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Abstract

We show that if C∗
u(X) is a uniform Roe algebra associated to a

bounded geometry metric spaceX, then all bounded derivations on C∗
u(X)

are inner.

1 Introduction

Let A be a C∗-algebra. A derivation of A is a linear map δ : A→ A satisfying

δ(ab) = aδ(b) + δ(a)b. In this paper, we always assume that our derivations are

defined on all of A, and are thus bounded by a fundamental result of Sakai [9].

A derivation δ of A is inner if there exists d in the multiplier algebra M(A) of

A such that δ(a) = ad− da for all a ∈ A. Let us say that a C∗-algebra A only

has inner derivations if all (bounded) derivations are inner.

Motivated by the needs of mathematical physics and the study of one-

parameter automorphism groups, it is interesting to study whether all deriva-

tions are inner for a particular C∗-algebra. In the 1970s, a complete solution

to this problem was obtained in the separable case via the work of several au-

thors. The definitive result was obtained by Akemann and Pedersen [1]: they

showed that a separable C∗-algebra has only inner derivations if and only if it

isomorphic to a C∗-algebra of the form

C ⊕
⊕
i∈I

Si, (1)

where C is continuous trace (possibly zero), and each Si is simple (possibly

zero). Thus in particular, all separable commutative, and all separable simple,

C∗-algebras only have inner derivations. However, one might reasonably say

that most separable C∗-algebras admit non-inner derivations.
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For non-separable C∗-algebras the picture is murkier. It is well-known that

there are non-separable C∗-algebras that are not of the form in line (1) and

that only have inner derivations: perhaps most famously, Sakai [10] has shown

this for all von Neumann algebras. See also for example [6, page 123] for some

examples that are not von Neumann algebras, nor of the form in line (1), and

that only have inner derivations.

Our goal in this paper is to give a new class of examples that only have in-

ner derivations: uniform Roe algebras. Uniform Roe algebras are a well-studied

class of non-separable C∗-algebras associated to metric spaces; see Section 2 be-

low for basic definitions. They were originally introduced for index-theoretic

purposes, but are now studied for their own sake as a bridge between C∗-

algebra theory and coarse geometry, as well as having interesting applications

to single operator theory and mathematical physics, amongst other things. Due

to the presence of `∞(X) as a diagonal1 MASA. they have a somewhat von

Neumann algebraic flavor, but are von Neumann algebras only in the trivial

finite-dimensional case. They are also essentially never of the form in line (1).

Moreover, in many ways they are quite tractable as C∗-algebras, often having

good regularity properties such as nuclearity.

Here is our main theorem.

Theorem 1.1. Uniform Roe algebras associated to bounded geometry metric

spaces only have inner derivations.

The key ingredients in the proof are: a basic form of a ‘reduction of cocycles’

argument used by Sinclair and Smith [11] in their study of Hochschild cohomol-

ogy of von-Neumann algebras; and recent applications of Ramsey-theoretic ideas

to the study of uniform Roe algebras by Braga and Farah [3].

We conclude this introduction by noting that the fact that all derivations

on A are inner can be restated as saying that the first Hochschild cohomology

group H1(A,A) vanishes. For A a (nuclear) uniform Roe algebra, it is then

natural to ask if all the higher groups Hn(A,A) vanish. See [11] for a survey of

this problem in the case that A is a von Neumann algebra.
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2 Definitions and background results

In this section, we recall some basic definitions, as well as a classical result of

Kadison stating that all derivations on a C∗-algebra are spatially implemented.

Inner products are linear in the first variable. For a Hilbert space H we

denote the space of bounded operators on H by B(H), and the space of compact

operators by K (H). The commutator of a, b ∈ B(H) is denoted by [a, b] :=

ab− ba.

The Hilbert space of square-summable sequences on a set X is denoted

`2(X), and the canonical basis of `2(X) will be denoted (ϑx)x∈X (we reserve δ

for derivations). For a ∈ B(`2(X)) we define its matrix entries by

axy := 〈aϑy, ϑx〉 .

