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Introduction

One of the greatest discoveries in mathematics is the Fredholm index. This
measures the size of the solution space for a linear system. The beauty of this
index is that it is invariant under small perturbations of the linear system.

The topology and geometry of a smooth closed manifold M is governed by
certain natural elliptic differential operators. These operators have Fredholm
indices that are computed by the famous Atiyah-Singer index formula. The work
underlying this formula was one of the foremost mathematical achievements of
the last century, and has important applications in geometry, topology, and
mathematical physics.

A central question in mathematics is to extend the Atiyah-Singer index the-
ory to non-compact manifolds. In the non-compact case, the classic Fredholm
index is not well-defined since the solution spaces of natural elliptic differential
operators can be infinite dimensional. A vast generalisation of the Fredholm
index, called the higher index, can be defined for differential operators within
the framework of Alain Connes’ noncommutative geometry. A key idea in the
definition of higher index is to develop a notion of dimension for possibly infinite-
dimensional spaces using operator algebras. This dimension theory has its root
in John von Neumann’s theory of continuous geometry and is formalized using
K-theory of operator algebras. Crucial features are that the higher index is
invariant under small perturbations of the differential operator, and that it is
an obstruction to invertibility of the operator.

Higher index theory has been developed in the work of many mathematicians
over the last forty years. It has found fundamental applications to geometry
and topology such as to the Novikov conjecture on topological rigidity, and the
Gromov-Lawson conjecture on scalar curvature.

The purpose of the book is to give a friendly exposition of this exciting sub-
ject!

Structure

This book is split into four parts.
Part I summarises background on C˚-algebras and K-theory, often only

including full proofs for non-standard material. The reader should not expect
to have to understand all of this before approaching the rest of the book. Part
I ends with a section motivating some of the techniques we will study, based on
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the problem of existence of positive scalar curvature metrics. We also gives a
more detailed summary of the book’s contents here.

Part II discusses Roe algebras, localisation algebras, and the assembly maps
connecting them. Roe algebras and localisation algebras are C˚-algebras asso-
ciated to the large and small scale structures of a space, and assembly is a map
between them. Assembly is closely related to taking higher indices. This section
finishes with a description of the Baum-Connes conjectures, which posit that a
certain universal assembly map is an isomorphism.

Part III moves into the theory of differential operators on manifolds, which is
where the main applications of the theory developed in Part II lie; in the earlier
parts, we do not really discuss manifolds at all. We discuss how elliptic opera-
tors naturally give rise to K-theory classes, and the flavour thus becomes more
explicitly index-theoretic. We also discuss how Poincaré duality in K-theory
relates to differential operators, and summarise some of the most important
applications to geometry and topology.

Part IV looks at the (Baum-Connes) assembly maps in more detail. We give
an elementary approach to some results in the case of almost constant bundles.
We spend some time giving a new and relatively elementary proof of the coarse
Baum-Connes conjecture for spaces that admit a coarse embedding into Hilbert
space, a particularly important theorem for applications. We also discuss some
counterexamples.

Finally, the book closes with several appendices summarising an ad-hoc col-
lection of material from general topology and coarse geometry, from represen-
tation theory, from the theory of unbounded operators, and about graded C˚-
algebras and Hilbert spaces.

Intended audience and prerequisites

The prerequisites are something like a first course in C˚-algebra K-theory,
some of which is summarised in Part I. For Part III, it will also help to have
some background in manifold topology and geometry, although this is generally
kept to a minimum.

The intended audience consists of either operator algebraists who are inter-
ested in applications of their field to topology and geometry, or topologists and
geometers who want to use tools from operator algebras and index theory.

We have done our best to keep the exposition as concrete and direct as pos-
sible.
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tels, Paul Baum, Xiaoman Chen, Alain Connes, Joachim Cuntz, Ron Douglas,
Siegfried Echterhoff, Steve Ferry, Guihua Gong, Erik Guentner, Nigel Higson,
Gennadi Kasparov, Wolfgang Lück, Ralf Meyer, Ryszard Nest, Hervé Oyono-
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Chapter 1

C˚-algebras

Our goal in this chapter is to summarise enough of the theory of C˚-algebras
for what we need in the rest of the book. We are not aiming for a self-contained
introduction: we do sketch some proofs where we think these are illuminating
and do not take us too far afield, but leave many important results unjustified.
We are also not attempting a comprehensive overview of basic C˚-algebra the-
ory: for us in this text the theory of C˚-algebras is generally a means to an end,
rather than an end in its own right and we have tried to limit this overview to
what we actually use.

The most concrete way to think of a C˚-algebra is as a norm-closed and
adjoint-closed subalgebra of the collection BpHq of bounded operators on some
Hilbert space H; one could define ‘C˚-algebra’ to mean exactly this, with no
loss of generality. Moreover, many of the C˚-algebras we consider in this text
arise naturally in this form, and thus thinking of C˚-algebras in this way will
suffice for many of our purposes.

However, it is a remarkable fact that a quotient of a C˚-algebra by a closed
ideal is still a C˚-algebra, and this would not be at all obvious if one just defined
‘C˚-algebra’ to mean ‘norm and adjoint closed subalgebra of BpHq’. Largely
motivated by the need to explain this, we develop some basic theory, and use
the standard definition of C˚-algebra in terms of certain natural axioms.

The chapter is structured as follows. In Section 1.1 we start the chapter
proper, and give the axiomatic definition of a C˚-algebra, and some basic ex-
amples.

In Sections 1.2 we discuss basic facts about spectrum and invertible elements,
and in Section 1.3, we go through most of a proof of the celebrated Gelfand-
Naimark theory, which characterises commutative C˚-algebras as all being of
the form C0pXq for some locally compact Hausdorff space X. As this theory is so
fundamental (and beautiful!) we give more exposition and proofs than is strictly
necessary for the rest of the text. We also give a more detailed discussion of
functoriality than is standard in the literature, and having a relatively detailed
exposition helps with this.

Having done with this, Section 1.4 uses the commutative theory to construct
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the continuous functional calculus, a very powerful tool for general C˚-algebras.
Already in this section we start to introduce some ideas without proof, in par-
ticular the holomorphic functional calculus; this will not get used much in the
main text, but is occasionally important for K-theoretic arguments. Section
1.5 completes what one might think of as the ‘basic abstract theory’, discussing
ideals and quotients. Our main goal is the fundamental fact that a quotient of
a C˚-algebra by a closed ideal is still a C˚-algebra.

Section 1.6 then completes the general theory by discussing the relation
between the concrete (i.e. as norm closed ˚-subalgebras of BpHq) treatment of
C˚-algebras and the axiomatic one. Perhaps the most glaring of our omissions
is terms of basic theory is that we do not really justify this fact (nor do we
discuss ‘states’, the key ingredient in its proof). We also discuss the relationship
between representations of C0pXq and of the C˚-algebra BpXq of bounded Borel
functions on X; this is maybe less standard in C˚-algebra theory, but will be
used over and over again in the main text.

Finally, Sections 1.7 and 1.8 discuss material that is again a little less stan-
dard, but that will occasionally be important to use. Section 1.7 discusses
multiplier algebras. We do this in a very concrete (and somewhat ad hoc) way
that is convenient for our purposes. We also give a treatment of Morita equiv-
alence in terms of full corners; again this is ad hoc, but very convenient for
our applications. Finally, Section 1.8 gives a quick overview of tensor products
of Hilbert spaces and (spatial) tensor products of C˚-algebras, with particular
emphasis on what happens in the commutative case.

1.1 Definition and examples

Definition 1.1.1. A C˚-algebra is an algebra over C (i.e. simultaneously a ring
and a vector space over C, with the two structures being compatible), that is
also equipped with a ˚-operation ˚ : A Ñ A and a complete norm with the
following properties. The ˚-operation should be involutive, i.e. pa˚q˚ “ a for all
a P A, and compatible with the algebra structure, meaning that

pabq˚ “ b˚a˚ and pλa` µbq˚ “ λa˚ ` µb˚

for all a, b P A and λ, µ P C, where ¨ denotes complex conjugation. The norm
should interact in the usual way with the linear structure on A, and be submul-
tiplicative, meaning that }ab} ď }a}}b} for all a, b P A.

Finally, all three structures – norm, ˚, and algebra – should be compatible
via the C˚-identity :

}a˚a} “ }a}2

for all a P A.
A C˚-subalgebra of a C˚-algebra is a norm-closed, ˚-closed, subalgebra.

The zero algebra will be allowed as a C˚-algebra, unless doing so makes some
statement obviously false. We leave deciding whether it should be allowed or
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not in any given context to the good judgement of the reader; similar comments
apply to the empty topological space.

Remark 1.1.2. We will occasionally need to work with more general types of
(normed, ˚) algebras; sometimes we will also state results in more generality
than we actually need, mainly as this sometimes makes what’s going on in a
particular proof clearer. Here is the relevant terminology.

(i) A ˚-algebra will mean a complex algebra equipped with a ˚-operation
satisfying the conditions in Definition 1.1.1, but not necessarily with a
norm.

(ii) A Banach algebra is a complex algebra equipped with a complete norm
that satisfies }ab} ď }a}}b} for all elements a and b, but that does not
necessarily also have a ˚-operation.

(iii) A Banach ˚-algebra is a complex algebra equipped with an isometric ˚-
operation and a complete norm satisfying all the conditions in Definition
1.1.1 except for possibly the C˚-identity.

We will always assume that the unit in a unital Banach algebra has norm one
(this is automatic in a unital C˚-algebra).

Remark 1.1.3. The C˚-identity and submultiplicativity imply that the ˚ oper-
ation is isometric. Indeed, for any non-zero a P A

}a}2 “ }a˚a} ď }a}}a˚},

and thus }a} ď }a˚}. The reverse inequality follows by symmetry. Thus in
particular, a C˚-algebra is a special type of Banach-˚ algebra.

Example 1.1.4. The fundamental example of a C˚-algebra is the complex num-
bers C, with its usual absolute value for a norm, and complex conjugation for
the ˚-operation.

Example 1.1.5. Let H be a Hilbert space. Then the collection BpHq of all
bounded operators on H is a C˚-algebra: the linear operations are the pointwise
operations inherited from the linear structure on H, multiplication is composi-
tion of operators, the ˚ is the adjoint of an operator, and the norm is the usual
operator norm

}T } :“ sup
vPH,}v}ď1

}Tv}H .

In particular, if H is the finite dimensional Hilbert space Cn with its usual inner
product, then the nˆ n matrices MnpCq form a C˚-algebra.

Example 1.1.6. A subalgebra of a C˚-algebra that is stable under the ˚-operation
and norm-closed is a C˚-algebra. As a special case, recall that an operator T
on a Hilbert space H is compact if the image of the unit ball in H under T has
compact closure, or equivalently if T is a norm limit of finite rank operators.
The collection of all compact operators, denoted KpHq, is a C˚-algebra. If H
is separable and infinite dimensional, then we will often just write K for this
C˚-algebra: it plays an important role in the theory.
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Note that the example above will not contain a unit if H is infinite dimen-
sional. In particular, a C˚-algebra does not have to have a unit.

Example 1.1.7. One can form the direct sum of two C˚-algebras A, and B: the
algebra operations and ˚ are defined pointwise, and the norm is given by

}pa, bq} :“ maxt}a}, }b}u;

it is straightforward (exercise!) to check that this is a C˚-algebra. More gener-
ally, if pAiqiPI is any collection of C˚-algebras, then their product is the collection

ź

iPI

Ai :“
!

paiqiPI | ai P Ai and sup
iPI
}ai} ă 8

)

of bounded sequences from the collection, equipped with pointwise operations
and the norm

}paiq} :“ sup
iPI
}ai}.

The direct sum
À

iPI Ai is the C˚-subalgebra of
ś

iPI Ai consisting of all se-
quences paiqiPI such that }ai} Ñ 0 as i Ñ 8 (or in other words, such that for
any ε ą 0, there is a finite subset F Ď I such that }ai} ă ε for all i R F ).

If the index set I is finite,
À

iPI Ai and
ś

iPI Ai are the same, and we will
generally use the sum notation. As a special case of the above example, one can
form finite direct sums of matrix algebras, say A “

ÀN
k“1MnkpCq. In fact, any

finite-dimensional C˚-algebra turns out to be of this form.

We finish this collection of examples with something a little more involved.

Example 1.1.8. Let G be a discrete group. The group algebra CrGs is the
collection of all formal linear combinations

a “
ÿ

gPG

agg

where the coefficients ag are in C, and only finitely many of them are non-
zero. The group algebra is equipped with pointwise linear structure, with the
˚-operation defined by

´

ÿ

gPG

agg
¯˚

:“
ÿ

gPG

agg
´1,

and with multiplication induced by multiplication in the group in the natural
way, i.e.

´

ÿ

gPG

agg
¯´

ÿ

hPG

bhh
¯

:“
ÿ

g,hPG

agbhpghq.

Collecting terms, note that we can write this product in the standard form of
an element of CrGs: indeed,

ÿ

g,hPG

agbhpghq “
ÿ

kPG

´

ÿ

gPG

agbg´1k

¯

k.
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A representation
π : GÑ BpHq, g ÞÑ πg

(i.e. a homomorphism into the invertible elements of BpHq) is unitary if for
all g P G, πg is a unitary operator, i.e. a norm preserving bijection. Such a
representation extends to a representation of CrGs by linearity. Define a norm
} ¨ }max on CrGs to be the supremum over all semi-norms pulled back from
unitary representations of G; in symbols
›

›

›

ÿ

gPG

agg
›

›

›

max
:“ sup

!
›

›

›

ÿ

gPG

agπg

›

›

›

BpHq
| π : GÑ BpHq a unitary representation

)

.

This is finite as the fact that πg is unitary implies that }πg}BpHq “ 1 for all
g P G, and so

›

›

›

ÿ

gPG

agπg

›

›

›

BpHq
ď

ÿ

gPG

|ag|

i.e. there is a uniform bound of the numbers that we are taking the supremum
of. One can check that } ¨ }max is a norm rather than just a semi-norm using
that the left-translation action of G on `2pGq induces a faithful representation
CrGs Ñ Bp`2pGqq.

The group C˚-algebra of G, denoted C˚maxpGq is defined to be the completion
of CrGs for the norm above. Using that BpHq is a C˚-algebra for any Hilbert
space H, it is not too difficult to check that C˚maxpGq is indeed a C˚-algebra.

As C˚-algebras are not always unital, it is often convenient to adjoin a unit
as in the following definition (we justify it below).

Definition 1.1.9. Let A be a complex algebra. Its unitisation is the complex
algebra denoted1 A` with underlying vector space A ‘ C and multiplication
defined by

pa, λqpb, µq :“ pab` λb` µa, λµq.

If A is a ˚-algebra, then A` is made a ˚-algebra via the definition by pa, λq˚ :“
pa˚, λq.

If A is a non-unital C˚-algebra, then A` is equipped with the norm defined
by

}pa, λq} :“ sup
bPA,}b}ď1

}ab` λb}A.

If A is already unital, then A` can also be equipped with a (unique) C˚-
algebra norm for which it is isomorphic to A‘C as a C˚-algebra: see Exercise
1.9.1.

Lemma 1.1.10. If A is a non-unital C˚-algebra, then the unitisation A` is a
unital C˚-algebra, and the natural inclusion

AÑ A`, a ÞÑ pa, 0q

identifies A isometrically with a ˚-subalgebra of A`.
1We use the symbol A` by analogy with the one point compactification X` of a space.

It should not be confused with the collection of positive elements of A as in Definition 1.1.11
below!
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Proof. It is clear that A` is a ˚-algebra. Note that for any non-zero a P A we
have

}pa, 0q} “ sup
bPA,}b}ď1

}ab} ď }a}

and also using that }a} “ }a˚} and the C˚-identity

}pa, 0q}| “ sup
bPA,}b}ď1

}ab} ě }a
a˚

}a}
} “ }a}.

It follows that A identifies isometrically with the collection tpa, 0q P A` | a P
Au in the obvious way; clearly this identification also preserves the ˚-algebra
operations.

We claim now that the given formula defines a submultiplicative norm on
A`. Almost all of this just involves writing down the definitions. The trickiest
point is seeing why any element of zero norm must be zero. For this, note that
if }pa, λq} “ 0, then for any b P A, ab`λb “ 0; if λ “ 0, this is impossible unless
a “ 0 on taking b “ a˚ by the argument above. On the other hand, if λ ‰ 0, it
follows that p´ 1

λaqb “ b for all b P A and taking adjoints gives bp´ 1
λ
a˚q “ b for

all b P A. Hence ´ 1
λa “ ´

1
λ
a˚, and this element is a unit for A, contradicting

that A is non-unital.
Note moreover that the norm on A` must also be complete: indeed, we have

seen that it identifies with the norm of A on the subspace tpa, 0q P A` | a P Au,
so is complete when restricted to this subspace. As this subspace has finite
codimension (actually, codimension one), it is complete on all of A`.

Finally, to check that A` is a C˚-algebra, we need to check the C˚-identity:
this follows as if we think of pa, λq P A` as the operator Opa,λ of left multipli-
cation by a` λ on A, then

}pa, λq}2 “ sup
bPA,}b}ď1

}ab` λb}2 “ sup
bPA,}b}ď1

}b˚pa˚a` λa˚ ` λa` |λ|2qb},

where the second equality is the C˚-identity; the element inside the norm on
the right should be thought of as shorthand for the element of A one gets on
multiplying it out. Continuing, this is bounded above by

sup
bPA,}b}ď1

}paa˚ ` λ` λ` |λ|2qb} “ }pa, λq˚pa, λq};

as the inequality }pa, λq}2 ě }pa, λq˚pa, λq} follows from submultiplicativity of
the operator norm and the fact that ˚ is an isometry, we are done.

One should think of the element pa, λq of A` defined above as the sum a`λ,
and we will typically just write it like that; having identified A and C with the
subalgebras tpa, 0q P A` | a P Au and tp0, λq P A` | λ P Cu of A` respectively,
this makes sense.

There are many types of elements of C˚-algebras that play special roles, and
have special names. The most important are as follows.
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Definition 1.1.11. An element of a C˚-algebra A is:

(i) self-adjoint if a “ a˚;

(ii) normal if a˚a “ aa˚;

(iii) positive if it equals b˚b for some b P A;

(iv) a contraction if }a} ď 1;

(v) an idempotent if a2 “ a;

(vi) a projection if p2 “ p and p “ p˚;

(vii) a partial isometry if vv˚v “ v and v˚vv˚ “ v˚.

If in addition A has an identity element 1, an element of A is:

(viii) invertible if it has a multiplicative inverse;

(ix) unitary if uu˚ “ 1 “ u˚u;

(x) an isometry if v˚v “ 1;

(xi) a co-isometry if vv˚ “ 1.

The terminology is mainly motivated by the roles that operators satisfying
these conditions play in the special case that A “ BpHq (or just A “ MnpCq):
for example, an operator in BpHq is a projection if and only if it is the orthogonal
projection onto a closed subspace of H; it is an isometry if and only if it preserves
norms; and it is unitary if and only if it is bijective and preserves norms.

Our final task in this section is to introduce the notion of morphisms most
appropriate to C˚-algebras.

Definition 1.1.12. A ˚-homomorphism between two C˚-algebras (or more
generally, two ˚-algebras) is an algebra homomorphism φ : AÑ B that satisfies
φpa˚q “ φpaq˚ for all a P A. A ˚-isomorphism is an invertible ˚-homomorphism.

In the special case that B “ BpHq is the bounded operators on some Hilbert
space, a ˚-homomorphism π : AÑ B will typically be called a ˚-representation,
or just a representation.

Throughout this book, we will work mainly in the category with objects C˚-
algebras, and morphisms being ˚-homomorphisms. By default, maps between
C˚-algebras will generally be assumed to be ˚-homomorphisms, and we will
often say ‘homomorphism’ rather than ‘˚-homomorphism’ for brevity.

There are two natural conditions that are not demanded by the definition:
firstly, that φ be unital when A and B have units; secondly, that φ be continuous
for the norm. The first of these is omitted simply because the extra generality
is useful. The second is omitted as it turns out to be automatic: indeed we will
see below (see Corollary 1.2.8) that ˚-homomorphisms between C˚-algebras are
always contractive, i.e. satisfy }φpaq} ď }a} for all a in the domain.

Remark 1.1.13. Any ˚-homomorphism φ : A Ñ B between possibly non-unital
C˚-algebras extends uniquely to a unital ˚-homomorphism φ` : A` Ñ B`

between their unitisations via the formula φ`pa` λq “ φpaq ` λ.
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1.2 Invertible elements and spectrum

We start with a fact relating the invertible elements in a unital C˚-algebra to
the topology. A key use of this result is that it allows one to do approximation
arguments in K-theory: it is thus (arguably!) the main reason that K-theory
for C˚-algebras is more tractable than its purely algebraic cousin. Although we
are almost exclusively interested in C˚-algebras, we sometimes work in more
generality to highlight exactly what assumptions are involved.

Theorem 1.2.1. Let A be a unital Banach algebra. Then if a P A satisfies
}a´ 1} ă 1, a is invertible with inverse given by the norm convergent series2

a´1 “

8
ÿ

n“0

p1´ aqn.

Moreover, the set of invertible elements in a C˚-algebra is open, and the inverse
operation is continuous on this set.

Proof. Write a “ 1´ b, so }b} ă 1. The sum

c :“
8
ÿ

n“0

bn

converges absolutely in norm, and one has that

cp1´ bq “ lim
NÑ8

N
ÿ

n“0

bnp1´ bq “ lim
NÑ8

1´ bN “ 1,

and similarly p1´ bqc “ 1. Hence a “ 1´ b is invertible with inverse c. Note for
later use that whenever }1´ a} ă 1, we have the estimate

}a´1} ď

8
ÿ

n“0

}b}n “
1

1´ }1´ a}
. (1.1)

To see that the collection of all invertible elements is open, let a P A be
invertible, and say }a´ b} ă }a´1}´1. Then

}1´ a´1b} “ }pa´1pa´ bq} ď }a´1}}a´ b} ă 1,

whence a´1b is invertible, and so b is invertible.
Finally, to check continuity of the inverse operation, say panq is a sequence

of invertible elements converging to some invertible a P A. Then we have

a´1
n ´ a´1 “ a´1paa´1

n ´ 1q “ a´1ppana
´1q´1 ´ 1q

“ a´1pp1´ pa´ anqa
´1q´1 ´ 1q.

2Sometimes called a Neumann series in this context.
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For simplicity of notation, set dn :“ 1 ´ pa ´ anqa
´1, and so we get from the

above that
}a´1
n ´ a´1} ď }a´1}}1´ d´1

n }. (1.2)

Line (1.1) gives that for all n large enough so that }pa´ anqa
´1} ă 1{2 we have

that

}d´1
n } ď

1

1´ }pa´ anqa´1}
ď 2.

Hence as soon as n is large enough we get from line (1.2) that

}a´1
n ´ a´1} ď }a´1}}1´ d´1

n }

ď }a´1}}dn}
´1}dn ´ 1}

ď 2}a´1}}pa´ anqa
´1}

ď 2}a´1}2}a´ an}

and we are done.

We now define the spectrum of an element of a C˚-algebra.

Definition 1.2.2. Let A be a unital complex algebra and let a be an element
of A. The spectrum of a, denoted by specpaq, is the collection of all λ P C such
that a ´ λ (which is shorthand for a ´ λ1A, where 1A is the unit of A) is not
invertible.

If A is non-unital, the spectrum of a P A is defined to be its spectrum in the
unitisation A`.

Remark 1.2.3. There is an ambiguity in the notation above: if A Ď B is a nested
pair of algebras with the same unit, it is not obvious that the spectrum of an
element of A is the same when it is considered as an element of A as when it
is considered as an element of B. Indeed, for general (Banach) algebras, the
‘spectrum relative to B’ and the ‘spectrum relative to A’ can be different (see
Exercise 1.9.2 below). Fortunately, however, for C˚-algebras spectrum cannot
change under unital inclusions in this sense. This is one of the many ways in
which C˚-algebras behave better than arbitrary Banach algebras: Exercise 1.9.3
leads you through a proof of this.

The following result is the first fundamental fact about the spectrum.

Theorem 1.2.4. Let A be a unital Banach algebra, and a an element in A.
Then the spectrum of a is a non-empty, compact subset of C.

Proof. To see that the spectrum is closed, we show that its complement is open.
Let then λ be such that a ´ λ is invertible, and note that if |µ ´ λ| is suitably
small, Theorem 1.2.1 shows that a ´ µ is also invertible. Th spectrum of a is
also bounded (in fact by }a}) as if |λ| ą }a} then

}1´
1

λ
pλ´ aq} “

1

|λ|
}a} ă 1,
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and thus λ ´ a is invertible by Theorem 1.2.1 again. Hence the spectrum is
compact.

To show the spectrum is not empty, assume for contradiction that it is. Then
we have a well-defined function

fa : CÑ A, λ ÞÑ pa´ λq´1.

For any bounded linear functional φ : AÑ C, one can check that φ˝fa : CÑ C
is holomorphic in the usual sense for functions on C: indeed,

fapzq ´ fapwq “ pa´ zq
´1 ´ pa´ wq´1 “ pa´ zq´1pz ´ wqpa´ wq´1

whence
φpfapzqq ´ φpfapwqq

z ´ w
“
z ´ w

z ´ w
φppa´ zq´1pa´ wq´1q,

and this converges to φppa ´ zq´2q as w Ñ z by continuity of the inverse map
(Theorem 1.2.1) and of φ. On the other hand, whenever |λ| ą }a} we have

|φpfapλqq| ď }φ}}pa´ λq
´1} ď }φ}|λ|´1}p

1

λ
a´ 1q´1}.

This tends to zero as λ goes to infinity by continuity of the inverse operation
(Theorem 1.2.1 yet again). Hence in particular, φ ˝ fa is bounded, and so
constant by Liouville’s theorem, so constantly equal to zero as it tends to zero
at infinity. As this holds for every bounded linear functional on A, the Hahn-
Banach theorem forces fa to be constantly zero, which is impossible.

Definition 1.2.5. For a complex algebra A and a P A, define the spectral radius
of a to be

rpaq :“ maxt|λ| | λ P specpaqu.

The next fundamental result about the spectrum is called the spectral radius
formula.

Theorem 1.2.6. Let A be a Banach algebra. Then for any a P A

rpaq “ lim
nÑ8

}an}1{n.

Proof. Observe first that if |λ| ą }a}, then a´ λ “ λp aλ ´ 1q, which is invertible
by Theorem 1.2.1. Moreover, by the spectral mapping theorem for polynomials
(see Exercise 1.9.4), if λ P specpaq, then λn P specpanq. Hence by the first
observation, |λ|n ď }an}, or in other words, we have that |λ| ď }an}1{n for all n
and all λ P specpaq. It thus suffices to prove that lim sup

nÑ8
}an}1{n ď rpaq.

We may assume that a ‰ 0. Set R “ 1{rpaq (interpreted as 8 if rpaq “ 0),
and let D be the disk in C centered at 0 and of radius R.

We claim that for all λ P D, the sequence ppλaqnq is bounded in A. For
this, from the uniform boundedness principle it suffices to show that for any
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bounded linear functional φ on A the sequence pλnφpanqq is bounded (with a
bound depending a priori on φ). Consider the function

f : D Ñ C, λ ÞÑ φ
`

p1´ λaq´1
˘

.

For z, w P D, we have

p1´ zaq´1 ´ p1´ waq´1 “ p1´ zaq´1pz ´ wqap1´ waq´1

whence
fpzq ´ fpwq

z ´ w
“
z ´ w

z ´ w
φpp1´ zaq´1ap1´ waq´1q.

Combined with continuity of inversion (Theorem 1.2.1) and of φ, this gives that

fpzq ´ fpwq

z ´ w
Ñ φpap1´ zaq´2q as w Ñ z.

Hence f is holomorphic on D. On the other hand, note that if |λ| ă 1{}a}, we
have by Theorem 1.2.1 that

p1´ λaq´1 “

8
ÿ

n“0

λnan.

Hence on the disk D}¨} :“ tλ P C | |λ| ă 1{}a}u (which is potentially a proper
subset of D) we have that

fpλq “
8
ÿ

n“0

λnφpanq. (1.3)

Hence f is given by the power series in line (1.3) for all λ P D, by uniqueness of
power series expansions. Convergence of this power series implies that pλnφpanqq
is bounded as claimed.

Now, from the claim we have that there is M ě 0 such that |λn|}an} ď M
for all n, and all λ P D. Rearranging and taking nth roots,

}an}1{n ď
M1{n

|λ|

for all n. Taking the limsup in n gives then that

lim sup
nÑ8

}an}1{n ď
1

|λ|

for any λ P D. However, D has radius 1{rpaq, so letting λ converge to 1{rpaq
gives the required inequality, completing the proof.

In the remainder of this section, we specialize back to C˚-algebras.

Corollary 1.2.7. If a P A is a normal element of a C˚-algebra then rpaq “ }a}.
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Proof. Working in the unitisation if necessary, we may assume that A is unital.
First assume that a is self-adjoint. Then the C˚-identity from Definition 1.1.1
reduces to }a2} “ }a}2. Hence Theorem 1.2.6 gives

rpaq “ lim
nÑ8

}a2n}2
´n

“ }a}.

If a is normal, we get

rpaq “ lim
nÑ8

}a2n}2
´n

“ lim
nÑ8

}pa˚q2
n

a2n}2
´n´1

“ lim
nÑ8

}pa˚aq2
n

}2
´n´1

,

where the first equality is Theorem 1.2.6, the second is the C˚-identity, and the
third uses normality of a to rearrange inside the norm. Applying Theorem 1.2.6
again, we get

lim
nÑ8

}pa˚aq2
n

}2
´n´1

“ rpa˚aq1{2.

As a˚a is self-adjoint, we may apply what we proved already to get

rpa˚aq1{2 “ }a˚a}1{2,

and the C˚-identity now finishes the proof.

The following corollary is very important; it gets used all the time (without
explicit reference).

Corollary 1.2.8. Let φ : A Ñ B be a ˚-homomorphism between C˚-algebras.
Then φ is contractive.

Proof. Using Remark 1.1.13, we may assume that A and B are unital, and that
φ takes unit to unit. Writing rpaq “ maxt|λ| | λ P specpaqu again, we have for
any a P A,

}φpaq}2 “ }φpaq˚φpaq} “ }φpa˚aq} “ rpφpa˚aqq, (1.4)

where the last step uses Corollary 1.2.7. As φ is a unital ˚-homomorphism,
we have that the spectrum of φpa˚aq is contained in that of a˚a, and thus
rpφpa˚aqq ď rpa˚aq. Combining this with line (1.4) above and another use of
Corollary 1.2.7 gives

}φpaq}2 ď rpa˚aq “ }a˚a} “ }a}2,

completing the proof.

1.3 Commutative C˚-algebras

In this section, we discuss the structure of commutative C˚-algebras. Here is
the basic example.
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Example 1.3.1. Let X be a compact Hausdorff topological space, and let CpXq
denote the collection of all continuous functions f : X Ñ C. Equipped with
pointwise operations (the ˚ is pointwise complex conjugation) and the supremum
norm

}f} :“ sup
xPX

|fpxq|,

CpXq is a C˚-algebra.
More generally, say X is locally compact and Hausdorff, and X` is its one

point compactification (see Definition A.1.4). Then C0pXq is defined to consist
of all continuous functions f : X` Ñ C such that f vanishes at the point at
infinity; if X is not compact we can equivalently say that C0pXq consists of all
continuous functions f : X Ñ C such that for all ε ą 0, the set tx P X | |fpxq| ě
εu is compact.

Note that if X is compact, then CpXq and C0pXq are canonically isomorphic,
as X` is just the disjoint union of X and an isolated point 8 in this case. We
sometimes use the notation ‘C0pXq’ when X might be compact, even though
this is a little non-standard.

Remark 1.3.2. For any locally compact Hausdorff space X, the unitisation
C0pXq

` identifies canonically with CpX`q: see Exercise 1.9.6 below.

It turns out that any commutative C˚-algebra is of the form C0pXq for some
canonically associated locally compact Hausdorff space X. Our goal in this
section is to prove this fact, and discuss how the correspondence X Ø C0pXq
behaves as a functor.

The following result is called the Gelfand-Mazur theorem: it says there are
no non-trivial division algebras that are also Banach algebras.

Theorem 1.3.3. Let A be a unital Banach algebra in which every non-zero
element is invertible. Then there is a unique unital isometric isomorphism from
A to C.

Proof. Let a be an element of A. Theorem 1.2.4 implies that there is some λ in
the spectrum of a, i.e. so that a ´ λ is not invertible. Hence a ´ λ “ 0 by as-
sumption, i.e. a “ λ. This says that the canonical unital algebra homomorphism
CÑ A sending a scalar to that multiple of the identity is an isomorphism. It is
isometric as we always assume (see Remark 1.1.2) that the identity in a Banach
algebra has norm one.

Definition 1.3.4. Let A be a unital commutative Banach algebra. The spec-
trum of A, denoted pA, is the collection of non-zero multiplicative linear func-
tionals φ : AÑ C. We equip pA with the subspace topology that it inherits from
the weak-˚ topology on the dual A˚.

Example 1.3.5. If A “ CpXq for some compact Hausdorff space, then any point

x P X defines an element of pA by the evaluation map φx : f ÞÑ fpxq. In fact,
the natural map

X Ñ pA, x ÞÑ φx
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is a homeomorphism. The reader is led through a proof of this in Exercise 1.9.7
below.

In the next lemma (and also later in this section), we will need the usual
notion of an ideal I in an algebra A: recall that an ideal is a subset that is
closed under the algebra operations, and is such that if a P A and b P I, then ab
and ba are also in I. Associated to an ideal is the quotient algebra A{I, whose
elements are cosets a ` I, and with operations induced by those of A. If in
addition A is a Banach algebra and I is closed in the norm topology, we may
define a norm on A{I by the formula

}a` I}A{I :“ inf
bPI
}a´ b}A.

One can check that this is indeed a norm, and that it makes A{I into a Banach
algebra in its own right.

