ε C and E ⊆ε D.

Proof. Note that from the proof of the previous lemma, we may as-

sume that 1E ∈ C ∩ D in addition to the conclusions stated there.

Then replace E with Cp ⊕ E ⊕ Cq, C with span{C, 1A} and D with

span(D, 1A)

In the remainder of this section, we show that complexity rank at

most one bootstraps up to a stronger version of itself. For this, we need

to recall a theorem of Christensen [12, Theorem 5.3] about perturbing

almost inclusions of finite dimensional C∗-algebras to honest inclusions.

Theorem 2.13 (Christensen). Let A be a C∗-algebra, and let E and

C be C∗-subalgebras of A with E finite-dimensional. If 0 < ε ≤ 10−4

and E ⊆ε C, then there exists a partial isometry v ∈ A such that

‖v − 1E‖ < 120
√
ε and vEv∗ ⊆ C.

Proposition 2.14. A unital C∗-algebra A has complexity rank at most

one if and only if it has the following property.

For any finite subset X of the unit ball of A and any ε > 0 there

exist finite-dimensional C∗-subalgebras C, D and E of A that contain

the unit and a positive contraction h ∈ E such that:

(i) ‖[h, x]‖ < ε for all x ∈ X;

(ii) hx ∈ε C, (1− h)x ∈ε D and (1− h)hx ∈ε E for all x ∈ X;

(iii) E is contained in both C and D.
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Proof. The property in the statement clearly implies complexity rank

one, so it suffices to show that complexity rank one implies this prop-

erty. Assume A has complexity rank at most one. Let X be a finite

subset of the unit ball of A, and let ε > 0. Fix δ > 0, to be chosen

by the rest of the proof in a way depending only on ε. Throughout

the proof, anything called “δn” for some n is a positive constant that

depends only on the original δ, and tends to zero as δ tends to zero.

Let h0, C0, D0, and E0 satisfy the conclusion of Lemma 2.11 for

X and δ; in particular, then, each of C0, D0, and E0 are unital and

locally finite-dimensional C∗-algebras and we can write h = hE0
+ p,

where hE0
∈ E0 is a positive contraction, p ∈ C0 is a projection that

is orthogonal to 1E , and q := 1A − 1E − p is a projection in D0.

Choose a finite-dimensional C∗-subalgebra E1 of E0 that contains

the unit 1E0
of E0 (whence 1E0

is also the unit of E1), and is such that

h(1 − h)x ∈2δ E1 for all x ∈ X, and such that hE0
∈2δ E1. Choose

a finite-dimensional C∗-subalgebra C1 of C0 such that E1 ⊆2δ C1,

hx ∈2δ C1 for all x ∈ X, so that p ∈2δ C1 and so that 1E0 ∈2δ C1.

As 1E0
∈2δ C1, Lemma 2.8 gives a projection pCE ∈ C1 such that

‖1E0
− pCE‖ < 4δ. As long as δ is suitably small, Lemma 2.10 gives

δ1 > 0 and a unitary u ∈ A such that ‖u − 1A‖ < δ1 and so that

upCEu
∗ = 1E0 . Define C2 := uC1u

∗. Then 1E0 ∈ C2, and for some

δ2 > 0, we have that E1 ⊆δ2 C2, hx ∈δ2 C2 for all x ∈ X, and that p ∈δ2
C2. As p ∈δ2 (1A − 1E0

)C2(1A − 1E0
), we similarly find a projection

pC ∈ (1A−1E0
)C2(1A−1E0

) and a unitary v ∈ (1A−1E0
)A(1A−1E0

)

such that for some δ3 > 0, ‖v − (1A − 1E0)‖ < δ3, and such that

vpCv
∗ = p. Define C3 := (1E0 + v)C2(1E0 + v∗). Then C3 is a finite-

dimensional C∗-subalgebra of A that contains p and 1E0
, and such

that there is δ4 > 0 such that E1 ⊆δ4 C3 and hx ∈δ4 C3 for all x ∈ X.

Analogously, find a finite-dimensional C∗-subalgebra D3 of D0 that

contains q and 1E0 , and such that there is δ4 > 0 such that E1 ⊆δ4 D3,

(1− h)x ∈δ4 D3 for all x ∈ X.

Now, let E2 be the (finite-dimensional) C∗-subalgebra of A spanned

by E1 and p and q, and let C4 (respectively, D4) be the (finite-dimensional)

C∗-subalgebra of A spanned by C3 (respectively D3) and 1A. These

C∗-algebras E2, C4, and D4 satisfy the following conditions: all contain

1E0
, p and q (and therefore 1A); E2 ⊆δ4 D4 and (1−h)x ∈δ4 D4 for all

x ∈ X; E2 ⊆δ4 C4 and hx ∈δ4 C4 for all x ∈ X; hE0
∈2δ E2. Choose a

positive contraction hE in 1E0E21E0 = E1 such that hE ≈2δ hE0 .

Define E := E2. Using Theorem 2.13 if δ4 ≤ 10−4 there exists

a partial isometry wC ∈ A such that wCE2w
∗
C ⊆ C4, w∗CwC = 1E2

,

and so that ‖wC − 1E2
‖ ≤ 120

√
δ4 =: δ5. As 1E2 = 1A, wC must

12



be unitary as long as δ is small enough that 120
√
δ4 < 1. Assuming

this, define C5 := w∗CC3wC , so C contains E, and satisfies hx ∈δ6 C
for some δ6 > 0. Similarly, there is a unitary wD ∈ A such that

‖wD − 1E2‖ ≤ δ5, and so that wDEw
∗
D ⊆ D4. Define D := w∗DD3wD.

At this point, the reader can check that the C∗-subalgebras C, D, and

E together with h := hE + p satisfy the conditions in the statement

with respect to some δ7 > 0. Taking the original δ suitably small, we

are done.

2.2 Weak finite complexity

The main motivation for introducing finite complexity is that it gives

a sufficient condition for a C∗-algebra to satisfy the UCT. In contrast,

the following weaker version of finite complexity does not obviously

have any K-theoretic consequences. Instead, we introduce it mainly

as it serves as a bridge between complexity rank and some more estab-

lished “dimension notions” like nuclear dimension and real rank; these

relations will be clarified in the rest of this subsection, and in Section

3 below.

Definition 2.15. Let C be a class of unital C∗-algebras. A unital

C∗-algebra A weakly decomposes over C if for every finite subset X of

A and every ε > 0 there exist C∗-subalgebras C and D of A that are

in the class C, and a positive contraction h ∈ A such that:

(i) ‖[h, x]‖ < ε for all x ∈ X;

(ii) hx ∈ε C and (1− h)x ∈ε D for all x ∈ X.

In other words, weak decomposability is like decomposability, but

with the conditions on E dropped.

Definition 2.16. For an ordinal number α:

(i) if α = 0, let WD0 be the class of unital C∗-algebras that are

locally finite-dimensional;

(ii) for any α > 0, let WDα be the class of unital C∗-algebras that

weakly decompose over C∗-algebras in
⋃
β<αWDβ .

A C∗-algebra D has weak finite complexity if it is in WDα for some α,

in which case its weak complexity rank is the smallest possible α.

Clearly the weak complexity rank of a C∗-algebra is bounded above

by its complexity rank. We will see later in the paper (see Corollary

4.2) that the two are genuinely different.

13



In the remainder of this subsection, we discuss two basic conse-

quences of weak finite complexity: the first gives a weak existence of

projections property (see [2] for background), and the second gives

bounds on nuclear dimension (see [36] for background).

First, we look at existence of projections properties, establishing a

weak version (see Subsection 3.2 below for a stronger conclusion under

much stronger hypotheses). For the statement, we say that projections

separate traces in a C∗-algebra A if whenever τ1, τ2 are tracial states

on A such that τ1(p) = τ2(p) for all projections p in A, then τ1 = τ2.

Lemma 2.17. If A is a unital C∗-algebra with finite weak complexity,

then the span of the projections in A is dense. In particular, projections

in A separate traces.

Proof. We proceed by transfinite induction on the weak complexity

rank. The base case is clear, as is the case of a limit ordinal. For

the case of a successor ordinal, let a ∈ A be arbitrary, let ε > 0,

and let h, C and D be as in the definition of weak decomposability

with respect to X = {a} and ε/3. Choose c ∈ C and d ∈ D with

‖ha − c‖ < ε/3 and ‖(1 − h)a − d‖ < ε/3. The inductive hypothesis

implies that the span of the projections in C and D are dense, so each

of c and d can be approximated within ε/6 by a linear combination of

projections. Hence c + d can be approximated within ε/3 by a linear

combination of projections. Putting this together with the fact that

‖a− (c+ d)‖ < 2ε/3, we are done.

It is shown in [31, Lemma 7.3] that C∗-algebras of finite complexity

are always nuclear. Here we give a more precise version of this result.

First we need to recall the definition of nuclear dimension from [36,

Definition 2.1].

Definition 2.18. A completely positive map φ : A→ B between C∗-

algebras has order zero if whenever a, b ∈ A are positive elements such

that ab = 0, we have that φ(a)φ(b) = 0.

A C∗-algebra A has nuclear dimension at most n if for any finite

subset X of A and any ε > 0 there exists a finite dimensional C∗-

algebra F and completely positive maps

A

ψ ��

A

F

φ

??

such that:

14



(i) φ(ψ(x)) ≈ε x for all x ∈ X;

(ii) ψ is contractive;

(iii) F splits as a direct sum of ideals F = F0 ⊕ · · · ⊕ Fn such that

each restriction φ|Fi is contractive and order zero.

Proposition 2.19. Let α be an ordinal number.

(i) If α = n ∈ N ∪ {0}, then any C∗-algebra in WDn has nuclear

dimension at most 2n − 1;

(ii) For any ordinal α, any C∗-algebra in WDα is locally in the class

of C∗-algebras that are both in WDα and have finite nuclear di-

mension.

Proof. We first establish part (i) by induction on n. If A belongs

to D0, then it is locally finite dimensional, and this implies nuclear

dimension zero: this is essentially contained in [36, Remark 2.2 (iii)],

but we give an argument for the reader’s convenience. Let X ⊆ A be a

finite subset and let ε > 0. Choose a finite-dimensional C∗-subalgebra

F of A such that x ∈ε F for all x ∈ X. Let ψ : A→ F be any choice of

conditional expectation (such exists by the finite-dimensional case of

Arveson’s extension theorem - see for example [8, Theorem 1.6.1]), and

let φ : F → A be the inclusion ∗-homomorphism; it is straightforward

to see that these maps have the right properties.

Assume then that N ≥ 1, and the result has been established for all

n < N . Let a finite subsetX ofA and ε > 0 be given; we may assumeX

consists of contractions. Let C and D be C∗-subalgebras of A in some

class WDn for some n ≤ N , and let h ∈ A be a positive contraction

as in the definition of weak decomposability with respect to the finite

subset X and parameter ε2/(25·22N ). The inductive hypothesis implies

that C and D have nuclear dimension at most 2N−1 − 1. Choose

a set XC ⊆ C such that for each x ∈ X, there is xC ∈ XC such

that ‖hx − xC‖ < ε/(4 · 2N ). Using finite nuclear dimension, choose

completely positive maps ψC : C → FC and φC : FC → C such that

ψC is contractive, such that φC(φC(x)) ≈ε/8 x for all x ∈ XC , and

such that FC decomposes into 2N−1 ideals such that the restriction of

φC to each ideal is contractive and order zero. Let XD, ψD, φD, and

FD have analogous properties with respect to D and with h replaced

by 1− h.