Definition 2.1 (propagation, uniform Roe algebra). Let X be a metric space

and r ≥ 0. An operator a ∈ B(`2(X)) has propagation at most r if axy = 0

whenever d(x, y) > r for all (x, y) ∈ X ×X. In this case, we write prop(a) ≤ r.
The set of all operators with propagation at most r is denoted Cru [X]. We define

Cu [X] := {a ∈ B(`2(X)) : prop(a) <∞};

it is not difficult to see that this is a ∗-algebra. The uniform Roe algebra, denoted

C∗u(X), is defined to be the norm closure of Cu[X].

Definition 2.2 (ε-r-approximated). Let X be a metric space. Given ε > 0 and

r > 0, an operator a ∈ B(`2(X)) can be ε-r-approximated if there exists an

b ∈ Cru [X] such that ‖a− b‖ < ε.

We will exclusively be interested in uniform Roe algebras associated to

bounded geometry metric spaces as in the next definition.

Definition 2.3 (bounded geometry). A metric space X is said to have bounded

geometry if for every r ≥ 0 there exists an Nr ∈ N such that for all x ∈ X, the
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ball of radius r about x has at most Nr elements.

Finally in this section, we recall a general fact about derivations.

Definition 2.4 (spatial derivation). Let A ⊆ B(H) be a concrete C∗-algebra.

A derivation δ of A is spatial if there is a bounded operator d ∈ B(H) such that

δ(a) = [a, d].

The following is due to Kadison [7, Theorem 4].

Theorem 2.5. Let A ⊆ B(H) be a concrete C∗-algebra. Then every derivation

on A is spatial.

Note that a uniform Roe algebra C∗u(X) always contains the compact oper-

ators on `2(X). For a concrete C∗-algebra A ⊆ B(H) containing the compact

operators K (H), there are simpler proofs of Theorem 2.5 available: see for

example [5, Corollary 3.4 and Remark on page 284].

3 Averaging operators over amenable groups

In this section, we summarize some facts we need about averaging operators on

a Hilbert space over an amenable group. Most of this material seems likely to

be well-known; however, we could not find convenient references for the facts

we wanted, so provide most details here.

Let G be a discrete (possibly uncountable) group. If A is a complex Banach

space, we let `∞(G,A) denote the Banach space of bounded functions from G to

A equipped with the supremum norm; in the case A = C, we just write `∞(G).

We also equip `∞(G,A) with the right-action of G defined for a ∈ `∞(G,A) and

h, g ∈ G by

(ag)(h) := a(hg).

If Z is any set, a function φ : `∞(G,A)→ Z is invariant if φ(ag) = φ(a) for all

a ∈ `∞(G,A) and g ∈ G. Recall that G is amenable if there exists an invariant

mean on `∞(G), i.e. an invariant function φ : `∞(G)→ C that is also a state.

Fix now an invariant mean on `∞(G), which we denote2 by

a 7→
∫
G

a(g) dµ(g).

2The integral notation is meant to be suggestive, but we do not need to, and will not,
assign any specific meaning to the ‘measure’ µ.
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Let now B be a complex Banach space with dual B∗. We may upgrade an

invariant mean on `∞(G) to an invariant contractive linear map `∞(G,B∗) →
B∗ in the following way. Let b ∈ B, g ∈ G, and a ∈ `∞(G,B∗), and write

〈b, a(g)〉 for the pairing between b and a(g). Then the map

G→ C, g 7→ 〈b, a(g)〉

is bounded, and so we may apply the invariant mean to get a complex number∫
G

〈b, a(g)〉dµ(g).

It is not difficult to check that the map

B → C, b 7→
∫
G

〈b, a(g)〉dµ(g)

is a bounded linear functional on B. We write
∫
G
a(g) dµ(g) for this bounded

linear functional.

The following lemma is straightforward: we leave the details to the reader.

Lemma 3.1. With notation as above, the map

`∞(G,B∗)→ B∗, a 7→
∫
G

a(g) dµ(g)

is uniquely determined by the condition〈
b,

∫
G

a(g) dµ(g)
〉

=

∫
G

〈b, a(g)〉dµ(g) (2)

for b ∈ B and a ∈ `∞(G,B∗). It is contractive, linear, invariant, and acts as

the identity on constant functions.