Lemma 1.3.6. A (non-zero) multiplicative linear functional φ : A Ñ C on a
unital Banach algebra is automatically unital and contractive.

Proof. Unitality follows as φ is non-zero, and as the only non-zero idempotent
in C is the identity.

For boundedness, let I Ď A be the kernel of φ, which is an ideal, and is
not all of A as φ is non-zero. As the Banach algebra operations are continuous,
the closure I is also an ideal, and as the invertible elements of A are open
(Theorem 1.2.1), I is also not all of A. However, I is codimension one, whence
it is a maximal ideal, and so I must equal I by maximality. As I is closed, the
quotient A{I is a Banach algebra.

Moreover, the map A{I Ñ C induced by φ is an algebra isomorphism. Hence
A{I has no non-trivial zero divisors, whence the Gelfand-Mazur theorem (The-
orem 1.3.3) implies that there is a unique isometric isomorphism from A{I to
C, which must be the map induced by φ. As φ is the composition

AÑ A{I Ñ C

of the canonical quotient map and the map induced on the quotient by φ, and
as the first of these is contractive and the second an isometry, we see that φ is
contractive.

Now, the above corollary says in particular that pA is a subset of the closed
unit ball of A˚. It is moreover straightforward to check that it is a closed subset
when the latter space is equipped with the weak-˚ topology. Hence the following
corollary is immediate from the Banach-Alaoglu theorem.

Corollary 1.3.7. The spectrum of a unital commutative Banach algebra is a
compact Hausdorff space.

Definition 1.3.8. Let A be a unital commutative Banach algebra. Then the
Gelfand transform is the map

AÑ Cp pAq, a ÞÑ pa,

where papφq :“ φpaq.
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We leave it to the reader to check that the Gelfand transform is a well-defined
unital contractive homomorphism of Banach algebras. In general, the Gelfand
transform need not be injective or surjective. Nonetheless, for general unital
commutative Banach algebras, the Gelfand transform still provides a powerful
tool: the following corollary of the Gelfand-Mazur theorem (which we will need
below) gives some evidence of why this is the case.

Corollary 1.3.9. Let A be a unital commutative Banach algebra. Then for any
a P A,

specpaq “ tφpaq | φ P pAu.

Proof. Say first that λ “ φpaq for some φ P pA. Then φpa ´ λq “ 0, whence
a´λ is contained in the proper ideal Kernelpφq of A, and so in particular is not
invertible and so λ is contained in specpaq.

Conversely, say λ is in specpaq. As a´ λ is not invertible (and A is commu-
tative) there is a maximal proper ideal I Ď A containing a´λ. As I is maximal,
the quotient A{I is a field, whence isomorphic to C by the Gelfand-Mazur the-
orem (Theorem 1.3.3 above). Let φ : A Ñ A{I – C be the composition of the
quotient map and the isomorphism A{I – C. Then φ is a multiplicative linear
functional, and φpa´ λq “ 0, whence φpaq “ λ.

We have now gone as far as we want to with general Banach algebras, and
specialise to C˚-algebras. Here the Gelfand transform turns out to be an iso-
metric ˚-isomorphism. The remaining key ingredient that we need is the fol-
lowing lemma, which will be used to show that the Gelfand transform is a
˚-homomorphism; this lemma is not true for general commutative Banach-˚
algebras.

Lemma 1.3.10. Let A be a C˚-algebra, and let a P A be self-adjoint. Then
specpaq is contained in R.

Proof. Let us assume first that A is commutative and unital. We claim that
if u P A is unitary, then specpuq is contained in T :“ tz P C | |z| “ 1u.
Indeed, the spectral radius of u is bounded above by its norm; as the norm of
a unitary is one (from the C˚ identity), this gives that specpuq is contained in
tz P C | |z| ď 1u. As u´1 also has norm one, we also get that specpu´1q is also
contained in tz P C | |z| ď 1u. However, it is straightforward to check that

specpu´1q “ tλ´1 | λ P specpuqu,

so we have that specpuq is contained in

tz P C | |z| ď 1u X tz P C | |z´1| ď 1u “ T

as required.
Let now a P A be self-adjoint. Then the power series

eia :“
8
ÿ

n“0

piaqn

n!
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converges in norm, and elementary manipulations show that peiaq˚ “ e´ia, and
that eiae´ia “ e´iaeia “ 1. Combining the first claim with Corollary 1.3.9 gives
that

T Ě specpeiaq “ tφpeiaq | φ P pAu “ teiφpaq | φ P pAu “ teiλ | λ P specpaqu

(the first and third equalities are from Corollary 1.3.9, and the second follows as
φ is a multiplicative linear functional, whence continuous by Lemma 1.3.6). This
is impossible unless specpaq is contained in R, so we are done in the commutative
unital case.

In the general case, let A be an arbitrary C˚-algebra. As the spectrum of
a is by definition the spectrum of A considered as an element of A`, we may
assume that A is unital. Let B be the C˚-subalgebra of A` generated by a and
the unit. As a is self-adjoint, B is commutative, whence the first part of the
proof gives that the spectrum of a considered as an element of B is contained
in the reals. However, the spectrum of a considered as an element of A` is
contained in the spectrum of a considered as an element of B (as it is easier to
be invertible in the larger algebra A`), so we are done.

Here is the fundamental result about commutative C˚-algebras.

Theorem 1.3.11. Let A be a commutative unital C˚-algebra. Then the Gelfand
transform is an isometric ˚-isomorphism.

Proof. We first claim that the Gelfand transform preserves adjoints. Let then
a be an element of A. Write ar :“ 1

2 pa` a
˚q and ai :“ 1

2i pa´ a
˚q. Then ar and

ai are self-adjoint, and a “ ar ` iai. For any φ P pA, φpaq “ φparq ` iφpaiq. On
the other hand, using that a˚ “ ar ´ iai and the fact that φparq and φpaiq are
both real (Corollary 1.3.9 and Lemma 1.3.10), we get that

φpa˚q “ φparq ´ iφpaiq “ φparq ` iφpaiq,

which is exactly the statement that the Gelfand transform is ˚-preserving.
We next claim that the Gelfand transform is an isometry. Note that every

element of A is normal in the sense of Definition 1.1.11. Hence Corollary 1.2.7
and Corollary 1.3.9 imply that

}a} “ rpaq “ supt|λ| | λ P specpaqu “ supt|φpaq| | φ P pAu, (1.5)

which is exactly the statement that the Gelfand transform is an isometry.
We are left to show that the Gelfand transform is surjective. This is now

immediate from the Stone-Weierstrass theorem, however: indeed, the image of
the Gelfand transform is a ˚-subalgebra of CpXq that tautologically separates
points, and thus is dense by Stone-Weierstrass; however, as we already know that
the Gelfand transform is an isometry, its image is closed, and we are done.

The following result can be deduced without too much difficulty from The-
orem 1.3.11 and Exercise 1.9.7. We leave the details to the reader.
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Theorem 1.3.12. There is a well-defined contravariant functor from the cat-
egory of compact Hausdorff topological spaces and continuous maps to the cat-
egory of commutative unital C˚-algebras and unital ˚-homomorphisms defined
as follows.

(i) On objects, the functor takes X to CpXq.

(ii) On morphisms, the functor takes f : X Ñ Y to the map CpY q Ñ CpXq
defined by precomposition with f .

There is a well-defined contravariant functor from the category of commuta-
tive unital C˚-algebras and unital ˚-homomorphisms to the category of compact
Hausdorff topological spaces and continuous maps defined as follows.

(i) On objects, the functor takes A to pA.

(ii) On morphisms, the functor takes φ : A Ñ B to the map pB Ñ pA defined
by precomposition with φ.

Moreover, these functors define a contravariant equivalence of categories.

It will be important to us that this extends to the non-unital case. For a
non-unital commutative C˚-algebra A, define the spectrum to be

pA :“ tφ P xA` | φpAq ‰ t0uu.

Thus pA is xA` with the single point corresponding to the canonical quotient map
A` Ñ A`{A – C removed. In particular, pA is locally compact and Hausdorff.

Using Remark 1.3.2, it is straightforward to see that Theorem 1.3.11 implies
the following.

Theorem 1.3.13. Let A be a commutative non-unital C˚-algebra. Then the
Gelfand transform for the unitisation A` restricts to an isometric ˚-isomorphism
between A and C0p pAq.

Using Remarks 1.1.13 and 1.3.2, Theorem 1.3.12 can be bootstrapped up to
a non-unital result as follows. For the statement, consider the category LCH
with objects all locally compact Hausdorff spaces, and morphisms from X to
Y being continuous maps f : X` Ñ Y ` that send the point at infinity to the
point at infinity. Again, the proof consists of direct checks that we leave to the
reader.

Theorem 1.3.14. There is a well-defined contravariant functor from the cat-
egory LCH to the category of commutative C˚-algebras and ˚-homomorphisms
defined as follows.

(i) On objects, the functor takes X to C0pXq.

(ii) On morphisms, the functor takes f : X` Ñ Y ` to the map C0pY q Ñ
C0pXq defined by precomposition with f .
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There is a well-defined contravariant functor from the category of commutative
C˚-algebras and ˚-homomorphisms to the category LCH defined as follows.

(i) On objects, the functor takes A to pA.

(ii) On morphisms, the functor takes φ : A Ñ B to the map pB Ñ pA defined
by precomposition with φ.

Moreover, these functors define a contravariant equivalence of categories.

The category LCH may seem a little strange at first, but it is a useful place
to work. See Proposition A.1.8 for an alternative description.

We finish this section with some important consequences that develops Corol-
lary 1.2.8 a bit.

Corollary 1.3.15. Say φ : A Ñ B is an injective ˚-homomorphism between
C˚-algebras. Then φ is isometric.

Proof. Using Remark 1.1.13, we may assume that A and B are unital, and
that φ preserves the units. Using the C˚-identity, it suffices to prove that
}φpaq} “ }a} when a P A is self-adjoint. We then have that the C˚-algebras
C˚pa, 1q and C˚pφpaq, 1q generated by a and φpaq respectively and the units
are commutative; restricting to C˚pa, 1q, it suffices to show that an injection
between commutative unital C˚-algebras is isometric.

Assume then that φ : A Ñ B is an injective ˚-homomorphism between
commutative and unital C˚-algebras. As we have a contravariant equivalence
of categories in Theorem 1.3.12, the injection φ : A Ñ B corresponds to a
surjection φ˚ : Y Ñ X of compact Hausdorff spaces: a fancy way to deduce this
is to use that a contravariant equivalence of categories takes monomorphisms to
epimorphisms in the categorical sense. The result follows from this as for any
f P A “ CpXq, we have

}φpfq} “ sup
yPY

|fpφ˚pyqq| “ sup
xPX

|fpxq| “ }f},

where the middle equality uses surjectivity.

Corollary 1.3.16. Say A is a ˚-algebra, and } ¨ }1 and } ¨ }2 are two norms on
A, satisfying all the conditions so that pA, } ¨ }1q and pA, } ¨ }2q are C˚-algebras,
except that } ¨ }2 might not be complete. Then } ¨ }1 “ } ¨ }2.

Proof. Equip A with the C˚-algebra norm }¨}1, and let B denote the completion
of A for the potentially-non-complete } ¨ }2, so B is also a C˚-algebra. The
identity map on A can then be thought of as an injective ˚-homomorphism
from AÑ B; Corollary 1.3.15 implies it is an isometry, so we are done.
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1.4 Functional calculus

Let A be a unital C˚-algebra, and let a P A be a normal element as in Definition
1.1.11. The C˚-subalgebra of A generated by a and the unit 1, denoted C˚pa, 1q,
is commutative, and so by Theorem 1.3.11, it is canonically isomorphic to CpXq,
where X is the spectrum of C˚pa, 1q. Note that by Corollary 1.3.9, we have a
natural continuous surjective map

X Ñ specpaq, φ ÞÑ φpaq.

As a and the unit together generate C˚pa, 1q, this map is also injective, whence
a homeomorphism as both spaces are compact and Hausdorff. In other words,
we have a canonical ˚-isomorphism

C˚pa, 1q – Cpspecpaqq.

The inverse of this map is denoted

Cpspecpaqq Ñ C˚pa, 1q, f ÞÑ fpaq. (1.6)

The notation f ÞÑ fpaq is motivated by the fact that if f “ fpz, zq is a poly-
nomial in the standard complex coordinate z and its conjugate z, then fpaq as
defined above agrees with the naive notion of fpaq one gets by just substituting
in a for z and a˚ for z in the formula for f ; we leave this as an exercise for the
reader.

More generally, if a is a normal element in a not-necessarily-unital C˚-
algebra, then the same ideas show that the C˚-algebra C˚paq generated by a is
canonically isomorphic to C0pspecpaqzt0uq, and we again get a ˚-isomorphism

C0pspecpaqzt0uq Ñ C˚paq, f ÞÑ fpaq. (1.7)

Again, this agrees with the naive notion of fpaq if f is a polynomial in z and z
with no constant term: the assumption that f has no constant term ensures that
fp0q “ 0 and so, as specpaq is compact, that f is an element of C0pspecpaqzt0uq.

Definition 1.4.1. If A is a commutative C˚-algebra, then either of the ˚-
homomorphisms in lines (1.6) and (1.7) above are called the (continuous) func-
tional calculus for a.

The functional calculus has the following useful continuity property.

Proposition 1.4.2. Let A be a C˚-algebra, and let K be a compact subset of
C. Let AK denote those normal elements of A with spectrum contained in K.
Let f be any function in CpKq. Then the function

AK Ñ A, a ÞÑ fpaq

is uniformly norm continuous.
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Proof. Let ε ą 0. Let p P CpKq be a polynomial such that supxPK |ppxq´fpxq| ă
ε{3. Note that the norm of any element of AK equals its spectral radius by
Corollary 1.2.7, and in particular all these norms are uniformly bounded. We
may thus choose δ ą 0 (depending only on K and p) such that for all a, b P AK ,
if }a ´ b} ă δ, then }ppaq ´ ppbq} ă ε{3. Combining this, if }a ´ b} ă δ for
a, b P AK then

}fpaq ´ fpbq} ď }fpaq ´ ppaq} ` }ppaq ´ ppbq} ` }ppbq ´ fpbq} ă ε

and we are done.

In order to apply the functional calculus, it is sometimes useful to know a
little more than we currently do about the spectra of elements in a C˚-algebra.
The following results are very useful in this regard.

Theorem 1.4.3. A normal element in a C˚-algebra (unital as necessary for
the definitions to make sense) is:

1. self-adjoint (i.e. a “ a˚) if and only its spectrum is contained in R;

2. a projection (i.e. a2 “ a and a “ a˚) if and only if its spectrum is con-
tained in t0, 1u;

3. unitary (i.e. aa˚ “ a˚a “ 1) if and only if its spectrum is contained in
the unit circle tz P C | |z| “ 1u;

4. positive (i.e. a “ b˚b for some b P A) if and only if its spectrum is con-
tained in r0,8q.

Sketch proof. The first three parts follow from the functional calculus isomor-
phisms Cpspecpaqq – C˚pa, 1q and C0pspecpaqzt0uq – C˚paq and the corre-
sponding properties for functions (recalling that the spectrum of a continuous
function on a compact space is just its range).

For the fourth, assume first that a is normal, and the spectrum of a is
contained in r0,8q. Then we may use the functional calculus to define b “ a1{2,
which has the right property. The converse involves some clever tricks; we
leave it to the reader to find this in the references provided at the end of the
section.

A useful application of the functional calculus is that it can be used to
replace elements that are ‘close to being projections’ with actual projections,
and invertible elements with unitaries as in the next two examples; this will
come up when we come to discuss K-theory later.

Example 1.4.4. Say a is a normal element in a C˚-algebra A such that }a2 ´

a} ă 1{4. Thinking of a as a function on specpaq via the functional calculus
isomorphism C˚paq – C0pspecpaqzt0uq, this is only possible if the spectrum
of a (i.e. the range of the corresponding function on specpaq) avoids the line
Repzq “ 1{2. The characteristic function χ of the set tz P C | Repzq ą 1{2u is
thus continuous on the spectrum of a, and so we can form χpaq. Note that χ
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is a projection in C0pspecpaqz0q; as the functional calculus is a ˚-isomorphism,
χpaq is a projection in C˚paq (and therefore also in A).

Example 1.4.5. Say a is an invertible element of a unital C˚-algebra A. Then
a˚a is also invertible. Its spectrum is moreover contained in r0,8q by Theorem
1.4.3 part (4), and thus in rc,8q for some c ą 0 by invertibility and the fact
that spectra are compact (Theorem 1.2.4). Hence pa˚aq´1{2 makes sense. We
claim that u :“ apa˚aq´1{2 is unitary. Computing,

u˚u “ pa˚aq´1{2a˚apa˚aq´1{2 “ 1.

As u is a product of invertible elements, it is invertible, so the fact that u˚ is a
one-sided inverse for u implies it is a two-sided inverse.

We give an alternative argument to show that uu˚ “ 1, as it involves a useful
trick. First, note that if p is any polynomial and b an element of a C˚-algebra,
then bppb˚bq “ ppbb˚qb as one can check directly. Hence by an approximation
argument, the same identity holds for any function p that is continuous on the
spectra of b˚b and of bb˚. Hence we have

uu˚ “ apa˚aq´1{2pa˚aq´1{2a˚ “ apa˚aq´1a˚ “ aa˚paa˚q´1 “ 1

as required.

There is also a notion of functional calculus, called the holomorphic func-
tional calculus, that works for elements that are not necessarily normal (and
indeed, in any Banach algebra). The functional calculus one gets is less power-
ful, but still very useful as it applies in great generality. We will not justify this
here (partly as we use it very rarely in the main text): see the references at the
end of the chapter a proof.

Theorem 1.4.6. Let A be a unital Banach algebra. Let Ω be an open subset
of C, and let HpΩq denote the space of holomorphic functions of Ω, equipped
with the topology of uniform convergence on compact subsets of Ω. Let a be an
element of A with spectrum contained in Ω.

Then there is a unique continuous unital algebra homomorphism

HpΩq Ñ A, h ÞÑ hpaq

that sends the identity function to a. This also works in a non-unital Banach
algebra, if one restricts to holomorphic functions that send zero to zero.

Moreover, let K be a compact subset of C, and let AK denote those elements
of A with spectrum contained in K. Let Ω be any open set containing K, and
let h be an element of HpΩq. Then the function

AK Ñ A, a ÞÑ hpaq

is norm continuous.

The last two theorems give use a useful general version of Example 1.4.4.
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Example 1.4.7. Say a is an element of a C˚-algebra (or just of a unital Banach
algebra), and that }a2´a} ă 1{4. Then Exercise 1.9.4 combined with the direct
consequence

maxt|λ| | λ P specpa2 ´ aqu ď }a2 ´ a}

of Theorem 1.2.6 implies that specpaq does not intersect the line Repzq “ 1{2.
Then the characteristic function χ of the set tz P C | Repzq ą 1{2u is holomor-
phic on the spectrum of a, and thus we may apply χpaq to get an idempotent
in A.

Note that Example 1.4.5 has no real analogue here: it already works perfectly
well without assuming that the input element is normal.

1.5 Ideals and quotients

Our main goal in this section is to see that quotients of C˚-algebras are again
C˚-algebras. This fact is not obvious: the key technical ingredient is the notion
of an approximate unit, which we introduce later.

When discussing C˚-algebras, we will follow the usual conventions in the
literature and define ideals as follows.

Definition 1.5.1. Let A be a C˚-algebra. An ideal in A is a norm-closed,
two-sided ideal that is stable under the ˚-operation.

Note that an ideal of a C˚-algebra means something more than the purely
ring-theoretic ideals that appeared in some arguments earlier in this chapter.
Occasionally, we will have need to speak of non-closed ideals in a C˚-algebra: in
this case, we will say something like ‘algebraic ideal’ or ‘not-necessarily-closed
ideal’.

Remark 1.5.2. It turns out that any two-sided norm-closed ideal in a C˚-algebra
is stable under the ˚-operation. This fact is not completely obvious, and it is
generally easy to check ˚-closure in cases of interest, so we just include it in the
definition.

Now, we want to show that if I is an ideal in a C˚-algebra A, then the usual
quotient norm

}a` I}A{I :“ inf
bPI
}a´ b},

from Banach space theory makes A{I into a C˚-algebra. For this we will need
approximate units as in the next definition.

Definition 1.5.3. Let A be a C˚-algebra. An approximate unit for A is a net
phiqiPI of positive contractions such that

lim
iPI
}hia´ a} “ lim

iPI
}ahi ´ a} “ 0

for all a P A. An approximate unit is increasing if i ď j implies hi ď hj .
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Example 1.5.4. Let A “ C0pRq. For each n, let fn : RÑ r0, 1s be a continuous
function that is constantly equal to one on r´n, ns and supported in r´n´1, n`
1s. Then pfnq is an approximate unit for A.

Example 1.5.5. Let K denote a copy of the compact operators on a separable,
infinite dimensional Hilbert space. Choose an orthonormal basis for the Hilbert
space indexed by N, and let pn denote the orthogonal projection onto the span
of the first n basis vectors. Then ppnq is an approximate unit for K.

Similarly, say H is a general Hilbert space and I is the net of finite dimen-
sional subspaces of H, ordered by inclusion. For i P I set pi to be the orthogonal
projection onto the subspace i. Then ppiqiPI is an approximate unit for KpHq.

The following fundamental theorem is needed for many arguments involving
non-unital C˚-algebras. The theorem makes use of dense two-sided, but not
necessarily norm closed ideals in a C˚-algebra. Good examples to bear in mind
are: the ideal I “ CcpXq of compactly supported functions on X inside A “

C0pXq; and I the ideal of finite rank operators inside the compact operators
A “ KpHq.

Theorem 1.5.6. Let A be a C˚-algebra, and let I be a dense (not necessarily
closed!) two-sided ideal in A. Then A has an approximate unit consisting of
elements from I, and that may be chosen to be a sequence if A is separable.

Proof. We let
ΛI :“ th P I | h ě 0, and }h} ă 1u.

Note that if h P I, then 1´ h is invertible in the unitisation A` and so if I` is
the positive part of I, then the map

ΛI Ñ I`, h ÞÑ hp1´ hq´1

makes sense. It moreover preserves order, as follows from Exercise 1.9.10 and
the formula hp1 ´ hq´1 “ p1 ´ hq´1 ´ 1. In particular, ΛI is a directed set as
I` is: indeed, an upper bound for a, b P I` is given by a` b. We claim that ΛI
(indexed by itself) is an increasing approximate unit for A.

To see this, note that as the positive elements span A (Exercise 1.9.8), it
suffices to show that

p1´ hqaÑ 0 as hÑ8 in ΛI . (1.8)

whenever a P A is positive and satisfies }a} ă 1. Moreover, the positive elements
I` of I are dense in the positive elements A` of A: this follows as we can write
a general element of A` as a˚a, and can then approximate a by an element b
from I, whence b˚b is a positive element of I approximating a˚a. Hence to show
the condition in line (1.8), it suffices to show that for any ε ą 0 there exists
h P ΛA :“ ta P A` | }a} ă 1u such that }p1 ´ hqa} ă ε. Using that a ě 0, and
}h} ă 1, the functional calculus shows us that h “ a1{n will work for suitably
large n.

We leave the statement about separability as an exercise for the reader.
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Remark 1.5.7. It is clear from the definition of a C˚-algebra that an ideal in a
C˚-algebra is a C˚-algebra in its own right. In particular, Theorem 1.5.6 shows
that any ideal in a C˚-algebra contains an approximate unit for itself.

One of the most important consequences of the existence of approximate
units is that they allow us to show that quotients of C˚-algebras are C˚-algebras.
The following lemma gives a useful formula for the quotient norm.

Lemma 1.5.8. Let A be a C˚-algebra and I an ideal in A. Let phjqjPJ be an
approximate unit for I. Then for any a P A,

}a` I}A{I “ lim
j
}a´ ahj}.

Proof. Working instead inside the unitisation of A, we may assume that A is
unital. Then for any a P A, any b P I, and any j P J ,

}a´ ahj} ď }pa` bqp1´ hjq} ` }b´ bhj}.

As each hj is a positive contraction, we have that }1´hj} ď 1. Hence the above
inequality implies

}a´ ahj} ď }a` b} ` }b´ bhj},

and thus
lim sup

j
}a´ ahj} ď }a` b}.

Taking the infimum over all b P I gives

lim sup
j

}a´ ahj} ď }a` I}A{I .

On the other hand, as I is an ideal, ahj is in I for all j and so we get }a`I}A{I ď
}a´ ahj} for any j. The result follows.

Theorem 1.5.9. Let A be a C˚-algebra, and I an ideal in A. Then when
equipped with the quotient norm

}a` I}A{I :“ inf
bPI
}a´ b},

A{I is a C˚-algebra3.

Proof. We leave the checks that A is a Banach ˚-algebra (which follow readily
from general facts from algebra and Banach space theory) as an exercise for the
reader; it remains to check the C˚-identity. For this, we may again assume that
A is unital by working in its unitisation. Let phjqjPJ be an approximate unit
for I (which exists by Remark 1.5.7). Then for any a P A, Lemma 1.5.8 implies
that

}a` I}2A{I “ lim
j
}ap1´ hjq}

2
A “ lim

j
}p1´ hjqa

˚ap1´ hjq}A

ď lim
j
}a˚ap1´ hjq}A “ }a

˚a` I}A{I “ }pa` Iq
˚pa` Iq}A{I

3called the quotient C˚-algebra.
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Using that the ˚-operation is an isometry on A as in Remark 1.1.3 and preserves
I, we see that the ˚-operation is an isometry on A{I. We thus get

}pa` Iq˚pa` Iq}A{I ď }a` I}A{I}pa` Iq
˚}A{I “ }a` I}

2
A{I

and are done.

The following corollary gets used all the time without explicit reference.

Corollary 1.5.10. Let φ : AÑ B be a ˚-homomorphism of C˚-algebras. Then
the image φpAq is a closed C˚-subalgebra of B.

Proof. The image is isomorphic as a ˚-algebra to A{I, where I is the quotient
of I. A priori, it has two different norms: the quotient norm, and the norm
it inherits as a sub-˚-algebra of B. The quotient norm is complete, but the
subalgebra norm in principle may not be. However, using Corollary 1.3.16, the
two norms are the same. Hence the norm φpAq inherits as a sub-C˚-algebra of
B is also complete, and thus φpAq is closed.

In the commutative case, ideals and quotients can be characterised directly
in terms of the associated topological space. This is crucial for applications of
C˚-algebra theory to geometry and topology, so we give a proof.

Theorem 1.5.11. Let A “ C0pXq be a commutative C˚-algebra. Then for
any open subset U of X, C0pUq canonically identifies with an ideal in C0pXq in
such a way that if F :“ XzU is the closed complement, then there is a canonical
short exact sequence

0 // C0pUq // C0pXq // C0pF q // 0 .

Moreover, for any ideal I in C0pXq, there is a canonically associated open subset
U of X such that I identifies with C0pUq.

Proof. Let U be an open subset of X, and let I be the collection of all f P C0pXq
that vanish on the complement of U in the one-point compactification X`. It
is then straightforward to see that I is a (closed, ˚-closed, two-sided) ideal,
and that restriction of functions from the one-point compactification X` to
the subspace U` identifies I with C0pUq. Moreover, if F Ď X is the closed
complement of U , then the restriction map C0pXq Ñ C0pF q is surjective by
the Tietze extension theorem (applied to the closed subspace F` of X`), and
clearly has kernel C0pUq, giving the short exact sequence in the statement.

It remains to show that any ideal I in C0pXq canonically identifies with

an ideal of the form C0pUq. Identify X with the collection {C0pXq of non-zero
multiplicative linear functionals φ : C0pXq Ñ C as in Theorem 1.3.14. Let

U “ tφ P {C0pXq | φpIq ‰ t0uu. Then it is clear that {C0pXqzU is closed, whence
U is an open subset of X. Moreover, I is a commutative C˚-algebra, so to
complete the proof, it suffices by Theorem 1.3.14 to show that restrictions of
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elements of U to I are precisely the elements of pI. For this, it suffices to show

that any φ P pI extends uniquely to an element rφ of {C0pXq.

For this last statement, let φ : I Ñ C be an element of pI. As φ is non-zero
and linear, it is surjective, so there is some element a1 P I such that φpa1q “ 1.

Define rφ : C0pXq Ñ C by rφpaq :“ φpaa1q, which makes sense as a1 is in I, and

φ is an ideal. It is straightforward to see that rφ is linear, and multiplicativity
follows as if a, b P C0pXq, then

rφpabq “ φpaba1q “ φpaba1qφpa1q “ φpaba2
1q “ φpaa1qφpba1q “ rφpaqrφpbq,

where the first and last equalities are by definition of rφ, the second uses that
φpa1q “ 1, the third and fourth use multiplicativity of φ, and the fourth also uses
that C0pXq is commutative. It is clear that any multiplicative linear extension

of φ satisfies the formula defining rφ, so we are done.

To conclude this section, we give another example of a construction one can
perform on C˚-algebras.

Example 1.5.12. Let pAiqiPI be a collection of C˚-algebras, where I is a directed
set (in particular, I could be the natural numbers). Assume moreover that for
each i ď j there is a ˚-homomorphism φji : Ai Ñ Aj such that each φii is
the identity, and such that if i ď j ď k, then φkj ˝ φji “ φki. This data
is called a directed system of C˚-algebras indexed by I. In fancy language, a
directed system of C˚-algebras is a functor from I considered as a category to
the category of C˚-algebras and ˚-homomorphisms.

Given a directed system pAiqiPI as above (we follow the usual convention of
leaving the maps φij implicit), we may form the direct limit C˚-algebra lim

iPI
Ai

as follows. First, note that the direct sum C˚-algebra
à

iPI

Ai is naturally an

ideal in the direct product C˚-algebra
ź

iPI

Ai (see Example 1.1.7 for notation),

so that one can take the quotient C˚-algebra

B :“
ź

iPI

Ai

M

à

iPI

Ai.

For each i P I, there is a natural ˚-homomorphism φi : Ai Ñ B defined by
setting the component of φipaq in Aj to be φjipaq if j ě i, and zero otherwise.
The direct limit lim

iPI
Ai can then be defined as the C˚-subalgebra of B generated

by φipAiq for all i.
The direct limit A :“ lim

iPI
Ai has the following universal property: if C is any

other C˚-algebra equipped with a collection of ˚-homomorphisms ψi : Ai Ñ C
such that the diagrams

Ai
φji //

ψi

��

Aj

ψj

��
C C
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commute, then there is a unique ˚-homomorphism φ : A Ñ C such that the
diagrams

Ai
ψi

  

φi // A

φ

��
C

commute. Indeed, if φipaq P φipAiq then define φpφipaqq :“ ψipaq; it is not
difficult to see that this gives a ˚-homomorphism on the densely defined ˚-
subalgebra

Ť

iPI φipAiq that extends to the required map φ : AÑ C.
In the special case that the family pAiqiPI consists of C˚-subalgebras of some

fixed C˚-algebra B, ordered by inclusion, then the direct limit admits a simpler
description: it is just the closure of the union

ď

iPI

Ai inside B. As a concrete

example, consider the directed system

M1pCq ÑM2pCq ÑM3pCq Ñ ¨ ¨ ¨

where each map is the top left inclusion map a ÞÑ

ˆ

a 0
0 0

˙

. We may view each

MnpCq as acting on `2pNq via the usual action on `2pt1, ..., nuq, and the zero
action on the orthogonal complement `2ptn`1, n`2, ...uq. These representations
are compatible with the inclusions, and it is not difficult to see that the union
is dense in Kp`2pNqq. Thus we have K “ lim

nPN
MnpCq.

1.6 Spatial theory

Our goal in this section is to discuss C˚-algebras as they arise as C˚-subalgebras
of the bounded operators on some Hilbert space.

Definition 1.6.1. A concrete C˚-algebra is a C˚-subalgebra of the bounded
operators BpHq on some Hilbert space.

Example 1.6.2. Let G be a group, and π : GÑ BpHq be a unitary representation
as in Example 1.1.8 above. Then we may take the C˚-algebra generated by the
image tπg | g P Gu of this representation. Particularly important examples are
the C˚-algebras generated by the left and right regular representations on `2pGq
defined respectively by

λg : δh ÞÑ δgh and ρg : δh ÞÑ δhg´1 .

The C˚-algebras these generate are denoted by C˚λ pGq and C˚ρ pGq respectively.
The unitary isomorphism

U : `2pGq Ñ `2pGq, δg ÞÑ δg´1

conjugates one into the other4, and thus they are ˚-isomorphic. Either of them
is usually called the reduced group C˚-algebra of G. In the literature, C˚λ pGq

4In symbols: UC˚λ pGqU
˚ “ C˚ρ pGq.
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is probably the default option when one wants to consider a concrete copy of
the reduced group C˚-algebra, although our conventions in this text force us to
favour C˚ρ pGq.

Example 1.6.3. Say X is a locally compact Hausdorff space, and equip X with
a measure µ which is positive on every non-empty open subset. Then H “

L2pX,µq is a Hilbert space, and we can realize C0pXq as a concrete C˚-algebra
on BpHq acting by multiplication operators: the condition that the measure is
positive on open sets guarantees that the norm that f P C0pXq inherits from
BpHq is the same as its supremum norm.

Throughout this book, we will see several more examples of C˚-algebras
introduced as concrete algebras of operators on some Hilbert space in this way.
In fact, any C˚-algebra is ˚-isomorphic to a concrete C˚-algebra of operators
on some Hilbert space. We will not need any ideas from the proof of this fact
in this book so do not discuss it. Before stating a precise version, we give some
definitions relating to representations of C˚-algebras.

Definition 1.6.4. LetA be a ˚-algebra. A representation ofA is a ˚-homomorphism
π : AÑ BpHq from A to the C˚-algebra of bounded operators on some Hilbert
space. A representation π : AÑ BpHq is:

(i) nondegenerate if whenever v P H is such that πpaqv “ 0 for all non-zero
a P A, we have that v “ 0;

(ii) faithful if π is injective5;

(iii) ample if no non-zero element of A acts as a compact operator.