Now, using Arveson’s extension theorem, we may extend each of ψC
and ψD to contractive completely positive (ccp) maps defined on all of

A (we keep the same notation for the extensions). Define F := FC⊕FD,
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and

ψ : A→ F, a 7→ ψC(h1/2ah1/2) + ψD((1− h)1/2a(1− h)1/2),

which is easily seen to be ccp. Define moreover

φ : F → A, (fC , fD) 7→ φC(fC) + φD(fD).

To show that A has nuclear dimension at most 2N − 1, it suffices to

show that φ(ψ(x)) ≈ε x for any x ∈ X; the remaining properties are

easily verified. First note that as ‖[h, x]‖ < ε2/(25 · 22N ), we have that

‖[h1/2, x]‖ < ε/(4 · 2N ) and ‖[(1 − h)1/2, x]‖ < ε/(4 · 2N ) by the main

result of [21]. Hence

ψ(x) = ψC(h1/2xh1/2) + ψD((1− h)1/2x(1− h)1/2)

≈ε/(4·2N ) ψC(hx) + ψD((1− h)x).

Choose xC ∈ XC and xD ∈ XD such that

‖hx− xC‖ < ε/(4 · 2N ) and ‖(1− h)x− xD‖ < ε/(4 · 2N ) (1)

so we get

ψ(x) ≈ε/(2·2N ) ψC(xC) + ψD(xD).

As ‖φ‖ ≤ 2N , this implies that

φ(ψ(x)) ≈ε/2 φ(ψC(xC) + ψD(xD)) = φC(ψC(xC)) + φD(ψC(xD)).

By choice of φC and ψC , we have that φC(ψC(xC)) ≈ε/8 xC , and

similarly for xD, whence

φ(ψ(x)) ≈3ε/4 xC + xD.

Finally, using line (1) and that N ≥ 1, we see that xC + xD ≈ε/4
hx+ (1− h)x = x, and so φ(ψ(x)) ≈ε x as required.

Part (ii) can be proved using transfinite induction: essentially the

same argument as used above for case (i) works.

2.3 Tensor products

In this subsection we establish a permanence result for the complexity

rank of tensor products: see Proposition 2.22 below. For readability,

we just state the result for complexity rank, but it holds for weak

complexity rank as well, with a (simpler) version of the same proof.

The key ingredient we need is a result of Christensen on inclusions

of tensor products of nuclear C∗-algebras: it follows by combining [12,

Proposition 2.6 and Theorem 3.1].
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Proposition 2.20 (Christensen). Let E and C be C∗-subalgebras of

a C∗-algebra A such that E ⊆ε C for some ε > 0, and let B be a C∗-

algebra. Assume moreover that E and B are nuclear. Then E⊗B ⊆6ε

C ⊗B.

Lemma 2.21. Let B be a nuclear and unital C∗-algebra, and assume

that A is a unital C∗-algebra that decomposes over some class C of

nuclear and unital C∗-algebras. Then A⊗B decomposes over the class

of C∗-algebras C ⊗B with C in C.

Proof. Let X be a finite subset of A ⊗ B, and let ε > 0. Up to an

approximation, we may assume every element of X is a finite sum of

elementary tensors. Fix such a finite sum x =
∑n
i=1 ai ⊗ bi for each

x ∈ X, and let XA be the finite subset of A consisting of all the

elements ai appearing in such a sum for some x ∈ X. Let M be the

maximum of the sums
∑n
i=1 ‖bi‖ as x ranges over X. We claim that if

δ = min{ε/M, ε/6} and if E, C, and D are C∗-subalgebras of A in the

class C that satisfy the conditions in the definition of decomposability

with respect to XA and δ, then E ⊗ B, C ⊗ B, D ⊗ B, and h ⊗ 1B
satisfy the conditions in the definition of decomposability with respect

to X and ε; this will suffice to complete the proof.

Let us check the conditions from Definition 2.2. For condition (i),

if x =
∑n
i=1 ai ⊗ bi is one of our fixed representations of an element of

X, then

‖[h⊗ 1B , x]‖ ≤
n∑
i=1

‖[ai, h]‖‖bi‖ < δ

n∑
i=1

‖bi‖ < ε

by assumption on δ. For condition (ii), note that for x =
∑n
i=1 ai⊗bi ∈

X and each i, there is ci ∈ C with hai ≈δ ci. Hence∥∥∥∥∥(h⊗ 1B)x−
n∑
i=1

ci ⊗ bi

∥∥∥∥∥ =

n∑
i=1

‖hai − c‖‖bi‖ < ε

by choice of δ, and so (h⊗1B)x ∈ε C⊗B. Similarly, (1A⊗B−h⊗1B)x ∈ε
D⊗B and h⊗1B(1A⊗B−h⊗1B)x ∈ε E⊗B for all x ∈ X. For condition

(iii), we have that E ⊗B ⊆ε C ⊗B and E ⊗B ⊆ε D⊗B by choice of

δ, Proposition 2.20, and the assumption that B and everything in C is

nuclear. Condition (iv) is straightforward so we are done.

Proposition 2.22. If A is in Dα and B is in Dβ, then A ⊗ B is in

Dα+β.
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Proof. We first assume α = 0 and proceed by transfinite induction on

β. The base case β = 0 says that a tensor product of unital locally

finite-dimensional C∗-algebras is unital and locally finite-dimensional,

which is straightforward. Assume β > 0, and let B be a C∗-algebra in

Dβ . Using Lemma 2.19, B is nuclear. Hence by Lemma 2.21 A ⊗ B
decomposes over the class of C∗-algebras of the form A ⊗ C, with

C ∈
⋃
γ<β Dγ . The inductive hypothesis therefore implies that A⊗B

decomposes over the class
⋃
γ<β Dγ , so A⊗B is in Dβ by definition.

Now fix β, and proceed by transfinite induction on α. The base

case α = 0 follows from the discussion above. For α > 0, the inductive

step follows directly from Lemma 2.21 just as in the case above, so we

are done.

3 Weak complexity rank one

In this section, we study the special case that a C∗-algebra has weak

complexity rank one. Let us first recall a definition from [7].

Definition 3.1. A C∗-algebra A has real rank zero if any self-adjoint

element of A can be approximated arbitrarily well by a self-adjoint

element with finite spectrum

The following theorem is our main goal in this section.

Theorem 3.2. Let A be a separable, unital C∗-algebra with real rank

zero and nuclear dimension at most one. Then A has weak complexity

rank at most one.

Conversely, let A be a separable, unital C∗-algebra with weak com-

plexity rank at most one. Then A has nuclear dimension at most one.

If in addition A is simple and either (i) has at most finitely many (pos-

sibly zero) extremal tracial states, or (ii) is AH with slow dimension

growth, then it has real rank zero.

It is conceivable that weak complexity rank at most one implies

real rank zero in general: see Remark 3.15 below for some further

comments.

Remark 3.3. Weak complexity rank zero is the same as being locally

finite dimensional by definition, and this is in turn equivalent to having

nuclear dimension zero by a slight elaboration on [36, Remark 2.2 (iii)].

Hence if one replaces “at most one” by “one” everywhere it appears in

Theorem 3.2, the theorem is still correct.
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3.1 Sufficient conditions

In this subsection, we focus on establish the sufficient condition for

a C∗-algebra to have weak complexity rank one at most one from

Theorem 3.2.

We need a lemma about order zero maps in the presence of real

rank zero.

Lemma 3.4. Let A be a C∗-algebra of real rank zero, and let φ : F →
A be an order zero ccp map from a finite-dimensional C∗-algebra F into

A. Then for any ε > 0 there exists a positive contraction h ∈ A with

finite spectrum and a ∗-homomorphism π : F → M(C∗(φ(F ))) ∩ {h}′
such that

‖φ(f)− hπ(f)‖ ≤ ε‖f‖

for all f ∈ F .

Without h having finite spectrum, the previous result is well-known

(even with ε = 0), and due to Winter [32, 4.1.1] (see also Winter and

Zacharias [35], which removes the assumption that F is finite dimen-

sional). The reader might also usefully compare the lemma above to

[33, Lemma 2.4], which gives a very similar result for real rank zero

codomains.

Proof of Lemma 3.4. Let C∗(φ(F )) be the C∗-subalgebra of A gener-

ated by the image of φ, and let M(C∗(φ(F ))) be its multiplier algebra.

By the basic structure theorem for order zero ccp maps [35, Theorem

2.3], there exists a positive contraction h0 ∈ A and a ∗-homomorphism

π : F →M(C∗(φ(F ))) ∩ {h0}′ such that

φ(f) = h0π(f)

for all f ∈ F . Write F = Mn1(C)⊕ · · · ⊕Mnk
(C), and let

{e(l)ij | l ∈ {1, ..., k}, i, j ∈ {1, ..., nk}}

be a set of matrix units for F . Define m
(l)
ij := π(e

(l)
ij ) ∈M(C∗(φ(F ))).

For each l, let (b
(l)
λ ) be a net of positive contractions in C∗(φ(F )) that

converges to m
(l)
11 in the strict topology; for simplicity, we assume that

the index set for all these nets is the same as l varies. Replacing each

b
(l)
λ with m

(l)
11 b

(l)
λ m

(l)
11 , we may assume that b

(l)
λ ≤ m

(l)
11 for all λ and all

l. Let λ be large enough that ‖b(l)λ h0b
(l)
λ −m

(l)
11h0m

(l)
11‖ < ε/2, which

exists by strict convergence. Note that b
(l)
λ h0b

(l)
λ is an element of the

hereditary C∗-subalgebra b
(l)
λ Ab

(l)
λ of A. Hence using that real rank
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zero passes to hereditary subalgebras (see for example [7, Theorem

2.6, (iii)]), we may find a positive contraction h
(l)
11 ∈ b

(l)
λ Ab

(l)
λ with

finite spectrum such that ‖h(l)11 −m
(l)
11h0m

(l)
11‖ < ε. Define now

h :=

k∑
l=1

n∑
j=1

m
(l)
j1h

(l)
11m

(l)
1j . (2)

We claim that this h (and the original π) have the right properties.

We have to show that:

(i) the image of π commutes with h;

(ii) h has finite spectrum;

(iii) ‖φ(f)− hπ(f)‖ ≤ ε‖f‖ for all f ∈ F .

Indeed, for (i), note that for any m
(l)
ij ,

m
(l)
ij h =

n∑
k=1

m
(l)
ij m

(l)
k1h

(l)
11m

(l)
1k = m

(l)
i1 h

(l)
11m

(l)
1j =

n∑
k=1

m
(l)
k1h

(l)
11m

(l)
1km

(l)
ij

= hm
(l)
ij .

As the m
(l)
ij span π(F ), this implies that h commutes with π(F ), and

thus that π takes image in {h}′ as we needed.