We will apply this machinery in the case that B = L1(`2(X)) is the trace

class operators on `2(X). In this case, the dual B∗ canonically identifies with

B(`2(X)): indeed, if Tr is the canonical trace L1(`2(X)), b ∈ L1(`2(X)), and

a ∈ B(`2(X)), then the pairing inducing this duality isomorphism is defined by

〈b, a〉 := Tr(ba). (3)

We will need some basic lemmas. The first can be deduced very quickly from

the theory of conditional expectations (see for example [4, Lemma 1.5.10]); we
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instead give a slightly longer naive proof.

Lemma 3.2. With notation as above, for any a ∈ `∞(G,B(`2(X)) and c ∈
B(`2(X)), we have that

c

∫
G

a(g) dµ(g) =

∫
G

ca(g) dµ(g) and

∫
G

a(g) dµ(g)c =

∫
G

a(g)cdµ(g)

Proof. Using lines (2) and (3), for any b ∈ L1(`2(X)), we have〈
b, c

∫
G

a(g) dµ(g)
〉

= Tr
(
bc

∫
G

a(g) dµ(g)
)

=
〈
bc,

∫
G

a(g) dµ(g)
〉

=

∫
G

〈bc, a(g)〉dµ(g) =

∫
G

Tr(bca(g)) dµ(g)

=

∫
G

〈b, ca(g)〉dµ(g) =
〈
b,

∫
G

ca(g) dµ(g)
〉
.

As b ∈ L1(`2(X)) was arbitrary, this implies that c
∫
G
a(g) dµ(g) =

∫
G
ca(g) dµ(g).

The other case is similar, using also the trace identity Tr(cd) = Tr(dc), which

is valid whenever either c or d is trace class.

The next lemma says that our averaging process behaves well with respect to

propagation. Again, we proceed naively; the key point of the lemma is that the

collection of operators in B(`2(X)) that have propagation at most r is weak-∗
closed for the weak-∗ topology inherited from the pairing with L1(`2(X)).

Lemma 3.3. With notation as above, if r ≥ 0 and a ∈ `∞(G,B(`2(X))) is

such that the propagation of each a(g) is at most r, then the propagation of∫
G
a(g) dµ(g) is also at most r.

Proof. Let exy ∈ L1(`2(X)) be the standard matrix unit. Then one computes

using line (3) above that for any a ∈ B(`2(X)),

〈eyx, a〉 = Tr(eyxa) = axy. (4)

Using lines (2) and (4), we see that〈
eyx,

∫
G

a(g) dµ(g)
〉

=

∫
G

〈eyx, a(g)〉dµ(g) =

∫
G

a(g)xy dµ(g),

where the last expression means the image of the function

G→ C, g 7→ a(g)xy
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under the invariant mean. If d(x, y) > r, we have that a(g)xy = 0 for all g ∈ G,

and therefore that
∫
G
a(g)xy dµ(g) = 0. Hence by the above computation,

d(x, y) > r implies
〈
eyx,

∫
G

a(g) dµ(g)
〉

= 0.

Using line (4), this says that
∫
G
a(g) dµ(g) has propagation at most r, so we

are done.

Lemma 3.4. With notation as above, say that there is a unitary represen-

tation g 7→ ug of G on `2(X). For any fixed d ∈ B(`2(X)), define a ∈
`∞(G,B(`2(X))) by a(g) := u∗gdug. Then

∫
G
a(g) dµ(g) is in the commutant

of the set {ug | g ∈ G}.

Proof. Let h ∈ G. Then by Lemma 3.2,

uh

∫
G

u∗gdug dµ(g) =

∫
G

uhu
∗
gdug dµ(g) =

∫
G

u∗gh−1dug dµ(g).

Making the ‘change of variables’ k = gh−1 and using right-invariance of the

map a 7→
∫
G
a(g) dµ(g), this equals∫

G

(uk)∗dukh dµ(k) =

∫
G

u∗kdukuh dµ(k).

Using Lemma 3.2 again we get
∫
G
u∗kdukuh dµ(k) =

∫
G
u∗kduk dµ(k)uh, so are

done.