Remark 1.6.5. Say A is a unital C˚-algebra. Then a representation π : A Ñ
BpHq is nondegenerate if and only if it is unital. Indeed, if π is unital then it is
clearly nondegenerate. On the other hand, if π is not unital, then P :“ πp1q is
a non-identity projection on H. If v is any non-zero vector in p1 ´ P qH, then
πpaqv “ πpa1qv “ πpaqPv “ 0 for all a P A, so π is not nondegenerate.

Note that any representation of the zero C˚-algebra is non-degenerate by
our definition (this is not just a curiosity: slightly irritatingly, we will need to
use this fact at a couple of points below).

Remark 1.6.6. Let A be a C˚-algebra and π : AÑ BpHq a faithful representa-
tion. Then Remark 1.3.15 implies that π is isometric. Thus πpAq is just a copy
of A with all the same algebraic and metric structure.

Remark 1.6.7. Let π : A Ñ BpHq be a representation of a C˚-algebra. We
claim that π is nondegenerate if and only if the subspace

πpAqH :“ tπpaqv | a P A, v P Hu

of H is dense. Indeed, if πpAqH is dense, let v P H be such that πpaqv “ 0 for
all a P A. Then by our density assumption, for any ε ą 0 we may find w P H

5If A is a C˚-algebra and π is a ˚-homomorphism, this is equivalent to saying that π takes
non-zero positive elements to non-zero positive elements; the latter condition is the ‘correct’
definition of ‘faithful’ for certain more general classes of maps between C˚-algebras.
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and b P A such that }v ´ πpbqw} ă ε. Let phiq be an approximate unit for A
(see Definition 1.8). Then we get that

ε ą }πphiq}}v ´ πpbqw} ě }πphiqpv ´ πpbqwq} “ }πphibqw} Ñ }πpbqw}.

Hence }v} ď }πpbqw} ` ε ď 2ε, and as ε was arbitrary, v “ 0.
Conversely, say π is non-degenerate. Let H0 be the orthogonal complement

of πpAqH. It suffices to show that H0 is zero. Let then v be an element of H0,
and let a be an element of A. Then for any a P A,

}πpaqv}2 “ xπpaqv, πpaqvy “ xv, πpa˚aqvy,

which is zero as πpa˚aqv is in πpAqH. Hence πpaqv “ 0 for all a P A, and by
nondegeneracy this forces v “ 0 as we wanted.

The following is the celebrated Gelfand-Naimark theorem. We do not need
the ideas behind the proof in this book, so we will not go into them here.

Theorem 1.6.8. Let A be a C˚-algebra. Then there exists a faithful (hence iso-
metric by Remark 1.6.6) non-degenerate representation on some Hilbert space.
Moreover, this Hilbert space can be chosen to be separable if A is.

Remark 1.6.9. Say π : A Ñ BpHq is a faithful non-degenerate representation.
Let H‘8 be the countably infinite direct sum of copies of H: precisely, this
means one takes the algebraic direct sum of countably infinitely many copies
of H, so elements are sequences pvnq

8
n“1 with each vn in H and only finitely

many non-zero, and completes with respect to the metric induced by the inner
product

xpvnq, pwnqy :“
8
ÿ

n“0

xvn, wnyH .

Equivalently, one could define H‘8 to equal the space `2pN, Hq of square-
summable functions from N to H with the natural inner product. Then there
is a countable infinite direct sum representation π‘8 : A Ñ BpH‘8q defined
to act by πpaq in each component. This new representation will still be faithful
and nondegenerate. It will moreover be ample, as no operator ‘repeated’ or
‘amplified’ infinitely many times in this way can be compact unless it is zero.

In summary, Theorem 1.6.8 implies that any C˚-algebra has ample non-
degenerate representations.

Here is a sample application of Theorem 1.6.8: although this may seem at
first like it ‘should’ be elementary, no way of justifying it that does not essentially
go through Theorem 1.6.8 above seems to be known.

Example 1.6.10. Let A be a C˚-algebra. Then the ˚-algebra of nˆ n matrices
MnpAq over A admits a norm (which is unique by Corollary 1.3.16) making it a
C˚-algebra. Indeed, choose a faithful (non-degenerate) representation of A on
some Hilbert space H. Then MnpAq is naturally represented on the direct sum
H‘n of n copies of H, and so inherits a C˚-algebra norm from BpH‘nq.
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Our last goal in this section is a result about extending representations of
C0pXq to the C˚-algebra of bounded Borel functions on X. This will be useful
in its own right, and also to deduce the existence of the Borel functional calculus.
To state it, recall that a sequence (or a net) pTnq of bounded operators on a
Hilbert space H converges strongly to a bounded operator T if for every v P H
we have that }Tnv ´ Tv} Ñ 0 as n tends to infinity.

Proposition 1.6.11. Let X be a second countable locally compact Hausdorff
space, and let

π : C0pXq Ñ BpHq
be a nondegenerate representation of C0pXq on some Hilbert space H. Then
there exists a canonical extension of π to a unital representation

π : BpXq Ñ BpHq

of the C˚-algebra of bounded Borel functions on X.
Moreover, this extension has the property that if pfnq is a uniformly bounded

sequence of Borel functions converging pointwise to a Borel function f , then
pπpfnqq converges strongly to f .

Proof. Let v P H be a vector, and consider the bounded linear functional

µv : C0pXq Ñ C, f ÞÑ xv, πpfqvy.

The Riesz representation theorem implies that µv corresponds to a unique finite,
positive, Borel measure on X, which we also denote by µv.

Fix now a bounded Borel function f P BpXq. Then for each v P H, the map

φf : H Ñ C, u ÞÑ
1

4

3
ÿ

k“0

ik
ż

X

fdµpu`ikvq

(the formula is inspired by the polarization identity) defines a bounded linear
functional on H. Hence there is a unique vector that we call πpfqv such that
φf puq “ xπpfqv, uy for all u P H. It now follows from direct checks that this
prescription defines a bounded linear operator πpfq : H Ñ H that agrees with
the original definition of πpfq when f P C0pXq, and moreover that the corre-
sponding map

π : BpXq Ñ BpHq
is a unital ˚-homomorphism.

To complete the proof, it remains to check the claimed continuity property.
Let then pfnq be a uniformly bounded sequence of functions in BpXq that con-
verges pointwise to some (bounded, Borel) function f : X Ñ C Then for any
v P H and any n P N

}pπpfnq ´ πpfqqv}
2 “ xv, πppfn ´ fq

˚pfn ´ fqqvy “

ż

X

|fn ´ f |
2dµv.

The right hand side tends to zero using the dominated convergence theorem
(here we use that supn }fn} is finite, and that µv is a finite measure), so we are
done.
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Corollary 1.6.12. Let T P BpHq be a bounded normal operator on a Hilbert
space with spectrum X Ď C, and let BpXq be the C˚-algebra of bounded Borel
functions on X. Then there is a unique ˚-homomorphism

BpXq Ñ BpHq, f ÞÑ fpT q,

called the Borel functional calculus, that takes the identity function to T , and
that takes bounded pointwise convergent sequences of functions to strongly con-
vergent sequences of operators.

Proof. The usual functional calculus gives a unique ˚-homomorphism

CpXq Ñ BpHq, f ÞÑ fpT q

subject to the condition that the identity functionX Ñ C goes to T . Proposition
1.6.11 extends this to a ˚-homomorphism BpXq Ñ BpHq with the claimed
‘pointwise-to-strong’ continuity property. Uniqueness follows as for a compact
subset of C, the bounded Borel functions BpXq are the smallest class of functions
containing CpXq, and closed under pointwise limits of bounded sequences.

1.7 Multipliers and corners

In this section, we use the spatial theory from the last section to discuss multi-
plier algebras, and use these to give a definition of corners and Morita equiva-
lence.

Definition 1.7.1. Let A Ď BpHq be a concrete C˚-algebra such that the
identity representation is nondegenerate. The multiplier algebra of A, denoted
MpAq, is the C˚-subalgebra of those T P BpHq such that

Ta P A and aT P A

for all a P A.

Note that A is an ideal in MpAq, and that MpAq is always unital. On the
other hand, if A is unital, then Remark 1.6.5 implies that any nondegenerate
representation of A is unital, and thus MpAq “ A in this case.

Definition 1.7.2. An ideal A in a C˚-algebra B is essential if whenever b P B
is such that ba “ 0 for all a P A, then b “ 0.

Note that Remark 1.6.7 implies that in the situation of Definition 1.7.1, A
is an essential ideal in MpAq.

Our first task in this section is to show that MpAq can be reasonably defined
for any C˚-algebra, even a non-concrete one. The key point is the next result.

Proposition 1.7.3. Let A be a C˚-algebra, let B be a C˚-algebra containing A
as an ideal. Let π : A Ñ BpHq be a nondegenerate representation. Then there
is a unique ˚-homomorphism rπ : B ÑMpπpAqq extending π.
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Proof. Using Remark 1.6.7, the subspace πpAqH “ spantπpaqv | a P A, v P Hu
is dense. We will attempt to define

rπpbq
´

n
ÿ

i“1

πpaiqvi

¯

:“
n
ÿ

i“1

πpbaiqvi (1.9)

for all elements πpaqv in πpAqH and show that this extends to a bounded op-
erator on all of H. Let phjq be an approximate unit for A. Then

›

›

›

n
ÿ

i“1

πpbaiqvi

›

›

›
“ lim

j

›

›

›

n
ÿ

i“1

πpbhjaiqvi

›

›

›
“ lim

j

›

›

›
πpbhjq

´

n
ÿ

i“1

πpaiqvi

¯
›

›

›

ď lim sup
j

}bhj}
›

›

›

n
ÿ

i“1

πpaiqvi

›

›

›
ď }b}

›

›

›

n
ÿ

i“1

πpaiqvi

›

›

›
.

This computation shows that πpbq as in line (1.9) is well-defined as a bounded
linear operator on the dense subspace πpAqH of H, and (therefore) also that it
extends uniquely to a bounded linear operator defined on all of H. It is routine
to check that rπ as in line (1.9) is a ˚-homomorphism extending π, that it is the
unique such, and that it takes values in MpπpAqq, so we are done.

Corollary 1.7.4. Let A and B be concrete C˚-algebras on HA, HB respectively,
and let π : AÑ B be a ˚-homomorphism that takes an approximate unit for A
to an approximate unit of B (e.g. π is unital, or surjective). Then there is a
unique map rπ : MpAq ÑMpBq extending π.

Proof. Uniqueness follows from nondegeneracy of π, considered as a representa-
tion of A. For existence, note that the fact that π : AÑ B takes an approximate
unit to an approximate unit and non-degeneracy of the identity representation
of B implies that π : A Ñ B Ď BpHBq is nondegenerate when considered as
a representation of A. Hence from Proposition 1.7.3 and the fact that A is an
ideal in MpAq, we get a ˚-homomorphism rπ : MpAq Ñ MpπpAqq extending π.
The only issue is to show that MpπpAqq is contained in MpBq. Indeed, let phjq
be an approximate unit for A such that pπphjqq is an approximate unit for B.
Then for any m PMpπpAqq and b P B we have

mb “ lim
j
mhjb.

As each mhj is in πpAq Ď B, we have that mb is in B. Similarly bm is in B,
and we are done.

Corollary 1.7.5. Let π1 : A Ñ BpH1q and π2 : A Ñ BpH2q be faithful non-
degenerate representations of a C˚-algebra A. let M1pAq and M2pAq be the
multiplier algebras of π1pAq and π2pAq respectively. Then the map π2 ˝ π

´1
1 :

π1pAq Ñ π2pAq extends uniquely to a ˚-isomorphism M1pAq ÑM2pAq.

Proof. Using Proposition 1.7.3, we have a unique ˚-homomorphism σ21 : M1pAq Ñ
M2pAq extending the map π2 ˝ π

´1
1 : π1pAq Ñ π2pAq, and similarly for σ12 :
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M2pAq Ñ M1pAq. The uniqueness clause from Proposition 1.7.3 implies that
the map σ12 ˝σ21 : M1pAq ÑM1pAq (which extends the identity map on π1pAq)
is the identity, and similarly for the other composition.

The following definition, although an abuse of terminology, makes sense up
to canonical isomorphism (there are other ways to define MpAq that do not
depend on any choices: readers who dislike the approach below can see the
notes and references at the end of the chapter).

Definition 1.7.6. Let A be a C˚-algebra. Its multiplier algebra MpAq is defined
to be the multiplier algebra of πpAq for any faithful nondegenerate representa-
tion π : AÑ BpHq.

Example 1.7.7. Let X be a locally compact Hausdorff space. One can compute
that the multiplier algebra of C0pXq naturally identifies with the C˚-algebra
CbpXq of continuous, bounded functions f : X Ñ C. Exercise 1.9.14 leads the
reader through one approach to this.

Having defined multiplier algebras, we now use them to define a version of
Morita equivalence.

Definition 1.7.8. Let A be a C˚-algebra, and MpAq its multiplier algebra. A
corner of A is any C˚-subalgebra of the form pAp where p is a projection in
MpAq. A corner (or the projection defining it) is full if the ideal generated by
p, i.e. the norm closure of the set

ApA :“ spantapb | a, b P Au,

is dense in A.

We conclude this section with one more important definition.

Definition 1.7.9. Two C˚-algebras A and B are elementarily Morita equivalent
if one is a full corner in the other. Two C˚-algebras are Morita equivalent if there
is a chain A “ A0, ..., An “ B of C˚-algebras with Ai´1 and Ai elementarily
Morita equivalent for each i P t1, ..., nu.

It is a fact that if A and B are Morita equivalent, then there is a third
C˚-algebra C containing both as full corners in a complementary way, but we
will not prove that here.

Example 1.7.10. Let MnpAq be the n ˆ n matrices over a C˚-algebra A, and
let p be the element of the multiplier algebra of MnpAq that has a copy of
the identity in the top-left entry. Then pMnpAqp identifies canonically with
A, and MnpAqpMnpAq “ MnpAq as one can easily check (recall here that
MnpAqpMnpAq is the span of the set tapb | a, b P MnpAqu, not just this set
itself). Hence A and MnpAq are elementarily Morita equivalent.
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1.8 Tensor products

Our goal in this section is to give a brief introduction to the theory of the
spatial tensor product of two C˚-algebras. We assume that the reader knows
how to form the algebraic tensor product over C of two complex vector spaces
(if not, see the notes and references at the end of the section for recommended
background references). If V , W are complex vector spaces, we write V dW for
their algebraic tensor product over C; we use ‘d’ rather than ‘b’ to distinguish
the algebraic tensor product from the completed tensor products that we will
use later. As we will want to identify algebraic tensor products V dW with
a subspace of the relevant completed version V bW , we still write elementary
tensors in V dW as v b w (sorry). The key universal property of V dW is
that if φ : V ˆW Ñ U is a bilinear map, then there is a unique linear map
Φ : V dW Ñ U such that Φpv bwq “ φpv, wq for all elementary tensors v bw.

If A and B are ˚-algebras, then AdB is also a ˚-algebra in a natural way:
the adjoint and multiplication are determined by the formulas

pa1 b b1qpa2 b b2q :“ a1a2 b b1b2, pab bq˚ :“ a˚ b b˚

for elementary tensors. Using the universal property of A d B, it is not too
difficult to check that these formulas do indeed determines a well-defined ˚-
algebra structure on A d B; we leave this as an exercise for the reader (or see
the notes and references at the end of the section).

Remark 1.8.1. Let A, B, and C be ˚-algebras. One can check that AdB has the
following universal property: if φ : AÑ C and ψ : B Ñ C are ˚-homomorphisms
with commuting images, then there is a unique ˚-homomorphism φbψ : AdB Ñ
C satisfying pφbψqpabbq “ φpaqψpbq on elementary tensors: see Exercise 1.9.19.

The following fundamental example will get used many times in the main
text.

Example 1.8.2. Let A be a ˚-algebra and let MnpCq be the ˚-algebra of n ˆ n
matrices. Then if eij are the usual matrix units with a one in the pijqth position
and zeros everywhere else the collection peijq

n
i,j“1 is a basis for MnpCq, and so

every element in AdMnpCq can be written uniquely as
řn
i,j“1 aijbeij for some

collection paijq
n
i,j“1 of elements of A. One checks directly that the map

AdMnpCq ÑMnpAq,
ÿ

i,j

aij b eij ÞÑ

¨

˚

˚

˚

˝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

˛

‹

‹

‹

‚

is a ˚-isomorphism. In particular, if A is a C˚-algebra, then A dMnpCq can
also be made into a C˚-algebra via this isomorphism and Example 1.6.10, and
the resulting C˚-algebra norm is unique by Corollary 1.3.16.

We now turn to completed tensor products, starting with Hilbert spaces.
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Lemma 1.8.3. Let H and K be Hilbert spaces. Then the form on H d K
defined by

A

ÿ

i

ui b wi,
ÿ

j

vj b xj

E

:“
ÿ

i,j

xui, vjyHxwi, xjyK

is a well-defined inner product.

Proof. Let V be the vector space of all conjugate linear functionals from HdK
to C. We define a map

φ : H ‘K Ñ V, φpv, xq :
ÿ

i

ui b wi ÞÑ
ÿ

i

xui, vyHxwi, xyK .

One checks directly that φ is bilinear, and so defines a linear map from H dK
to V by the universal property of the tensor product; we also denote this map
by φ. One computes directly that with the definition in the statement

A

ÿ

i

ui b wi,
ÿ

j

vj b xj

E

“ φ
´

ÿ

j

vj b xj

¯´

ÿ

i

ui b wi

¯

,

and thus that the form in the statement is well-defined. The inner product
properties are all straightforward to check, except possibly non-degeneracy. For
this, let

řn
i“1 uibwi be an arbitrary element ofHdK. Choosing an orthonormal

basis for spantu1, ..., unu and expanding in terms of this basis, we may assume
that u1, ..., un is an orthonormal collection. We then get that

A

ÿ

i

ui b wi,
ÿ

i

ui b wi

E

“

n
ÿ

i,j“1

xui, ujyHxwi, wjyK “
ÿ

i

}wi}
2;

as the only way this can be zero is if all the wi are zero, we are done.

Definition 1.8.4. Let H and K be Hilbert spaces. The Hilbert space tensor
product of H and K, denoted HbK, is defined to be the completion associated
to the inner product from Lemma 1.8.3 above.

The following example will be used many times (usually without reference).

Example 1.8.5. Let X be a set, let H be a Hilbert space, and let `2pX,Hq
denote the Hilbert space of square-summable functions from X to H. Then
there is a canonical unitary isomorphism `2pXqbH Ñ `2pX,Hq determined by
the formula

ub v ÞÑ
`

x ÞÑ upxqv
˘

on elementary tensors. Checking the details of this is a good exercise in making
sure one has understood the definitions above.

We now turn to bounded operators on tensor products of Hilbert spaces.

Lemma 1.8.6. Let S and T be bounded operators on Hilbert spaces H and K.
Then there is a unique bounded operator written S b T on H bK that satisfies

S b T : ub v ÞÑ Sub Tv (1.10)

on elementary tensors. Moreover, one has that }S b T } “ }S}}T }.
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Proof. It is clear that the formula in line (1.10) defines a bilinear map H‘K Ñ

HbK, and thus gives a unique linear operator HdK Ñ HbK by the universal
property of the algebraic tensor product. We need to show first that this extends
to H bK.

We first consider the special case that S “ 1. Let then u P H b K be
arbitrary, and write u “

řn
i“1 ei b vi, where e1, ..., en are orthonormal vectors

in H, and v1, ..., vn are some vectors in K. Then

}p1b T qu}2 “
›

›

›

n
ÿ

i“1

ei b Tvi

›

›

›

2

“

n
ÿ

i“1

}Tvi}
2 ď }T }2

n
ÿ

i“1

}vi}
2 “ }T }2}u}2,

whence }1 b T } is bounded by }T } and in particular extends to a bounded
operator on H b K. A precisely analogous argument works for S b 1. The
operator p1 b T qpS b 1q agrees with the operator in line (1.10) on elementary
tensors, so this gives our desired extension. Note moreover that this argument
shows that

}S b T } ď }1b T }}S b 1} ď }S}}T }.

To get the reverse inequality, let punq and pvnq be sequences of unit vectors
in H and K respectively such that }Tun} Ñ }T } and }Svn} Ñ }S}. Then
}un b vn} “ 1 for all n and

}pS b T qpun b vnq} “ }Sun b Tvn} “ }Sun}}Tvn} Ñ }S}}T },

completing the proof.

Remark 1.8.7. Let π : AÑ BpHAq be a representation of a C˚-algebra, and let
H be another Hilbert space. Then the representation

π b 1 : AÑ BpHA bHq, a ÞÑ πpaq b 1

makes sense by Lemma 1.8.6 above. We will frequently have use of this con-
struction: the resulting representation π b 1 of A is called the amplification of
π to HA bH.

Now, say A and B are ˚-algebras, and that πA : AÑ BpHAq and πB : B Ñ
BpHBq are representations. Then Remark 1.8.7 gives amplified representations
πA b 1 : AÑ BpHA bHBq and 1b πB : B Ñ BpHA bHBq. Clearly these have
commuting images, and so Remark 1.8.1 gives a ˚-homomorphism

pπA b 1q b p1b πBq : AdB Ñ BpHA bHBq. (1.11)

Definition 1.8.8. With notation as above, we write πA b πB : A d B Ñ

BpHA bHBq for the homomorphism in line (1.11) above, and call it the tensor
product of πA and πB . Concretely, we have the formula

pπA b πBqpab bq “ πApaq b πBpbq

for elementary tensors in A d B, where the operator on the right hand side is
the one defined in Lemma 1.8.6.
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Proposition 1.8.9. Let πA : A Ñ BpHq and πB : B Ñ BpHBq be faithful
representations of C˚-algebras. Then the tensor product representation

πA b πB : AdB Ñ BpHA bHBq

is injective. Moreover, for c P A d B, the norm defined by }c} :“ }pπA b
πBqpcq}BpHAbHBq does not depend on the choice of πA and πB.

Proof. For injectivity, say c “
řn
i“1 ai b bi P AdB is in the kernel of πA b πB .

Choosing a basis for spantb1, ..., bnu and rewriting c in terms of this basis, we
may assume that the collection b1, ..., bn is linearly independent. Now, for any
u, v P HA and w, x P HB we have

0 “ xub w, pπA b πBqpcqpv b xqy “
n
ÿ

i“1

xu, πApaiqvyxw, πBpbiqxy

“

A

w, πB

´

n
ÿ

i“1

xu, πApaiqvybi

¯

x
E

.

As w and x are arbitrary and πB is injective, this forces
řn
i“1xu, πApaiqvybi “ 0,

and linear independence of b1, ..., bn then forces xu, πApaiqvy “ 0 for each i. As
u and v are arbitrary and πA is injective, this forces ai “ 0 for each i. Hence
c “ 0, so so we are done with injectivity.

We now check that the norm defined above is independent of the choice
of πA; by symmetry, this suffices. Fix an increasing net pPiq of finite rank
projections on HB converging strongly to the identity6. Using Lemma 1.8.6,
define Qi :“ 1 b Pi. We claim that the net pQiq converges strongly to the
identity on HAbHB : indeed, it follows from a direct check that }Qiv´ v} Ñ 0
when v P HA bHB is a finite sum of elementary tensors, and the general case
follows as such finite sums are dense in HA bHB , and as Lemma 1.8.6 implies
that }Qi} “ 1 for all i. It follows from the claim for any operator T on HAbHB ,

}T } “ lim
i
}QiTQi}. (1.12)

Now, let
řn
j“1 aj b bj be an element of AdB. Then for any i,

Qip
n
ÿ

j“1

πApajq b πBpbjqqQi “
n
ÿ

j“1

πApajq b PiπBpbjqPi. (1.13)

Write n “ rankpPiq, and consider the representation π : MnpCq Ñ BpHBq

defined by some choice of isomorphism MnpCq – BpPiHq. Then

πA b π : AdMnpCq Ñ BpHA bHBq

is injective by the first part of the proof, and the computation in line (1.13)
shows that its image contains Qip

řn
j“1 πApajqbπBpbjqqQi. Moreover, Example

1.8.2 shows that we may identify the domain of πA b π with MnpAq.

6i.e. so that }Piv ´ v} Ñ 0 as i Ñ 8; for example, the net of all finite rank projection
ordered by inclusion of images has this property.
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If then σA is any other faithful representation of A, we may apply the above
discussion to both πA and σA. Uniqueness of the C˚-algebra norm on

MnpAq – pπA b πqpAdMnpCqq – pσA b πqpAdMnpCqq

(Corollary 1.3.16) then implies that

›

›

›
Qip

n
ÿ

j“1

πApajq b πBpbjqqQi

›

›

›
“

›

›

›
Qip

n
ÿ

j“1

σApajq b πBpbjqqQi

›

›

›
.

Taking the limit over i and using line (1.12), we get

›

›

›

n
ÿ

j“1

πApajq b πBpbjq
›

›

›
“

›

›

›

n
ÿ

j“1

σApajq b πBpbjq
›

›

›

and are done.

We are now ready for completed tensor products of C˚-algebras. Proposition
1.8.9 implies that the definition below both gives a norm, and that the resulting
norm does not depend on the choices involved.

Definition 1.8.10. Let A and B be C˚-algebras. Choose faithful representa-
tions πA and πB of A and B respectively, and define the spatial norm on AdB
by

}c} :“ }pπA b πBqpcq}.

The spatial tensor product of A and B, denoted A b B, is defined to be the
associated completion of AdB.

Example 1.8.11. Let C0pXq be a commutative C˚-algebra, and let A be any
C˚-algebra. Let C0pX,Aq be the collection of continuous functions from X to
A that vanish at infinity, which is a C˚-algebra when equipped with pointwise
operations and the supremum norm. We claim that the map determined by

C0pXq dAÑ C0pX,Aq, f b a ÞÑ px ÞÑ fpxqaq (1.14)

extends to a ˚-isomorphism C0pXqbA – C0pX,Aq. Indeed, to build C0pXqbA
we may use `2pXq b HA for some faithful representation HA of A, and where
C0pXq acts on `2pXq by multiplication. Then C0pX,Aq is also represented on
this Hilbert space via the formula

f : δx b v ÞÑ δx b fpxqv.

Identifying C0pX,Aq with its image under this representation, it is clear that
the representation of C0pXqdA on `2pXqbH maps this ˚-algebra into C0pX,Aq
via the map in line (1.14). As it is also straightforward to see that the image is
dense using a partition of unity argument. As images of ˚-homomorphisms are
closed, we are done.

Arguing quite analogously, we get canonical identifications

C0pXq b C0pY q “ C0pX,C0pY qq “ C0pX ˆ Y q,

which will occasionally be used in the main body of the text.
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Remark 1.8.12. Using the ideas in the proof of Proposition 1.8.9, it is not too
difficult to see that the spatial tensor product is functorial in the following sense:
for each pair φ : AÑ C and ψ : B Ñ D of ˚-homomorphisms there is a unique
˚-homomorphism φbψ : AbB Ñ CbD that satisfies pφbψqpabbq “ φpaqbψpbq
on elementary tensors. Moreover, the homomorphism φbψ is injective if φ and
ψ both are. We leave this as an exercise for the reader: see Exercise 1.9.16
below.

If at least one of the algebras involved in a tensor product is commutative
then we have the following more general functoriality result.

Lemma 1.8.13. Let A be a commutative C˚-algebra. Then for any C˚-algebras
B and C, and any ˚-homomorphisms φ : AÑ C and ψ : B Ñ C with commuting
images, there is a unique ˚-homomorphism

φb ψ : AbB Ñ C

satisfying pφb ψqpab bq “ φpaqψpbq on elementary tensors.

Proof. As in Exercise 1.9.19, there is a unique ˚-homomorphism φbψ : AdB Ñ
C satisfying pφbψqpabbq “ φpaqψpbq on elementary tensors. Our task is to show
that φ b ψ extends to the spatial tensor product A b B. Using the injectivity
comment in Remark 1.8.12, there is a canonical inclusion AbB Ď A` bB` of
the spatial tensor product of A and B into the spatial tensor product of their
unitisations. Replacing A, B and C with their unitisations, and replacing φ and
ψ with the corresponding unital maps between unitisations, it thus suffices to
prove the lemma in the case that all the C˚-algebras and ˚-homomorphisms are
unital. In particular, we may write A “ CpXq for some compact space X, and
Example 1.8.11 gives us a canonical identification AbB “ CpX,Bq.

Let now f P A and b P B be arbitrary non-zero elements. We claim that for
if U is an open cover of X such that |fpxq´fpyq| ă ε{}b} for all x, y in the same
element of U , tg1, ..., gmu is a partition of unity on X subordinate to this cover,
and x1, ..., xm are points in X such that xi is in the support of gi, then we have

›

›

›
φpfqψpbq ´

m
ÿ

i“1

fpxiqφpgiqψpbq
›

›

›

C
ă ε.

Indeed, using that ˚-homomorphisms are contractive, this is bounded above by

›

›

›
φ
´

f ´
m
ÿ

i“1

fpxiqgi

¯›

›

›

C
}ψpbq}C ď

›

›

›
f ´

m
ÿ

i“1

fpxiqgi

›

›

›

CpXq
}b}B ,

and the claim follows.
Now, let c “

řn
i“1 fi b bi be an arbitrary element of the algebraic tensor

product A d B. Let g1, ..., gm be a partition of unity on X subordinate to an
open cover U such that each fi satisfies |fipxq´fipyq| ă ε{pnmax }bi}q whenever
x, y are in the same element of U . Let x1, ..., xm P X be such that xi is in the
support of gi. Define maps

α : CpX,Bq Ñ
n
à

i“1

B, f ÞÑ
`

fpxiqq
n
i“1
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and

β :
n
à

i“1

B Ñ C, pbiq
n
i“1 ÞÑ

n
ÿ

i“1

φpgiqψpbiq.

The choice of the gi and xi and the claim above imply that }α ˝ βpcq ´ pφ b
ψqpcq}C ă ε. Moreover, α is clearly a ˚-homomorphism so contractive, and β
is clearly unital and takes positive elements to positive elements7, so has norm
bounded by 4 by Exercise 1.9.17. Hence

}pφb ψqpcq}C ď }α ˝ βpcq}C ` }α ˝ βpcq ´ pφb ψqpcq}C ď 4}c}AbB ` ε.

As ε and c were arbitrary, this gives that φbψ : AdB Ñ C has norm bounded
above by 4, whence extends to AbB as required8

Remark 1.8.14. A C˚-algebra A satisfying the conclusion of Lemma 1.8.13 is
said to be nuclear . Thus Lemma 1.8.13 can be succinctly restated as follows:
commutative C˚-algebras are nuclear.

It is more common to express nuclearity in the following way. For C˚-
algebras A and B, let S be the collection of all triples pφ, ψ,Cq where C is
a C˚-algebra, and φ : A Ñ C and ψ : B Ñ C are ˚-homomorphisms with
commuting images. Note that such a triple gives rise to a ˚-homomorphism
φ b ψ : A d B Ñ C as in the proof of Lemma 1.8.13. One then defines the
maximal C˚-algebra norm9 on AdB by

}c}max :“ supt}pφd ψqpcq}C | pφ, ψ,Cq P Su.

As C˚-algebra homomorphisms are contractive, one has that for any pφ, ψ,Cq P
S and any c “

ř

i ai b bi P AdB,

}φd ψpcq}C ď
ÿ

i

}ai}}bi},

and thus the supremum defining }c}max is finite. Hence } ¨ }max is indeed a
C˚-algebra norm on AdB. The maximal tensor product of A and B, denoted
A bmax B, is defined to be the associated completion. The identity map on
AdB can be shown to extend to a quotient map

Abmax B Ñ AbB. (1.15)

Indeed, if πA : A Ñ BpHAq and πB : B Ñ BpHBq are faithful representations
used to define the norm on A b B, then we get a ˚-homomorphism πA b πB :
A bmax B Ñ BpHA b HBq by definition of the maximal completion, and it is
not difficult to check that the image actually lies in the natural copy of Ab B
inside BpHAbHBq. The usual definition of nuclearity is that the quotient map

7Actually, it satisfies the stronger property of ‘complete positivity’, which implies in par-
ticular that it is contractive, but we do not need this.

8At which point we know it is a ˚-homomorphism between C˚-algebras, so has norm one.
9This is not quite the usual definition, but is equivalent: see Exercise 1.9.20
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in line (1.15) is an isomorphism; it is clearly equivalent to the definition we have
given above.

We will need to go back to maximal tensor products in the graded setting,
as this is the most convenient way for us to discuss the external product in
K-theory: see Section 2.10 below.

The C˚-algebra K of compact operators on a separable, infinite dimensional
Hilbert space plays a special role in the theory; we make the following standard
definition.

Definition 1.8.15. A C˚-algebra is stable if A – AbK.

Remark 1.8.16. For any C˚-algebra A, A is elementarily Morita equivalent to
AbK in the sense of Definition 1.7.9 above. Indeed, fix any rank one-projection
q in K. Then the operator p :“ 1bq makes sense as an element of the multiplier
algebra of AbK (even if A is not unital). It is not too difficult to show that A
is ˚-isomorphic to ppAbKqp, and that p is full in AbK.

1.9 Exercises

1.9.1. Show that if A is a unital C˚-algebra, then A` is ˚-isomorphic to the
C˚-algebra direct sum A‘ C.

1.9.2. Let B be the unital C˚-algebra generated by the bilateral shift

U : `2pZq Ñ `2pZq, δn ÞÑ δn`1

on `2pZq, and let A Ď B be the unital Banach algebra generated by U (so A
does not contain U˚q. Show that the spectrum of U ‘relative to A’ is the closed
unit disk in C, and the spectrum of U ‘relative to B’ is the unit circle.

1.9.3. The goal of this exercise is to show that the sort of behaviour exhibited in
Exercise 1.9.2 cannot happen for C˚-algebras; this is sometimes called spectral
permanence. Let A be a C˚-algebra, and let B be a sub-C˚-algebra of A. For
b P B, write specBpaq for the spectrum of a considered as an element of B, and
specApbq for the spectrum of b considered as an element of A. Replacing the
algebras with their unitisations, we may assume everything is unital, and that
A and B have the same unit.