For (ii), note that as h
(l)
11 ∈ b

(l)
λ Ab

(l)
λ , and as b

(l)
λ ≤ m

(l)
11 , we have that

h
(l)
11 ≤ m

(l)
11 . Hence the elements m

(l)
j1h

(l)
11m

(l)
1j are mutually orthogonal

and unitarily equivalent (say when considered in the bounded operators

under an appropriate Hilbert space representation) to h
(l)
11 for all j and

l. It follows that the spectrum of h is the union of the spectra of the

h
(l)
11 as l varies, so finite.

For (iii), note that

‖φ(f)−hπ(f)‖ = ‖h0π(f)−hπ(f)‖ ≤ ‖h0−h‖‖π(f)‖ ≤ ‖h−h0‖‖f‖.

Hence it suffices to prove that ‖h − h0‖ < ε. For this, note that as h

commutes with π(F ) and as h ≤
∑k
l=1

∑n
j=1m

(l)
jj , we have that

h =
( k∑
l=1

n∑
j=1

m
(l)
jj

)
h =

k∑
l=1

n∑
j=1

m
(l)
j1m

(l)
1j h =

k∑
l=1

n∑
j=1

m
(l)
j1hm

(l)
1j

=

k∑
l=1

n∑
j=1

m
(l)
j1m

(l)
11hm

(l)
11m

(l)
1j
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Hence

h− h0 =

k∑
l=1

n∑
j=1

m
(l)
j1h

(l)
11m

(l)
1j −

k∑
l=1

n∑
j=1

m
(l)
j1m

(l)
11h0m

(l)
11m

(l)
1j

and so

‖h− h0‖ =
∥∥∥ k∑
l=1

n∑
j=1

m
(l)
j1 (h

(l)
11 −m

(l)
11h0m

(l)
11 )m

(l)
1j

∥∥∥
As the terms m

(l)
j1 (h

(l)
11 −m

(l)
11hm

(l)
11 )m

(l)
1j are mutually orthogonal as j

and l vary, this equals

sup
l,j
‖m(l)

j1 (h
(l)
11 −m

(l)
11h0m

(l)
11 )m

(l)
1j ‖ ≤ ‖h

(l)
11 −m

(l)
11h0m

(l)
11‖ < ε,

and we are done.

For the next result, let A∞ :=
∏

NA/ ⊕N A denote the quotient

of the product of countably many copies of a C∗-algebra A by the

direct sum. We identify A with its image in A∞ under the natural

diagonal embedding, and write A∞ ∩ A′ for the relative commutant.

More generally, if (Bn) is a sequence of C∗-algebras, we also write

B∞ :=
∏

NBn/⊕N Bn for the associated quotient.

Proposition 3.5. Let A be a separable, unital C∗-algebra with real

rank zero and nuclear dimension one. Then there exists a positive

contraction h ∈ A∞ ∩ A′ and sequences (Cn) and (Dn) of finite-

dimensional C∗-subalgebras of A such that ha ∈ C∞ and (1−h)a ∈ D∞
for all a ∈ A.

Proof. Since A is separable and of nuclear dimension one, by [36, The-

orem 3.2] there exists a sequence (ψn, φn, Fn) where:

(i) each Fn is a finite-dimensional C∗-algebra that decomposes as a

direct sum of ideals Fn = F
(0)
n ⊕ F (1)

n ;

(ii) each ψn is a ccp map A → Fn such that the induced diagonal

map ψ : A→ F∞ is order zero;

(iii) each φn is a map Fn → A, such that the restriction φ
(i)
n of φn to

F
(i)
n is ccp and order zero for i ∈ {0, 1};

(iv) for all a ∈ A, φnψn(a)→ a as n→∞.

For i ∈ {0, 1}, we will also need to consider the (order zero, ccp) maps

φ(i) : (F (i))∞ → A∞ induced from φ
(i)
n : Fn → A, and the canonical

projection ∗-homomorphism κ(i) : F∞ → F
(i)
∞ .
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As for each n the map φ
(0)
n : F

(0)
n → A is ccp and order zero, by

[35, Theorem 2.3] there exists a positive contraction h
(0)
n ∈ A and a

∗-homomorphism π
(0)
n : F

(0)
n →M

(
C∗
(
φ
(0)
n (F

(0)
n )

))
∩{h(0)n }′ such that

φ(0)n (b) = h(0)n π(0)
n (b)

for all b ∈ F (0)
n . As in [35, Corollary 3.1], the formula

ρ(0)n (f ⊗ b) := f(h(0)n )π(0)
n (b)

determines a ∗-homomorphism

ρ(0)n : C0(0, 1]⊗ F (0)
n → A.

Define Sn := ρ
(0)
n (C0(0, 1]⊗ F (0)

n ) and Rn := ρ
(1)
n (C0(0, 1]⊗ F (1)

n ).

As in (the proof of) [30, Proposition A.1], the element

h := φ(0) ◦ κ(0) ◦ ψ(1)

is a positive contraction in A∞ ∩A′, and has the property that for all

a ∈ A ⊆ A∞,

ha = φ(0) ◦ κ(0) ◦ ψ(a) and (1− h)a = φ(1) ◦ κ(1) ◦ ψ(a).

In particular, we see that ha ∈ S∞ and (1− h)a ∈ R∞ for all a ∈ A.

From Lemma 3.4, since A has real-rank zero, for each n there exists

a positive contraction η
(0)
n ∈ A with finite spectrum that commutes

with the image of π
(0)
n and such that

‖φ(0)n (b)− η(0)n π(0)
n (b)‖ ≤ ‖b‖

n
(3)

for all b ∈ F (0)
n . Define a new map σ

(0)
n : C0(0, 1]⊗F (0)

n → A by sending

f ⊗ b 7→ f(η
(0)
n )π

(0)
n (b). This factors through a finite-dimensional C∗-

algebra as in the diagram below

C0(0, 1]⊗ F (0)
n

��

σ(0)
n // A

C
(
spec(η

(0)
n )
)
⊗ F (0)

n

88

and so the image of σ
(0)
n is a finite-dimensional C∗-subalgebra of A.

Define Cn to be the image of σ
(0)
n , and let C∞ :=

∏
N Cn/ ⊕N Cn

denote the corresponding C∗-subalgebra of A∞. Working instead with
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i = 1, we choose η
(1)
n and use it to define σ

(1)
n , Dn, and D∞n precisely

analogously.

Let a ∈ A ⊆ A∞, so that ha ∈ S∞ and denote by b := [κ(0)◦ψ(a)] ∈
(F (0))∞. Choose a sequence (bn) in

∏
N F

(0)
n that lifts b and that

satisfies ‖bn‖ ≤ ‖a‖ for all n. For a sequence (an) in
∏

NAn, let us

write [(an)] for the corresponding element of A∞. Then we compute

that in A∞

ha− [(η(0)n π(0)
n (bn))] = [φ(0)n (bn)]− [(η(0)n π(0)

n (bn))]

= [(φ(0)n − η(0)n π(0)
n )(bn)].

Line (3) implies that

‖(φ(0)n − η(0)n π(0)
n )(bn)‖ ≤ ‖bn‖

n
≤ ‖a‖

n
−→ 0 as n −→∞.

Hence ha = [φ
(0)
n (bn)] = [(η

(0)
n π

(0)
n (bn))] ∈ C∞. A similar argument

shows that (1− h)a ∈ D∞ and we are done.

From Proposition 3.5 we have the following.

Theorem 3.6. If A is a unital separable C∗-algebra with real rank

zero and nuclear dimension at most one, then A has weak complexity

rank at most one.

Proof. Let (Cn) and (Dn) and h be as in the conclusion of Proposition

3.5. Lift h to a positive contraction (hn) in
∏

NAn. Then one checks

that directly that for any finite subset X and ε > 0 there is N so that

for all n ≥ N , Cn, Dn, and hn satisfy the conditions needed for weak

complexity rank at most one.

The following corollary gives an interesting class of C∗-algebras

with weak complexity rank one that we will use later. For the state-

ment, recall that a unital C∗-algebra A is a Kirchberg algebra if it is

separable, nuclear, and if for any non-zero a ∈ A, there exist b, c ∈ A
such that bac = 1A (note that this last condition implies simplicity).

See for example [25, Chapter 4] for background on this class of C∗-

algebras.

Corollary 3.7. Any unital Kirchberg algebra has weak complexity rank

one.

Proof. Kirchberg algebras have real rank zero by the main result of [37]

and nuclear dimension one by [6, Theorem G], whence weak complexity

rank at most one by Theorem 3.2. Kirchberg algebras do not have

complexity rank zero as they are not locally finite dimensional.
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3.2 Necessary conditions

We now establish a partial converse to Theorem 3.6. First, recall that

Proposition 2.19 shows that if A has weak complexity rank at most

one, then it has nuclear dimension one. To establish a converse to

Theorem 3.6, we therefore need to show that weak complexity rank one

implies real rank zero. We can do this for some special classes of C∗-

algebras, but not in general; moreover, the proofs of our main results

(see Corollary 3.8 and Proposition 3.9 below) are not self-contained,

but rely on deep structural results for simple nuclear C∗-algebras. We

have generally tried to explain the properties we use as we need them:

the most glaring omission is probably any discussion of Z-stability,

which we just use as a black box.

First, let us look at the class of simple AH C∗-algebras [4]: see for

example [25, Section 3.1] for background and definitions, including the

notion of slow dimension growth (see [25, Definition 3.1.1]) that we use

below. Suffice to say here that the class of AH C∗-algebras with slow

dimension growth is large, well-studied, and contains many interesting

examples such as irrational rotation algebras.

Corollary 3.8. Let A be a simple, separable, unital AH algebra. Then

A has weak complexity rank at most one if and only if has real rank

zero and slow dimension growth.

Proof. Let A be as in the assumptions, and assume in addition that A

has slow dimension growth and real rank zero. Then A is Z-stable by

[34, Corollary 6.5] or [29, Corollary 1.3], whence has nuclear dimension

at most one by [10, Theorem B]. Hence if A has real rank zero, it has

weak complexity rank at most one by Theorem 3.6. Conversely, say A

has weak complexity rank at most one. Then it has nuclear dimension

at most one by Proposition 2.19, whence is Z-stable by [34, Corollary

6.3], whence has slow dimension growth by [34, Corollary 6.5] or [29,

Corollary 1.3] again. As we now know that A has slow dimension

growth, and as projections separate traces by Lemma 2.17, it has real

rank zero by [4, Theorem 2].

The next result takes more effort to establish (and similarly to the

above, relies on deep work of others). For a unital C∗-algebra A, we

let T (A) denote its tracial state space, which is a (possibly empty)

convex, weak-∗ compact subset of the dual A∗.

Proposition 3.9. Let A be a simple, separable, unital C∗-algebra with

weak complexity rank at most one, and such that T (A) is either empty,
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or has finitely many extreme points. Then A has real rank zero.

To establish this, we will need some facts about Cuntz (sub)equivalence

and dimension functions. We will recall the facts we need: the reader

can see [23] or [1] for further background on these topics.

Let us write M∞(A) for the purely ∗-algebraic direct limit of the

sequence (Mn(A)) of C∗-algebras, with connecting maps given by

Mn(A)→Mn+1(A), a 7→
(
a 0

0 0

)
. (4)

As any finite collection of elements of the ∗-algebra M∞(A) is con-

tained in a C∗-subalgebra, it makes sense to speak of norms, the subset

M∞(A)+ of positive elements, functional calculus, and so on.