4 Proof of the main result

In this section, we start by summarizing a fact we need from the recent work of

Braga-Farah. We then prove Theorem 1.1.

To state the result due to Braga and Farah [3, Lemma 4.9], let D := {z ∈
C : |z| ≤ 1} denote the closed unit disk, and for a set I, let DI denote the

usual product space of functions I → D. We write elements of DI as tuples

λ = (λi)i∈I .

Lemma 4.1. Let (X, d) be a metric space with bounded geometry, and let I

be a countable set. Suppose that (ai)i∈I is a family of finite rank operators in

C∗u (X) such that for every λ ∈ DI the series
∑
i∈I λiai converges strongly to an
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operator aλ ∈ C∗u (X). Then for every ε > 0 there exists r > 0 such that aλ can

be ε-r-approximated for all λ ∈ DI .

We are now ready for the proof of Theorem 1.1.

Proof of Theorem 1.1. Let δ : C∗u (X) → C∗u (X) be a derivation. Theorem 2.5

implies that δ is spatially implemented, so there is d ∈ B(`2(X)) such that

δ(a) = [a, d] for all a ∈ C∗u(X). We will show that d is in C∗u(X).

Let U be the unitary group of `∞(X), equipped with the discrete topology.

As U is abelian, it is amenable (see for example [2, Theorem G.2.1]), and so we

may fix a right-invariant mean on `∞(U). As in Lemma 3.1 above, this allows

us to build a right-invariant, contractive, linear map

`∞(U ,B(`2(X)))→ B(`2(X)), a 7→
∫
U
a(u) dµ(u). (5)

We apply this to the bounded function

U → B(`2(X)), u 7→ u∗du

to get a bounded operator

d′ :=

∫
U
u∗dudµ(u) ∈ B(`2(X)).

Using Lemma 3.4 applied to the identity representation of U , d′ is in the commu-

tant of U . As U spans `∞(X), and as `∞(X) is maximal abelian in B(`2(X)),

this implies that d′ is in `∞(X). To show that d is in C∗u(X), it therefore suffices

to show that h := d− d′ is in C∗u(X).

Continuing, let px ∈ B(`2(X)) be the rank one projection onto the span of

the Dirac mass at x. For an element f of the unit ball of `∞(X) (considered as

a multiplication operator on `2(X)), write f as a strongly convergent sum

f =
∑
x∈X

f(x)px.

Then using strong continuity of subtraction, and separate strong continuity of

multiplication on bounded sets,

[f, d] =
[ ∑
x∈X

f(x)px, d
]

=
∑
x∈X

f(x)[px, d].
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On the other hand, by assumption that δ is a derivation on C∗u(X), [f, d] is

in C∗u(X) for all f ∈ `∞(X). It follows that if we set I = X, and if for each

x ∈ X we set ax := [px, d], then the collection (ax)x∈X satisfies the assumptions

of Lemma 4.1. Hence, for every ε > 0 there exists r > 0 such that for every

f in the unit ball of `∞(X), the operator [f, d] can be ε-r approximated. In

particular, using that any u ∈ U has propagation zero and norm one, for any

ε > 0 there exists r > 0 such that d− u∗du = u∗[u, d] can be ε-r approximated.

For each u ∈ U , we can therefore choose a(u) of propagation at most r such

that b(u) := d − u∗du − a(u) has norm at most ε. Note that the functions

a : u 7→ a(u) and b : u 7→ b(u) are in `∞(U ,B(`2(X))). Hence we may consider

their images under the map in line (5). Using that the map in line (5) is linear

and acts as the identity on constant functions (see Lemma 3.1), we see that∫
U
a(u) dµ(u) +

∫
U
b(u) dµ(u) =

∫
U
d− u∗dudµ(u) = d−

∫
U
u∗dudµ(u)

= d− d′ = h. (6)

On the other hand,
∫
U a(u) dµ(u) has propagation at most r by Lemma 3.3,

and
∫
U b(u) dµ(u) has norm at most ε as the map in line (5) is contractive (see

Lemma 3.1). In particular, line (6) writes h as a sum of an element of C∗u(X),

and an element of norm at most ε. As ε was arbitrary, h is in C∗u(X), and we

are done.
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