(a) Observe that specApbq Ď specBpbq (this is true for general algebras).

(b) Show that the boundary of specBpbq is contained in specApbq (this is true
for general Banach algebras).
Hint: by translation, it suffices to show that if 0 is in the boundary of
specBpbq, then b is not invertible in A. Aiming for contradiction, assume
that b is invertible in A, and that 0 is in the boundary of specBpbq. Then
there is a sequence pλnq not in specBpbq converging to zero. Now use conti-
nuity of inversion in A applied to the sequence ppb´ λnq

´1q in B to deduce
a contradiction.
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(c) Show that if b is self-adjoint, then specBpaq “ specApbq.
Hint: Lemma 1.3.10.

(d) To complete the proof, by translation it suffices to show that if b is invertible
in A, then it is invertible in B. Do this.
Hint: note that b˚b is invertible in A, and use the previous part to deduce
that it is invertible in B.

1.9.4. The result of this exercise is called the spectral mapping theorem for
polynomials.

Let A be a unital algebra over C, and a P A. Prove that if p : C Ñ C is a
complex polynomial, then specpppaqq Ď ppspecpaqq.

1.9.5. Show that if a, b are elements of a complex algebra, then specpabqYt0u “
specpbaq Y t0u. Give an example where specpabq ‰ specpbaq.
Hint: working in the unitisation, show that it suffices to prove that if ab´ 1 is
invertible then ba´ 1 is invertible. Let then c be the inverse of ab´ 1, and show
that bca´ 1 is the inverse of ba´ 1.

1.9.6. Prove the claim of Remark 1.3.2.

1.9.7. Let A “ CpXq, where X is a compact Hausdorff space. Prove that the
map

X Ñ pA, x ÞÑ φx

of Example 1.3.5 is a homeomorphism.
Hint: first show (this is straightforward) that the map above is injective and

continuous. As both X and pA are compact and Hausdorff, to complete the proof
it suffices to show that the map above is surjective. For this, let φ : CpXq Ñ C be
a multiplicative linear functional, and note that as φ is automatically bounded
(Lemma 1.3.6), it is given by integration against some measure by the Riesz
representation theorem. Show that this measure must be a Dirac mass in order
for φ to be multiplicative.

1.9.8. Prove that any element a of a C˚-algebra is a linear combination of four
positive elements y1, ..., y4 satisfying }yi} ď }a}.
Hint: first write a as a linear combination of its real and imaginary parts defined
respectively by 1

2 pa` a
˚q and 1

2i pa´ a
˚q. Define functions f`, f´ : RÑ R by

f`ptq “

"

t t ě 0
0 t ă 0

and f`ptq “

"

´t t ď 0
0 t ą 0

respectively. For a self-adjoint element b P A, use the functional calculus to
define b` :“ f`pbq and b´ :“ f´pbq, the so-called positive and negative parts
of b, and note that b “ b` ´ b´.

1.9.9. Any element a in a C˚-algebra A can be written a “ bb˚b for some b P A.
Here is a guided proof using a ‘2 ˆ 2 matrix trick’ (there are many such tricks
in the theory of operator algebras).

Write c “

ˆ

0 a˚

a 0

˙

P M2pAq, which is self-adjoint. Moreover, if u “

ˆ

1 0
0 1

˙

PM2pA
`q, then ucu˚ “ ´c.
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(i) Show that for any normal element d of a C˚-algebraD, any f P C0pspecpdqzt0uq
and any unitary u P D`, fpudu˚q “ ufpdqu˚.

(ii) Conclude from this that uc1{3u˚ “ ´c1{3, and thus c “

ˆ

0 b˚

b 0

˙

for some

b P A. This b has the right property.

1.9.10. Let A be a unital C˚-algebra, and let a, b P A be invertible elements
with 0 ď a ď b. Show that 0 ď b´1 ď a´1.
Hint: first show that

b´1{2ab´1{2 ď b´1{2bb´1{2 “ 1.

From this and the functional calculus deduce that

1 ď pb´1{2ab´1{2q´1 “ b1{2a´1b1{2;

now compress by b´1{2.

1.9.11. Let A be a C˚-algebra, and let a, b P A be positive elements such that
a ď b. Show that a1{2 ď b1{2.
Hint: working in the unitisation of A it suffices to assume that b is invertible,
as for general b, b` ε is invertible and pb` εq1{2 Ñ b as εÑ 0. Assuming this,
check that b´1{2ab´1{2 ď 1, and therefore }b´1{2a1{2} ď 1. Now, using Exercise
1.9.5, the spectral radius of b´1{4a1{2b´1{4 equals that of b´1{2a1{2, so is at most
1. Hence by Corollary 1.2.7, }b´1{4a1{2b´1{4} ď 1, and so b´1{4a1{2b´1{4 ď 1,
from which the result follows. Be warned that the analogous statement ‘0 ď a ď
bñ a2 ď b2’ is false!

1.9.12. Show that if I and J are ideals in a C˚-algebra A, then I X J “ I ¨ J ,
where I ¨ J is the algebraic span of all products from I and J .
Hint: I ¨ J Ď I X J is immediate; for the converse, you can use Exercise 1.9.9
applied to the C˚-algebra I X J .

1.9.13. Show that if I is an ideal in a C˚-algebra A, and B Ď A is a C˚-
subalgebra, then I `B is a C˚-subalgebra of A.
Hint: to see that B` I is closed, let π : AÑ A{I be the quotient map, note that
B ` I “ π´1pπpBqq and apply Corollary 1.5.10 to see that πpBq is closed.

1.9.14. Show that if X is a locally compact Hausdorff space, then the multiplier
algebra MpC0pXqq naturally identifies with CbpXq.
Hint: represent C0pXq by multiplication operators on `2pXq. Considered as an
X-by-X matrix, show that any multiplier must have no non-zero off-diagonal
entries, and from here that the diagonal entries must define a bounded continu-
ous function on X.

1.9.15. Show that if H and K are Hilbert spaces, then there is a natural ˚-
isomorphism

KpHq bKpKq – KpH bKq.
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1.9.16. Justify the comments about functoriality of the C˚-algebra tensor prod-
uct in Remark 1.8.12.
Hint: given φ : A Ñ C and ψ : B Ñ D, fix faithful representations πC : C Ñ
BpHCq and πD : D Ñ BpHDq of C and D respectively, and also πA and πB
of A and B. Then by definition of the spatial tensor product, there is faithful
representation

pπA ‘ πC ˝ φq b pπB ‘ πD ˝ ψq : AbB Ñ BppHA ‘HCq b pHB ‘HDqq.

Let PC : HA ‘HC Ñ HC and PD : HB ‘HD Ñ HD be the orthogonal projec-
tions, and consider the map AbB Ñ BpHC bHDq determined by

ab b ÞÑ pPC b PDq
´

pπA ‘ πC ˝ φqpaq b pπB ‘ πD ˝ ψqpbq
¯

pPC b PDq.

Show that this takes image in C bD, and gives the required map φb ψ.

1.9.17. Show that if φ : AÑ B is a unital map between C˚-algebras that takes
positive elements to positive elements, then it has norm bounded by four (this
is not optimal, but good enough for what we need).
Hint: if a P A is positive, then 0 ď a ď }a}, whence positivity and unitality
of φ give that φpaq ď φp}a}q “ }a} in B. Now use that any element x in a
C˚-algebra is a sum of four positive elements y1, ..., y4 that satisfy }yi} ď }x} as
in Exercise 1.9.8

1.9.18. Show that the compact operators KpHq on any Hilbert space is a nuclear
C˚-algebra in the sense of Remark 1.8.14. More generally (the reader regard the
more general statement as a hint for how to do the proof in the special case!),
show that any direct limit of finite-dimensional C˚-algebras is nuclear.

1.9.19. (i) Let A and B be ˚-algebras. Show that the algebraic tensor AdB
has the following universal property: whenever φA : A Ñ C and φB :
B Ñ C are ˚-homomorphisms with commuting images, there is a unique
˚-homomorphism φAbφB : AdB Ñ C such that for all elementary tensors
ab b P AdB, we have pφA b φBqpab bq “ φApaqφBpbq.

(ii) Show the analogous universal property, but now assuming that A, B, and
C are C˚-algebras, and with d replaced by bmax as in Remark 1.8.14.

1.9.20. In Remark 1.8.14, we gave a slightly non-standard definition of the
maximal tensor product norm on AdB. The usual definition is

}c}max :“ supt}πpcq}BpHq | π : AdB Ñ BpHq a non-degenerate representationu.

Show that this defines the same norm, and then use this to show that bmax has
the analogous functoriality property to b from Remark 1.8.12.
Hint: the key point is to show that if π : AdB Ñ BpHq is non-degenerate, then
there are non-degenerate representations πA : A Ñ BpHq and πB : B Ñ BpHq
with commuting images, and such that πpa b bq “ πApaq b πBpbq for all a P A
and b P B. This is not difficult when both A and B are unital: define πApaq :“
πpab1q and similarly for πB. In the non-unital case, let phiq be an approximate
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unit for A, and try to define πB by setting πBpbq to be the strong limit of the
net πphi b bq (and similarly with the roles of A and B reversed).

For functoriality, given ˚-homomorphisms φ : AÑ C and ψ : B Ñ D, fix a
faithful nondegenerate representation π : C bmax D Ñ BpHq. Use the argument
above to find representations πC and πD with the properties there, and consider
the map pπC ˝ ψq b pπD ˝ ψq : AdB Ñ BpHq arising from Remark 1.8.1.

1.10 Notes and references

There are several general introductory references on C˚-algebras. Douglas’s
book [81] and Arveson’s book [4] are excellent general introductions to spec-
tral theory and operator theory: their main focus is not C˚-algebras, but they
nonetheless cover much of the basics (and in particular, most of the material
needed for this text). The book of Murphy [189] is a good introduction specif-
ically focused on C˚-algebra theory. Davidson’s book [76] also establishes the
basic theory as well as containing detailed studies of many interesting examples
that are quite different from the subject matter of the current text; it demands
more of the reader than Murphy’s book.

In terms of more advanced C˚-algebra texts, the classic monographs [80]
of Dixmier and [204] of Pedersen contain a wealth of information (the former
particularly on the relationship of C˚-algebra theory to representation theory);
while in principal they start from the beginning of the subject, we would not
strongly recommend either to the beginner (particularly not the beginner who
is motivated mainly by the topics covered in this book, as both go much further
than anything required by this text early on in their expositions). The encyclo-
pedia [34] of Blackadar is a very useful modern survey: it gives an overview of
much of the ‘standard’ theory of operator algebras.

The material on multiplier algebras and tensor products in the last two sec-
tions of this chapter is probably the least standard material that we discuss.
The cleanest way to approach multiplier algebras is probably through Hilbert
modules, and we recommend Lance’s exposition [163, Chapter 2], or that of
Raeburn and Williams [209, Chapter 2], for the Hilbert module approach. Our
definition of Morita equivalence (Definition 1.7.9) using multiplier algebras is a
little ad-hoc, but convenient for our applications, and equivalent to the more
usual definitions thanks to the linking algebra interpretation of Morita equiva-
lence. See for example [209, Chapter 3] for a textbook discussion of the general
theory here.

For the theory of C˚-algebra tensor products, we particularly recommend the
exposition of Brown and Ozawa in [44, Chapter 3], which also contains a detailed
account of the purely algebraic theory that we skipped. A different exposition
that is closer to classical representation theory can be found in Murphy’s book
[189, Chapter 6]. These references both contain proofs of the beautiful theorem
of Takesaki [238, Theorem 2] that the spatial tensor product norm is the smallest
C˚-algebra norm on the algebraic tensor product AdB of two C˚-algebras; for
this reason, the spatial tensor product is often called the minimal C˚-algebra
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tensor product.
The fact (see Lemma 1.8.13 and Remark 1.8.14) that commutative C˚-

algebras are nuclear is originally due to Takesaki [238, Theorem 1]. Two
quite different textbook proofs can be found in Murphy’s book ([189, Theo-
rem 6.4.15]), and in the book of Brown and Ozawa (combine [44, Proposition
2.4.2] and [44, Proposition 3.6.12]). Our proof is a low-tech version of that
appearing in Brown and Ozawa, which is the standard modern proof.

It is not so relevant for the topics in this book, but nuclearity turns out to
be one of the most important properties in the general theory of C˚-algebras:
we recommend the book of Brown and Ozawa [44] for an exposition of (some
of) the theory of nuclearity, and particularly [44, Chapter 3] for an introduction
to the maximal and spatial tensor products.
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Chapter 2

K-theory for C˚-algebras

Our goal in this chapter is to give an overview of the facts from C˚-algebra K-
theory that we will need in the rest of the book, as well as to establish notation
and conventions. As in the last chapter, the aim is not to be completely self-
contained, but we do at least sketch proofs where we think this helps with
intuition, or where a result is difficult to find in the literature in the form we
need it.

The chapter is structured as follows. In Section 2.1 we recall the definition
of the K0 group for a complex algebra. This section involves no analysis or
topology. In Section 2.2 we put a complete norm on our algebra, and discuss
some powerful equivalent descriptions of K0 in this setting. Section 2.3 adds
yet more analysis, using some relatively delicate C˚-algebraic machinery to set
up the theory of the maps on K-theory induced by unbounded traces. At this
point we are done with facts that touch only on the K0 group.

In Section 2.4, we go back to pure algebra, introducing the index map to
measure an obstruction to the existence of long exact sequences in K-theory.
At this point, one can develop the K1 group underlying the index map in a
way that is either partly topological or purely algebraic; unlike the K0 group,
the two choices give something quite different. Our applications dictate that we
make the topological choice, and in Section 2.5 we discuss the topological K1

group. Section 2.6 then ties the K0 and K1 groups together via the fundamental
Bott periodicity theorem, which completes the basic theory.

The remaining four sections contain slightly less standard material. Section
2.7 gives a grab-bag of computational tools. All of these are well-known, but
some are not so prominent in the literature, so we give details here. Section
2.8 discusses various index constructions of elements in K-theory in more de-
tail, focusing on explicit formulas; this will be important for some applications.
Finally, Section 2.9 discusses an alternative picture of K-theory, the so-called
spectral picture, which is particularly well-suited to discussions of products and
index theory. Finally, in Section 2.10, we use the spectral picture of K-theory
to discuss products.
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2.1 Algebraic K0

In this section we define the K0 group of a C˚-algebra purely algebraically. To
emphasize that the theory is algebraic, we will work with arbitrary C-algebras1.
Even if one is only interested in C˚-algebras, knowing what can be done purely
algebraically is often useful, as algebraic arguments sometimes give more precise
information than analytic or topological ones. Of course, this is balanced by
the fact that analytic and topological tools are often more powerful than purely
algebraic ones.

Contrary to standard conventions in many algebra texts, we emphasize that
algebras are not assumed unital, and morphisms between unital algebras need
not preserve the units.

Definition 2.1.1. Let R be a C-algebra. Let M8pRq be the (non-unital) C-
algebra of N ˆ N matrices over R, all but finitely many of whose entries are
zero.

In fancier language, one can equivalently define M8pRq to be the direct limit
(in the category of not-necessarily unital C-algebras and not-necessarily unital
C-algebra homomorphisms) of the C-algebras MnpRq under the top left corner
inclusion maps

MnpRq ÑMn`1pRq, a ÞÑ

ˆ

a 0
0 0

˙

.

Recall now that an idempotent in a ring is an element e such that e2 “ e.

Definition 2.1.2. Two idempotents e, f in a C-algebra S are Murray von Neu-
mann equivalent, written e „MvN f , if there are v, w P S with vw “ e and
wv “ f .

Remark 2.1.3. We think of v and w as mutually inverse isomorphisms between
e and f : schematically, one has

e
w
((
f

v

gg .

Murray von Neumann equivalence is indeed an equivalence relation. For tran-
sitivity, if schematically one has

e
w
((
f

v

gg
s
((
g

t

hh

then sw and vt induce a Murray von Neumann equivalence between e and g:
for example,

pswqpvtq “ spwvqt “ sft “ sptsqt “ pstqpstq “ gg “ g

and similarly in the opposite order.
1With minor changes, the theory even applies to arbitrary rings.
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Definition 2.1.4. Let R be a unital C-algebra, and let V pRq denote the collec-
tion of all Murray-von Neumann equivalence classes of idempotents in M8pRq.
Equip V pRq with the addition operation2 defined by

res ` rf s :“

„

e 0
0 f



.

To make sense of this, think of e and f as the images in M8pRq of finite,

say n ˆ n and m ˆm, matrices. Let then

ˆ

e 0
0 f

˙

be the image in M8pRq of

the corresponding pn `mq ˆ pn `mq matrix. There are choices involved here:
for a start, m and n are not unique. We leave it to the reader (see Exercise
2.11.2) to show that the operation on V pRq is well-defined, and turns V pRq into
a commutative monoid (with 0 as the identity element).

Remark 2.1.5. Equivalently, V pRq can be described as the collection of all iso-
morphism classes of finitely generated projective modules over R, with the op-
eration induced by direct sum of modules. Indeed, to go from an idempotent
e PMnpRq ĎM8pRq to a projective (right) module one takes M “ epRnq. The
other direction is a little more involved: see Exercise 2.11.3 for a full justification
of this.

Example 2.1.6. Let R “ C. Then two idempotents in M8pCq are Murrary von
Neumann equivalent if and only if they have the same rank, and addition of
equivalence classes corresponds to adding ranks. Thus V pCq is isomorphic as a
monoid to N.

Example 2.1.7. Let R “ BpHq be the bounded operators on a separable infinite
dimensional Hilbert space. Similarly to Example 2.1.6, the monoid V pRq is
completely determined by rank, and thus V pBpHqq is isomorphic as a monoid
to N Y t8u (with the usual addition on N, and with infinity plus anything
equalling infinity).

Example 2.1.8. Let R “ CpXq, where X is a compact Hausdorff space. Then the
Serre-Swan theorem says that V pRq consists precisely of isomorphism classes of
vector bundles over X, with operation given by direct sum (also called Whitney
sum in this context) of bundles: see Exercise 2.11.4.

Proposition 2.1.9. Let R be a unital complex algebra. Then idempotents e, f P
M8pRq are Murrary-von Neumann equivalent if and only if there is an invertible
element u in some MnpRq such that ueu´1 “ f .

If R is a non-unital complex algebra, let R` be the unitisation of R as in
Definition 1.1.9 above. Then idempotents e, f P M8pRq are Murray-von Neu-
mann equivalent if and only if there is an invertible element u in some MnpR

`q

that conjugates e to f .

Proof. First note that if ueu´1 “ f , then we make take v “ u´1f and w “ fu
in the definition of Murray-von Neumann equivalence (this works either in the
unital or non-unital case).

2sometimes called block sum
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On the other hand, say e “ vw and f “ wv for some v, w PMkpRq ĎM8pRq.
From Exercise 2.11.1, we may assume that ev “ vf “ v and we “ fw “ w.
Define now for R unital

u “

ˆ

w 1´ f
1´ e v

˙

PM2kpRq (2.1)

(if R is non-unital, then u is in M2kpR
`q). Using the formulas vwv “ v and

wvw “ w, one checks that u is invertible, with

u´1 “

ˆ

v 1´ e
1´ f w

˙

.

Computing gives us

u

ˆ

e 0
0 0

˙

u´1 “

ˆ

f 0
0 0

˙

;

however, by definition of M8pRq the expressions

ˆ

e 0
0 0

˙

and e are just different

ways of writing the same element of this ring, so we are done.

Remark 2.1.10. It may make the formula for u in line (2.1) above more concep-
tual if one considers it as a map between two copies of R ‘ R decomposed in
different ways as follows

eR

w

��

‘ p1´ eqR

id,,

‘ fR

v��

‘ p1´ fqR

idrr
fR ‘ p1´ fqR ‘ eR ‘ p1´ eqR

.

We are now ready to define the K0-group.

Definition 2.1.11. Let R be a unital C-algebra. The group K0pRq is de-
termined up to canonical isomorphism by the following universal property. It
is equipped with a monoid homomorphism V pRq Ñ K0pRq such that for any
monoid homomorphism V pRq Ñ A to an abelian group, the dashed arrow in
the diagram

V pRq //

$$

K0pRq

��
A

can be filled in with a unique monoid (equivalently, group) homomorphism.

There are several direct constructions of a group K0pRq satisfying the uni-
versal property above: see Exercise 2.11.5. In general, a group satisfying the
above universal property for some abelian monoid M in place of V pRq is called
the Grothendieck group of M .
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Example 2.1.12. The K0 group of C is Z. This follows from Example 2.1.6
above and the fact that the Grothendieck group of the monoid N is Z (exercise
- either check the universal property or construct a concrete isomorphism using
the constructions of Exercise 2.11.5).

Now, K0pRq is functorial for unital C-algebra homomorphisms in a natural
way: if φ : R Ñ S is a unital ring homomorphism, and e P M8pRq is an
idempotent, then φpeq is an idempotent in M8pSq, and the map res ÞÑ rφpeqs is
well-defined as a map V pRq Ñ V pSq. Hence it induces a map

φ˚ : K0pRq Ñ K0pSq

by the universal properties of this group (or using the explicit descriptions of
K0 from Exercise 2.11.5). This also lets us make the following definition.

Definition 2.1.13. Let R be a not-necessarily unital C-algebra, and let R` be
its unitisation (see Definition 1.1.9 above), which is equipped with a canonical
unital C-algebra homomorphism φ : R` Ñ C with kernel R. Then the group
K0pRq is defined by

K0pRq :“ Kernelpφ˚ : K0pR
`q Ñ K0pCqq.

This is consistent with our earlier definition in the case that R is unital, in
the sense that the two definitions lead to canonically isomorphic abelian groups.
This follows from the following facts, which we leave as exercises for the reader:
first, if R is unital, then R` is canonically isomorphic to the C-algebra R ‘ C;
second, that if R‘S is a direct product of unital rings then there is a canonical
isomorphism K0pR‘ Sq – K0pRq ‘K0pSq; and third, that with respect to this
isomorphism the canonical quotient map φ : R` Ñ C induces the projection
onto the second factor K0pR

`q – K0pRq ‘K0pCq Ñ K0pCq.
The new definition of K0 for possibly non-unital C-algebras is still functorial:

indeed, say φ : R Ñ S is any algebra homomorphism (possibly, for example, a
non-unital homomorphism between unital algebras). Then it induces a unital
ring homomorphism

φ` : R` Ñ S`, pr, λq ÞÑ pφprq, λq.

that makes the diagram

R` //

φ`

��

C

S` // C
commute, where the horizontal maps are the canonical quotient maps. Hence
by functoriality of K0 in the unital case, there is a commutative diagram of
short exact sequences

0 // K0pRq

��

// K0pR
`q //

φ`˚
��

K0pCq // 0

0 // K0pSq // K0pS
`q // K0pCq // 0 .
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The homomorphism φ˚ : K0pRq Ñ K0pSq is then defined to be the unique
dashed arrow making the diagram commute; in the unital case, this again agrees
with the earlier definition.

Remark 2.1.14. It is often convenient to have a more concrete picture for el-
ements of K0pRq in the non-unital case. Here is one such way to represent
elements. Let x be an element of K0pRq, so using Exercise 2.11.5 x can be
represented by a formal difference res ´ rf s of idempotents in some MnpR

`q,
with the property that if π : R` Ñ C is the natural quotient, then the in-
duced map π˚ : K0pR

`q Ñ K0pCq takes res and rf s to the same class. Adding
r1n ´ f s ´ r1n ´ f s where 1n is the unit in MnpR

`q, we see that our element
can be represented by re1s ´ r1ns, where e1 is an idempotent in M2npR

`q, and
rπpe1qs “ r1ns in MnpCq (here we abuse notation slightly and use the same
symbol π for the map induced by π on matrices). Thanks to the ideas in Ex-
amples 2.1.6 and 2.1.12, this means there is an invertible u PM2npCq such that
uπpe1qu´1 “ 1n. Now, u also makes sense as an element of M2npR

`q, and we
have that rue1u´1s ´ r1ns represents the same class in K0pRq by the discussion
in Proposition 2.1.9.

We conclude from the above discussion that any class in K0pRq can be
represented as a formal difference res ´ r1ns for some n, with the property that
the map on matrices induced by the natural quotient π : R` Ñ C takes e to 1n.

Remark 2.1.15. Let MnpRq denote the C-algebra of nˆn matrices over R. Then
there is a (non-unital) homomorphism RÑMnpRq defined via ‘top left corner
inclusion’

a ÞÑ

ˆ

a 0
0 0

˙

.

The induced map K0pRq Ñ K0pMnpRqq is an isomorphism. If R is unital, this
is straightforward, as the top left corner inclusion is easily seen to induce an
isomorphism M8pRq – M8pMnpRqq. If R is non-unital, this requires a little
more thought (note that MnpRq

` is not the same as MnpR
`q) and we leave the

details as an exercise for the reader: compare Exercise 2.11.6 below.

Remark 2.1.16. Let R be a unital C-algebra, and let τ : RÑ C be a trace, i.e.
τ is a linear functional with the property that τpabq “ τpbaq for all a, b P R.
Define

τ8 : M8pRq Ñ C, a ÞÑ
ÿ

nPN
τpannq,

i.e. τ8 sums the values of τ on all the diagonal entries of a; this makes sense,
as elements of M8pRq have only finitely many non-zero entries. Note that τ8
is still a trace, whence it agrees on Murray von Neumann equivalent elements,
and descends to a well-defined map τ˚ : V pRq Ñ C, which clearly respects the
monoid structure. The universal property of K0 now gives a well-defined group
homomorphism τ˚ : K0pRq Ñ C.

All this adapts easily to the non-unital case: start by extending a trace
τ : R Ñ C to a unital trace τ : R` Ñ C thus getting a map K0pR

`q Ñ C as
above. The induced map τ˚ : K0pRq Ñ C is then just the restriction to the
subgroup K0pRq of K0pR

`q.
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To summarise, traces give ‘linear functionals’ on K0 groups.

2.2 Approximation and homotopy in K0

In this section, we specialize from C-algebras to Banach algebras3, and also
sometimes to C˚-algebras. We will give several different interpretations of the
K0 group: in terms of homotopy classes of idempotents, in terms of almost
idempotents, and in terms of projections.

For this discussion to make sense, we also need norms on A` and MnpAq
where A is a Banach algebra. If A is a C˚-algebra, we equip A` and MnpAq
with the unique C˚-algebra norms (see Definition 1.1.9 and Example 1.6.10).
If A is a Banach algebra, there are no really canonical choice of norms but
any ‘reasonable’ choice will do: for concreteness, we use the norms defined in
Exercise 2.11.7.

We first discuss homotopies.

Definition 2.2.1. Let A be a Banach algebra and e0, e1 P A be idempotents.
A homotopy between e0 and e1 is a continuous map

r0, 1s Ñ A, t ÞÑ et

that agrees with e0 and e1 at the endpoints, and with the property that each
et is an idempotent. Two idempotents are homotopic if there is a homotopy
between them. By definition, two idempotents e0, e1 in M8pAq are homotopic
if they there is a homotopy between them in some MnpAq.

We want to show that homotopic idempotents (in some matrix algebra over
A) define the same element in K0. The key point is the following result, which
says that close idempotents are conjugate.

Lemma 2.2.2. Let e0, e1 P A be idempotents in a Banach algebra, and assume
that the inequality }e0 ´ e1} ă 1{}2e0 ´ 1} holds in the unitisation A`. Then
there is an invertible element u in A` with ue0u

´1 “ e1.

Proof. Working in A`, set

u “ e0e1 ` p1´ e0qp1´ e1q. (2.2)

Then
u´ 1 “ 2e0e1 ´ e0 ´ e1 “ p2e0 ´ 1qpe0 ´ e1q,

and so our assumption implies that }u ´ 1} ă 1. Hence u is invertible by
Proposition 1.2.1. A direct computation gives that e0u “ ue1, and so u has the
property we want.

3The main text almost always works in the context of C˚-algebras, but the Banach algebra
theory will be used very occasionally, so we include the basics here.
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Remark 2.2.3. To try to get a more geometric intuition for the formula defining
u in line (2.2) above, let us assume that we are working in a concrete C˚-
algebra and that e0 and e1 are not-necessarily-orthogonal projection operators
on a Hilbert space. The condition in the statement of Lemma 2.2.2 implies that
the operator e0e1 takes the image of e1 isomorphically (although not necessarily
isometrically) onto the image of e0, and similarly that p1´ e0qp1´ e1q takes the
complement of the image of e1 onto the complement of the image of e0. From
this, we see that u “ e0e1`p1´e0qp1´e1q is invertible, and satisfies the formula
e0u “ ue1.

Proposition 2.2.4. Let A be a Banach algebra and e0, e1 be idempotents in
M8pAq. Then e0 and e1 are homotopic if and only if they are Murray-von
Neumann equivalent (see Definition 2.1.2).

Proof. Say first that there is a homotopy petqtPr0,1s between e0 and e1. Then by
Lemma 2.2.2, we may find finitely many points t0, ..., tN in r0, 1s that are close
enough so that for each i P t1, ..., Nu there is an invertible element ui P A

` with
uieti´1

u´1
i “ eti . It follows that u :“ uN ¨ ¨ ¨u2u1 conjugates e0 to e1, and thus

by Proposition 2.1.9 that e0 and e1 are Murray von Neumann equivalent.
Conversely, say e0, e1 PM8pAq are Murray von Neumann equivalent. Then

by Proposition 2.1.9 there is an invertible u P MnpA
`q for some n such that

ue0u
´1 “ e1. Consider the homotopy pvtqtPr0,π{2s (note the unusual domain -

of course, one could reparametrise it to have domain r0, 1s if one wants) defined
by

vt :“

ˆ

u 0
0 1

˙ˆ

cosptq ´ sinptq
sinptq cosptq

˙ˆ

1 0
0 u´1

˙ˆ

cosptq sinptq
´ sinptq cosptq

˙

, (2.3)

so v0 is the diagonal matrix with entries u and u´1, and v1 is the identity in
M2npA

`q. Then the homotopy

´

vt

ˆ

e0 0
0 0

˙

v´1
t

¯

tPr0,π{2s

is contained in M2npAq (as this is an ideal in M2npA
`q), and connects

ˆ

e0 0
0 0

˙

to

ˆ

e1 0
0 0

˙

via idempotents. Recalling that ei and

ˆ

ei 0
0 0

˙

are the same

element in M8pAq, we are done.

We now connect K0pAq to the ˚-structure on A when A is a C˚-algebra.

Proposition 2.2.5. Let A be a C˚-algebra.

(i) If e P A is an idempotent, then there are a projection p P A and invertible
u P A` with u´1pu “ e.

(ii) If p, q P A are Murray-von Neumann equivalent projections, then there is
a partial isometry x P A with x˚x “ p and xx˚ “ q.
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(iii) If p, q P A are projections that are conjugate by some invertible u P A`,
then they are also conjugate by a unitary element of A`.

Part (i) of this result does not hold for arbitrary Banach-˚ algebras: the
proof uses that 1 ` a˚a is invertible for any element a of a unital C˚-algebra,
and this need not hold in an arbitrary Banach-˚ algebra. See Exercise 2.11.20
below for a counterexample.

Proof. For part (i), define x :“ 1`pe´e˚qpe˚´eq, and element of the unitisation
A`. Then x is of the form 1`a˚a, so self-adjoint and invertible. One computes
that ex “ ee˚e “ xe, so e (and hence also e˚) commutes with x, Moreover,

ee˚x “ epe˚ee˚q “ pee˚q2.

Define p “ ee˚x´1, which is in A not just A`. Then p is self-adjoint as it is a
product of the commuting self-adjoint elements ee˚ and x´1. Moreover,

p “ pee˚qx´1 “ pee˚xqx´2 “ pee˚q2x´2 “ pee˚x´1q2 “ p2,

so p is a projection. One computes that ep “ p and pe “ e; setting u “ 1´p`e P
A`, these formulas show that u is invertible with inverse u´1 “ 1 ` p ´ e and
we get that u´1pu “ e as claimed.

For part (ii), we may assume p and q are non-zero. Using Exercise 2.11.1,
we may assume that p “ vw and q “ wv, where w and v satisfy pvq “ v and
that qwp “ w. Then p “ p˚p “ w˚v˚vw ď }v}2w˚w. Hence w˚w is invertible
in the unital C˚-algebra pAp, so there exists r P pAp with pw˚wq1{2r “ p. One
checks that x “ wr now works.

For part (iii), note that if u´1pu “ q for projections p, q, then pu “ uq, and
as p and q are self-adjoint, we also get that u˚p “ qu˚. Hence in particular

u˚uq “ u˚pu “ qu˚u,

so q commutes with anything in the C˚-algebra generated by u˚u. Hence if we
set v “ upu˚uq´1{2, then v is unitary, and

v˚pv “ pu˚uq´1{2u˚pupu˚uq´1{2 “ pu˚uq´1{2u˚uu´1pupu˚uq´1{2

“ pu˚uq1{2qpu˚uq´1{2 “ q,

so v conjugates p to q, and we are done.

Remark 2.2.6. Let us try to explain the idea of the above proof, which the
algebraic formalism might obscure slightly. For notational simplicity, let e be
an idempotent in A, so we may assume that e is a not-necessarily-orthogonal
projection operator on some Hilbert space H: more precisely, H splits as a direct
sum of closed subspaces K ‘ E and e acts by sending everything in K to zero,
and by the identity on E; however, as e need not be self-adjoint, it need not be
true that K and E are mutually orthogonal. Let p be the orthogonal projection
with range E. Then it is not too difficult to see that there is a (non-unique)
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invertible operator u : H Ñ H that takes K to EK, and acts as the identity on
E; we therefore have u´1pu “ e. The difficulty is to show that u, which is a
priori just a bounded operator on H, can be chosen in such a way that it is in
A`: this is what the formulas in the argument above achieve.

The last main topic of this section is the use of ‘approximate idempotents’
to define K-theory.

Definition 2.2.7. Let A be a Banach algebra. A quasi-idempotent is an element
a P A such that }a2 ´ a} ă 1{4. If A is a C˚-algebra, a quasi-projection is a
quasi-idempotent that is self-adjoint.