For a, b ∈M∞(A)+, we say a is Cuntz subequivalent to b, and write

a . b, if there is a sequence (rn) in M∞(A)+ such that rnbr
∗
n converges

in norm to a. We say a and b are Cuntz equivalent, and write a ∼ b,

if a . b and b . a. Note that . is a transitive and reflexive relation,

and ∼ is an equivalence relation. For a, b ∈Mn(A), we define

a⊕ b :=

(
a 0

0 b

)
∈M2n(A).

If a, b ∈ M∞(A) we abuse notation by writing “a ⊕ b” for ‘the’ cor-

responding element of M∞(A) defined by identifying a and b with

elements of some subalgebra Mn(A); although this is technically not

well-defined, any two choices will be Cuntz equivalent.

We record some basic properties of Cuntz subequivalence in the

following lemma. For a self-adjoint element a ∈ M∞(A), let us write

a+ for its positive part. Note that if a ∈M∞(A)+, then for any ε > 0,

the element (a − ε)+ is in M∞(A), not just in M∞(A+) (with A+ as

usual the unitization of A).

Lemma 3.10. Let A be a C∗-algebra, and let a, b ∈ M∞(A)+. The

following hold:

(i) If a ≤ b, then a . b.

(ii) a+ b . a⊕ b.

(iii) If ‖a− b‖ ≤ ε, then (a− ε)+ . b.

Proof. Part (i) is [23, Lemma 2.3] or [1, Lemma 2.8], part (ii) is [1,

Lemma 2.10], and part (iii) follows directly from [23, Proposition 2.2]

or [1, Theorem 2.13].
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We recall a useful estimate of Pedersen, which is (a special case of)

the main result of [21].

Lemma 3.11. Let a and b be bounded operators on a Hilbert space

with b ≥ 0. Then

‖[a, b1/2]‖ ≤ 5

4
‖a‖1/2‖[a, b]‖1/2.

Lemma 3.12. Let A be a unital C∗-algebra with weak complexity rank

at most one. Then for any a ∈M∞(A)+ and ε > 0 there is a projection

p ∈M∞(A) such that

(a− ε)+ . p . a⊕ a.

Proof. Fix n so that a is in Mn(A). Note that Mn(A) also has weak

complexity rank one by (an easy variant of) Proposition 2.22. Let δ =

ε/10. The definition of weak complexity rank at most one and Lemma

3.11 give a positive contraction h ∈ Mn(A) and finite-dimensional

C∗-subalgebras C,D of Mn(A) such that h1/2ah1/2 ∈δ C and (1 −
h)1/2a(1 − h)1/2 ∈δ D, and such that ‖[a, h1/2]‖ < δ and ‖[a, (1 −
h)1/2]‖ < δ. Lemma 2.8 then gives positive contractions c ∈ C and d ∈
D such that ‖h1/2ah1/2−c‖ < 2δ and ‖(1−h)1/2a(1−h)1/2−d‖ < 2δ.

Note that

a ≈2δ h
1/2ah1/2+(1−h)1/2a(1−h)1/2 ≈4δ c+d ≈4δ (c−2δ)++(d−2δ)+

whence by Lemma 3.10 part (iii), (a− 10δ)+ . (c− 2δ)+ + (d− 2δ)+,

and so by part (ii) of Lemma 3.10

(a− 10δ)+ . (c− 2δ)+ ⊕ (d− 2δ)+. (5)

On the other hand, ‖c− h1/2ah1/2‖ < 2δ, whence part (iii) of Lemma

3.10 again gives (c − 2δ)+ . h1/2ah1/2 . a (the second Cuntz sube-

quivalence is clear from the definition), and similarly (d − 2δ)+ . a;

combining this with line (5) gives

(a− 10δ)+ . (c− 2δ)+ ⊕ (d− 2δ)+ . a⊕ a.

Finally, note that as (c− 2δ)+ is contained in a finite-dimensional C∗-

algebra, it has finite spectrum, whence it is Cuntz equivalent to its

support projection pC ∈ C; similarly (d− 2δ)+ is Cuntz equivalent to

its support projection pD. Setting p := pC ⊕ pD, we are done.

We need some more terminology. Let A be a unital C∗-algebra, and

extend any τ ∈ T (A) to Mn(A) by the usual formula τ : (aij)
n
i,j=1 7→
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∑n
i=1 τ(aii). These extensions are compatible with the inclusion maps

in line (4), so piece together to define a positive trace τ : M∞(A)→ C.

For ε > 0, let f : [0,∞) → [0, 1] be the continuous function which is

zero on [0, ε/2], 1 on [ε,∞) and linear on [ε/2, ε]. For a ∈ M∞(A)+,

we define an affine function

â : T (A)→ [0,∞), a 7→ lim
ε→0

τ(fε(a))

(the limit exists as the collection (τ(fε(a))ε>0 is bounded, and in-

creasing as ε tends to zero). Note that as â is the pointwise limit

of the increasing sequence of continuous, uniformly bounded functions

(τ 7→ τ(f1/n(a)))∞n=1, it is lower semi-continuous and bounded. Write

now LAFFb(T (A))+ for the collection of all lower semi-continuous, pos-

itive, bounded, affine functions from T (A) to R, so the above process

defines a map

ι : M∞(A)+ → LAFFb(T (A))+, a 7→ â. (6)

Lemma 3.14 below records the properties of this map that we will need.

Before stating it, we need a well-known fact about spectral projections:

it is essentially the same as [5, Lemma II.2.1]4.

Lemma 3.13. Let 0 ≤ a ≤ b be bounded operators on a Hilbert

space, and let 0 ≤ λ < µ be real numbers. Let p := χ(µ,∞)(a) and

q := χ(λ,∞)(b) be the spectral projections corresponding to the intervals

(µ,∞) and (λ,∞) respectively. Then:

(i) ‖p(1− q)‖ ≤
√
λ/µ;

(ii) there is a partial isometry v in the C∗-algebra A generated by p

and q such that v∗v = p and vv∗ ≤ q.

Proof. We note that µp ≤ a ≤ b and λ(1−q) ≥ b(1−q) = (1−q)b(1−q).
Hence

‖p(1− q)p‖ = ‖(1− q)p(1− q)‖ ≤ 1

µ
‖(1− q)b(1− q)‖ ≤ λ

µ
.

Part (i) now follows from the C∗-identity. On the other hand, the

above inequalities imply that ‖p − pqp‖ ≤ λ/µ < 1, whence pqp is

invertible in pAp. Let x ∈ pAp be such that xpqp = p = pqpx. Then

one can check directly that v := qx1/2 has the properties required by

part (ii).

4The authors of that paper attribute the argument to Zsido.

27



Lemma 3.14. For a unital C∗-algebra A, the map ι in line (6) above

has the following properties.

(i) If a, b ∈M∞(A)+ satisfy a . b, then â ≤ b̂.
(ii) For a, b ∈M∞(A)+, â⊕ b = â+ b̂.

(iii) For a ∈M∞(A)+, ̂(a− ε)+ converges pointwise to â as ε→ 0.

(iv) If A is separable, Z-stable, simple, unital, finite and exact, and

if LAFFb(T (A))++ consists of the strictly positive elements of

LAFFb(T (A))+, then the co-restricted map

M∞(A)+ → LAFFb(T (A))++, a 7→ â

is surjective.

Proof. We start with part (i). Although this is well-known we could

not find exactly what we wanted in the literature5, so give an argument

here for the reader’s convenience. Say then that a . b, so there is a

sequence (rn) such that rnbr
∗
n converges to a. We may assume that a,

b, and all the rn are in Mm(A) for some fixed m.

Fix ε > 0 and r = rn for some n. Then for τ ∈ T (A), using that τ

is a trace we see that

τ(fε(rbr
∗)) = τ(fε(b

1/2r∗rb1/2)) (7)

(indeed, it suffices to check this when fε is replaced a polynomial,

which is straightforward). Let p := χ(ε/2,∞)(b
1/2r∗rb1/2) and q :=

χ(ε/3,∞)(b‖r‖2), considered as elements in A∗∗. Then, using Lemma

3.13 for the second inequality, we see that

τ(fε(b
1/2r∗rb1/2)) ≤ τ(p) ≤ τ(q) ≤ τ(fε/6(b‖r‖2)) = τ(fε/(6‖r‖2)(b)).

Combining this with line (7) implies that

τ(fε(rbr
∗)) ≤ τ(fε/(6‖r‖2)(b)) ≤ b̂(τ). (8)

for arbitrary r = rn and ε.

Let now δ be arbitrary, and choose ε such that

â(τ) ≤ τ(fε(a)) + δ/2.

As the map c 7→ fε(c) depends continuously on the input, and as the

restriction of τ to Mm(A) is continuous there is n such that for r = rn

â(τ) ≤ τ(fε0(a)) + δ/2 ≤ τ(fε(rbr
∗)) + δ.

5Compare [5, Theorem II.2.2] or [13, Proposition 2.1] for closely related results.

28



Combining this with line (8), we see that â(τ) ≤ b̂(τ)+ δ, and as δ was

arbitrary, we are done with part (i).

Part (ii) is straightforward from the fact that fε(a ⊕ b) = fε(a) ⊕
fε(b) for any a, b and ε. Part (iii) follows directly from the dominated

convergence theorem, once we have used the Gelfand-Naimark theorem

to convert it to a problem about integration. Finally, part (iv) is [9,

Theorem 5.5].

We are now ready for the proof of Proposition 3.9.

Proof of Proposition 3.9. Assume first that T (A) is empty. Then as A

has finite nuclear dimension by Proposition 2.19, A is purely infinite

by [36, Theorem 5.4], so has real rank zero by the main result of [37].

Assume then that τ1, ..., τm are the extremal traces of A for some

positive integer m. As A has finite nuclear dimension it is in particu-

lar exact. Moreover, if Z is the Jiang-Su algebra, then as A is simple,

unital and has finite nuclear dimension, it is Z-stable by [34, Corollary

6.3]. Write Aff(T (A)) for the collection of all affine continuous func-

tions from T (A) to R. Note that if p ∈ M∞(A)+ is a projection then

the map p̂ is in Aff(T (A)), and it is not difficult to check that we get

a well-defined homomorphism of abelian groups

ιK : K0(A)→ Aff(T (A)), [p] 7→ p̂.

Using [26, Theorem 7.2], it suffices to prove that this map has uniformly

dense image.

Let then ε > 0. For each i, let δi ∈ Aff(T (A)) be the function

determined by δi(τj) = δij , where the δij on the right is the Kronecker

δ-function. To show that ιK has uniformly dense image, it suffices to

prove that for any N ∈ N, and any ε > 0, we can find a projection

p ∈M∞(A) such that ‖p̂− δi/N‖ < ε. Let then ε and N be given. Let

M ∈ N be a multiple of N that is so large that 1/M < ε. Using part

(iv) of Lemma 3.14, there is x ∈ M∞(A)+ such that with ι as in line

(6), ι(x)(τi) = 1/2M , and x̂(τj) < ε/8M for i 6= j. Using part (iii) of

Lemma 3.14 there is δ > 0 such that for each j, τj(x) ≥ τj((x− δ)+) ≥
τj(x)/2, which implies that

ι(x)/2 ≤ ι((x− δ)+) ≤ ι(x). (9)

Lemma 3.12 gives a projection p0 ∈ M∞(A)+ such that (x − δ)+ .
p0 . x⊕ x. Hence by parts (i) and (ii) of Lemma 3.14 and line (9) we

see that ι(x)/2 ≤ ι(p0) ≤ 2ι(x). As 1/M < ε and as ι(x)(τi) = 1/2M ,
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we have that 1/4M ≤ ι(p0)(τi) ≤ 1/M < ε. Hence there is k ∈ N with

k ≤ 4M/N and |kι(p0)(τi)− 1/N | < ε. Define

p := p0 ⊕ · · · ⊕ p0︸ ︷︷ ︸
k times

,

so the previous sentence says that

|ι(p)(τi)− 1/N | < ε. (10)

Moreover, for j 6= i, as ι(x)(τj) < ε/8M , we have

ι(p)(τj) ≤ 2kι(x)(τj) < ε. (11)

Lines (10) and (11) together imply that ι(p) is within ε of δi/N in the

uniform norm, which completes the proof.