Construction 2.2.8. Let a P A be a quasi-idempotent in a Banach algebra. As
in Example 1.4.7, one sees that the spectrum of a misses the line Repzq “ 1{2,
and so we may use the holomorphic functional calculus (see Theorem 1.4.6)
to build an idempotent e :“ χpaq, where χ is the characteristic function of
tz P C | Repzq ą 1{2u. As a result any quasi-idempotent e in M8pAq defines a
class rχpaqs in K0pAq in a canonical way.

Note that if petqtPr0,1s is a continuous path of quasi-idempotents, then The-
orem 1.4.6 implies that χpetq is a continuous path of actual idempotents.

The advantage of looking at quasi-idempotents is that thinking this way
allows approximation: the condition ‘}a2 ´ a} ă 1{4’ defines an open subset of
A, unlike the condition of actually being an idempotent which defines a closed
subset.

To conclude this section, we give a summary of some different ways of de-
scribing the monoid V pAq underlying the K0 group of a C˚-algebra A. This list
is by no-means exhaustive, and the reader should by no means try to memorize
them all; we just aim to give a sense of some of the flexibility inherent in the
definition. The proof follows by combining ideas from Proposition 2.1.9, Propo-
sition 2.2.4, Proposition 2.2.5, and Construction 2.2.8: we leave the details to
the reader.

Proposition 2.2.9. For a Banach algebra A, equivalence classes for the fol-
lowing sets and equivalence relations all define naturally isomorphic monoids
V pAq, and therefore models of K-theory. In all cases, the zero element is given
by the class of zero, and the operation by setting rxs ` rys to be the class of the

matrix

ˆ

x 0
0 y

˙

.

(i) Set: idempotents in M8pAq. Equivalence relation: Murray von Neumann
equivalence (this is our original Definition 2.1.11 above).

(ii) Set: idempotents in M8pAq. Equivalence relation: conjugation by invert-
ibles in M8pA

`q (or in M8pAq if A is unital).

(iii) Set: idempotents in M8pAq. Equivalence relation: homotopy through
idempotents (as in Definition 2.2.1).
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(iv) Set: almost idempotents in M8pAq. Equivalence relation: homotopy through
almost idempotents (see Exercise 2.11.9).

If in addition A is a C˚-algebra, then the following also give the same monoid.

(i) Set: projections in M8pAq. Equivalence relation: p, q are equivalent if
there is a partial isometry in M8pAq with v˚v “ p and vv˚ “ q.

(ii) Set: projections in M8pAq. Equivalence relation: conjugation by unitaries
in M8pA

`q (or in M8pAq if A is unital).

(iii) Set: projections in M8pAq. Equivalence relation: homotopy through pro-
jections.

Remark 2.2.10. Let A and B be Banach algebras. A homotopy between two ho-
momorphisms φ0, φ1 : AÑ B is a path pφt : AÑ BqtPr0,1s of homomorphisms4

that connects them, and that is point-norm continuous, i.e. for each a P A, the
path

r0, 1s Ñ B, t ÞÑ φtpaq

is continuous. Two homomorphisms are homotopic if there exists a homotopy
between them. It is clear from the descriptions in line (2.2.1) above that the
functor K0 from the category of Banach-algebras and homomorphisms to the
category of abelian groups takes homotopic homomorphisms to the same group
homomorphism.

2.3 Unbounded traces

Recall from Remark 2.1.16 above that a trace τ : RÑ C on a complex algebra
induces a map τ˚ : K0pRq Ñ C on K0 groups. In applications, however, one
sometimes has to consider traces on C˚-algebras that are only defined on a
dense subspace. Our goal here is to show that under suitable conditions, such
traces also induce maps on K0.

A secondary goal (which is anyway needed for our study of traces) is to
introduce some sufficient conditions for the inclusion A Ñ A of a dense ˚-
subalgebra in a C˚-algebra to induce an isomorphism on K-theory. Although
we will not use these results much in this book, they are very important in the
subject more broadly, so it seemed a useful service to the reader to at least
touch on them here.

This section will not be used in the subsequent development of basic K-
theory, and can safely be skipped on a first reading. We include relatively full
details as this material is not included in any standard textbook that we know
of. It is also of quite a different character from the rest of the chapter, involving
some quite delicate C˚-algebraic arguments.

4If A and B are C˚-algebras and φ0 and φ1 are ˚-homomorphisms, it is perhaps more
natural to require that each φt is also a ˚-homomorphism; however, for the purposes of basic
K-theory, this additional restriction does not matter.
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Definition 2.3.1. Let A be a C˚-algebra, and A` the collection of positive
elements of A. A positive trace on A is a map τ : A` Ñ r0,8s such that:

(i) τp0q “ 0;

(ii) for all a P A, τpa˚aq “ τpaa˚q;

(iii) for all a1, a2 P A` and all λ1, λ2 ą 0, τpλ1a1`λ2a2q “ λ1τpa1q`λ2τpa2q.

Remark 2.3.2. If a positive trace τ on a C˚-algebra A takes only finite values on
A`, we will say that τ is bounded . In this case, straightforward algebraic checks
using that A is spanned by its positive elements show that τ extends uniquely
to a positive linear functional τ : AÑ C. Moreover the polarization identity

ab “
1

4

3
ÿ

k“0

ikpika˚ ` bq˚pika˚ ` bq (2.4)

show that the linear functional τ : A Ñ C satisfies the usual trace property:
τpabq “ τpbaq for all a, b P A.

Thus a bounded positive trace on A is the same thing as a linear functional
that takes positive elements to positive5 elements, and is also a trace in the
usual sense. In the bounded case, we will treat the maps τ : A` Ñ r0,8q and
τ : AÑ C interchangeably.

We warn the reader, however, that the terminology is a little misleading: a
‘positive trace’ is not the same thing as a special type of trace in general.

Example 2.3.3. Let H be a Hilbert space, and let BpHq denote the bounded
operators on H. Let peiqiPI be an orthonormal basis for H. The canonical trace
on BpHq is defined by

Tr : BpHq` Ñ r0,8s, TrpT q :“
ÿ

iPI

xei, T eiy.

We also call the restriction of this map to KpHq` the canonical trace on KpHq.
A straightforward computation shows that for any T P BpHq, if T is represented
by the matrix pTijq with respect to the given basis6, then

TrpT˚T q “
ÿ

i,jPI

|Tij |
2 “ TrpTT˚q (2.5)

and thus Tr is a positive trace. Note that Tr is bounded if and only if H is finite
dimensional, and in that case it agrees with the usual matrix trace.

If moreover pfiqiPI is another orthonormal basis, and U : H Ñ H the change
of basis unitary determined by Upeiq “ fi, then we have using line (2.5) that

ÿ

iPI

xfi, T fiy “
ÿ

iPI

xUei, TUeiy “ TrpU˚TUq “ TrpT 1{2UU˚T 1{2q “ TrpT q.

This shows that TrpT q is independent of the choice of orthonormal basis.
5We use ‘positive’ here to mean ‘non-negative’ as in the usual C˚-algebra conventions!
6Precisely, this means that Tij :“ xei, T ejy.
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Example 2.3.4. There is an important generalisation of Example 2.3.3 above to
stabilised C˚-algebras (this is the main example we will need in applications).
Indeed, say A is a C˚-algebra, and τ : A Ñ C a bounded, positive trace.
Let H be a Hilbert space equipped with an orthonormal basis peiqiPI , and let
K “ KpHq denote the compact operators on H. Using the orthonormal basis
peiq, we may identify elements of the spatial tensor product AbK with I-by-I
matrices7 paijqi,jPI with entries from A. Define

τ b Tr : pAbKq` Ñ r0,8s, paijqi,jPI ÞÑ
ÿ

iPI

τpaiiq

(the notation is motivated by the fact that on elementary tensors, pτ bTrqpab
T q “ τpaqTrpT q). Then τ b Tr is again a trace in the sense of Definition 2.3.1
(see Exercise 2.11.14), and one can check quite analogously to Example 2.3.3
that it does not depend on the choice of basis involved in its construction.

Associated to a positive trace on A are two important subsets of A.

Definition 2.3.5. Let τ be a trace on a C˚-algebra A. Define

Iτ,1 :“ spanta P A` | τpaq ă 8u

and
Iτ,2 :“ ta P A | τpa˚aq ă 8u.

Example 2.3.6. Let A “ KpHq and Tr the canonical trace from Example 2.3.3.
Then the elements of Iτ,1 are called the trace class operators on H, and those
of Iτ,2 are called the Hilbert-Schmidt operators. In this special case, Iτ,i is more
usually denoted LipHq for i P t1, 2u.

Elementary algebra shows that τ extends to a ˚-preserving linear functional
τ : Iτ,1 Ñ C; from now on we will abuse notation and write τ for both the map
A` Ñ r0,8s and the associated linear functional on Iτ,1. The spaces Iτ,1 and
Iτ,2 and associated linear functional τ automatically have substantial algebraic
structure. Here is the basic result; for the statement, recall that a subset S of
a C˚-algebra is hereditary if whenever 0 ď a ď b and b P S, we have that a P S.
Define also I2

τ,2 :“ tab P A | a, b P Iτ,2u.

Proposition 2.3.7. Let τ be a positive trace on a C˚-algebra A, and let Iτ,1
and Iτ,2 be as in Definition 2.3.5.

(i) Iτ,2 is a ˚-closed algebraic ideal in A.

(ii) Iτ,1 “ I2
τ,2.

(iii) Iτ,1 is a hereditary ˚-closed algebraic ideal in A.

7Saying when exactly such a matrix gives an element of A b K is difficult, but that does
not matter for the current discussion.
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(iv) If a, b P Iτ,2, then τpabq “ τpbaq.

(v) If a, b P A, and at least one of a, b is in Iτ,1, then τpabq “ τpbaq. In
particular, τ : Iτ,1 Ñ C is a trace in the purely algebraic sense of Remark
2.1.16.

Proof. For part (i), note first that Iτ,2 is clearly closed under scalar multiplica-
tion and taking adjoints. To see that it is closed under taking sums, note that
for a, b P Iτ,2,

pa` bq˚pa` bq ď pa` bq˚pa` bq ` pa´ bq˚pa´ bq “ 2pa˚a` b˚bq,

whence
τppa` bq˚pa` bqq ď 2τpa˚aq ` 2τpb˚bq ă 8.

Hence a`b P Iτ,2, so we now have that Iτ,2 is a ˚-closed subspace of A. Moreover,
for any a P A and b P Iτ,2,

pabq˚pabq “ b˚a˚ab ď }a}2b˚b,

and thus ab is in Iτ,2. This says that Iτ,2 is a left ideal in A, whence it is a
two-sided ideal as ˚-closed.

For part (ii), first note that if a, b P Iτ,2, then as Iτ,2 is a ˚-closed subalgebra
of A for each k P t0, 1, 2, 3u we have that ika˚ ` b P Iτ,2, and so τppika˚ `
bq˚pika˚ ` bqq ă 8. Hence each product pika˚ ` bq˚pika˚ ` bq is in Iτ,1. The
polarization identity

ab “
1

4

3
ÿ

k“0

ikpika˚ ` bq˚pika˚ ` bq

then gives that ab P Iτ,1, and so we have that I2
τ,2 Ď Iτ,1. For the opposite

inclusion, as Iτ,1 is spanned by the positive elements that it contains, it will
suffice to show that if a P A` X Iτ,1, then a P I2

τ,2. Note however that in this

case a1{2 P Iτ,2 by definition, and hence a “ a1{2a1{2 P I2
τ,2.

For part (iii), it is clear that Iτ,1 is a ˚-closed subspace of A. It then follows
from parts (i) and (ii) that Iτ,1 is an ideal8. The fact that Iτ,1 is hereditary
follows as if 0 ď a ď b, then τpbq “ τpaq ` τpb´ aq; as τpb´ aq ě 0, this forces
τpaq ď τpbq.

For part (iv), say that a, b P Iτ,2. Then using the polarization identity

ab “
1

4

3
ÿ

k“0

ikpika˚ ` bq˚pika˚ ` bq

and the fact that τpc˚cq “ τpcc˚q for all c P A we have that τpabq “ τpbaq.
For part (v), say first that a P A is arbitrary and b P Iτ,1 is positive. Then

b1{2 is in Iτ,2. Using that Iτ,2 is an ideal and part (iv) (twice), we get

τpabq “ τpab1{2b1{2q “ τpb1{2ab1{2q “ τpb1{2b1{2aq “ τpbaq.

8See Exercise 2.11.10 for a different argument
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The case with a P A and b P Iτ,1 arbitrary follows from this as Iτ,1 is spanned
by the positive elements that it contains. The case with a P Iτ,1 and b P A is
similar.

Remark 2.3.8. If A is unital, and if the set ta P A` | τpaq ă 8u is dense in A`,
then this set contains an invertible element. As Iτ,1 is an ideal, it is thus all of
A. Hence τ : AÑ C is a bounded positive trace as in Remark 2.3.2, and we are
in the situation of Remark 2.1.16. Thus the theory we are developing is only
interesting when A is not unital (as in Examples 2.3.3 and 2.3.4 above).

In order to make further progress, we need to make some analytic assump-
tions on our positive traces. As we want to include the canonical trace on
KpHq of Example 2.3.3 in the theory, it would be too much to assume that
τ is bounded; fortunately, a significantly weaker analytic assumption will be
sufficient for our purposes.

Definition 2.3.9. A positive trace τ : A` Ñ r0,8s on a C˚-algebra A is
lower-semicontinuous if for any norm convergent sequence panq in A`,

τp lim
nÑ8

anq ď lim inf
nÑ8

τpanq.

It is densely defined if the collection ta P A` | τpaq ă 8u is dense in A`.

Example 2.3.10. Let Tr be as in Example 2.3.3. It is not difficult to check that
Tr is lower-semicontinuous: this is essentially Fatou’s lemma for the set I with
counting measure. However, it is not densely defined on BpHq` if H is infinite
dimensional: if it were, it would be everywhere defined by Remark 2.3.8, and it
is clear that Trp1q “ 8. On the other hand, Tr is clearly finite on all (positive)
operators that have a finite matrix representation with respect to the basis peiq.
As such operators are dense in (the positive part of) the compact operators
KpHq, we see that Tr gives a densely defined trace on A “ KpHq in our sense.

This all works similarly for the trace in Example 2.3.4: see Exercise 2.11.14.

Here are the key analytic properties of lower-semicontinuous traces. Recall
for the statement that if a is an element of a C˚-algebra, then |a| denotes
pa˚aq1{2.

Proposition 2.3.11. Let τ be a densely defined, lower semi-continuous positive
trace on a C˚-algebra A with associated ˚-ideals Iτ,1 and Iτ,2 as in Proposition
2.3.7. Let also τ : Iτ,1 Ñ C denote the associated linear functional. The
following hold.

(i) For all a P Iτ,1 and b P A,

|τpabq| ď τp|a|q}b} and |τpbaq| ď τp|a|q}b}.

(ii) For all a P A, a is in Iτ,1 if and only if |a| is in Iτ,1.

(iii) For all a, b P A,
τp|a` b|q ď τp|a|q ` τp|b|q.
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(iv) The formula
}a}τ :“ }a}A ` τp|a|q

defines a norm on Iτ,1 with respect to which it is a Banach ˚-algebra.

Proof. We first look at part (i), although we will only get the result in the special
case that a is positive at first. Using the equality Iτ,1 “ I2

τ,2 from Proposition
2.3.7, we have for a, b P Iτ,2 that τpa˚bq is a well-defined complex number. Hence
we may define a positive semi-definite inner product on Iτ,2 by the formula

xa, by :“ τpa˚bq.

In particular, if }a}2 :“
a

xa, ay is the associated semi-norm, then this inner
product must satisfy the Cauchy-Schwarz inequality

|xa, by| ď }a}2}b}2.

Note also that if a P Iτ,2 and b P A, then using part (iv) of Proposition 2.3.7,
we get

}ab}22 “ τpb˚a˚abq “ τpabb˚a˚q ď τpa}bb˚}a˚q “ }b}2}a}22.

Combining the last two displayed inequalities, we see that if a P Iτ,1 is positive
and b P A then

|τpabq| “ |xa1{2, a1{2by| ď }a1{2}2}a
1{2b}2 ď }a

1{2}22}b} “ τpaq}b}.

Using the trace property from part (v) of Proposition 2.3.7, this gives the special
case of the inequality from part (i) that we were aiming for.

Fix now a P Iτ,1; we will show that that |a| P Iτ,1, establishing half of part
(ii). As Iτ,1 is spanned by its positive elements, the special case of part (i) for
positive a P Iτ,1 implies that for any a P Iτ,1 there is a constant c ą 0 depending
on a such that for all b P A,

|τpabq| ď c}b}. (2.6)

Let
wn :“ app1{nq ` a˚aq´1{2. (2.7)

As Iτ,1 is an ideal, wn is in Iτ,1 for all n. We have moreover that

w˚nwn “ a˚app1{nq ` a˚aq´1,

so }wn}
2 “ }w˚nwn} ď 1 by the functional calculus. Moreover, we have

w˚na “ pp1{nq ` a
˚aq´1{2a˚a,

whence again by the functional calculus, the sequence pw˚naq
8
n“1 converges in

norm to |a|. Using the inequality in line (2.6) we see that

|τpw˚naq| ď c}w˚n} ď c
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for all n, i.e. the sequence pτpw˚naqq
8
n“1 is uniformly bounded. Lower semicon-

tinuity now gives that τp|a|q ă 8, completing the proof that if a is in Iτ , then
|a| is too.

We can now deduce the general case of the inequality in part (i). Note first
that it suffices to prove the inequality for b P Iτ,1 as Iτ,1 is norm dense in A,
and both sides of the inequalities in (i) are norm continuous in b (for the left
hand side, this follows from line (2.6) above). Analogously to line (2.6), there
exists some constant c ą 0 depending on b such that

|τpabq ´ τpwn|a|bq| “ |τppa´ wn|a|qbq| ď c}a´ wn|a|}

for all n. Moreover one computes using the functional calculus that pwn|a| ´
aq˚pwn|a| ´ aq converges to zero in norm and thus by the C˚-identity that
wn|a| Ñ a in norm. Hence the inequality in the previous displayed line implies
that

|τpabq| “ lim
nÑ8

|τpwn|a|bq|.

On the other hand, we have

lim
nÑ8

|τp|a|bwnq| ď lim sup
nÑ8

τp|a|q}bwn} ď τp|a|q}b},

where the first inequality follows from the version of part (i) with a positive,
and the second inequality follows as }wn} ď 1 for all n. The last two displayed
lines complete the proof of part (i).

We now look at part (iii). Let first a P A be arbitrary, and consider wn
as in line (2.7) above. Then the sequence pw˚naq consists of positive elements.
Moreover, using the functional calculus it is monotone increasing and converges
in norm to |a|. Hence τp|a| ´ w˚naq ě 0 for all n, and so

lim sup
nÑ8

τpw˚naq ď τp|a|q.

On the other hand, lower semicontinuity gives that

τp|a|q ď lim inf
nÑ8

τpw˚naq,

whence we have
τp|a|q “ lim

nÑ8
τpw˚naq. (2.8)

Let now a, b P Iτ,1, and let vn be defined analogously to wn, but starting with
a` b rather than a. Then combining line (2.8) above with part (i) we get

τp|a` b|q “ lim
nÑ8

|τpv˚npa` bqq| ď lim sup
nÑ8

p|τpv˚nbq| ` |τpv
˚
naq|q

ď lim sup
nÑ8

}v˚n}pτp|a|q ` τp|b|qq ď τp|a|q ` τp|b|q,

Thus we get part (iii) in the special case when a, b are in Iτ,1. Say now that
a, b P A are arbitrary. Let phiq be an increasing approximate unit for A that is
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contained in Iτ,1 (such exists by Theorem 1.5.6). Set ai :“ hia and bi :“ hib,
which are elements of the ideal Iτ,1. Note that

|ai|
2 “ a˚h˚i hiai ď a˚}hi}

2a ď a˚a “ |a|2

for all i. As taking square roots preserves inequalities amongst positive elements
in C˚-algebras (see Exercise 1.9.11), we get that |ai| ď |a| for all i. Hence
τp|ai|q ď τp|a|q for all i, and similarly τp|bi|q ď τp|b|q for all i. On the other
hand, using lower semicontinuity and the special case of part (iii) for a, b P Iτ,1
that we have already proved, we get

τp|a` b|q ď lim inf
iÑ8

τp|ai ` bi|q ď lim inf
iÑ8

`

τp|ai|q ` τp|bi|q
˘

ď τp|a|q ` τp|b|q

completing the proof of part (iii) in general.
We now go back to the other half of part (ii), i.e. that if |a| is in Iτ,1 for

some a P A, then a is also in Iτ,1. First consider the special case that a P A
is self-adjoint and such that |a| is in Iτ,1. Let a` and a´ be the positive and
negative parts of a respectively as in the hint to Exercise 1.9.8. We then have
that |a| “ a` ` a´, whence a` and a´ are in Iτ,1 as Iτ,1 is hereditary. Hence
a “ a` ´ a´ is in Iτ,1.

In general, let a P A be arbitrary and such that |a| is in Iτ,1. Note first that
with wn as in line (2.7) we have that

wn|a|w
˚
n “ app1{nq ` a˚aq´1{2pa˚aq1{2pp1{nq ` a˚aq´1{2a˚

“ pp1{nq ` aa˚q´1paa˚q3{2,

and thus wn|a|w
˚
n converges in norm to |a˚| as nÑ8 by the functional calculus.

Hence from part (i) and lower semicontinuity, we get that τp|a˚|q ă 8, and thus
that |a˚| is also in Iτ,1. Let x “ 1

2 pa` a˚q and y “ 1
2i pa´ a˚q be the real and

imaginary parts of a respectively, so x and y are self-adjoint, and a “ x ` iy.
Applying (iii), we see that

τp|x|q ď
1

2
τp|x` iy|q `

1

2
τp|x´ iy|q “

1

2
τp|a|q `

1

2
τp|a˚|q ă 8,

whence |x| is in Iτ,1, and so x is in Iτ,1 by the self-adjoint case already considered.
Similarly y is in Iτ,1, and we are done with part (ii).

Finally, for part (iv) note first that } ¨ }τ satisfies the triangle inequality by
(iii), and the other norm axioms are straightforward to check. It is clear that
the adjoint ˚ is isometric for } ¨ }τ , and the fact that } ¨ }τ is submultiplicative
follows from part (i).

Hence to show that } ¨ }τ makes Iτ,1 into a Banach ˚-algebra, it remains to
check completeness. Let panq be a Cauchy sequence. In particular, note that
panq is Cauchy for the usual norm on A, and thus has a limit in A, say a; we
need to show that a is is Iτ,1, and that τp|an ´ a|q Ñ 0. As panq is Cauchy for
} ¨ }τ , we have in particular that the sequence pτp|an|qq is bounded, and thus by
lower semicontinuity, that τp|a|q ă 8. Hence |a| is in Iτ,1, and thus a is in Iτ,1
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by part (ii). To show that τp|an´ a|q Ñ 0, let ε ą 0, and let N be such that for
n,m ě N , τp|an ´ am|q ă ε. Lower semicontinuity gives us that τp|an ´ a|q ď ε
for n ě N , and we are done.

We have now established the basic properties of positive traces that we need,
and turn to K-theoretic applications.

Definition 2.3.12. Let A be a complex algebra, and A a unital dense subal-
gebra (with the same unit). Then A is inverse closed in A if whenever a P A
has an inverse a´1 in A, then a´1 is actually in A.

If A is a subalgebra of a non-unital complex algebra A, then A is inverse
closed in A if the subalgebra A` of the unitisation A` generated by A and the
unit is inverse closed in A`.

Lemma 2.3.13. Let A be a C˚-algebra and τ a densely defined, lower semi-
continuous positive trace on A. Then Iτ,1 is inverse closed in A.

Proof. The unital case is trivial by Remark 2.3.8, so we will assume that A is
non-unital and thus work in the unitisations. Let us norm the unitisation I`τ,1
of Iτ,1 by the formula }a` λ}τ :“ }a}τ ` |λ| for a P Iτ and λ P C as in Exercise
2.11.7. Note that if a` λ is an element in A` with a P A self-adjoint, then the
functional calculus gives us that

}a} ď 2}a` λ}

for any λ P R. Let a P A be a general element, and let a “ x` iy its decompo-
sition into real and imaginary parts as in the hint to Exercise 1.9.8. Then for
λ P C we get using the inequality above in the self-adjoint case

}a} ď }x} ` }y} ď 2}x` Repλq} ` 2}y ` Impλq}.

Using that x ` Repλq and y ` Impλq are respectively the real and imaginary
parts of a`λ, they both have norm bounded above by }a`λ}, and thus we get

}a} ď 4}a` λ} (2.9)

for any a P A and any λ P C.
Now, using part (iv) of Proposition 2.3.11, the norm } ¨ }τ on Iτ,1 satisfies

}ab}τ ď }a}}b}τ (2.10)

for all a P A and b P Iτ,1. Applying the inequality |λ| ď }a ` λ} (which holds
for any a P A and λ P C) and the inequalities in lines (2.9) and (2.10) we get
that for any a P A, b P Iτ and λ, µ P C

}pa` λqpb` µq}τ “ }ab` λb` µa} ` τp|ab| ` λb` µa|q ` |λµ|

ď }a` λ}}b} ` |µ|}a} ` }b}τp|a|q ` |µ|τp|a|q ` |λµ|

ď }a` λ}p}b} ` τp|b|q ` |µ|q ` 5}b` µ}p}a} ` τp|a|q ` |λ|q.
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Hence

}pa` λqpb` µq}τ ď 5p}a` λ}}b` µ}τ ` }a` λ}τ }b` µ}q. (2.11)

Let now a P I`τ,1, and let rτ paq and rApaq denote its spectral radii considered

as an element of I`τ,1 and of A` respectively. We claim that rApaq “ rτ paq.
Indeed, applying line (2.11), we see that for any n,

}a2n}τ ď 10}an}}an}τ .

Taking nth roots, taking the limit as n tends to infinity, and applying the spectral
radius formula (Theorem 1.2.6) then implies that

rτ paq
2 ď rApaqrτ paq,

and thus that rτ paq ď rApaq. As the spectrum of a in I`τ,1 is no smaller than the
spectrum in A`, the opposite inequality is immediate and we get rτ paq “ rApaq
as claimed.

Now, let a P I`τ,1 be invertible in A`; we need to show that it is actually

invertible in I`τ,1. As a is invertible in A, a˚a is also invertible in A, whence
its A-spectrum is contained in rc,8q for some c ą 0. Hence for all real λ, the
A-spectrum of λ ´ a˚a is contained in p´8, λ ´ cs. For λ suitably large, this
operator is positive, so has spectrum contained in r0, λ ´ cs, and in particular
has spectral radius (in A) strictly less than λ. As we know the spectral radii in
A` and I`τ,1 are the same, however, this gives rτ pλ ´ a˚aq ă λ, which implies

that 0 cannot be in the I`τ,1-spectrum of a˚a, and so a˚a is invertible in I`τ,1.

Hence a is left invertible in I`τ,1. However, the left inverse in I`τ,1 must equal the

actual inverse in A`, which is thus in I`τ,1, and we are done.

Our next goal is to show that being inverse closed is preserved under tak-
ing matrix algebras, at least under suitable assumptions. We need a technical
lemma.

Lemma 2.3.14. Let A be a unital Banach algebra, and A a unital dense sub-
algebra (with the same unit). Then the following are equivalent:

(i) A is inverse closed in A;

(ii) for every maximal right ideal J in A, the intersection J XA of the closure
of J and A equals J ;

(iii) for any irreducible (right) A module M, there exists an A module M such
that the restriction of M to A contains M as a submodule.

Proof. For (i) implies (ii), let J be a maximal right ideal in A. It cannot contain
any invertible element of A, whence by (i) it cannot contain any invertible
element of A. As the collection of invertibles in A is open (Proposition 1.2.1),
the closure J cannot contain any invertible in A either. Hence J XA is a right
ideal in A that contains J ; by maximality, they are equal.
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For (ii) implies (iii), sayM is an irreducible A module. Choose any non-zero
m PM, and note that the map

AÑM, a ÞÑ ma

is surjective by irreducibility. Hence if J is the kernel of this map, then the
induced module map

J zAÑM

is an isomorphism of right A modules. As M is irreducible, J is moreover
maximal. Let J “ J be the closure of J in A, which is a right ideal, and let
M “ JzA. Then, using (ii) for the second isomorphism in the chain below,

M –
A
J
–

A
J XA

–
J `A
J

Ď
A

J
“M

(where the isomorphisms and inclusions are all in the category of right A-
modules); this gives the result.

Finally, for (iii) implies (i), we assume that (i) does not hold, so there is a
non-invertible element a of A that is invertible in A. The element a cannot be
right-invertible in A, and thus it is contained in a maximal right ideal, say J , in
A. Then M :“ J zA is an irreducible A module. Letting r1s PM be the class
of the identity of A we get that r1sa “ ras “ 0 as a P J . It therefore cannot be
true that M is contained in the restriction to A of any A module M : indeed,
the fact that a is invertible in A implies that the map

M ÑM, m ÞÑ ma

is injective, but the above shows that r1s is in the kernel of this map and r1s ‰ 0
in M.

Corollary 2.3.15. Let A be a unital Banach algebra, and let A be an inverse
closed unital dense subalgebra (with the same unit). Then for all n, MnpAq is
inverse closed in MnpAq.

Proof. For any unital algebra R, the categories of R modules and MnpRq mod-
ules are equivalent. Indeed, if M is an R module, then M‘n defines an MnpRq
module in a canonical way, while if M is an MnpRq module and e11 PMnpRq is
the standard matrix unit, then Me11 identifies with an R module in a canonical
way; moreover, these processes are mutually inverse up to canonical isomor-
phisms. It follows from this that the inclusion AÑ A satisfies condition (iii) of
Lemma 2.3.14 if and only if the inclusion MnpAq ÑMnpAq does.

Theorem 2.3.16. Let A be a C˚-algebra, and let A be an inverse closed dense
˚-subalgebra. Assume moreover that A is a Banach algebra in its own right, and
that the inclusion ι : AÑ A is continuous. Then the map ι˚ : K0pAq Ñ K0pAq
induced by ι is an isomorphism.
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Once we have defined the (topological) K1 group in Section 2.5, it will be
possible to prove an analogous result for K1: see Exercise 2.11.11. The result
can also be generalized to the case that A is only a Fréchet algebra: see Exercise
2.11.12.

Proof. Say we have proved the result in the unital case. Then in the non-unital
case, the definition of K0 gives a commutative diagram

0 // K0pAq //

��

K0pA`q //

��

K0pCq // 0

0 // K0pAq // K0pA
`q // K0pCq // 0

of short exact sequences. The non-unital result thus follows from the unital one
and the five lemma. Hence we may assume everything is unital.

Looking first at surjectivity, it suffices to show that if p PMnpAq is a projec-
tion, then rps is in the image of ι˚. As A is dense in A, there exists contractive
a PMnpAq with }a´ p} ă 1{12. As p2 “ p, it follows that

}a2 ´ a} ď }apa´ pq} ` }pa´ pqp} ` }a´ p} ă 1{4,

i.e. that a is a quasi-idempotent in the sense of Definition 2.2.7. Hence the
spectrum of a in MnpAq misses the line Repzq “ 1{2. Using Lemma 2.3.15,
the spectra of a in MnpAq and in MnpAq are the same, so the spectrum of
A in MnpAq also misses this line. Hence the characteristic function χ of tz P
C | Repzq ą 1{2u is holomorphic on the MnpAq-spectrum of a; as MnpAq is a
Banach algebra (use for example the norm from Exercise 2.11.7), we may thus
use the holomorphic functional calculus (Theorem 1.4.6) to form q :“ χpaq in
MnpAq. As the inclusion map ι : A Ñ A is continuous, we have that χpaq is
the same whether formed using the Banach algebra structure of MnpAq, or of
MnpAq. Now, q is an idempotent; using the continuity statement at the end of
Theorem 1.4.6, we can force q to be as close to p as we like by forcing a to be
close to p “ χppq. As long as }q ´ p} ă 1, we have rqs “ rps by Lemma 2.2.2,
completing the proof of surjectivity.

For injectivity, it suffices to show that if pptqtPr0,1s in MnpAq is a homotopy
of projections with p0, p1 P MnpAq, then p0, p1 are also homotopic through
idempotents in MnpAq. This can be achieved by approximating the homotopy
by a piecewise linear path patqtPr0,1s in MnpAq (that does not necessarily consist
of idempotents) with pt “ at for t P t0, 1u and }at´pt} ă 1{12 for all t. We then
replace this piecewise linear path with the path pχpatqqtPr0,1s, which now passes
through idempotents in MnpAq by the same argument as in the surjectivity
half, and that satisfies χpatq “ at “ pt for t P t0, 1u. Moreover, the path
pχpatqqtPr0,1s is continuous using the continuity statement for the holomorphic
functional calculus at the end of Theorem 1.4.6 again. We have thus shown
that p0 and p1 are homotopic through idempotents in MnpAq, completing the
proof.
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Putting everything together, we get to the following definition.

Definition 2.3.17. Let τ be a densely defined, lower-semicontinuous positive
trace on a C˚-algebra A and Iτ,1 be the ˚-ideal of Proposition 2.3.7. Let τ˚ :
K0pIτ,1q Ñ C be the map induced on τ on K-theory as in Remark 2.1.16,
and ι˚ : K0pIτ,1q Ñ K0pAq be the map induced on K-theory by the inclusion
ι : Iτ,1 Ñ A (which is an isomorphism by Proposition 2.3.11, Lemma 2.3.13,
and Proposition 2.3.16). Define

τ˚ : K0pAq Ñ C, x ÞÑ τ˚ ˝ ι
´1
˚ pxq.

Remark 2.3.18. With notation as in Definition 2.3.17, the map τ˚ : K0pAq Ñ C
is actually real-valued. Indeed, using inverse closedness, the proof of Proposition
2.2.5 works in Iτ,1 to show that any idempotent in the matrices M8pI

`
τ,1q over

the unitisation is equivalent in K0 to a self-adjoint idempotent. However, any
self-adjoint element of M8pI

`
τ,1q can be written as a real linear combination of

two elements from M8pI
`
τ,1qXM8pA

`
`q: this follows as whenever a PM8pIτ,1q,

we get that |a| is also in M8pIτ,1q from part (ii) of Proposition 2.3.11 (applied
to the natural extension of τ to some matrix algebra over A containing a), and
as a “ 1

2 p|a| ` aq ´
1
2 p|a| ´ aq.

The map in Definition 2.3.17 is difficult to compute in general. However,
following through all the various definitions, we at least have the following result:
we leave the elementary checks involved to the reader.

Lemma 2.3.19. With notation as in Definition 2.3.17, let x P K0pAq be rep-
resented by a formal difference of projections rps ´ rqs, where p, q are elements
of M8pI

`
τ,1q such that p ´ q P M8pIτ,1q. Then with τ8 : M8pI

`
τ,1q Ñ C as in

Remark 2.1.16, we have that

τ˚prps ´ rqsq “ τ8pp´ qq.

Remark 2.3.20. Let A “ B b K, equipped with a densely defined trace of the
form τ b Tr as in Example 2.3.4. There is then a simpler way to show that
τ bTr induces a map K0pAbKq Ñ R. Indeed, identifying MnpCq with the top
left corner in K in the usual way, we get a sequence of C˚-subalgebras

AbM1pCq Ď AbM2pCq Ď AbM3pCq Ď ¨ ¨ ¨ Ď AbK

whose union M8pAq :“
8
ď

n“1

AbMnpCq is dense in AbK. Then it is not difficult

to see that τ b Tr is a finite valued trace on M8pAq. Moreover, M8pAq has
a holomorphic functional calculus (and even a continuous functional calculus)
from the functional calculus on each AbMnpCq. The argument of Proposition
2.3.16 can thus be carried out to show that the inclusion ι˚ : M8pAq Ñ AbK
induces an isomorphism on K0-groups (compare also Corollary 2.7.2 below).
Thus there is a map on K-theory K0pAbKq Ñ R defined as the composition

pτ ˝ Trq˚ ˝ pι˚q
´1 : K0pAbKq Ñ K0pM8pAqq Ñ R,
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which one can check is the same as the map of Definition 2.3.17 in this case.
This description is rather more straightforward than the one in Definition

2.3.17, as we do not need to go through the somewhat involved analysis of the
domain IτbTr,1 of τbTr. However, it is less useful for applications: the problem
is that in some applications one gets elements that are naturally in K0pIτbTr,1q,
but not obviously in K0pM8pAqq. The image of such an element under our
trace map can therefore be computed using the description in Lemma 2.3.19
above, but it is not obvious that it can be computed using the description in
this remark.

2.4 The algebraic index map

The goal of this section is to start to discuss how the K0 functor interacts with
short exact sequences. One might hope it takes short exact sequence to short
exact sequences, but this is not quite right. The first step in understanding
possible failures of exactness if to define the so-called index map, which we do
here.

Throughout the section, we work purely algebraically with arbitrary C-
algebras, just as we did in Section 2.1. Indeed, it is a very useful fact that
the index map can be defined purely algebraically and we want to emphasize
this point; we will come back to the index map in more detail in Section 2.8.

Starting the formal discussion, let

0 // I // R // Q // 0

be a short exact sequence of C-algebras. We thus get a functorially induced
sequence

K0pIq // K0pRq // K0pQq

of abelian groups. This sequence will not in general be exact any more, but
one does at least have the following; the proof makes a good exercise, or can be
found in the references given in the notes at the end of the chapter.

Proposition 2.4.1. The functor K0 is half exact, meaning that if

0 // I // R // Q // 0

is a short exact sequence of C-algebras, then the induced sequence

K0pIq // K0pRq // K0pQq

is exact in the middle.

In the remainder of this section, we will discuss an obstruction to the map
K0pIq Ñ K0pRq being injective.

Definition 2.4.2. Let S be a unital C-algebra. Define GL8pSq to consist of
N-by-N invertible matrices over S that only differ from the identity at finitely
many entries.
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More abstractly, one can equivalently define GL8pSq as follows. For each n,
let GLnpSq denote the group of invertible nˆ n matrices with values in S, and
let GL8pSq be the direct limit (in the category of groups) of the sequence

GL1pSq Ñ GL2pSq Ñ GL3pSq ¨ ¨ ¨

under the connecting maps

u ÞÑ

ˆ

u 0
0 1

˙

.

Let now
0 // I // R // Q // 0 ,

be a short exact sequence, and let u P GLnpQ
`q for some n. In general, there

need not be an element ru P GL8pR
`q lifting Q. However, the element

ˆ

0 ´u´1

u 0

˙

P GL2npQ
`q

is always liftable to GL2npR
`q via the following trick of Whitehead. Indeed, we

may write
ˆ

0 ´u´1

u 0

˙

“

ˆ

1 0
u 1

˙ˆ

1 ´u´1

0 1

˙ˆ

1 0
u 1

˙

. (2.12)

Each of the three factors on the right hand side then lifts to a matrix in
GL2npR

`q, using that the map R` Ñ Q` is surjective, and that any upper
or lower triangular matrix with ones on the diagonal is invertible.

Note now that if v is any invertible lift to GL2npR
`q of

ˆ

0 ´u´1

u 0

˙

, then

v

ˆ

1 0
0 0

˙

v´1 is a lift of

ˆ

0 0
0 1

˙

. It follows that the idempotent v

ˆ

1 0
0 0

˙

v´1

is in M2npI
`q, and that the difference

v

ˆ

1 0
0 0

˙

v´1 ´

ˆ

0 0
0 1

˙

is in M2npIq. Thus the following definition makes sense.

Definition 2.4.3. Let

0 // I // R // Q // 0

be a short exact sequence of C-algebras, and let u P GL8pQ
`q be invertible.

Let v P GL8pR
`q be a lift of

ˆ

0 ´u´1

u 0

˙

, and define the index of u to be the

formal difference of idempotents

Indpuq :“

„

v

ˆ

1 0
0 0

˙

v´1



´

„

0 0
0 1



P K0pIq.
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This is spelled out a little more concretely in Definition 2.8.1 below. The
most important example comes from the classical Fredholm index, as in Example
2.8.3; this is also the source of the terminology. The reader is encouraged to
look forward to these examples; for now, however, we will content ourselves with
looking at formal properties.

The following proposition consists of fairly direct checks: we again leave it
as an exercise.

Proposition 2.4.4. With notation as in Definition 2.4.3, Indpuq is a well-
defined element of K0pIq. Moreover the map

Ind : GL8pQ
`q Ñ K0pIq

is a group homomorphism, and fits into an exact sequence

GL8pQ
`q

Ind // K0pIq // K0pRq // K0pQq .

Remark 2.4.5. If Q happens to be unital, one can use GL8pQq in place of
GL8pQ

`q in the above. The index map one gets is essentially the same: see
Exercise 2.11.9.

Remark 2.4.6. If u P GL8pQ
`q happens to lift to an invertible in GL8pR

`q,

then one can check that Indpuq is zero in K0pIq: indeed, in this case

ˆ

0 ´u´1

u 0

˙

lifts to an invertible matrix of the same form, and using this lift to define Indpuq,
the formal difference of idempotents involved is precisely zero. It follows from
this that K0 is split exact : this means that if a short exact sequence

0 // I // R // Q // 0

has the property that the quotient map RÑ Q is split, then the sequence

0 // K0pIq // K0pRq // K0pQq // 0

is exact.9

This is about as far as we will take the purely algebraic theory. Indeed, at
this point one is led to define K1pQq to be some quotient of GL8pQ

`q, and
similarly for K1pRq, in such a way that the exact sequence from Proposition
2.4.4 can be continued to the left, getting

K1pRq // K1pQq
Ind // K0pIq // K0pRq // K0pQq .

There are two natural ways to do this: one purely algebraic, and one brining
topology into the picture. In the next section we discuss the topological method.

9More precisely, this argument implies exactness at the left; exactness on the right follows
from the existence of a splitting and functoriality.
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2.5 The topological K1 group

In this section, we define the topological K1 group of a C˚-algebra (and more
generally, of a Banach algebra).

To do this, we will need topologies on MnpAq for a Banach algebra A: for a
C˚-algebra we use the unique C˚-norm as in Example 1.6.10, and for a general
Banach algebra, we use the norm from Exercise 2.11.7. These norm topologies
restrict to topologies on GLnpAq in each case.

Motivated by the discussion in Section 2.4, the idea is to define K1pAq to be a
suitable equivalence relation on GL8pA

`q (see Definition 2.4.2), and motivated
by the discussion in Section 2.2 a reasonable definition is given by forcing homo-
topic elements to define the same class. Thus we are led to define a homotopy
between u0, u1 P GL8pA

`q as a continuous path

r0, 1s Ñ GLnpA
`q, t ÞÑ ut

connecting them for some n. As usual two invertibles are homotopic if there
is a homotopy between them. We then define K1pAq to be the quotient of
GL8pA

`q by the equivalence relation of homotopy. With this definition, it is
not completely obvious that K1pAq is a group, however, so we instead give the
following equivalent description. Indeed, note that if u0 and u1 are homotopic
in GLnpA

`q if and only if u0u
´1
1 is connected by a path in GLnpA

`q to the
identity.

Let then GLn,0pA
`q denote then the collection of elements in GLnpA

`q

that are path connected to the identity, which is a normal subgroup, and let
GL8,0pA

`q be the direct limit of the groups GLn,0pA
`q with the same connect-

ing maps as defining GL8pAq. It follows from the above discussion that two
elements u0 and u1 of GL8pA

`q are homotopic if and only if they define the
same class in the quotient group

GL8pA
`q{GL8,0pA

`q.

Hence it is natural to make the following definition.

Definition 2.5.1. Let A be a Banach algebra. We define

K1pAq :“ GL8pA
`q{GL8,0pA

`q

and write rus for the class of an element u P GL8pA
`q in K1pAq.

Lemma 2.5.2. The group operation on K1pAq is abelian, and can equivalently
be defined by

rus ` rvs :“

„

u 0
0 v



.

As a result, we will typically write the operation on K1pAq additively, and
write 0 P K1pAq for the identity element r1s.
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Proof. Let u, v be elements in some GLnpAq. Then a rotation homotopy similar
to that in line (2.3) above shows that if ‘„’ denotes ‘homotopic to’, then

ˆ

uv 0
0 1

˙

“

ˆ

u 0
0 1

˙ˆ

v 0
0 1

˙

„

ˆ

u 0
0 v

˙

„

ˆ

v 0
0 u

˙

„

ˆ

vu 0
0 1

˙

and thus rusrvs “ rvsrus in K1pAq. This computation also establishes the alter-
native form for the group operation.

Remark 2.5.3. If A is a unital Banach algebra, one could also consider the
group GL8pAq{GL8,0pAq (i.e. without using unitisations). This is canonically
isomorphic to K1pAq as defined above (and often rather more natural to work
with): see Exercise 2.11.8 below.

Example 2.5.4. If A “ C, GLnpCq is connected for all n, and thus (by Remark
2.5.3) K1pCq is trivial.

Remark 2.5.5. Let A be a unital C˚-algebra, let UnpAq be the subgroup of
GLnpAq consisting of unitary matrices, and Un,0pAq be those unitaries that
are connected to the identity. Let U8pAq and U8,0pAq be the corresponding
direct limit subgroups of GL8pAq and GL8,0pAq respectively. Any element
u P GLnpAq is homotopic to one in UnpAq: indeed, u˚u is invertible, and the
path

r0, 1s Ñ GLnpAq, ut :“ upu˚uq´t{2

defines a homotopy between u0 “ u and a unitary u1 (compare Example 1.4.5
above). Moreover, if u0, u1 P UnpAq are homotopic via a path putq in GLnpAq,
then the path putpu

˚
t utq

´1{2q is a path of unitaries between u0 and u1; note that
this implies in particular that U8,0pAq “ GL8,0pAq X U8pAq. It follows from
this discussion that the inclusion U8pAq Ñ GL8pAq induces an isomorphism

U8pAq

U8,0pAq
Ñ

GL8pAq

GL8,0pAq
“ K1pAq.

In other words, when A is a C˚-algebra we can define K1pAq as consisting of
homotopy classes of unitaries in U8pAq.

An analogous statement holds in the non-unital (or not-necessarily unital)
case with A replaced by A` throughout.

Remark 2.5.6. A continuous algebra homomorphism φ : AÑ B induces a uni-
tal homomorphism A` Ñ B`, and thus a group homomorphism GL8pA

`q Ñ

GL8pB
`q by applying the extension of φ to unitisations entrywise on each GLn.

Moreover, as φ is continuous, this group homomorphism takes GL8,0pA
`q to

GL8,0pB
`q. Hence we get an induced map φ˚ : K1pAq Ñ K1pBq. The as-

signment φ ÞÑ φ˚ clearly respects composition of ˚-homomorphisms, and thus
K1 defines a functor from the category of Banach algebras and continuous al-
gebra homomorphisms to the category of abelian groups. As in Remark 2.2.10
above, the functor K1 clearly takes homotopic homomorphisms to the same
group homomorphism.
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Remark 2.5.7. Let MnpAq denote the C˚-algebra of nˆn matrices over A. Then
there is a (non-unital) homomorphism AÑ MnpAq defined via ‘top left corner
inclusion’

a ÞÑ

ˆ

a 0
0 0

˙

.

The induced map K1pAq Ñ K1pMnpAqq is an isomorphism. See Exercise ??
below.

We conclude this section with the following extension of the ideas in Section
2.4. This provides a strong suggestion that our definition of K1 is a good one.
Recall first that if

0 // I // A // Q // 0

is a short exact sequence of complex algebras, then we have a well-defined index
map

Ind : GL8pQ
`q Ñ K0pIq.

The next theorem summarizes the basic properties of this index map: the proof
makes an instructive exercise, and can also be found in any of the standard
references discussed at the end of this chapter.

Proposition 2.5.8. Let

0 // I // A // Q // 0

be a short exact sequence of Banach algebras. The index map then descends to
a well-defined group homomorphism

Ind : K1pQq Ñ K0pIq

that fits into an exact sequence

K1pIq // K1pAq // K1pQq
Ind // K0pIq // K0pAq // K0pQq

in which all the maps other than Ind are those functorially induced by the short
exact sequence. Finally, the exact sequence above is natural for maps of exact
sequences in the obvious sense.

2.6 Bott periodicity and the six-term exact se-
quence

Our goal in this section is to extend the short exact sequence of the previous
section to a long exact sequence. This can be done using fairly general machinery
borrowed from algebraic topology: the so-called Puppe sequence. To complete
the long exact sequence, we then describe the Bott periodicity theorem. First,
we need to introduce cones and suspensions.
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Definition 2.6.1. Let A be a Banach algebra. The cone over A is the Banach
algebra CA :“ C0pp0, 1s, Aq, and the suspension of A is the Banach algebra
SA :“ C0pp0, 1q, Aq (in both cases, the norm is the supremum norm).

Note that if A is a C˚-algebra, then both CA and SA are C˚-algebras too.
Now, associated to these two Banach algebras is a short exact sequence

0 // SA // CA // A // 0

where the quotient map CAÑ A is defined by evaluation at one. From Propo-
sition 2.5.8, we get an associated exact sequence

K1pSAq // K1pCAq // K1pAq
Ind // K0pSAq // K0pCAq // K0pAq .

For each t P r0, 1s, define a ˚-homomorphism ht : CAÑ CA by the formula

phtfqpxq “ fptxq;

this family gives a homotopy between h1, which is the identity map, and h0,
which is the zero map (a Banach algebra for which such a homotopy exists is
said to be contractible). From the homotopy invariance of K0 and K1, we thus
get that K0pCAq “ K1pCAq “ 0, and so we have an isomorphism

Ind : K1pAq
–
Ñ K0pSAq. (2.13)

This motivates the following definition.

Definition 2.6.2. For each n ě 0, let SnA denote the result of applying the
suspension operation to a Banach algebra A n-times. Define the nth K-theory
group to be KnpAq :“ K0pS

nAq.

We have been a bit sloppy here: we have now defined K1pAq once using
invertible elements in Definition 2.5.1, and again above to be K0pSAq; thanks
to the existence of the canonical isomorphism in line (2.13), this nicety does not
really matter from a practical point of view.

The assignment A ÞÑ SA is a functor from the category of Banach alge-
bras and continuous homomorphisms to itself: if φ : A Ñ B is a continuous
homomorphism, then one gets an induced map Sφ : SA Ñ SB by applying
φ pointwise (i.e. pSφfqpxq :“ φpfpxqq), and this assignment is clearly functo-
rial. This functor also takes homotopies to homotopies. It follows that each Kn

is a functor from the category of Banach algebras to the category of abelian
groups that takes homotopic (continuous) homomorphisms to the same group
homomorphism.

It is moreover straightforward to see that the functor S takes short exact
sequences to short exact sequences. Hence for n ě 1 applying Sn to a short
exact sequence

0 // I // A // Q // 0
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we get another short exact sequence of Banach algebras, and using Proposition
2.5.8 and the isomorphism in line (2.13) an exact sequence of K-groups

KnpIq // KnpAq // KnpQq

��
Kn´1pIq // Kn´1pAq // Kn´1pQq

.

Splicing these exact sequences together, we get the desired long exact sequence
in K-theory. This is usually called a Puppe sequence as it is a version of a
general construction from algebraic topology.

Proposition 2.6.3. Let

0 // I // A // Q // 0

be a short exact sequence of Banach algebras. Then there is a long exact sequence
of abelian groups

¨ ¨ ¨ // KnpAq // KnpQq

Indn

��
Kn´1pIq // Kn´1pAq // Kn´1pQq // ¨ ¨ ¨

extending infinitely far to the left, and terminating at K0pQq on the right. It is
natural for maps between short exact sequences in the obvious sense.

Up until now, most of what we have done with K-theory outside of Section
2.3 has been relatively formal: it is probably fair to say that it is not that
deep10. On the other hand, the next theorem, the Bott periodicity theorem is
substantial. To state it precisely, we need some notation.

Let A be a unital Banach algebra. Let T “ tz P C | |z| “ 1u be the unit
circle in C and 1A P A be the unit, and make the identification

pSAq` “ tf P CpT, Aq | fp1q P C1Au.

For an idempotent e PMnpAq, define

βApeq P pSAq
`, βApeq : z ÞÑ zp` p1MnpAq ´ eq,

and note that βApeq is an invertible element of MnppSAq
`q. It is not too difficult

to see that βA induces a well-defined map

βA : K0pAq Ñ K1pSAq.

Moreover, the map βA is natural for unital continuous homomorphisms between
unital Banach algebras. Hence considering the short exact sequence

0 // A // A` // C // 0 ,

10This is not quite the same thing as saying that it is easy!
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we see that βA` canonically induces a map

βA : K0pAq Ñ K1pSAq

whether or not A is unital. Using the canonical identification K1pSAq “ K2pAq,
we may thus make the following definition.

Definition 2.6.4. Let A be a Banach algebra. The Bott map is the homomor-
phism

βA : K0pAq Ñ K2pAq

defined above.

Here then is a version of the Bott periodicity theorem. We will prove a
version of it using index theory in Section 9.3 below, although for now we will
just use it as a black box.

Theorem 2.6.5. For any Banach algebra A, the Bott map

βA : K0pAq Ñ K2pAq

is an isomorphism, and is natural in A. Moreover, combining this isomorphism
with the long exact sequence from Proposition 2.6.3 above associated to every
short exact sequence

0 // I // A // Q // 0

gives a six-term exact sequence

K0pIq // K0pAq // K0pQq

Ind2˝βQ

��
K1pQq

Ind

OO

K1pAqoo K1pIqoo

which is natural for maps between short exact sequences.

It follows from the above that up to canonical isomorphism, there are only
two K-groups of a Banach algebra: K0pAq and K1pAq. As such, the following
definition will be useful, as it encodes all the information given by the K-groups.

Definition 2.6.6. Let A be a Banach algebra, and write K˚pAq for the direct
sum group

K˚pAq :“ K0pAq ‘K1pAq.

We consider K˚pAq as an element of the category GA of Z{2-graded abelian
groups and graded group homomorphisms: precisely, objects in this category
are abelian groups G equipped with a direct sum composition G “ G0 ‘ G1,
and a morphism from G to H is a group homomorphism takes takes Gi into Hi

for i P t0, 1u.
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Clearly K˚ is a functor from the category of Banach algebras and continuous
homomorphisms to the category GA above.

Remark 2.6.7. Restricting to commutative C˚-algebras, we may consider K˚
as a contravariant functor from the category LC of Definition B.1.1 to GA us-
ing Theorem 1.3.14. Considered like this, we will sometimes write K˚pXq for
K˚pC0pXqq and similarly with the notation K0pXq and K1pXq. The upper
indices are to reflect the fact that K-theory is contravariant when considered as
a functor of spaces rather than C˚-algebras.

Remark 2.6.8. The map Ind2 ˝ βQ appearing in Theorem 2.6.5 above is often
called the exponential map. This is because it admits the following more con-
crete description. Say to begin with that A (hence also Q) is unital, and let
e P MnpAq represent some class in K0pQq. We may lift e to a self-adjoint ele-
ment a PMnpAq (not necessarily an idempotent any more). Identifying I` with
a subalgebra of A in the obvious way, one can check that the invertible element
expp2πiaq (defined as a convergent power series) is in I`: indeed it maps to the
element expp2πieq of Q, and as e2 “ e we have

expp2πieq “
8
ÿ

k“0

p2πiqkek

k!
“ 1` e

8
ÿ

k“1

p2πiqk

k!
“ 1` epexpp2πiq ´ 1q “ 1.

We then have that
Ind2 ˝ βQres “ ´rexpp2πiaqs.

If A is non-unital, we can proceed similarly. Using remark 2.1.14, any class in
K0pQq can be represented by a formal difference res´r1ns, where e PMmpQ

`q is
an idempotent such that the canonical quotient map MmpQ

`q ÑMmpCq takes
e to the idempotent 1n with image first n of the canonical basis vectors for Cm.
Then we may again lift e to a self-adjoint element a P MmpAq. Identifying I`

(unitally) with a subalgebra of A`, we then have that

Ind2 ˝ βQpres ´ r1nsq “ ´rexpp2πiaqs.

See the notes and references at the end of the chapter for justifications of this.

2.7 Some computational tools

In this section we discuss some useful tools for doing K-theory computations.
All are well-known and can be found in the literature; nonetheless, not all are
completely standard, so we give reasonably complete proofs for ease of reference.

Although much of this material works for general Banach algebras, we typ-
ically restrict to the case of C˚-algebras as we do not need the additional gen-
erality, and as this tends to simplify things.
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Continuity

Recall the definition of a directed system pAiqiPI of C˚-algebras and the associ-
ated notation and direct limit lim

iPI
A from Example 1.5.12 above. The following

result is often summarised by saying that K-theory is continuous.

Proposition 2.7.1. Let pAiqiPI be a directed system of C˚-algebras, and A “ lim
iPI

Ai

the associated direct limit. Then the functorially associated directed system of
K-theory groups pK˚pAiqqiPI has direct limit K˚pAq.

Proof. Let us work with K0 and K1 separately; we will just look at K0 as the
case of K1 is similar. We will show that K0pAq has the universal property
required by the direct limit. Let then G be any abelian group equipped with a
compatible family ψi : K0pAiq Ñ G of maps, i.e. so that the diagrams

K0pAiq
pφjiq˚ //

ψi

��

K0pAjq

ψj

��
G G

commute for each i and j. We must construct a map ψ : K0pAq Ñ G such that
the diagram

K0pAiq
pφiq˚ //

ψi

%%

K0pAq

ψ

��
G

commutes. Let rps ´ rqs be a formal difference of projections defining a class
in K0pAq. Using an approximation and the functional calculus (compare Con-
struction 2.2.8), we may find i and classes of projections rpis and rqis in K0pAiq
such that pφiq˚prpis ´ rqisq “ rps ´ rqs. Define

ψprps ´ rqsq :“ ψiprpis ´ rqisq.

To see that this is well-defined, say rpjs ´ rqjs defines a class in K0pAjq such
that pφjq˚prpis ´ rqisq “ rps ´ rqs. Another approximation argument (this time
approximating the ‘reason’, say a homotopy, that rpis´ rqis and rpjs´ rqjs map
to the same element rps ´ rqs P K0pAq) now shows that

pφkiq˚prpis ´ rqisq “ pφkjq˚prpjs ´ rqjsq

in K0pAkq for some k ě i, j. Hence by compatibility of the family pψiq we have
that

ψiprpis´rqisq “ ψkppφkiq˚prpis´rqisqq “ ψkppφkjq˚prpjs´rqjsqq “ ψjprpjs´rqjsq

and are done.
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The following corollary is often summarised by saying that K-theory is sta-
ble.

Corollary 2.7.2. Let K denote the C˚-algebra of compact operators on a sep-
arable11, infinite-dimensional Hilbert space H. Choosing an orthonormal ba-
sis penqnPN for H, for any C˚-algebra A we may identify elements of A b K
with a subset of the collection of N-by-N matrices over A. Then the inclusion
AÑ AbK in the top left corner induces an isomorphism on K-theory.

Proof. Using the discussion at the end of Example 1.5.12, it is not difficult to
see that AbK is the direct limit of the system

AbM1pCq Ñ AbM2pCq Ñ AbM3pCq Ñ ¨ ¨ ¨

where each arrow is induced by the top left corner inclusion of the matrix alge-
bras, and the identity on A. All the maps in this directed system induce isomor-
phisms on K-theory (compare Remarks 2.1.15 and 2.5.7 above), and therefore
the map A “ AbM1pCq Ñ AbK arising from the definition of the direct limit
does too; this map is just the standard top left corner inclusion, however.

Example 2.7.3. In the special case A “ C, the above corollary gives that a choice
of top left corner inclusion C Ñ K induces an isomorphism on K-theory, and
thus that

KipKq “
"

Z i “ 0
0 i “ 1

Moreover, inspection of the proof (compare Example 2.1.12) shows that under
this isomorphism if p P K is a projection, then the class rps P K0pKq corresponds
under this isomorphism to rankppq P Z.

We finish the discussion of continuity with one more useful consequence:
the point is that if a C˚-algebra has a particularly nice approximate unit, then
K0pAq can be generated by projections from matrices with values in A, rather
than needing projections from matrices with values in the unitisation of A.

Corollary 2.7.4. Let A be a C˚-algebra and assume that A has an approximate
unit ppiqiPI consisting of a directed set of projections. Then K0pAq is generated
by the classes of projections in matrix algebras over A, and K1pAq is generated
by unitaries of the form v ` p1 ´ pi b 1nq for some i, where 1n is the unit of
MnpCq, and v is an element of MnpAq “ A b MnpCq for some n such that
v˚v “ vv˚ “ pi b 1n.

Proof. As ppiq is a directed set and an approximate unit, A is the direct limit
of the directed set of subalgebras ppiApiqiPI , ordered by inclusion. Hence by
Proposition 2.7.1, K˚pAq “ lim

iPI
K˚ppiApiq. As each pi is a projection, each

subalgebra piApi is unital (with unit pi). Hence K0ppiApiq is generated by
projections in matrix algebras over piApi, and thus the same is true for K0pAq.

11This assumption is not necessary: just replace the inductive system in the proof by a
slightly more complicated one.

90



The statement for K1 follows similarly on noting that the image of the class
rvs P K1ppiApiq of a unitary v PMnppiApiq under the map K1ppiApiq Ñ K1pAq
induced by inclusion is exactly the class of the element v ` p1 ´ pi b 1nq of
MnpA

`q.

Isometries and Eilenberg swindles

The next few results in this section will mainly be used to construct Eilenberg
swindles, as illustrated in Corollary 2.7.7. The basic idea of an Eilenberg swindle
is that if g P G is an element of an abelian group and one can make reasonable
sense of an element 8¨g which is the ‘sum of g with itself infinitely many times’,
then g will satisfy the equation 8 ¨ g` g “ 8 ¨ g , and so g must be zero. What
exactly ‘8 ¨ g’ actually means will depend on context.

The following result is a useful tool for making sense of the above ideas (and
more generally). For the statement, recall the notion of the multiplier algebra
MpAq of a C˚-algebra A from Definition 1.7.6.

Proposition 2.7.5. Let α : AÑ B be a ˚-homomorphism and v PMpBq be a
partial isometry such that αpaqvv˚ “ αpaq for all a P A. Then the map

adv ˝ α : AÑ C, a ÞÑ vαpaqv˚

is a ˚-homomorphism, and induces the same map on K-theory as α.

Proof. It is straightforward to check that adv ˝α is a ˚-homomorphism: we leave
this to the reader.

First we show the result in the special case that v “ u is a unitary. Let
φ : K˚pM2pCqq Ñ K˚pCq be the isomorphism discussed in Remarks 2.1.15 and
2.5.7; in other words, φ is the inverse to the map on K-theory induced by the
top left corner inclusion

a ÞÑ

ˆ

a 0
0 0

˙

.

Then the map paduq˚ : K˚pCq Ñ K˚pCq is the composition of: the map on K-
theory induced by the top left corner inclusion, the map on K-theory induced
by conjugation by the matrix

ˆ

u 0
0 u˚

˙

, (2.14)

and φ. The matrix in line (2.14) is homotopic to the identity however (compare
line (2.3) above), so conjugation by it induces the trivial map on K-theory, and
we are done in the case v is unitary.

In the general case, consider the matrix

u “

ˆ

v 1´ vv˚

1´ v˚v v˚

˙

in the multiplier algebra of M2pCq. This is unitary and so by the earlier dis-
cussion adu : M2pCq ÑM2pCq induces the identity on K-theory. However, the
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map induced by adv ˝α on K-theory is the composition of the maps induced on
K-theory by α, the top left corner inclusion, adu, and φ : K˚pM2pAqq Ñ K˚pAq.
Hence adv ˝ α induces the same map on K-theory as α.

Lemma 2.7.6. Let A, B be C˚-algebras, and let α1, α2 : A Ñ B be ˚-
homomorphisms with orthogonal image, meaning that α1pa1qα2pa2q “ 0 for all
a1, a2 P A. Then the linear map α :“ α1 ` α2 : A Ñ B is a ˚-homomorphism,
and as maps on K-theory, pα1 ` α2q˚ “ pα1q˚ ` pα2q˚.

Proof. It is straightforward to check that α is a ˚-homomorphism. Let φ :
K˚pM2pBqq Ñ K˚pBq be the inverse of the stabilization isomorphisms of Re-
marks 2.1.15 and 2.5.7, and note that for i P t1, 2u the composition of the map
on K-theory induced by the ˚-homomorphism

AÑM2pBq, a ÞÑ

ˆ

αipaq 0
0 0

˙

and φ equals pαiq˚. The same is true if we replace the above with the map

AÑM2pBq, a ÞÑ

ˆ

0 0
0 αipaq

˙

as this differs from the previous version by conjugation by the element

ˆ

0 1
1 0

˙

of

the multiplier algebra of M2pAq, and by Proposition 2.7.5, this conjugation has
no effect on K-theory. As the operations on K0 and K1 can both be described
by block sum of matrices, it follows that pα1q˚ ` pα2q˚ is the map on K-theory
induced by

AÑM2pBq, a ÞÑ

ˆ

α1paq 0
0 α2paq

˙

(2.15)

composed with the isomorphism φ : K˚pM2pBqq Ñ K˚pBq. On the other hand,
α˚ is given as the composition of the map on K-theory defined by

AÑM2pBq, a ÞÑ

ˆ

αpaq 0
0 0

˙

(2.16)

and φ. It thus suffices to show that the maps in line (2.15) and line (2.16) are
the same on K-theory. This follows as the path

ψt : a ÞÑ

ˆ

α1paq 0
0 0

˙

`

ˆ

cosptq ´ sinptq
sinptq cosptq

˙ˆ

0 0
0 α2paq

˙ˆ

cosptq sinptq
´ sinptq cosptq

˙

as t varies from 0 to π{2 is a homotopy between them (the fact that α1 and α2

have orthogonal images is used to show that each ψt is indeed a ˚-homomorphism).

The following corollary is included mainly as it illustrates how the above
results can be used to perform Eilenberg swindles, i.e. to construct ‘infinite
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sums’ of a given element of a K-group12. The result of the corollary can also
be deduced directly from Example 2.1.7 (at least when H is separable, and by
a minor variation of this in general).

Corollary 2.7.7. Let H be an infinite dimensional Hilbert space. Then K˚pBpHqq “
0.

Proof. As H is infinite dimensional, we may write H as a countable direct sum
H “

À8

n“1Hn of subspaces, each with the same dimension as H itself. For each
n, choose an isometry vn P BpHq with image Hn Ď H, and let advn : BpHq Ñ
BpHq be the associated ˚-homomorphism. Set v to be the direct sum map

v “
8
ÿ

n“2

vn : H Ñ H

Proposition 2.7.5 also implies that adv1
`adv induces the same map on K-theory

as adv, as these two ˚-homomorphisms are conjugate via the isometry

w :“
8
ÿ

n“1

vn`1v
˚
n

(the sum converges in the strong operator topology). Hence using Lemma 2.7.6,

padv1
q˚ ` padvq˚ “ padv1

` advq˚ “ padvq˚.

Cancelling off padvq˚, we get that padv1
q˚ “ 0. However, Proposition 2.7.5

(applied in the special case that α is the identity map) implies that padv1
q˚ is

the identity map, so K˚pBpHqq “ 0 as required.

Doubles and quasi-morphisms

Our next goal is to discuss quasi-morphisms. These are a more general class
of maps than ˚-homomorphisms that are useful for inducing maps between K-
theory groups.

Definition 2.7.8. Let A be a C˚-algebra and I an ideal in A. Then the double
of A along I, denoted DApIq, is the C˚-algebra

tpa, bq P A‘A | a´ b P Iu.