Remark 3.15. We do not know if (weak) complexity rank at most one

implies real rank zero in general. This seems an interesting question:

for example, the uniform Roe algebra C∗u(|Z|) of the integers has com-

plexity rank at most one by [31, Example A.9] (and therefore complex-

ity rank one as it is easy to see that it is not locally finite-dimensional -

compare also [20, Theorem 2.2]); whether or not C∗u(|Z|) has real rank

zero is quite an interesting problem for the reasons discussed below

[20, Question 3.10]. On the other hand, the uniform Roe algebra of Z2

has complexity rank at most two by [31, Example A.9] again, and does

not have real rank zero by [20, Theorem 3.1], so it is certainly not true

that (weak) finite complexity implies real rank zero in general.

4 Torsion in odd K-theory

In this section, we show that the K1-group of a C∗-algebra with com-

plexity rank at most one is torsion free. This seems to be of interest

in its own right, and is also a key ingredient in our computation of the

complexity rank of UCT Kirchberg algebras.

Here is the main theorem of this section. We thank Ian Putnam

for suggesting to one of the authors that something like this should be

true.

Theorem 4.1. Let A be a unital C∗-algebra with complexity rank at

most one. Then K1(A) is torsion-free.

Before we get into the proof of us, let us first show that weak

complexity rank and complexity rank are genuinely different.
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Corollary 4.2. There are C∗-algebras with weak complexity rank one

that do not have complexity rank one.

Proof. Any unital Kirchberg algebra has weak complexity rank one by

Corollary 3.7. A Kirchberg algebra can have any countable abelian

group as its K1-group (see [24, Theorem 3.6], or the exposition in [25,

Proposition 4.3.3]), so by Theorem 4.1 there are Kirchberg algebras

that do not have complexity rank one.

Throughout this section, if a ∈ Mn(A), then a⊕k is the diagonal

matrix with all entries a in Mk(Mn(A)) = Mkn(A). We write the unit

in Mn(A+) as 1n. We will rely heavily on ideas from [30]: we will give

precise statements for what we need, but some proofs just refer to that

paper. The methods of proof we use rely on K-theory groups based

on idempotents and invertibles, not just projections and unitaries as is

common in C∗-algebra K-theory. We recommend [3, Chapters 5 and

8] as a background reference.

The following two lemmas are contained in the proof of [30, Lemma

2.4] (see also [3, Proposition 4.3.2] for the second).

Lemma 4.3. For any c ≥ 1 and ε > 0 there exists δ > 0 with the

following property. Let A be a C∗-algebra, B be a C∗-subalgebra, and

let e ∈ Mn(A) be an idempotent with ‖e‖ ≤ c and e ∈δ Mn(B). Then

there is an idempotent f ∈Mn(B) with ‖e− f‖ < ε.

Lemma 4.4. Let d ≥ 1, and let A be a C∗-algebra. If e, f ∈ Mn(A)

are idempotents that satisfy ‖e‖ ≤ d, ‖f‖ ≤ d, and ‖e−f‖ ≤ (2d+1)−1

then the classes [e] and [f ] in K0(A) are the same.

Now, assume c ≥ 1, ε ∈ (0, (4c+ 6)−1), and let δ have the property

in Lemma 4.3 for this c and ε. Assume B is a C∗-subalgebra of A,

and that e ∈ Mn(A) is an idempotent with ‖e‖ ≤ c and e ∈δ Mn(B).

Then Lemma 4.3 gives an idempotent f ∈ Mn(B) with ‖f − e‖ < ε,

and so in particular ‖f‖ ≤ d := c + 1. Moreover, if f ′ ∈ Mn(B)

is another idempotent satisfying ‖f ′ − e‖ < ε then ‖f − f ′‖ < 2ε <

(2c+3)−1 = (2d+1)−1, so Lemma 4.4 implies that [f ] = [f ′] in K0(B).

In conclusion, we get a well-defined class in K0(B) associated to e.

The following is [30, Definition 2.5].

Definition 4.5. Assume c ≥ 1, ε ∈ (0, (4c+ 6)−1), and let δ have the

property in Lemma 4.3 for this c and ε. Let B be a C∗-subalgebra

of A, and let e ∈ Mn(A) be an idempotent such that ‖e‖ ≤ c, and

e ∈δ Mn(B). We write {e}B for the class in K0(B) of any idempotent

f in Mn(B) that satisfies ‖e− f‖ < ε as in the above discussion.
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The following is [30, Definition 2.6]

Definition 4.6. Let c ≥ 1, let ε ∈ (0, (4c+6)−1), and let δ > 0 satisfy

the condition in Lemma 4.3. Let A be a C∗-algebra, and let C and D

be C∗-subalgebras of A. Let u ∈Mn(A+) be an invertible element for

some n. Then an element v ∈M2n(A+) is a (δ, c, C,D)-lift of u if

(i) ‖v‖ ≤ c1/2 and ‖v−1‖ ≤ c1/2;

(ii) v ∈δ M2n(D+);

(iii) v

(
u−1 0

0 u

)
∈δ M2n(C+);

(iv) v

(
1n 0

0 0

)
v−1 ∈δ M2n((C ∩D)+);

(v) the K-theory class

∂v(u) :=

{
v

(
1n 0

0 0

)
v−1

}
(C∩D)+

−

[(
1n 0

0 0

)]
∈ K0((C∩D)+)

(see Definition 4.5 for the left hand term) is actually in the sub-

group K0(C ∩D).

We need another definition.

Definition 4.7. Let C and D be C∗-subalgebras of a C∗-algebra A,

with corresponding inclusion maps ιC : C → A and ιD : D → A. Let

σ : K1(C)⊕K1(D)→ K1(A) be the map defined by σ := ιC∗ + ιD∗ .

The following result is contained in the proof of [30, Proposition

2.7].

Lemma 4.8. Let c ≥ 1, and let ε ∈ (0, (4c + 6)−1). Then there is a

δ > 0 depending only on ε and c, and with the following property. Let

A be a C∗-algebra and let u ∈Mn(A) be an invertible element of norm

at most c. Let C and D be C∗-subalgebras of A, and let v ∈M2n(A+)

be a (δ, c, C,D)-lift of u. If the K-theory class

∂v(u) :=

{
v

(
1n 0

0 0

)
v−1

}
(C∩D)+

−

[(
1n 0

0 0

)]

is zero, then the class [u] ∈ K1(A) is in the image of the map σ from

Definition 4.7.

We need a little more notation before we recall another result from

[30].
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Definition 4.9. Let A be a C∗-algebra, let h be a positive contraction

in A, and let u be an invertible element of Mn(A+). Let6 a = h+ (1−
h)u ∈Mn(A), b = h+ (1− h)u−1 ∈Mn(A), and define

v(u, h) :=

(
1 a

0 1

)(
1 0

−b 1

)(
1 a

0 1

)(
0 −1

1 0

)
∈M2n(A+).

The following result is contained in the proof of [30, Proposition

3.6].

Lemma 4.10. For any δ > 0 and n ∈ N there exists γ > 0 with

the following property. Let A be a C∗-algebra and u ∈ Mn(A+) be a

unitary. Write u = λ + y where λ ∈ Mn(C) is a scalar matrix, and

y ∈ Mn(A). Let X ⊆ A be the finite subset of A consisting of the

matrix entries of y.

Then if (h,C,D) is a triple satisfying the conditions in Lemma 2.14

with respect to X and ε = γ, we have that v(u, h) is a (δ, 64, C,D) lift

of u.

For k ∈ N, let sk ∈ M2k(C) be the (unitary) permutation matrix

determined by

(z1, z2, ..., zk, zk+1, ..., z2k) 7→ (z1, z3, ...., z2k−1, z2, z4, ..., z2k).

For any C∗-algebra A and any n ∈ N, we abuse notation by identifying

sk with the element sk ⊗ 1Mn(A) of Mkn(A) = Mk(C)⊗Mn(A).

The following fact is closely related to [30, Lemma 4.2]7. The proof

consists in direct checks that we leave to the reader.

Lemma 4.11. Let c ≥ 1, and ε ∈ (0, (4c + 6)−1). Let A be a

C∗-algebra, let u ∈ Mn(A+) be unitary, and let v ∈ M2n(A+) be a

(δ, c, C,D)-lift of u, where δ, C, and D satisfy the conditions in Defi-

nition 4.6. Then the following hold:

(i) For any k ∈ N, sk(v⊕k)s∗k is a (δ, c, C,D)-lift of u⊕k.

(ii) If in addition (h,C,D) satisfies the conditions in Lemma 4.10

with respect to appropriate X and γ, and (with notation as in

Definition 4.9) v = v(u, h), then sk(v⊕k)s∗k = v(u⊕k, h).

6Here we conflate a contraction h ∈ A with the corresponding diagonal matrix h⊗1n ∈
Mn(A)

7The statement of that lemma claims that the element we have called sk is self-inverse,

which is clearly wrong. However, this does not significantly affect that lemma, having

replaced s(v⊕k)s with s(v⊕k)s∗ as appropriate.
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(iii) The K-theory classes ∂s(v⊕k)s∗(u
⊕k) and k · ∂v(u) are equal in

K0(C ∩D).

Proof of Theorem 4.1. Let κ ∈ K1(A) be such that n · κ = 0 for some

n ∈ N; our goal is to show that n = 0 or κ = 0. Let w ∈ Mm(A+)

be a unitary element such that [w] = κ. As Um(C) is connected,

we may assume that w is of the form 1m + y for some y ∈ Mm(A)

(whence also w−1 = w∗ = 1m + y∗). As [w⊕n] = n · κ = 0 we have

that w⊕n⊕ 1r′ is homotopic through unitaries to 1s′ for some integers

r′, s′ ≥ 1. Letting r = r′ and s = s′+(n−1)r′, we have that (w⊕1r)
⊕n

is homotopic through unitaries to w⊕n⊕ 1′r ⊕ 1(n−1)r′ , and thus to 1s.

Define u := w⊕ 1r, whence [u⊕n] = n · κ = 0 and u⊕n is homotopic to

1s. Let (u′t)t∈[0,1] denote a path of unitary elements in Ms(A
+) with

u′0 = u⊕n and u′1 = 1s. Let π : Ms(A
+)→ C be the canonical quotient

map. As π(u′0) = π(u′1) = 1s, defining ut := u′tπ(u′t)
−1 for t ∈ [0, 1]

gives a path of unitaries in Ms(A
+) that connects u⊕n and 1s, and

moreover so that ut is of the form ut = 1s + yt for some continuous

path (yt)t∈[0,1] in Ms(A).

Let c = 8, and let ε = (12c + 18)−1. Let δ > 0 have the property

in Lemma 4.8 with respect to this ε. Let γ > 0 be as in Lemma 4.10

with respect to c and δ. Choose a finite partition 0 = t0 < ... < tk = 1

of [0, 1] such that for any t ∈ [ti, ti+1] we have ‖ut − uti‖ < γ/2. With

(yt) as above, for each i ∈ {0, ..., k}, let Xt ⊆ A be the finite subset

consisting of all matrix entries of yt. Let X :=
⋃k
i=1Xti . Let (h,C,D)

be a triple satisfying the conditions in Proposition 2.14 with respect

to the finite set X and error parameter γ/2. Note that for any t and

any x ∈ Xt there is i and xti such that ‖x − xti‖ < γ/2. It follows

that (h,C,D) satisfies the conditions in Lemma 2.14 with respect to

the (possibly infinite) set
⋃
tXt and the error parameter γ.

At this point Lemma 4.10 gives us that (with notation as in Defi-

nition 4.9) vt := v(ut, h) is a (δ, 8, C,D)-lift for ut for all t. The choice

of δ then gives us elements

∂vt(ut) :=

{
vt

(
1n 0

0 0

)
v−1t

}
(C∩D)+

−
[(

1n 0

0 0

)]
∈ K0(C ∩D)

for all t. We claim that

∂v1(u1) = ∂v0(u0). (12)

The path

[0, 1]→M2s(A
+), t 7→ vt

(
1n 0

0 0

)
v−1t
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is continuous, whence there exists a finite partition 0 = t0 < · · · < tl =

1 such that ∥∥∥∥∥vtj+1

(
1n 0

0 0

)
v−1tj+1

− vtj
(

1n 0

0 0

)
v−1tj

∥∥∥∥∥ < ε

for all j ∈ {0, ..., l − 1}. Hence if fj and fj+1 are idempotents in

M2n(B+) satisfying ∥∥∥∥∥fj − vtj
(

1n 0

0 0

)
v−1tj

∥∥∥∥∥ < ε

then ‖fj−fj+1‖ < 3ε = (4c+6)−1. Hence [fj ] = [fj+1] in K0((C∩D)+)

for all j by Lemma 4.4, whence the claim.

Now, that ∂v1(u1) = 0 by definition of v1 and the fact that u1 = 1s.

Hence by the claim from line (12) that we just established,

∂v0(u0) = 0. (13)

Let v = v(u, h). Then Lemma 4.11 part (i) implies that ∂sn(v⊕n)s∗n
(u⊕n)

makes sense, and part (ii) of Lemma 4.11 and the fact that u0 = u⊕n

implies that the classes ∂sn(v⊕n)s∗n
(u⊕n) and ∂v0(u0) are equal. Hence

∂sn(v⊕n)s∗n
(u⊕n) = 0 by line (13). On the other hand, part (iii) of

Lemma 4.11 implies that n · ∂v(u) = ∂sn(v⊕n)s∗n
(u⊕n) so we get

n · ∂v(u) = 0. (14)

Now, as C ∩D is finite-dimensional, K0(C ∩D) is torsion-free, so

line (14) forces n = 0 or ∂v(u) = 0. If n = 0 we are done, so assume

∂v(u) = 0. From Lemma 4.8, we thus have that [u] is in the range of σ.

However, the domain of σ is K1(C) ⊕K1(D), which is zero as C and

D are finite-dimensional. Hence [u] = 0; as u = w ⊕ 1r, this implies

that [w] = 0 too, and we are done.

5 Kirchberg algebras

Our goal in this section is to study the complexity rank of Kirchberg

algebras. Recall that a C∗-algebra is a Kirchberg algebra if it is simple,

separable, nuclear and purely infinite. Our theorems will only apply

to unital Kirchberg algebras, but the proof uses the non-unital case,

so we do not include unitality in the definition of Kirchberg algebras.

The following theorem is our goal in this section.
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Theorem 5.1. Let A be a unital UCT Kirchberg algebra. Then A has

complexity rank one or two. Moreover, it has complexity rank two if

and only if K1(A) contains non-trivial torsion elements.

There is quite a striking contrast here with the theory of nuclear

dimension (and with weak complexity rank). Indeed, all Kirchberg

algebras (regardless of the UCT) have nuclear dimension one by [6,

Theorem G]; as a consequence of this and real rank zero, all Kirchberg

algebras have weak complexity rank one as recorded in Corollary 3.7

above. As already noted in the introduction, proving Theorem 5.1

(or even an a priori much weaker statement, such as that a Kirchberg

algebra with zero K-theory has finite complexity) without the UCT

assumption would imply the UCT for all nuclear C∗-algebras.

The proof of Theorem 5.1 will make repeated use of (part of) the

Kirchberg-Phillips classification theorem [22]; see also the exposition

in [25, Chapter 8] and the newer approach in [15].

5.1 The rank one case (after Enders)

In this subsection, we adapt ideas of Enders [14] to establish the fol-

lowing theorem.

Theorem 5.2. Let A be a unital UCT Kirchberg algebra with torsion

free K1 group. Then A has complexity rank one.

Throughout this subsection we will be dealing with (sometimes

large) matrices, so adopt some notation for convenience. Let eij denote

the matrix units in Mn(C), and for j ∈ {−(n − 1), ..., 0, 1, ..., n − 1},
write dj for the matrix which has ones on the jth subdiagonal and is

zero elsewhere, i.e. dj :=
∑n−j
i=1 e(i+j)i. Note for example that d0 is

the identity, and that d−1 = e12 + e23 + · · · + e(n−1)n is the matrix

with ones on the first superdiagonal and zeros elsewhere. We will also

identify Mn(M(AoZ)) with Mn(C)⊗M(AoZ) and write things like

d1 ⊗ 1 + d−(n−1) ⊗ un ∈Mn(C)⊗M(Ao Z).

for the matrix

0 0 · · · 0 0 un

1 0 · · · 0 0 0

0 1 · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · 1 0 0

0 0 · · · 0 1 0


∈Mn(M(Ao Z)). (15)
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We need a definition from [14, Definition 1.1]. For a C∗-algebra B and

b1, ..., bn ∈ B, we will also write diag(b1, ..., bn) for the diagonal matrix

in Mn(B) with entries b1, ..., bn, i.e. for
b1 0 · · · 0

0 b2 · · · 0
...

...
. . .

...

0 0 · · · bn

 ∈Mn(B)

Definition 5.3. Let A be a C∗-algebra equipped with an action α of

Z, and let n ∈ N. Let ιn be the ∗-homomorphism

ιn : Ao Z→Mn(Ao Z)

determined by the formulas

ιn(a) := diag(α−1(a), α−2(a), ..., α−n(a))

for a ∈ A and

ιn(u) := d1 ⊗ 1 + d−(n−1) ⊗ un

for u ∈M(Ao Z) the canonical unitary implementing the Z action8.

The key technical result is as follows: although somewhat different

from the conclusions of Ender’s arguments, it follows the same basic

strategy.

Lemma 5.4. Let A be an AF C∗-algebra equipped with a Z-action.

Let X be a finite subset of AoZ, and assume there exists a projection

p ∈ A such that px = xp = x for all x ∈ X. Let ε > 0.

Then there exists N ∈ N such that for all n ≥ N , if ιn : A o Z →
Mn(Ao Z) is as in Definition 5.3, and q := ιn(p), then there exists a

positive contraction h ∈ q(Mn(AoZ))q and AF C∗-subalgebras C and

D of q(Mn(Ao Z))q with the following properties:

(i) ‖[h, ιn(x)]‖ < ε for all x ∈ X;

(ii) hιn(x) ∈ε C, (1− h)ιn(x) ∈ε D, and (1− h)hιn(x) ∈ε C ∩D for

all x ∈ X;

(iii) E := C ∩D is an AF C∗-subalgebra of qMn(Ao Z)q;

(iv) h multiplies E into itself.

8See line (15) for ιn(u) written out as a matrix.
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Proof. Define a unitary v ∈Mn(C)⊗M(AoZ) = M(Mn(AoZ)) by

v := d1 ⊗ u−1 + d−(n−1) ⊗ un−1 =



0 . . . . . . 0 un−1

u−1
. . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 . . . 0 u−1 0


.

Write n = 2m if n is even and n = 2m+ 1 if n is odd, and note that

vm = dm ⊗ u−m + d−(n−m) ⊗ un−m. (16)

Let jn : Mn(A) ↪→ Mn(A oα Z) denote the canonical inclusion and

define two ∗-homomorphisms

Λ0
n,Λ

1
n : Mn(A)→Mn(Aoα Z), Λ0

n := jn, Λ1
n := Advm ◦ jn.

Let us compute the image of Λ1
n more concretely. Write elements in

Mn(A) in the form (
a b

c d

)
∈M(n−m)+m(A) (17)

where writing n as the sum of n−m and m in the subscript on the right

records the sizes of the blocks. Using line (16), one then computes that

Λ1
n acts via sending the matrix in line (17) to the element(
αn−m(d) 0

0 α−m(a)

)
+

(
0 αn−m(c)

0 0

)
·un+

(
0 0

α−m(b) 0

)
·u−n (18)

in Mm+(n−m)(A o Z) (note the switch from “(n −m) + m” to “m +

(n−m)”). Define also

q := ιn(p) = diag(α−1(p), ..., α−n(p)).

One checks directly that q multiplies Λ0
n(Mn(A)) into itself, while the

fact that q multiplies Λ1
n(Mn(A)) into itself follows from the formula in

line (18) above. Hence C := q(Λ0
n(Mn(A)))q and D := q(Λ1

n(Mn(A)))q

are well-defined AF subalgebras of Mn(A o Z). Note moreover that

with respect to the decomposition in line (17), the intersection of C

and D can be concretely described as the set

E :=

{
q

(
a 0

0 d

)
q

∣∣∣∣∣ a ∈Mm(A), d ∈Mn−m(A)

}
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and is in particular also an AF algebra.

For 1 ≤ i ≤ n, define scalars hi ∈ [0, 1] by

hi :=



0 1 ≤ i ≤
⌊
n
6

⌋
i−
⌊
n
6

⌋⌊
2n
6

⌋
−
⌊
n
6

⌋ ⌊
n
6

⌋
≤ i ≤

⌊
2n
6

⌋
1

⌊
2n
6

⌋
≤ i ≤

⌊
4n
6

⌋⌊
5n
6

⌋
− i⌊

5n
6

⌋
−
⌊
4n
6

⌋ ⌊
4n
6

⌋
≤ i ≤

⌊
5n
6

⌋
0

⌊
5n
6

⌋
≤ i ≤ n

(19)

and let h ∈Mn(A) be defined by

h := diag(h1, ..., hn)q = diag(h1α
−1(p), ..., hnα

−n(p)).

Note that h multiplies C and D into themselves, whence it also multi-

plies E into itself.

We claim now that for n suitably large, C, D, E, and h have the

properties claimed in the statement of the lemma. We have already

observed properties (iii) and (iv), so it remains to check properties (i)

and (ii).