Lemma 2.7.9. The natural inclusion I ÞÑ DApIq defined by a ÞÑ pa, 0q leads
to a split short exact sequence

0 // I // DApIq // A // 0

and thus a direct sum decomposition

K˚pDApIqq – K˚pAq ‘K˚pIq.
12Although what we actually do is construct an infinite sum of the identity map with itself

in the endomorphisms of K˚.
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Proof. The quotient map in the short exact sequence is given by evaluation on
the second coordinate, and the splitting is given by the function A Ñ DApIq,
defined by a ÞÑ pa, aq. The existence of the direct sum decomposition follows
directly from this and the six term exact sequence (Theorem 2.6.5).

Definition 2.7.10. Let A and I be C˚-algebras. A quasi-morphism from A to
I consists of a C˚-algebra B containing I as an ideal, and a pair

φ, ψ : AÑ B

of ˚-homomorphisms such that φpaq ´ ψpaq is in I for all a P A.
Given a quasi-morphism as above, the induced map on K-theory

pφ´ ψq˚ : K˚pAq Ñ K˚pIq

is defined as the composition of the map onK-theory induced by the ˚-homomorphism

φ‘ ψ : AÑ DBpIq

and the quotient map
K˚pDBpIqq Ñ K˚pIq

arising from the direct sum decomposition in Lemma 2.7.9.

Direct products

For our next goal we discuss the behaviour of K-theory under products. Recall
from Example 1.1.7 above that if pAiqiPI is a collection of C˚-algebras, then
their product

ś

iPI Ai is the C˚-algebra of all bounded sequences paiqiPI with
ai P Ai, equipped with pointwise operations and the supremum norm. One
might hope that there is a natural isomorphism

K˚

´

ź

iPI

Ai

¯

–
ź

iPI

K˚pAiq

induced by the quotient maps
ś

iPI Ai Ñ Aj , but this is not true in general:
see Exercise 2.11.15 below.

It becomes true if one assumes some form of stability in the sense of Def-
inition 1.8.15: for example assuming Ai b K – Ai (where K is the compact
operators) for each i would be enough. For applications, we want to get away
with something a little weaker than this, so introduce the following definition.

Definition 2.7.11. A C˚-algebra A is quasi-stable if for all n there exists an
isometry v in the multiplier algebra of MnpAq such that vv˚ is the matrix unit
e11.

The terminology is inspired by the case of stable C˚-algebras as in Definition
1.8.15, i.e. those C˚-algebras A isomorphic to AbK, forK the compact operators
on a separable infinite dimensional Hilbert space. It is not too difficult to see
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that a stable C˚-algebra is quasi-stable, but the converse is false: BpHq for
infinite dimensional H is a counterexample. The point of quasi-stability is that
it has many of the same K-theoretic consequences as the more commonly used
stability, but is more general and easier to check.

Proposition 2.7.12. Let pAiqiPI be a collection of quasi-stable C˚-algebras.
Then the natural quotients

πj :
ź

iPI

Ai Ñ Aj

induce an isomorphism
ź

iPI

pπiq˚ : K˚p
ź

iPI

Aiq Ñ
ź

iPI

K˚pAiq.

Proof. We will construct an inverse map
ź

iPI

K˚pAiq Ñ K˚p
ź

iPI

Aiq.

For simplicity, let us focus on the case of K0; the case of K1 is similar. Let then
an element of

ś

iPI K˚pAiq be given, which can be represented as a sequence
prpis ´ rqisqiPI of formal differences of projections, where pi, qi are in MnipA

`q

for some ni, and pi´ qi PMnipAq for all i (compare Remark 2.1.14 above). The
sequence prpis ´ rqisqiPI does not obviously define an element of K0p

ś

iPI Aiq:
the problem is that there is no uniform bound on ni as i varies.

To get around this problem, we use quasi-stability. Let vi P MnipAiq be
an isometry with the property that viv

˚
i is the top left matrix unit as in the

definition of quasi-stability. Using Proposition 2.7.5, for each i we have

rvipiv
˚
i s ´ rviqv

˚
i s “ rpis ´ rqis

in K0pAiq. However, we may identity the elements vipiv
˚
i and viqiv

˚
i with

elements of A`i , whose difference is in Ai. Making this identification, we may
thus define our putative inverse map

ź

iPI

K˚pAiq Ñ K˚p
ź

iPI

Aiq, prpis ´ rqisqiPI ÞÑ rpvipiv
˚
i qiPI s ´ rpviqiv

˚
i qsiPI .

To complete the proof, we need to show that this map makes sense and really
is an inverse to the map in the statement: this is all routine, and we leave the
details to the reader.

Mayer-Vietoris sequences

There are long exact Mayer-Vietoris sequences associated to pushouts and pull-
backs (defined below) of C˚-algebras. These are useful variations of the basic
six-term exact sequence of Theorem 2.6.5. They generalize the classical Mayer-
Vietoris sequences for decompositions of a topological space into closed and
open subsets: see Example 2.7.16 below.

We will have one Mayer-Vietoris sequence for pushouts, and a different one
for pullbacks, as defined below.
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Definition 2.7.13. A pushout diagram of C˚-algebras is a diagram of the form

I X J
ιI //

ιJ

��

I

κI

��
J

κJ // A ,

(2.17)

where I and J are ideals in A, the arrows are the obvious inclusions, and where
the sum I ` J is dense13.

Definition 2.7.14. A pullback diagram of C˚-algebras is a diagram of the form

P
ρA //

ρB

��

A

πA

��
B

πB // Q ,

(2.18)

where the maps πA, πB are ˚-homomorphisms with at least one of them being
surjective, where P “ tpa, bq P A ‘ B | πApaq “ πBpbqu, and where the maps
from P to A and B are the restrictions to the summands.

The Mayer-Vietoris sequences associated to such diagrams are then as fol-
lows.

Proposition 2.7.15. Let A, I, J be as in Definition 2.7.13 above. Then there
is a six-term Mayer-Vietoris sequence

K0pI X Jq // K0pIq ‘K0pJq // K0pAq

��
K1pAq

OO

K1pIq ‘K1pJqoo K1pI X Jqoo

which is natural for commutative diagrams of pushout diagrams. The morphisms

K˚pI X Jq Ñ K˚pIq ‘K˚pJq and K˚pIq ‘K˚pJq Ñ K˚pAq

in the above are given by

x ÞÑ ιI˚pxq ‘ ι
J
˚pxq and y ‘ z ÞÑ κI˚pyq ´ κ

J
˚pzq

respectively.
Let P,A,B,Q be as in Definition 2.7.14 above. Then there is a six-term

Mayer-Vietoris sequence

K0pP q // K0pAq ‘K0pBq // K0pQq

��
K1pQq

OO

K1pAq ‘K1pBqoo K1pP qoo

13This actually forces in A to equal I ` J , as we will see from the proof
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which is natural for commutative maps between pullback diagrams. The mor-
phisms

K˚pP q Ñ K˚pAq ‘K˚pBq and K˚pAq ‘K˚pBq Ñ K˚pQq

in the above are given by

x ÞÑ ρA˚ pxq ‘ ρ
B
˚ pxq and y ‘ z ÞÑ πA˚ pyq ´ π

B
˚ pzq

respectively.

Proof of Proposition 2.7.15, pushout case. We first note that the map

I ‘ J Ñ A{pI X Jq, paI , aJq ÞÑ aI ` aJ

is a well-defined ˚-homomorphism with dense image. It is thus surjective by
Corollary 1.5.10, and so we automatically have that A “ I `J , not merely that
I ` J is dense in A. Hence standard isomorphism theorems from pure algebra
give that

I

I X J
–
I ` J

J
“
A

J
.

Consider the following commutative diagram of short exact sequences

0 // I X J //

��

I //

��

A{J // 0

0 // J // A // A{J // 0

,

which by Theorem 2.6.5 gives rise to a commutative diagram of six-term exact
sequences

K0pI X Jq

&&

// K0pIq

$$

// K0pA{Jq

piiq

piiiq

��

K0pJq // K0pAq
piq // K0pA{Jq

��

K1pA{Jq

OO

K1pIq

$$

oo K1pI X Jqoo

&&
K1pA{Jq

OO

K1pAqoo K1pJq .oo

The existence of the Mayer-Vietoris sequence follows from this and some di-
agram chasing that we leave to the reader: for example, the map K0pAq Ñ
K1pI X Jq in the Mayer-Vietoris sequence is defined as the composition of the
arrows marked (i), (ii), (iii). Naturality follows from naturality of the usual
six-term exact sequence.
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Proof of Proposition 2.7.15, pullback case. Assume without loss of generality that
the map AÑ Q is surjective, and let I be the kernel. Then there is a commu-
tative diagram of short exact sequences

0 // I // A
πA
// Q // 0

0 // I // P
ρB //

ρA

OO

B //

πB

OO

0

.

Theorem 2.6.5 associates to this a commutative diagram of six-term exact se-
quences

K0pIq // K0pP q

$$

// K0pBq

$$

��

K0pIq // K0pAq // K0pQq

piq

��

K1pBq

OO

$$

K1pP q

$$

oo K1pIq
piiiqoo

piiq

K1pQq

OO

K1pAqoo K1pIq .oo

The existence of the Mayer-Vietoris sequence again follows from a diagram chase
that we leave to the reader: for example, the boundary map K0pQq Ñ K1pP q
is the composition of the three arrows labeled (i), (ii), (iii). Naturality again
follows from naturality of the six-term exact sequence.

Example 2.7.16. The motivating examples for these Mayer-Vietoris sequences
come from the commutative case. Indeed, let X be a locally compact space,
and U, V be open subsets such that X “ U Y V . Then A “ C0pXq, I “ C0pUq,
J “ C0pV q, and IXJ “ C0pUXV q fit it into a pushout diagram as in Definition
2.7.13. The associated six-term exact sequence is

K0pU X V q // K0pUq ‘K0pV q // K0pXq

��
K1pXq

OO

K1pUq ‘K1pV qoo K1pU X V q ,oo

where we use the conventions of Remark 2.6.7. Note the functoriality in the
above appears to go the ‘wrong way’ for a cohomology theory: this is because
K-theory is a cohomology theory ‘with compact supports’, and is functorial in
‘the wrong’ direction for inclusions of open subsets.

On the other hand, if X “ E Y F for closed subsets E and F , taking
P “ C0pXq, A “ C0pEq, B “ C0pF q and Q “ C0pE X F q, we have a pullback
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diagram. The associated six-term exact sequence becomes

K0pXq // K0pEq ‘K0pF q // K0pE X F q

��
K1pE X F q

OO

K1pEq ‘K1pF qoo K1pXqoo

(where now the functoriality is in the ‘expected’ direction).

Morita invariance

Our final goal in this section is to discuss invariance of K-theory under Morita
equivalence (see Definition 1.7.9). For this, it suffices to show that if B is a
full corner of A as in Definition 1.7.8, then the inclusion B Ñ A induces an
isomorphism on K-theory. This result is sometimes only stated in the special
case that A and B have countable approximate units, but it will be important
for us that it holds in general; fortunately, it is not too difficult to deduce the
general case, as long as assume some machinery.

To introduce the machinery we need, let A be a C˚-algebra, let p PMpAq a
projection in the multiplier algebra of A, and let K :“ Kp`2pNqq be the compact
operators. Note that by definition of the spatial tensor product we may consider
pb 1 as an element of the multiplier algebra of AbK: indeed, if A is faithfully
represented on HA, then A b K is faithfully represented on HA b `2pNq in the
natural way, and pb1 is clearly in the multiplier algebra for this representation14.
Recall also from Definition 1.7.8 that a projection p P MpAq is full if ApA is
dense in A.

We will use the following theorem as a black box: see the notes and references
at the end of the chapter for more detail.

Theorem 2.7.17. Say A is a separable15 C˚-algebra and p P MpAq a full
projection. Then there is an isometry v P MpA b Kq such that v˚v “ 1 and
vv˚ “ pb 1.

Corollary 2.7.18. Say A is a separable C˚-algebra, and B Ď A is a full corner.
Then the inclusion B Ñ A induces an isomorphism on K-theory.

Proof. Let p P MpAq be such that pAp “ B and ApA is dense in A as in the
definition of a full corner. Let v PMpAbKq be as in Theorem 2.7.17. Define

φ : AbKÑ B bK, a ÞÑ vav˚.

It is not difficult to check that φ is a ˚-isomorphism. Consider now the compo-
sition

AbK φ
Ñ B bKÑ AbK,

14Underlying this, there is always a natural inclusion MpAqbMpBq ĎMpAbBq: exercise!
15More generally, σ-unital, meaning that A has a countable approximate unit.
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of φ and the inclusion B b K Ñ A b K induced by the inclusion B Ñ A
and the identity map on K (cf. Remark 1.8.12). This composition is given by
a ÞÑ vav˚, and thus induces the identity map on K-theory by Proposition 2.7.5.
Hence in particular the inclusion B b K Ñ A b K induces an isomorphism on
K-theory (precisely, the inverse of the isomorphism on K-theory induced by
the ˚-isomorphism φ). The proof is completed by considering the commutative
diagram

B

��

// A

��
B bK // AbK

where the horizontal arrows are the canonical inclusions, and the vertical ar-
rows are a choice of top left corner inclusion: indeed, we have just seen that
the bottom arrow induces an isomorphism on K-theory, while the two vertical
arrows induce isomorphisms by Corollary 2.7.2.

Proposition 2.7.19. Say A is a C˚-algebra, and B Ď A is a full corner. Then
the inclusion B Ñ A induces an isomorphism on K-theory.

Proof. Let p PMpAq be a full projection such that pAp “ B. Let pAiqiPI be the
collection of all separable C˚-subalgebras of A, ordered by inclusion. For each
i, let Ci be the C˚-subalgebra of A generated by pAip, pAi, Aip, and AipAi.
Note that the collection pCiqiPI is directed by inclusion as the collection pAiq is.
Moreover: each Ci is separable; p acts as a multiplier on each Ci; as p is full in
A we have that lim

iPI
Ci “ A; and as pAp “ B we have that lim

iPI
pCip “ B.

To complete the proof, it will thus suffice to show that p is a full projection for
each Ci. Indeed, in that case Corollary 2.7.18 implies that the inclusion pCipÑ
Ci induces an isomorphism on K-theory for each i. Thanks to Proposition 2.7.1
we would get therefore that the inclusion

lim
iPI

pCipÑ lim
iPI

Ci

induces an isomorphism on K-theory, which is the desired result.
Consider then the C˚-algebra generated by CipCi, which we want to show

equals Ci. Using an approximate unit for Ci (which exists by Theorem 1.5.6),
however, it is not difficult to see that the C˚-algebra generated by CipCi contains
each of the sets pAip, pAi, Aip, and AipAi; as these generate Ci, we are done.

2.8 Index elements

In this section we make the index map from Section 2.4 above more explicit,
and collect some variations that are useful for applications.

Say first that B is a C˚-algebra, and A is an ideal in B. If u P B is an
operator such that the image of u in B{A is invertible, then we get a class
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rus P K1pB{Aq, and hence via the index map

Ind : K1pB{Aq Ñ K0pAq

of Definition 2.5.8, a class Indrus P K0pAq. Looking back at the construction of
Ind from Definition 2.4.3 above, we have the following concrete description of
the element Indrus.

Definition 2.8.1. With notation as above, let w P B be such that uw´ 1 and
wu´ 1 are in A. Consider the product

v :“

ˆ

1 0
u 1

˙ˆ

1 ´w
0 1

˙ˆ

1 0
u 1

˙

“

ˆ

1´ wu ´w
2u´ uwu 1´ uw

˙

(2.19)

in M2pBq, which is an invertible element that agrees with

ˆ

0 ´w
u 0

˙

modulo

M2pAq (compare line (2.12) above). Then

Indrus :“

„

v

ˆ

1 0
0 0

˙

v´1



´

„

0 0
0 1



.

As in Definition 2.5.8 above, the class Indrus does not depend on the choice
of w.

Remark 2.8.2. For some applications it is useful that this construction is purely
algebraic: it involves no functional calculus, just finite linear combinations of
finite products of elements from the set t1, u, wu. This follows as the definition
of v in line (2.19) leads to a purely algebraic formula for v´1 in terms of u and
w. Spelling this out,

v´1 “

ˆ

1´ wu w
uwu´ 2u 1´ uw

˙

and so

Indrus “

„

p1´ wuq2 wp1´ uwq
up2´ wuqp1´ wuq uwp2´ uwq



´

„

0 0
0 1



; (2.20)

Thus the formula above gives a representative for the class Indrus where each
matrix entry is a sum of products of at most five elements from the set tu,wu
(and the identity).

The situation is even better if the image of u in B{A is unitary. Indeed, in
this case, one can use w “ u˚, and the resulting formula for Indrus involves only
finite linear combinations of finite products of elements from the set t1, u, u˚u.

Example 2.8.3. The fundamental example occurs when A “ KpHq and B “

BpHq for some Hilbert space H. Let u P B be invertible in B{A. Then Atkin-
son’s theorem (see Exercise 2.11.21) says that u is Fredholm, meaning that it
has closed range, and the kernel and cokernel of u are finite dimensional. Let K
be the kernel of u, and let C be the orthogonal complement of its image, which
is finite dimensional. Then u restricts to a bijection u0 : KK Ñ CK, which is
invertible by the open mapping theorem. Let w0 : CK Ñ KK be the inverse of
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u0, and let w P BpHq be defined to be equal to w0 on elements of CK, and equal
to 0 on elements from C. Then if pK and pC are the orthogonal projections
onto K and C respectively, we have that

uw “ 1´ pC and wu “ 1´ pK .

Substituting these into the formula in line (2.20) above and computing, we get
that

Indrus “

„

pK 0
0 1´ pC



´

„

0 0
0 1



“ rpKs ´ rpCs.

Under the isomorphism K0pKq – Z of Example 2.7.3, the class Indrus corre-
sponds to

rankppKq ´ rankppCq “ dimpKq ´ dimpCq,

which by definition is the classical Fredholm index of u. This justifies the name
‘index map’ for Ind : K1pB{Aq Ñ K0pAq.

There is also an opposite parity case of the index construction: this starts
with an element p of B such that the image of p in B{A is a projection and so
defines a class rps P K0pB{Aq.

Definition 2.8.4. With notation as above, say the image of p P B in B{A is a
projection. Then we define

Indrps P K1pAq

to be the image of rps P K0pB{Aq under the Bott periodicity map

Ind2 ˝ βB{A : K0pB{Aq Ñ K1pAq

of Theorem 2.6.5. Using the description in Remark 2.6.8, we have the following
concrete formula

Indrps “ re´2πips

for this class.

Note that the formula above is still concrete, but has the disadvantage that
it is no longer purely algebraic. For this reason, it is sometimes advantageous
to use the identification K0pB{Aq “ K1pSpB{Aqq so we can apply the formula
in Definition 2.8.1 to this case too.

We now give another variant that is useful in geometric applications. Here,
it is useful to have a description of the above index elements in the language of
graded Hilbert spaces. See Appendix E for conventions on gradings (although
we will recall what we need here).

Recall first from Definition E.1.4 that a grading on a Hilbert space is a
unitary operator U : H Ñ H such that U2 “ 1; this U is also called the
grading operator for H. A bounded operator F on H is even for the grading
if UFU “ F , and is odd if UFU “ ´F . If U is a grading on H, then there
is a direct sum splitting H “ H0 ‘ H1 into the `1 and ´1 eigenspaces of U
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respectively, called the even and odd parts of H. Writing an operator F on H
as a matrix

F “

ˆ

F00 F01

F10 F11

˙

,

one computes that F is even if and only if the matrix is diagonal (i.e. F10 “

F01 “ 0), and is odd if and only if the matrix is off-diagonal (i.e. F00 “ F11 “ 0).
Say now in addition that A is a C˚-algebra, concretely represented on H,

and that the grading operator U : H Ñ H is in the multiplier algebra of A in
the sense of Definition 1.7.1. Hence in particular induces an inner grading on
A in the sense of Definition E.1.1. Then writing operators as matrices as above
we have that the projections

P0 :“

ˆ

1 0
0 0

˙

and P1 :“

ˆ

0 0
0 1

˙

are equal to 1
2 pU ` 1q and 1

2 pU ´ 1q respectively, and thus also in the multiplier
algebra of A. We can therefore think of elements of A as matrices

a “

ˆ

a00 a01

a10 a11

˙

where aij :“ PiaPj P A, identified with an operator Hj Ñ Hi in the natural
way. This works in exactly the same way for multipliers of A. In what follows,
we will be typically elide the difference between PiaPj considered as an operator
on H, and considered as an operator Hj Ñ Hi; thus we might say something
like ‘V : H0 Ñ H1 is in the multiplier algebra of A’ when to be technically

correct, we should say ‘

ˆ

0 0
V 0

˙

is in the multiplier algebra of A’.

Definition 2.8.5. Let A be a C˚-algebra, concretely represented on a Hilbert
space H. Let F P BpHq be a bounded operator such that:

(i) F is in the multiplier algebra of A (see Definition 1.7.1 above);

(ii) F 2 ´ 1 is in A.

Then we can define an index class IndrF s P K˚pAq in one of two ways, depending
on whether or not H is assumed graded.

(i) Say there is no grading on H. Set P “ 1
2 pF ` 1q and note that the image

of P in MpAq{A is a projection. We define

IndrF s :“ IndrP s P K1pAq

using Definition 2.8.4.

(ii) Say now that H “ H0 ‘ H1 is graded in such a way that the grading
operator U is in the multiplier algebra of A, and that F is odd with
respect to the grading. Writing operators on H as matrices as above, the
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facts that F is odd and in the multiplier algebra of A imply that F has
the form

F “

ˆ

0 V
W 0

˙

for some operators W : H0 Ñ H1 and V : H1 Ñ H0 in the multiplier
algebra of A. The condition that F 2 ´ 1 is in A moreover implies that
VW ´ 1 and WV ´ 1 are both16 in A. We then define

IndrF s :“

„

p1´ VW q2 V p1´WV q
W p2´ VW qp1´ VW q WV p2´WV q



´

„

0 0
0 1



(2.21)

in K0pAq quite analogously to line (2.20) above.

See Exercise 2.11.28 for a relationship between the construction of Definition
2.8.5 above and that of Definition 2.8.1 from earlier in this section.

Remark 2.8.6. It is immediate from the construction above that if we perturb F
by an element of A, then the class IndrF s is unchanged: indeed, the construction
only depends on the image of F in MpAq{A.

We complete this section with a useful lemma.

Lemma 2.8.7. If F 2 “ 1, then either of the constructions from Definition 2.8.5
above give IndrF s “ 0.

Proof. Assume first we are in the ungraded case. Then P “ 1
2 pF ` 1q is already

an idempotent in MpAq, and so defines a class in K0pMpAqq that maps to the
class rP s on K0pMpAq{Aq. Thus by exactness of the K-theory sequence

K0pMpAqq Ñ K0pMpAq{Aq Ñ K1pAq,

the element IndrF s is zero. The graded case is entirely analogous, noting that
now F 2 “ 1 implies that V and W are mutually inverse.

2.9 The spectral picture of K-theory

Our goal in this section is to introduce the spectral picture of K-theory for
a graded C˚-algebra. We will show that if the C˚-algebra is inner graded,
spectral K-theory provides a new model for the usual K-theory groups. This is
useful as the spectral picture is particularly well suited to discussions of elliptic
operators, and of products in K-theory. This material is not used until Part III
of the book.

In order to define the spectral picture of K-theory, we work in the language
of graded C˚-algebras. This is not strictly necessary, but is technically conve-
nient, and is also useful for applications. See Appendix E for a summary of the
background we need on gradings. In particular, for the first definition below we

16We are abusing notation again: in VW ´ 1, 1 is the identity operator on H0, and in
WV ´ 1, it is the identity operator on H1.
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need the following notation: K denotes a standard graded copy of the compact
operators on a separable infinite-dimensional Hilbert space as in Example E.1.9;
CliffCpRiq denotes the Clifford algebra of Example E.1.11; and pb denotes the
graded spatial tensor product from Definition E.2.9.

Definition 2.9.1. For graded C˚-algebras A and B, let tA,Bu denote the set
of homotopy classes of graded ˚-homomorphisms from A to B; in particular, this
means that the all homomorphisms in a homotopy should preserve the grading.

Let A be a graded C˚-algebra. Define sets by

spKipAq :“ tS , ApbCliffCpRiqpbK u.

Remark 2.9.2. Using the graded ˚-isomorphism

CliffCpRd´1qpbCliffCpRq – CliffCpRdq

of line (E.1) and the graded ˚-isomorphisms

CliffCpRdq –
"

M2d{2pCq, d even
M2pd´1q{2pCq ‘M2pd´1q{2pCq, d odd

of line (E.2), we get graded ˚-isomorphisms

CliffCpRdqpbK –

"

K , d even
CliffCpRqpbK , d odd

.

Moreover, these isomorphisms are unique up to (graded) homotopy equiva-
lence. Thus up to canonical bijection, each set spKipAq is the same as one
of spK0pAq or spK1pAq. Thus the sets spKipAq satisfy a form of Bott peri-
odicity for purely algebraic reasons. Later we will introduce binary operations
on the sets spKipAq; these operations will be compatible with the periodicity
isomorphisms above.

Example 2.9.3. An illustrative (and actually general – see Exercise 2.11.29)
example of an element of spK0pAq arises as follows. Let π : A Ñ BpHq be
a faithful graded representation as in Definition E.1.4. Let D be a (possibly
unbounded, essentially) self-adjoint operator on H such that fpDq P A for all
f P S . Then the functional calculus (see Theorem D.1.7 for the unbounded
case) gives a ˚-homomorphism

S Ñ A, f ÞÑ fpDq

One can check using Lemma D.1.9 that this ˚-homomorphism is graded if and
only if D is odd in the sense of Example E.1.14.

For example, let S Ñ BpL2pRqq be the usual graded representation as mul-
tiplication operators (see Example E.1.10). Then the identity map S Ñ S
arises in this way from the unbounded (odd) operator on L2pRq given by mul-
tiplication by the independent variable x, say with domain CcpRq.
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The following alternative description of spK0pAq is often useful, and in some
ways simpler. For the statement, recall from Example E.1.8 that a grading εA
on a C˚-algebra A extends uniquely to a grading εA` on the unitisation A`.

Lemma 2.9.4. Let B be a graded C˚-algebra. Then there is a canonical bijec-
tion between tS , Bu and the set of path components of the following subset of
the unitization B`

"

u P B` u is unitary, εB`puq “ u˚, and u maps to 1
under the canonical quotient B` Ñ C

*

. (2.22)

In particular, for a graded C˚-algebra A, there is a canonical bijection between
spK0pAq and the set defined above in the special case B “ ApbK .

Proof. A graded ˚-homomorphism φ : S Ñ B extends uniquely to a ˚-homomorphism
between unitisations φ` : S ` Ñ B`, and this extension is still graded. Forget-
ting the grading for a moment, S ` is isomorphic as a C˚-algebra to CpR`q,
the C˚-algebra of continuous functions on the one point compactification R` of
R. Now, the Cayley transform

c : R` Ñ S1, x ÞÑ
x´ i

x` i

(with 8´i
8`i interpreted as 1) is a homeomorphism identifying CpR`q with CpS1q.

It follows from the spectral theorem that CpR`q is the universal C˚-algebra
generated by the unitary c, whence a ˚-homomorphism CpR`q Ñ B` is uniquely
determined by a unitary u :“ φ`pcq in B`. Moreover, such a ˚-homomorphism
comes from the canonical extension of a ˚-homomorphism C0pRq Ñ B if and
only if the corresponding unitary u maps to 1 under the canonical quotient map
B` Ñ C.

Reintroducing the gradings, as the grading on S ` takes c to c˚, the fact that
φ` is graded is equivalent to the unitary u “ φ`pcq satisfying εB`puq “ u˚. One
can carry homotopies through this whole discussion to get paths of unitaries,
which gives the result.

Definition 2.9.5. For a graded C˚-algebra B, we will call unitaries in the set
in line (2.22) Cayley transforms. For a graded ˚-homomorphism φ : S Ñ B,
we will denote the element φ`pcq P B` constructed in the proof of Lemma 2.9.4
uφ, and call it the Cayley transform of φ.

We now introduce the binary operation on spKipAq. In fact, we just do this
for spK0pAq; as spKipAq :“ spK0pApbCliffCpRiqq, this also covers the general
case.

Definition 2.9.6. Let H “ H0 ‘ H1 be a choice of Hilbert space underlying
K . Choose a unitary isomorphism U : H ‘ H Ñ H that restricts to unitary
isomorphisms Hi ‘ Hi – Hi for i P t0, 1u. For homotopy classes rφs, rψs in
spK0pAq define rφs ` rψs to be the homotopy class represented by the graded
˚-homomorphism

S Ñ ApbK , f ÞÑ Upφpfq ‘ ψpfqqU˚.
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Remark 2.9.7. Say that uφ, uψ P pApbK q` are Cayley transforms associated to
φ, ψ : S Ñ ApbK respectively. Identify M2pK q with K via the same unitary
we used to identity H‘H with H in Definition 2.9.6. Then the homomorphism

underlying rφs ` rψs has Cayley transform

ˆ

uφ 0
0 uψ

˙

.

Lemma 2.9.8. Let A be a graded C˚-algebra and i ě 0. Then the binary
operation on spKipAq does not depend on the choice of unitary U , and makes
spKipAq into an abelian group.

Proof. It suffices to prove the lemma for i “ 0. Note first that all unitaries
U satisfying the condition in Definition 2.9.6 are homotopic (through unitaries
satisfying the same condition), whence the class rφs`rψs in tS , ApbK u does not
depend on U . This also proves associativity and commutativity of the binary
operation. It is moreover clear that the identity element is represented by the
zero ˚-homomorphism S Ñ ApbK , so spK0pAq is a commutative monoid. It
remains to check that inverses exist.

For this, let u P pApbK q` be a Cayley transform as in Definition 2.9.5, so
by Lemma 2.9.4 there is a corresponding class rus in spK0pAq. We claim that
u˚ is a Cayley transform representing the additive inverse of rus; the check that
u˚ is a Cayley transform is direct, so we leave this to the reader.

To see that ru˚s is the inverse of rus, choose faithful graded representations
pHA, UAq and pHK, UK q for A and K respectively, and let ApbK be equipped
with the canonical faithful graded representation on pHApbHK , Uq of Definition
E.2.9, where U “ UA b UK .

Write now HK “ H0 ‘H1 in the usual way and let sptq P BpHA bHK q be

the matrix

ˆ

0 sinptq
sinptq 0

˙

with respect to the decomposition

HA bHK “ pHA bH0q ‘ pHA bH1q.

Consider the homotopy in M2ppApbK q`q given by

ˆ

cosptqu sptq
´sptq cosptqu˚

˙

, t P r0, π{2s.

Then we have that
ˆ

U 0
0 U

˙ˆ

cosptqu sptq
´sptq cosptqu˚

˙ˆ

U 0
0 U

˙

“

ˆ

cosptqu˚ ´sptq
`sptq cosptqu

˙

“

ˆ

cosptqu sptq
´sptq cosptqu˚

˙˚

.

To correct for the fact that this homotopy does not map constantly to one under
the canonical quotient map M2ppApbK q`q ÑM2pCq, we replace it with

ˆ

cospt{2qu ´spt{2q
spt{2q cospt{2q

˙ˆ

cosptqu sptq
´sptq cosptqu˚

˙ˆ

cospt{2qu ´spt{2q
spt{2q cospt{2q

˙
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with t P r0, π{2s. This gives a homotopy between

ˆ

u 0
0 u˚

˙

and the identity

matrix that passes through Cayley transforms. As the identity matrix is the
Cayley transform of the zero ˚-homomorphism S Ñ ApbK , and as the matrix
ˆ

u 0
0 u˚

˙

is the Cayley transform of the sum rus` ru˚s (see Remark 2.9.7), this

completes the proof.

Definition 2.9.9. For a graded C˚-algebra A, the abelian groups spKipAq are
called the spectral K-theory groups of A.

Remark 2.9.10. The spectral K-theory groups are covariantly functorial under
graded ˚-homomorphisms φ : AÑ B. Indeed, this follows as one can postcom-
pose a graded ˚-homomorphism

S Ñ ApbCliffCpRiqpbK

with the induced map

φpbidCliffCpRiqpbidK : ApbCliffCpRiqpbK Ñ BpbCliffCpRiqpbK .

Our remaining task in this section is to relate the spectral K-theory groups
to usual K-theory, in the case that the input C˚-algebra is trivially (or more
generally, inner) graded. We will actually construct two such isomorphisms;
this is useful for explicit computations and applications. Here are the maps
underlying the first isomorphism. In the statements, if A is a graded C˚-algebra,
then we define the usual K-theory groups KipAq by forgetting the grading.

Construction 2.9.11. Assume that A is an inner graded C˚-algebra. Let
K denote a standard graded copy of the compact operators with underlying
Hilbert space H0 ‘ H1, and let K “ KpH0q. Using Example E.2.13, we have
a spatially implemented C˚-algebra isomorphism ApbK – M2pA b Kq, which
is unique on the level of homotopy. Under this isomorphism, the grading on
ApbK corresponds to the grading on M2pA b Kq implemented by the unitary

multiplier

ˆ

1 0
0 ´1

˙

of M2pAbKq.

Now let φ : S Ñ ApbK represent a class in spK0pAq, so by the above
comments, we may identify φ with a graded ˚-homomorphism S ÑM2pAbKq
using the isomorphisms above. Let uφ P M2pAb Kq` Ď M2ppAb Kq`q denote
the Cayley transform of φ as in Definition 2.9.5. Define

pφ :“
1

2
pvuφ ` 1q PM2ppAbKq`q,

and note that pφ´
1
2 pv` 1q is in M2pAbKq, whence the class r 12 pv` 1qs ´ rpφs

defines an element of K0pA b M2pKqq using Exercise 2.11.6. Define a map
spK0pAq Ñ K0pAq to be the composition of the map

spK0pAq Ñ K0pM2pAbKqq, rφs ÞÑ r
1

2
pv ` 1qs ´ rpφs.
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and the canonical stabilisation isomorphism

K0pM2pAbKqq Ñ K0pAq

(see Corollary 2.7.2).
In the K1 case, let φ : S Ñ ApbCliffCpRqpbK represent a class in spK1pAq.