Let us look first at property (i). As qιn(x) = ιn(px) = ιn(x) =

ιn(xp) = ιn(x)q for all x ∈ X, and as q commutes with

h(0) := diag(h1, ..., hn) (20)

it suffices to show that

[h(0), ιn(x)]→ 0 as n→∞. (21)

For this, we may assume that every element of X is a contraction of

the form auk for some a ∈ A and k ∈ N ∪ {0}. Let K be the maximal

such k appearing in an exponent for some x ∈ X.

Fix then x = a · uk ∈ X and compute h(0) · ιn(x) :

h(0) · ιn(x) = h · ιn(a · uk)

= h(0) · ιn(a)ιn(uk)

= h(0)diag(α−1(a), ..., α−n(a))
(
dk ⊗ 1n + d−n+k ⊗ un

)
=

(
0 0

g1 0

)
+

(
0 g2
0 0

)
· un (22)

where g1 is the (n− k)× (n− k) matrix

g1 := diag(hk+1α
−(k+1)(a), hk+2α

−(k+2)(a), ..., hnα
−n(a)) (23)
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and g2 is the k × k matrix

g2 = diag(h1α
−1(a), ..., hkα

−k(a)). (24)

If we choose n large enough so that k ≤ K <<
⌊
n
6

⌋
, then

(
0 g2
0 0

)
·un = 0,

since hi = 0 for 1 ≤ i ≤
⌊
n
6

⌋
. Hence for large enough n

h(0) · ιn(x) =

(
0 0

g1 0

)
. (25)

Computing ιn(x) · h(0) is similar: if again, n is large enough so that

k ≤ K <<
⌊
n
6

⌋
, we have

ιn(x) · h(0) =

(
0 0

e 0

)
,

where e is the (n− k)× (n− k) matrix defined by

e := diag(h1α
−(k+1)(a), h2α

−(k+2)(a), ..., hn−kα
−n(a)).

At this point, if we let Mn := max{
⌊
2n
6

⌋
−
⌊
n
6

⌋
,
⌊
5n
6

⌋
−
⌊
4n
6

⌋
}, then we

compute that for all large enough n,

‖h(0) · ιn(x)− ιn(x) · h(0)‖ =

∥∥∥∥( 0 0

g1 0

)
−
(

0 0

e 0

)∥∥∥∥
= ‖g1 − e‖
= max
k+1≤i≤n

∥∥hi−kα−i(a)− hiα−i(a)
∥∥

≤ max
k+1≤i≤n

∥∥hi−k − hi∥∥∥∥α−i(a)
∥∥

≤ K

Mn
→ 0 as n→∞,

which completes the proof of condition (i).

We now look at condition (ii). Define C(0) := Λ0
n(Mn(A)), D(0) :=

Λ1
n(Mn(A)) and E(0) := C(0) ∩ D(0). Then with h(0) as in (20), it

suffices to show that for n suitably large and any x ∈ X, h(0)x ∈ε C(0),

(1 − h(0))x ∈ε D(0), and that h(0)(1 − h(0))x ∈ε E(0). We may again

assume that every element of X is a contraction of the form auk for

some a ∈ A and k ∈ N, and let K be the maximal such k appearing.

First, note that it follows from the computation of h(0) ·ιn(x) in line

(25) that for any x, h(0)·ιn(x) ∈ C(0). To see that (1−h(0))·ιn(x) ∈ Dn,

analogously to lines (22) and (23) and (24) above, we compute that

(1− h(0)) · ιn(x) =

(
0 0

f1 0

)
+

(
0 f2
0 0

)
· un (26)
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where f1 is the (n− k)× (n− k) matrix given by

f1 = diag((1−hk+1)α−(k+1)(a), (1−hk+2)α−(k+2)(a), ..., (1−hn)α−n(a))

and as long as n is chosen large enough so that k ≤ K <<
⌊
n
6

⌋
, f2 is

the k × k matrix given by

f2 := diag(α−(k+1)(a), ..., α−n(a)).

Note that (1 − hi) = 0 for
⌊
2n
6

⌋
+ 1 ≤ i ≤

⌊
4n
6

⌋
. Thus the matrix(

0 0
f1 0

)
can be written as the following sum(

0 0

f1 0

)
=
(
dk · diag

(
(1− hk+1)α−(k+1)(a), ..., (1− hbn

3 c)α
−bn

3 c(a), 0, ..., 0
))

+
(
dk · diag

(
0, ..., 0, (1− hb 2n

3 c)α
−b 2n

3 c(a), ..., (1− hn)α−n(a)
))

=

(
f3 0

0 f4

)
,

where f3 is an m×m matrix built from the entries of the first summand

in the middle line above, and f4 is an (m+1)×(m+1) matrix built from

the entries in the second summand in the middle above. Comparing

this with line (26) above, we see that (1− h(0)) · ιn(x) ∈ D.

Finally, we consider E. For any x ∈ X (assumed as usual to be of

the special form auk), we already have that

(1− h(0)) · ιn(x) =

(
f3 0

0 f4

)
+

(
0 f2
0 0

)
· un.

Multiplying by h(0) on the left will make the second term zero as hi = 0

for 1 ≤ i ≤
⌊
n
6

⌋
and n has been chosen so that k ≤ K <<

⌊
n
6

⌋
. Thus

h(0)(1− h(0)) · ιn(x) ∈ E and we are done.

Corollary 5.5. Let A be an AF C∗-algebra equipped with a Z-action.

Let X be a finite subset of AoZ, and assume there exists a projection

p ∈ A such that px = xp = x for all x ∈ X. Let ε > 0. For each

n ∈ N, define

φn : Mn(AoZ)⊕Mn+1(AoZ)→M2n+1(AoZ), (a, b) 7→
(
a 0

0 b

)
,

let ω : Mn(AoZ)→Mn(AoZ) be any ∗-isomorphism, let ιn be as in

Definition 5.3, and define

κn := φn ◦ ((ω ◦ ιn)⊕ ιn+1) : Ao Z→M2n+1(Ao Z).
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Then there exists N ∈ N such that for all n ≥ N , if q := κn(p) there is

a positive contraction h ∈ q(M2n+1(Ao Z)))q and AF C∗-subalgebras

C and D of q(M2n+1(Ao Z))q with the following properties:

(i) ‖[h, κn(x)]‖ < ε for all x ∈ X;

(ii) hκn(x) ∈ε C, (1 − h)κn(x) ∈ε D, and (1 − h)hκn(x) ∈ε C ∩ D
for all x ∈ X;

(iii) E := C ∩D is an AF algebra;

(iv) h multiplies E into itself.

Proof. Let N be large enough so that the conclusion of Lemma 5.4

holds for all n ≥ N with respect to the given X, ε and p. Fix n ≥
N . Let Cn, Dn be subalgebras of ιn(p)(Mn(A o Z))ιn(p) and hn a

positive contraction in ιn(p)(Mn(A o Z))ιn(p) with the properties in

Lemma 5.4 and similarly for Cn+1, Dn+1 and hn+1 with respect to

ιn+1(p)(Mn+1(Ao Z))ιn+1(p).

Define

C := φn(ω(Cn)⊕ Cn+1), D := φn(ω(Dn)⊕Dn+1)

and

h := φn(ω(hn)⊕ hn+1).

Direct checks show these elements have the right properties.

Enders computes the effect of ιn on K-theory: the following result

is a special case of [14, Proposition 3.2].

Lemma 5.6. Let A be a C∗-algebra with K1(A) = 0, and equipped

with an action of Z. Let ιn : Ao Z→ Mn(Ao Z) be as in Definition

5.3 and let in : A o Z → Mn(A o Z) be the standard top-left-corner

inclusion. Then as maps on K-theory, (ιn)∗ = n · (in)∗.

For the next step, we need to use part of the Kirchberg-Phillips

classification theorem. For the reader’s convenience, we state the ver-

sions of the Kirchberg-Phillips theorem we will use, and how to deduce

them from the literature.

Theorem 5.7 (Kirchberg-Phillips). (i) Let A and B be stable Kirch-

berg algebras. Then for any invertible element of x of KK(A,B),

there exists a ∗-isomorphism φ : A→ B such that [φ] = x.

(ii) Let A and B be stable UCT Kirchberg algebras. Then for any

graded isomorphism α : K∗(A)→ K∗(B), there exists a ∗-isomorphism

φ : A→ B that induces α.
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(iii) Let A and B be stable UCT Kirchberg algebras, and let φ, ψ : A→
B be ∗-isomorphisms that induce the same class in KK(A,B).

Then there is a sequence of unitaries (un) in the multiplier algebra

of B such that unφ(a)u∗n → ψ(a) as n→∞ for all a ∈ A.

Proof. Parts (i) and (ii) are exactly [25, Theorem 8.4.1, (i) and (ii)].

Part (iii) can be deduced from [25, Theorem 8.2.1 (ii)]9.

The next result again follows Enders’ work: the proof proceeds

along similar lines to [14, Proof of Theorem 4.1]

Corollary 5.8. Let A be an AF algebra equipped with an action of Z
so that the associated crossed product A o Z is a Kirchberg algebra10.

Let X be a finite subset of AoZ, and assume there exists a projection

p ∈ A such that px = xp = x for all x ∈ X. Then for any ε > 0

there exist AF C∗-subalgebras C and D of p(A o Z)p and a positive

contraction h ∈ p(Ao Z)p such that the following hold:

(i) for all x ∈ X, ‖[h, x]‖ < ε;

(ii) for all x ∈ X, hx ∈ε C, (1− h)x ∈ε D, h(1− h)x ∈ε C ∩D;

(iii) E := C ∩D is an AF algebra;

(iv) h multiplies E into itself.

Proof. We first follow the argument of [14, Theorem 4.1]. Let N be

large enough so that the conclusion of Corollary 5.5 holds for the given

X and p, and parameter ε/2, and fix any n ≥ N .

Note first that as Mn(A o Z) is a stable UCT Kirchberg algebra,

Theorem 5.7, part (ii) implies there is a ∗-isomorphism ω : Mn(A o
Z)→Mn(AoZ) such that the map ω∗ : K∗(Mn(AoZ))→ K∗(Mn(Ao
Z)) induced by ω is multiplication by −1 in both even and odd degrees.

Let now κn be as in Corollary 5.5, built using this ω. From Lemma

5.6, the map induced by κn on K-theory is the same as the canonical

top-left corner inclusion i2n+1 : A o Z → M2n+1(A o Z), and in par-

ticular is an isomorphism on K-theory. Hence by the UCT (see [27,

Proposition 7.5] for the precise consequence of the UCT being used

here), κn is invertible in KK(A o Z,M2n+1(A o Z)). Theorem 5.7,

9The references we give here are to a readable textbook exposition that explains the

ideas, but does not quite contain complete proofs. For references with proofs that one can

deduce the results from, see [22, Theorem 4.2.1] or [15, Theorem A] for parts (i) and (ii),

and [22, Theorem 4.1.3] or [15, Theorem B] for part (iii).
10This assumption forces A to be non-unital, whence A o Z is stable by Zhang’s di-

chotomy: see [25, Proposition 4.1.3], or [38, Theorem 1.2] for the original reference.
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part (i) thus gives a ∗-isomorphism φn : AoZ→M2n+1(AoZ) whose

class in KK(M2n+1(Ao Z), Ao Z) is the inverse of the class of κn.

The fact that ψn ◦ κn equals the class of the identity in KK(A o
Z, A o Z) and Theorem 5.7 part (iii) implies that there is a sequence

(um)∞m=1 of unitaries in the multiplier algebra of A o Z such that

um(ψnκn(a))u∗m → a as n→∞ for all a ∈ Ao Z.

Now, let q := κn(p), and let hn ∈ q(M2n+1(AoZ))q, qCnq, qDnq ⊆
M2n+1(A o Z) be as Corollary 5.5. Define pm := umψn(q)u∗m which

is a projection in A o Z such that pm → p as m → ∞. Hence by

Lemma 2.10 (applied to the multiplier algebra M(A o Z) of A o Z)

for all suitably large m there is a unitary vm ∈ M(A o Z) such that

vmpmv
∗
m = p, and such that vm → 1M(AoZ) as m→∞.

Direct checks now show that for sufficiently large m, the element

h := vmumψn(hn)u∗mv
∗
m and C∗-subalgebras C := vmumψn(Cn)u∗mv

∗
m,

andD := vmumψn(Dn)u∗mv
∗
m have the properties in the statement.

The next corollary follows directly from the above and the definition

of complexity rank (see Definition 2.3 above).

Corollary 5.9. Let A be an AF algebra equipped with an action of Z
so that the associated crossed product AoZ is a Kirchberg algebra, and

let p ∈ A ⊆ AoZ be a projection. Then p(AoZ)p has complexity rank

at most one.

We are finally ready to complete the proof of Theorem 5.2. We will

use corner endomorphisms and the associated crossed products by N:

see [24, Section 2] for background on this.

Proof of Theorem 5.2. Let B be a unital Kirchberg algebra that sat-

isfies the UCT. Using [24, Theorem 3.6] there is a simple, unital AF

algebra A0 with unique trace and a proper corner endomorphism ρ of

A0 such that the associated crossed product A0 o N is a UCT Kirch-

berg algebra with the same K-theory invariant as B. Hence by the

Kirchberg-Phillips classification theorem (see for example [25, The-

orem 8.4.1] for an appropriate version) B is isomorphic to A0 o N.

Hence it suffices to prove that A0 o N has complexity rank at most

one.

Define now A to be the direct limit of the sequence

A0
ρ // A0

ρ // A0
ρ // · · · .

Then A is a direct limit of AF algebras so itself an AF algebra, and

as discussed in [25, pages 75-76, and also pages 72-73], A is equipped
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with a Z-action and a projection p ∈ A such that p(AoZ)p ∼= A0oN.

Thanks to Corollary 5.9, we are done.

5.2 The general case

In this subsection, we finish the proof of Theorem 5.1 by computing

the complexity rank of general unital UCT Kirchberg algebras. We

will need existence of a good class of “models”, i.e. a collection of C∗-

algebras with well-understood structure so that every UCT Kirchberg

algebra is isomorphic to one in the collection. Our models will be built

from Cuntz algebras, and one other Kirchberg algebra with special

K-theory. We need some notation. For n ∈ {2, 3, 4, ...} ∪ {∞}, we

let On denote the Cuntz algebra. We also let O1,∞ be a unital UCT

Kirchberg algebra with K0(O1,∞) = 0 and K1(O1,∞) = Z; such exists

by [25, Proposition 4.3.3] (and is unique up to isomorphism by the

Kirchberg-Phillips classification theorem).

The next proposition gives the models we will use. Variants of this

are very well-known: see for example [25, Proposition 8.4.11] (and the

erratum on the author’s webpage).

Proposition 5.10. Any unital Kirchberg algebra in the UCT class can

be written as an inductive limit of C∗-algebras of the form

B0 ⊕ (B1 ⊗O1,∞), (27)

where B0 and B1 are both of the form

N⊕
j=1

Mnj
(Omj

)

with N ∈ N, each nj ∈ N, and each mj ∈ {2, 3, ...} ∪ {∞}.

To establish this, we will need another well-known variant of the

Kirchberg-Phillips classification theorem, due to Kirchberg11. For the

statement, recall that a ∗-homomorphism φ : A → B is full if for any

non-zero a ∈ A, φ(a) generates B as a two-sided ideal.

Theorem 5.11 (Kirchberg). Let A be a separable, nuclear, unital C∗-

algebra that satisfies the UCT, and let B be a unital, properly infi-

nite C∗-algebra. Then for any (graded) homomorphism α : K∗(A) →
K∗(B) such that α[1A] = [1B ] there exists a full, unital ∗-homomorphism

φ : A→ B inducing α.

11As far as we are aware, Kirchberg’s proof has not been published: the reader can

consult [15, Theorem A] for a proof (which is independent of Kirchberg’s).
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Proof. Let A be a separable, nuclear, unital C∗-algebra, and let B be

a unital, properly infinite C∗-algebra. Then [15, Theorem A] implies

that for any x ∈ KK(A,B) such that the map x∗ : K0(A) → K0(B)

induced on K-theory takes [1A] to [1B ], there exists a full unital ∗-
homomorphism φ : A→ B such that the class [φ] in KK(A,B) equals

x: precisely, the given reference has strictly weaker assumptions on A

and B (in particular, only that A is exact), and works with classes in

KKnuc(A,B) rather than KK(A,B). However, we assume above that

A is nuclear, which implies that KKnuc(A,B) = KK(A,B).

On the other hand, as A satisfies the UCT, the canonical map

KK(A,B)→ Hom(K∗(A),K∗(B))

is surjective. The result follows from this and the comments above on

lifting α to some x ∈ KK(A,B).

Proof of Proposition 5.10. Let (K0(A), [1A],K1(A)) be the K-theory

invariant of A. Choose a sequence (Gn,0, Gn,1) such that Gn,0 is a

finitely generated subgroup of K0(A) containing [1A], Gn,1 is a finitely

generated subgroup of K1(A), and such that Ki(A) =
⋃
n∈NGn,i for

i ∈ {0, 1}. Using the Künneth formula (see [28, page 443] or [3,

Theorem 23.1.3]) and the well-known K-theory of the Cuntz algebras

(see for example [25, page 74]) it is straightforward to see that for

each n, there is a C∗-algebra Cn of the form in line (27) such that

(K0(Cn), [1Cn ],K1(Cn)) ∼= (G0,n, [1A], G1,n). Identifying these groups

via a fixed isomorphism, Corollary 5.11 implies that for each n the

inclusion map

(G0,n, [1A], G1,n)→ (G0,n+1, [1A], G1,n+1)

is induced by a full unital ∗-homomorphism φn : Cn → Cn+1. We claim

that A is isomorphic to the inductive limit C of the system (Cn, φn).

Indeed, first note that C is unital, and that by continuity of K-theory,

(K0(C), [1C ],K1(C)) ∼= (K0(A), [1A],K1(A)). As each φn is unital

and full, C is unital and simple. As each Cn is nuclear, C is nuclear.

As each Cn is a finite direct sum of purely infinite C∗-algebras, C is

purely infinite: it is straightforward to check this using the condition

in [24, Proposition 4.1.8 (iv)], for example. Hence by the Kirchberg-

Phillips classification theorem (for example, [22, Theorem 4.3.4]), A is

isomorphic to C as claimed.

Theorem 5.12. Any unital UCT Kirchberg algebra A has complexity

rank at most two.
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Proof. Proposition 5.10 writes A as an inductive limit of C∗-algebras of

the form B0⊕B1⊗O1,∞ with B0 and B1 a finite direct sum of matrix

algebras over Cuntz algebras. Using Theorem 5.2, any unital UCT

Kirchberg algebra with torsion free K1-group has complexity rank one.

Using this and Lemma 2.5, each of B0, B1 and O1,∞ has complexity

rank at most one. Hence Proposition 2.22 implies that B1 ⊗O1,∞ has

complexity rank at most two, and thus so does B0 ⊕B1 ⊗O1,∞ using

Lemma 2.5 again. As complexity rank is non-increasing under taking

inductive limits (Lemma 2.6), the complexity rank of A is at most

2.

We finish this section by recording a proof of Theorem 5.1.

Proof of Theorem 5.1. LetA be a unital UCT Kirchberg algebra. Then

A has complexity rank at most two by Theorem 5.12. As A is not lo-

cally finite-dimensional, it does not have complexity rank zero.

If A has complexity rank one, then it has torsion-free K1-group by

Theorem 4.1. Conversely, if A has torsion-free K1 group, then it has

complexity rank one by Theorem 5.2.

6 Questions

We conclude the paper with some open questions that seem interesting

to us.

The first question is important (and probably difficult) as it is

equivalent to the UCT for all nuclear C∗-algebras.

Question 6.1. Do all (unital) Kirchberg algebras have finite complex-

ity?

Even knowing finite complexity for Kirchberg algebras with trivial

K-theory would imply the UCT for all nuclear C∗-algebras.

The next question is about the most interesting example that we

do not currently know the complexity rank of.

Question 6.2. What is the complexity rank of an irrational rotation

algebra?

We conjecture the answer is always one; more generally, we conjec-

ture that the complexity rank of a separable AT-algebra of real rank

zero (and which is not AF) is always one.

Question 6.3. What is the complexity rank of (classifiable) AH (or

even ASH) algebras of real rank zero?
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It would also be interesting to give non-trivial upper bounds, maybe

in terms of the dimensions of the spectra of (sub)homogeneous algebras

appearing in a directed system for the given A(S)H algebra.

The following question is very natural. We know too little to hazard

a reasonable guess at the moment.

Question 6.4. Which ordinal numbers can be the complexity rank of

a C∗-algebra?

We did not seriously attempt to address this question, but at the

moment, the only values we know can be taken are 0, 1, and 2. It is

conceivable that for the uniform Roe algebras C∗u(X) associated to a

space X, the complexity rank of C∗u(X) and the complexity rank of

X in the sense of [17, Definition 2.9] (at present we know only that

the complexity rank of the C∗-algebra is bounded above by that of the

space). If these ranks were equal, it would follow for example from [17,

Sections 4 and 5] and [11] that many complexity ranks are possible for

C∗-algebras.

Question 6.5. Does (weak) complexity rank at most one imply real

rank zero in general?

There are some interesting connections of this question to other

problems: compare Remark 3.15 above. The question seems more

likely to have a positive answer in the simple case, which would also

be interesting.

The following question seems basic (we tried to find an answer and

were not able to).

Question 6.6. Does having complexity rank at most α pass to corners?

This would be interesting to know even for α = 1. The answer

is ‘yes’ for weak complexity rank at most one: one can see this by

adapting the proof of [19, Proposition 3.8], for example.

Our last question is a little vague, but would be useful to have,

particularly with regards permanence properties.

Question 6.7. Is there a ‘good’ definition of decomposability in the

non-unital case?

Many of the results in this paper have reasonably natural variants in

the non-unital case, but we were not able to come up with a really clean

and natural definition, so in the end opted to write the paper entirely

in the unital setting for the sake of simplicity. Certainly having a

notion that applied equally in the unital case would be very interesting,

however.
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versal coefficient theorem for Kasparov’s generalized K-functor.

Duke Math. J., 55(2):431–474, 1987. 3, 43

[28] C. Schochet. Topological methods for C∗-algebras II: geometric
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