Example E.1.11 gives an isomorphism of C˚-algebras CliffCpRq – C ‘ C with
the grading corresponding to the flip automorphism

C‘ CÑ C‘ C, pz, wq ÞÑ pw, zq

Exercise E.3.3 says that graded tensor products are isomorphic (as graded C˚-
algebras) to ungraded tensor products if at least one of the gradings is inner,
whence we have C˚-algebra isomorphisms

ApbCliffCpRqpbK – Ab CliffCpRq bK – pAbK q ‘ pAbK q

such that the canonical tensor product grading on the left hand side corresponds
to the grading

pa, bq ÞÑ
`

pεA b εK qpbq, pεA b εK qpaq
˘

on the right hand side. Now, let uφ P pA b K q ‘ pA b K q be the image of

the Cayley transform of φ under the isomorphism above, so uφ “ pu
p0q
φ , u

p1q
φ q for

some unitaries u, v P pA bK q`. Define a map spK1pAq Ñ K1pAq to be the
composition of the map

spK1pAq Ñ K1pAbK q, rφs ÞÑ ru
p0q
φ s

and the inverse K1pAbK q Ñ K1pAq of the canonical stabilisation isomorphism
(Corollary 2.7.2).

Proposition 2.9.12. Let A be an inner graded C˚-algebra. Then the maps of
construction 2.9.11 are well-defined isomorphisms. In particular, spKipAq –
KipAq for all i P N, and these isomorphisms are natural for functoriality under
˚-homomorphisms.

The result fails for general (non-inner) gradings: see Exercise 2.11.31.

Proof. Thanks to formal Bott periodicity for spKi (see Remark 2.9.2) and Bott
periodicity for Ki, the statement for all i P N follows from the cases i P t0, 1u,
so we just prove those cases.

We first look at spK0pAq. Let φ : S Ñ ApbK represent a class in spK0pAq;
using the discussion in Construction 2.9.11, such a homomorphism is the same
thing as a graded ˚-homomorphism φ : S Ñ M2pA b Kq, where the latter

algebra is graded by the unitary multiplier v “

ˆ

1 0
0 ´1

˙

. Let uφ P M2pA b

Kq` ĎM2ppAbKq`q be the Cayley transform of φ. Then the correspondence

uφ “ vp2pφ ´ 1q ÐÑ pφ “
1

2
pvuφ ` 1q
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sets up a bijection between the collection of Cayley transforms, and the col-

lection of projections in M2ppA b Kq`q that are equal to 1
2 pv ` 1q “

ˆ

1 0
0 0

˙

modulo M2pAbKq; moreover, this correspondence preserves homotopy classes.
Hence using Lemma 2.9.4, spK0pAq is naturally in bijection with the collection
of path components of the set

S :“

$

&

%

p PM2ppAbKq`q p a projection that is equal to

ˆ

1 0
0 0

˙

modulo M2pAbKq

,

.

-

.

Now, we have a well-defined map

π0pSq Ñ Kernel
`

K0pM2ppAbKq`qq Ñ K0pM2pCqq
˘

, rps ÞÑ

„

1 0
0 0



´ rps,

(2.23)
where the map K0pM2ppA b Kq`qq Ñ K0pM2pCqq is induced by the canonical
quotient ˚-homomorphism pA b Kq` Ñ C. It is not too difficult to check that
this map is moreover a group homomorphism for the group structure on π0pSq
inherited from spK0pAq: this essentially follows as one can see the operations
as direct sum in both cases.

We claim that the map in line (2.23) is actually an isomorphism. Indeed, for
surjectivity, let p, q be projections in some MnpM2pAbKq`q ĎM2nppAbKq`q
such that the image of rps ´ rqs in M2npCq under the canonical map is zero.
It suffices to show that the class rps ´ rqs is in the image of the above map;
conjugating by a scalar unitary, we may moreover assume that p ´ q “ 0 in
M2npCq. Embedding in M4nppA b Kq`q and adding 1 ´ p to both p and q, we
may assume that our class is of the form

„

1 0
0 0



´ rps (2.24)

where the matrix entries are in M2nppAbKq`q, and

ˆ

1 0
0 0

˙

´ p maps to 0 in

M4npCq. It follows from this that both

ˆ

1 0
0 0

˙

and p are in M2pM2npAbKq`q;

using an isomorphism M2npA b Kq – A b K induced by a spatially induced
isomorphism M2npKq – K, we may assume that our element is of the form in
line (2.24), but now where the matrices are in M2ppA b Kq`q. This completes
the proof of surjectivity of the map in line (2.23). On the other hand, injectivity
of the map in line (2.23) follows on pushing homotopies through all of the above
argument.

To summarise in the K0 case, we now have a chain of isomorphisms

spK0pAq – π0pSq – Kernel
`

K0pM2ppAbKq`qq Ñ K0pM2pCqq
˘

– K0pAbKq
– K0pAq,
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the second to last of which is the isomorphism of Exercise 2.11.6, and the last
of which is the stabilisation isomorphism of Corollary 2.7.2. This completes the
proof in the K0 case.

We now move on to spK1pAq. Thinking of a graded ˚-homomorphism

S Ñ ApbCliffCpRqpbK – pAbK q ‘ pAbK q

as in Construction 2.9.11 via its Cayley transform, such a ˚-homomorphism
corresponds to a pair of unitaries

pu, vq P pAbK q` ‘ pAbK q`

with v “ pεAb εK qpuq
˚, and such that pu, vq maps to p1, 1q under the canonical

quotient pA bK q` ‘ pA bK q` Ñ C ‘ C. This in turn is exactly the same
information as just having a single unitary u P pA b Kq` that maps to one
under the canonical quotient map pA b Kq` Ñ C. We conclude that spK1pAq
is canonically isomorphic to the set of path components of

tu P pAbK q` | uu˚ “ u˚u “ 1 and u ÞÑ 1 under pAbK q` Ñ Cu.

Using the stability isomorphism inK-theory (see Corollary 2.7.2) and arguments
much as in the first part, one sees that the set of path components of the right
hand side is canonically isomorphic to K1pAq (in a way compatible with the
operations on spK1 and K1); we leave the remaining details to the reader.

Remark 2.9.13. We have another useful description of spK1pAq in the triv-
ially (more generally, inner) graded case, for which we need a little notation.
For C˚-algebras A and B, let rA,Bs denote the set of homotopy classes of ˚-
homomorphisms from A to B. Let K denote a copy of K where we forget
the grading, and equip rA,B b Ks with the semigroup structure defined quite
analogously to that on spK0 (but ignoring the irrelevant condition that U be
compatible with the grading).

For an inner graded C˚-algebra A there is then a canonical isomorphism (of
semigroups, whence of abelian groups)

spK1pAq – rC0pRq, AbKs.

Indeed, we have already seen that spK1pAq is isomorphic to

π0tu P pAbKq` | uu˚ “ u˚u “ 1 and u ÞÑ 1 under pAbKq` Ñ Cu.

in the proof of Proposition 2.9.12. On the other hand, using the universal
property of CpS1q as in the proof of Lemma 2.9.4, it is not difficult to identify
the latter set with rC0pRq, AbKs; we leave the remaining details to the reader.

If A is an inner graded C˚-algebra, we will sometimes just write KipAq, or
K˚pAq and not be specific about whether we are using the usual picture or the
spectral picture of K-theory.

It is possible to give a concrete description of an inverse to the isomorphism
in Proposition 2.9.12. This goes as follows.
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Lemma 2.9.14. Let A be a unital and inner graded C˚-algebra, so we have the
identification ApbK –M2pAbKq of Example E.2.13. Then the prescription

K0pAq Ñ spK0pAq, rps ´ rqs ÞÑ
´

f ÞÑ

ˆ

fp0qp 0
0 fp0qq

˙

¯

is a well-defined inverse to the isomorphism of Construction 2.9.11.

Proof. To make sense of the map, note that the top left entry of the matrix in
the statement should be an element of A b K; we make sense of fp0qp in here
by identifying MnpAq with a subalgebra of A b K in the standard way. The
bottom right entry is similar. Having explained this, we leave it to the reader
to check that the map

S ÑM2pAbKq, f ÞÑ

ˆ

fp0qp 0
0 fp0qq

˙

is a well-defined graded ˚-homomorphism, and that the map on K-theory in the
statement is well-defined.

Now, to check that the above map is an inverse to the one from the proof
of Proposition 2.9.12, as we know the latter is an isomorphism it suffices to
check that it is a one-sided inverse. Consider then what happens if we apply
the map from this lemma, then the one from Proposition 2.9.12, to an element
rps ´ rqs P K0pAq.

To compute the composition, note that the map from this lemma extends
to the unital map

CpS1q Ñ pAbKq`, f ÞÑ

ˆ

fp0qp` fp8qp1´ pq 0
0 fp0qq ` fp8qp1´ qq

˙

(where we identify S1 with R Y t8u to make sense of this) on the level of
unitisations. Applying this to the Cayley transform fpxq “ x´i

x`i gives

ˆ

1´ 2p 0
0 1´ 2q

˙

,

and then the prescription in the proof of Proposition 2.9.12 takes this to
„

1 0
0 1



´

„

1

2

´

ˆ

1´ 2p 0
0 2q ´ 1

˙

`

ˆ

1 0
0 1

˙

¯



,

which simplifies to
„

1 0
0 0



´

„

1´ p 0
0 q



“ rps ´ rqs,

so we are done.

We are now ready for the second description of the isomorphism spKipAq Ñ
KipAq for inner graded A. This second description is particularly useful for
index theory.
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Construction 2.9.15. Let us look at K0 first. Using Example E.2.13 and that
A is inner graded, we have an isomorphism ApbK – A bK , where the right
hand algebra has the grading idbεK . Represent AbK in a grading preserving
way on a graded Hilbert space H (see Definition E.1.4).

Now, consider a graded homomorphism

φ : S Ñ AbK Ď BpHq.

Let H 1 be the closed span of φpS qH, and note that the grading operator pre-
serves H 1 as φ is a graded ˚-homomorphism. Let Cr´8,8s denote the contin-
uous functions on the natural ‘two point’ compactification of R, and note that
Proposition 1.7.3 gives us an extension

φ : Cr´8,8s ÑMpφpS qq Ď BpH 1q

of our original ˚-homomorphism φ; this extension is still graded, as one easily
checks.

Let now f : R Ñ r´1, 1s be any odd function such that lim
tÑ˘8

fptq “ ˘1,

considered as an element of Cr´8,8s, and define F :“ φpfq P BpHq. Then F
is in an odd, self-adjoint, contractive element of the multiplier algebra MpφpS qq

such that F 2 ´ 1 P φpS q. As the grading on AbK is inner, the construction
of Definition 2.8.5 gives an index class

IndrF s P K0pφpS qq.

Composing with the canonical map onK-theory induced by the inclusion φpS q Ď

AbK and the stabilisation isomorphism on K-theory, we get a class

IndrF s P K0pAbK q – K0pAq.

The case of K1 is similar: we use the description spK1pAq “ rC0pRq, AbKs
from Remark 2.9.13. Choose a function f : RÑ r´1, 1s such that lim

tÑ˘8
fptq “ ˘1

(it no longer matters if f is odd). Representing A b K on some Hilbert space,
just as before, from an element rφs P spK1pAq we get a homomorphism

φ : Cr´8,8s Ñ AbK Ď BpHq

and therefore a self-adjoint contraction F :“ φpfq in the multiplier algebra
MpφpC0pRqqq such that F 2´1 P φpC0pRqq. The index construction of Definition
2.8.5 gives an element

IndrF s P K1pφpC0pRqqq,

and postcomposing with the map onK-theory induced by the inclusion φpC0pRqq Ď
AbK gives an element of K1pAbK q – K1pAq.

Theorem 2.9.16. Construction 2.9.15 induces the same isomorphism spKipAq Ñ
KipAq as in the proof of Proposition 2.9.12.
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Proof. We leave it to the reader to do the direct check that Construction 2.9.15
gives a well-defined map spKipAq Ñ KipAq that does not depend on the choice
of function f P Cr´8,8s.

We look first at the K1 case. Given a ˚-homomorphism, Construction 2.9.15
above asks us to choose a function f : R Ñ r´1, 1s with lim

tÑ8
fptq “ ˘1. We

may assume that f is strictly increasing. We then form F “ φpfq. Definition
2.8.5 tells us to form P “ 1

2 pF ` 1q and take its index in the sense of Definition
2.8.4. The element we get is thus

e´2πiP “ e´πiF e´πi “ ´eπiφpfq “ φp´e´πif q P pAbKq`.

Now, as t ranges from ´8 to 8, fptq increases from ´1 to 1, and the function
´e´πif goes counterclockwise around the circle once, starting and finishing at
one. It is thus homotopic (through functions taking infinity to one) to the
Cayley transform c : R` Ñ S1. Hence Construction 2.9.15 gives us the class
of the unitary φpcq in K1pAq, which is exactly what happens in the proof of
Proposition 2.9.12.

Let us now look at the K0 case. Thanks to Proposition 2.9.12, we know that
for A non-unital spKipAq “ KerpspKipA

`q Ñ spKipAqq; as the construction
above is compatible with ˚-homomorphisms, it therefore suffices to prove the
result in the unital case. In that case, it suffices to prove that Construction
2.9.15 gives a one-sided inverse to the map from Lemma 2.9.14, which we now
do.

Let H0 ‘H1 be the Hilbert space underlying K , let K “ KpH0q – KpH1q,
and let p, q P AbK. Consider the ˚-homomorphism

φ : S Ñ AbK , f ÞÑ

ˆ

fp0qp 0
0 fp0qq

˙

,

where the matrix is defined with respect to the grading on the Hilbert space
H0‘H1 underlying K . Represent AbK faithfully on a Hilbert space H. Let
f P Cr´8,8s be a function with the properties in Construction 2.9.15, so in
particular f is odd and so fp0q “ 0. It follows that F “ φpfq “ 0. On the other
hand,

spanφpS qH “ pH ‘ qH,

with the grading given by the direct sum decomposition. As F “ 0, it follows
from the explicit formula from Definition 2.8.5 that we have

IndrF s “

„

p 0
0 0



´

„

0 0
0 q



“ rps ´ rqs

which tells us exactly that Construction 2.9.15 inverts the map of Lemma 2.9.14,
and we are done.

2.10 The external product in K-theory

Our goal in this section is to construct an external product

spKipAq b spKjpBq Ñ spKi`jpApbmaxBq
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on spectral K-theory groups of graded C˚-algebras. We will need to use material
from Section 2.9 on spectral K-theory groups, and Appendix E on graded C˚-
algebras.

To construct the external product on K-theory, we first need to construct
the so-called comultiplication on S , which is a ˚-homomorphism

∆ : S Ñ S pbS .

There are several ways to do this: we proceed in a slightly ad-hoc way, partly
as it introduces some machinery that we will need again later.

For the statement of the next lemma, see Definition E.1.4 for the definition of
a graded Hilbert space, and Definition D.1.1 for that of an unbounded operator.

Definition 2.10.1. Let pH1, U1q and pH2, U2q be graded Hilbert spaces, and let
D1 and D2 be unbounded operators operators on H1 and H2 with domains S1

and S2 respectively, and that are odd17for the gradings. Define an unbounded
operator on H1pbH2, with domain the algebraic tensor product S1 d S2 by the
formula

pD1pb1` 1pbD2pub vq :“ D1ub v ` U1ubD2v. (2.25)

The formula in line (2.25) might seem more intuitive when compared with
Definition E.2.5 and Remark E.2.6.

For the next lemma, recall from Remark D.1.8 that we may apply the func-
tional calculus of Theorem D.1.7 to essentially self-adjoint operators.

Lemma 2.10.2. With notation as in Definition 2.10.1, assume moreover that
for j P t1, 2u the operator Dj is essentially self-adjoint, and that for all t P R
the operators eitDj preserve the domain Sj. Then D1pb1` 1pbD2 is odd for the
tensor product grading U1 b U2, and essentially self-adjoint.

Proof. Direct algebraic checks show that D as in the statement is odd and for-
mally self-adjoint; it remains to check essential self-adjointness. The functional
calculus (Theorem D.1.7) lets us build bounded operators eitD1 and eitD2 on H1

andH2 respectively for t P R. We may thus form the operators Vt :“ eitD1
pbeitD2

as in Definition E.2.5. Using our conventions on graded tensor products (see
Definition E.2.9), if we split eitx into its odd and even parts, then we have

Vt “ eitD1 b cosptD2q ` e
tD1U1 b i sinptD2q.

Note that the collection pVtqtPR is a strongly continuous family of unitary oper-
ators. Using the part of the Stone von Neumann theorem in Proposition D.2.1
applied to the self-adjoint closures of D1 and D2 (and the usual arguments
proving the product rule from calculus), for each u P S1 d S2 we have that

17Compare Example E.1.14: in particular, this assumes that U1, U2 preserve the domains
S1, S2 respectively.
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lim
tÑ0

1

i

Vtu´ u

t
equals

1

i

´

pieitD1D1 b cosptD2qq|t“0 ` pe
itD1 b p´ sinptD2qD2qq|t“0

` pieitD1D1U1 b i sinptD2qq|t“0q ` pe
itD1U1 b i cosptD2qD2q|t“0

¯

u

“pD1 b 1` U1 bD2qu.

Hence from the part of the Stone von Neumann theorem in Theorem D.2.2,
D1pb1` 1pbD2 is essentially self-adjoint on the given domain.

Let us now identify S with its image in the natural multiplication repre-
sentation on L2pRq with associated grading operator U defined by pUuqpxq :“
up´xq as in Example E.1.10. Let Mx be the unbounded, odd, operator of mul-
tiplication by the identity function on L2pRq with domain CcpRq. It is straight-
forward to check that this is essentially self-adjoint. Then Lemma 2.10.2 gives
us an unbounded, odd, essentially self-adjoint operator

C :“ xpb1` 1pbx

on L2pRq b L2pRq with domain CcpRq d CcpRq. Hence we may apply the un-
bounded functional calculus (Theorem D.1.7 and Remark D.1.8) to Mx, getting
in particular a ˚-homomorphism

∆ : C0pRq Ñ BpL2pRq b L2pRqq, f ÞÑ fpMxq. (2.26)

Lemma 2.10.3. The ˚-homomorphism ∆ in line (2.26) above is graded and
takes image in S pbS .

Proof. First one computes that M2
x acts as x2 b 1` 1b x2 on CcpRq d CcpRq,

and therefore the ˚-homomorphism in line (2.26) takes the function e´x
2

to

e´M
2
x “ e´px

2
b1`1bx2

q “ e´x
2
pbe´x

2

(where the right hand side is interpreted as the operator of multiplication by

the given function). Similarly, it takes xe´x
2

to

Mxe
´M2

x “ pxb U ` 1b xqe´px
2
b1`1bx2

q “ xe´x
2
pbe´x

2

` e´x
2
pbxe´x

2

.

In particular, the ˚-homomorphism in line (2.26) takes both of the functions

e´x
2

and xe´x
2

into S pbS ; as these functions generate C0pRq as a C˚-algebra,
this shows that the ˚-homomorphism ∆ takes image in S pbS . Moreover, from
the formulas above, ∆ takes e´x

2

to an even element; as e´x
2

generates the C˚-
subalgebra of even elements of C0pRq, this implies that ∆ takes even elements

to even elements. Finally, it takes xe´x
2

to an odd element; as the collection of
products of the form fpxqxe´x

2

with f P S even is dense in the subspace of odd
elements in S , ∆ takes odd elements to odd elements too, and thus preserves
the grading.
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Definition 2.10.4. The comultiplication for S is the graded ˚-homomorphism

∆ : S Ñ S pbS

of Lemma 2.10.3.

Remark 2.10.5. Using Corollary E.2.19, we may equally well use the spatial
S pbS or maximal S pbmaxS tensor products in the definition of ∆.

We will need one more fact about ∆, often called coassociativity .

Lemma 2.10.6. The following diagram commutes.

S
∆ //

∆

��

S pbS

∆pbid

��
S pbS

idpb∆ // S pbS pbS

Proof. It suffices to check commutativity on the generators e´x
2

and xe´x
2

of
S . This can be done using the computations from the proof of Lemma 2.10.3:
for example, one sees that either composition takes xe´x

2

to

xe´x
2
pbe´x

2
pbe´x

2

` e´x
2
pbxe´x

2
pbe´x

2

` e´x
2
pbe´x

2
pbxe´x

2

We leave the explicit computations to the reader.

We are now in a position to define the external product on spectral K-theory.
Let K be a standard graded copy of the compact operators (see Example E.1.9),
and say the underlying Hilbert space is H “ H0 ‘ H1. Choose a unitary
isomorphism U : H bH Ñ H that restricts to unitary isomorphisms

pH0 bH0q ‘ pH1 bH1q Ñ H0 and pH0 bH1q ‘ pH0 bH1q Ñ H1

(in other words, U preserves the gradings). Then conjugation by U induces a
graded ˚-isomorphism K pbK Ñ K ; moreover, any two such choices of unitary
will be homotopic through unitaries satisfying the same condition.

For the next definition, note that Corollary E.2.19 implies that we may as
well use the maximal pbmax as spatial tensor pb tensor product when considering
an element of spK0pAq as a homomorphism S Ñ ApbK .

Definition 2.10.7. Let A and B be graded C˚-algebras. Let φ : S Ñ

ApbmaxK and ψ : S Ñ BpbmaxK be ˚-homomorphisms representing classes in
spK0pAq and spK0pBq. Then their (external) product is the class in spK0pApbmaxBq
of the composition

S
∆ // S pbmaxS

φpbψ // ApbmaxK pbmaxBpbmaxK

ApbmaxBpbmaxK pbmaxK //ad1bU // ApbmaxBpbmaxK

,
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where the third map is the canonical ‘reordering’ isomorphism arising from
associativity and commutativity of pbmax (Remark E.2.15).

This also gives rise to products

spKipAq b spKjpBq Ñ spKi`jpApbmaxBq

defined using the canonical isomorphism CliffCpRiqpbmaxCliffCpRjq – CliffCpRi`jq
arising from the discussion in Example E.2.12 and Corollary E.2.19.

Lemma 2.10.8. The product above is well-defined, does not depend on the
choice of U , distributes over the group operations on spKnpAq, and is associa-
tive.

Proof. Well-definedness comes down to the facts that a tensor product of ho-
motopies is a homotopy, and that the composition of a homotopy with a ˚-
homomorphism is a homotopy. It does not depend on the choice of U as any two
such unitaries are homotopic through unitaries satisfying the same conditions.
Distribution over addition follows directly from the definitions. Associativity
follows directly from Lemma 2.10.6.

2.11 Exercises

2.11.1. Show that if v, w implement a Murray von Neumann equivalence between
idempotents e and f (Definition 2.1.2), then so do v1 :“ evf and w1 “ fwe.
Moreover these new elements satisfy ev1 “ v1f “ v1 and w1e “ fw1 “ w1.

2.11.2. Let R be a unital ring. Show that the addition operation on V pRq from
Definition 2.1.4 is well-defined, and makes V pRq into a commutative monoid.

2.11.3. A (right) module P over a ring R is projective if for any commutative
diagram of module maps

N

����
P //

>>

M

with the vertical arrow surjective, the dashed arrow can be filled in.

(i) Show that a finitely generated right module M over a unital ring R is
projective if and only if there is n P N and an idempotent e PMnpRq with
M – epRnq.
Hint: apply the diagram above where P “ M , the bottom arrow is the
identity, and the vertical arrow is some choice of quotient map p : Rn Ñ
M (which exists as M is finitely generated). This gives a commutative
diagram

Rn

p
����

M
id //

i

==

M

.
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Now define e “ i ˝ p : Rn Ñ Rn and show that this works, having identi-
fied MnpRq with the collection of R-module maps from Rn to itself in the
canonical way.

(ii) Show that two finitely generated projective modules M and N over R are
isomorphic as R modules if and only if the following property holds: for
any n and any idempotents e, f P MnpRq with eRn – M and fRn – N ,
one has that e and f are Murray-von Neumann equivalent.

(iii) Conclude that V pRq can equivalently be described as the collection of all
isomorphism classes of finitely generated projective modules over R.

2.11.4. The goal of this exercise is to show that V pCpXqq can equivalently be
described in terms of isomorphism classes of vector bundles over a compact
Hausdorff space X. It requires some background in the basic theory of vector
bundles: see the notes and references at the end of the section. To establish
conventions, let us define a vector bundle over a compact Hausdorff space X
to be a locally compact, Hausdorff, topological space E satisfying the following
conditions:

(a) there is a continuous surjection π : E Ñ X;

(b) for each x P X, the fibre Ex :“ π´1pxq is equipped with the structure of a
finite dimensional complex vector space;

(c) for each x P X, there is an open set U Q x and a homeomorphism

φ : U ˆ Cd Ñ π´1pUq

(called a local trivialisation) such that πpφpx, vqq “ x for all px, vq P UˆCd,
and so that for each x P X, the map

Cd Ñ Ex, v ÞÑ φpx, vq

is an isomorphism of vector spaces.

(i) Let E be a vector bundle over X. Show that there is N such that E
embeds inside the trivial vector bundle X ˆ CN .
Hint: choose a finite cover U1, ..., Un of X such that each Ui is equipped
with a homeomorphism φi : Ui ˆ Cdi Ñ π´1pUiq as in the definition of
vector bundle. Let qi : Ui ˆ Cdi Ñ Cdi be the coordinate projection. Let
f1, ..., fn be a partition of unity (see Definition A.1.2) subordinate to this
cover, and define

E Ñ X ˆ
´ n
à

i“1

Cdi
¯

, e ÞÑ p πpeq,
´

fipπpeqqqipφ
´1
i peqq

¯n

i“1
q.

Show this works.
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(ii) Show that if E is a vector bundle over X which is embedded inside some
trivial bundle XˆCN , then there is another sub-bundle F of XˆCN such
that E ‘ F is isomorphic to X ˆ CN .
Hint: choose an inner product on CN , and define F to be

F :“ tpx, vq P X ˆ CN | xv, wy “ 0 for all w P Exu,

i.e. F is the ‘pointwise orthogonal complement of E’. Equip F with the
restriction πF : F Ñ X of the coordinate projection π : X ˆCN Ñ X and
equip each fibre Fx :“ π´1

F pxq with the vector space structure it inherits
from CN . Finally, show that if U Q x and φ : U ˆCd Ñ π´1

E pUq is a local
trivialisation of E, we can define a local trivialisation of F on a smaller
open set V Q x as follows. First, note that for each y P U , we have a map

ψy : Cd ‘ Fx Ñ CN , pv, wq ÞÑ φpy, vq ` w,

thus defining a continuous map

ψ : U Ñ HompCd ‘ Fx,CN q, y ÞÑ ψy

where the right hand side has its usual topology (coming, for example, from
a choice of identification with MN pCq). As ψx is an isomorphism and as
the invertible elements in HompCd ‘ Fx,CN q are open, there must exist a
neighbourhood V Q x such that ψy is an isomorphism for all y P V . Let
q : Cd ‘ Fx Ñ Fx be the coordinate projection, and provisionally define a
local trivialisation of F over V to be the inverse of the map

π´1
F pV q Ñ V ˆ Fx, py, wq ÞÑ qpψ´1

y pwqq.

Show that this does indeed define a local trivialisation of F over V .

(iii) With notation as in the previous part, show that there is an idempotent
eE P CpX,MN pCqq such that the image of eE (considered as a fibre-
preserving map X ˆ CN Ñ X ˆ CN ) is exactly E.
Hint: find F as in the previous part above and define eE to be the idem-
potent with image E and kernel F in the appropriate sense.

(iv) We now move in the opposite direction: from idempotents to vector bun-
dles. Let e P CpX,MN pCqq be an idempotent for some N , and define

E :“ tpx, vq P X ˆ CN | v P rangepepxqqu.

Show that Ee is a well-defined vector bundle over X.
Hint: for local triviality, the key point is that if V,W are finite-dimensional
vector spaces, then the invertible elements of HompV,W q form an open set.

(v) With notation as above, show that the above processes e ÞÑ Ee and E ÞÑ
eE give well-defined bijections between the collection V pXq of isomorphism
classes of complex vector bundles over X, and the collection V pCpXqq from
Definition 2.1.4. Show moreover that this bijection is compatible with the
natural operations (direct sum of vector bundles on V pXq, and the block
sum of idempotents from Definition 2.1.4).
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2.11.5. Let M be a commutative monoid (or just a semigroup: the presence of
the unit makes no real difference). In this exercise, we give two constructions
of the universal Grothendieck group: an abelian group equipped with a map of
monoids M Ñ GpMq with the universal property that

M //

""

GpMq

��
A

can be filled in for any abelian group A.

(i) Show that GpMq can be constructed as the quotient of the free abelian
group with generating set tras | a PMu, subject to the relations

ras `GpMq rbs “ ra`M bs.

(ii) Show that GpMq can be constructed as the quotient of the direct sum
monoid M ‘M by the relation

pa1, b1q „ pa2, b2q if a1 ` b2 “ a2 ` b1.

In the first picture, show moreover that any element of GpMq is equivalent
to one of the form ras ´ rbs with a, b P M , and that this corresponds to the
equivalence class of pa, bq in the second picture.

2.11.6. In Definition 2.1.13, we defined K0 of a non-unital C-algebra R to be
the kernel of the map

φ˚ : K0pR
`q Ñ K0pCq

where φ : R` Ñ C is the canonical quotient map from the unitization of R to
C. Show that for any n P N, K0pRq also canonically identifies with the kernel
of the map

K0pMnpR
`qq Ñ K0pMnpCqq

induced on matrices by the above quotient map.

2.11.7. Let A be a Banach algebra.

(i) Let A` be the unitisation of A as in Definition 1.1.9, and equip A` with
the norm defined by

}pa, λq} :“ }a}A ` |λ|.

Show that this is indeed a norm, and that it makes A` into a Banach
algebra.

(ii) Let pA`q‘n denote the direct sum of n copies of A`, equipped with the
norm

}pa1, ..., anq} :“
n
ÿ

i“1

}ai}A` .

Show that MnpAq acts on pA`q‘n in the natural way by matrix mutli-
plication (treating elements of pA`q‘n as column vectors), and that the
associated operator norm on MnpAq makes it into a Banach algebra.
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(iii) Show that with respect to the norms introduced above, for each n, the
‘top left corner’ inclusion

MnpAq ÑMn`1pAq, a ÞÑ

ˆ

a 0
0 0

˙

is an isometry.

2.11.8. Let Q be a unital C-algebra and Q` its unitization. Show that if Q fits
into a short exact sequence

0 // I // R // Q // 0

then the same formula as in Definition 2.4.3 defines a homomorphism

Ind : GL8pQq Ñ K0pIq

and that the diagram

GL8pQ
`q

��

Ind // K0pIq

GL8pQq
Ind // K0pIq

commutes, where the vertical arrow on the left is induced by a`λp1Q`´1Qq ÞÑ a.
Show the same formulas induce a similar diagram where GL8pQ

`q and GL8pQq
are replaced by K1pQ

`q and K1pQq respectively, and where the vertical map
on the left now is now an isomorphism (part of the exercise is to make precise
sense of this).

2.11.9. Let A be a Banach algebra. Show that the monoid defined in part (iv)
of Proposition 2.2.9 defines the usual monoid V pAq underlying the definition of
K0pAq.

2.11.10. With notation as in Proposition 2.3.11, complete the following sketch
proof that Iτ is an ideal. Let first x be a positive element in Iτ and u be a
unitary in the unitisation A`. Use the polarisation identity (line (2.4)) applied
to the product px1{2uq˚x1{2 plus the facts that Iτ is hereditary and that uxu˚

is in Iτ to deduce that ux is in Iτ . As A` is spanned by unitaries and Iτ is
spanned by its positive elements, this suffices.

2.11.11. Prove that under the hypotheses of Proposition 2.3.16, the inclusion
ι : AÑ A induces an isomorphism on K1 groups.

2.11.12. Show that the hypotheses of Proposition 2.3.16 can be weakened to the
case that A is a Fréchet algebra for which the inclusion ι : AÑ A is continuous
(and that the conclusion of Exercise 2.11.11 holds in this case too).
Hint: the idea of the proof is similar, but there are some additional subtleties.
Assume that A and A are unital (with the same unit) for notational simplicity.

First, while it is not true that the invertible elements of a Fréchet algebra
always form an open set, show that the invertibles A´1 in A are open under
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the assumption that A is a (dense) inverse closed subalgebra of a C˚-algebra
(or even just a Banach algebra) A. Now appeal to (or prove) the following fact
from general topology: if U is an open subset of a complete metric space X
then there exists a complete metric on U inducing the subspace topology. In
particular, A´1 is a complete, metrizable topological space.

At this point appeal to (or prove) the following automatic continuity result
for G “ A´1: if G is a group equipped with a complete metrizable topology for
which the multiplication is jointly continuous, then the inverse map G Ñ G is
also continuous. Show that this implies that A has a holomorphic functional
calculus (which agrees with the holomorphic functional calculus on A). The
proof can now be completed much as the proof of Proposition 2.3.16.

2.11.13. Use the result of the Exercise 2.11.12 to show that if M is a closed
smooth manifold then K0pMq is generated by classes of the form rps where
p PMnpCpMqq is a smooth projection.
Hint: show that A “ C8pMq satisfies the assumptions of the Exercise 2.11.12.

2.11.14. Show that the trace defined in Example 2.3.4 is indeed an unbounded
trace in the sense of Definition 2.3.1, and that it does not depend on any of the
choices involved in its construction.

2.11.15. Show that K0p`
8pNqq is canonically isomorphic to the collection of all

bounded maps from N to Z, and thus that there is no ‘naive’ isomorphism

K˚

´

ź

iPI

Ai

¯

–
ź

iPI

K˚pAiq

when each Ai is C, and I is N.

2.11.16. Let A be a C˚-algebra, K be the compact operators on an infinite-
dimensional Hilbert space, and MpA b Kq the multiplier algebra of A b K.
Generalize the argument of Corollary 2.7.7 to show that K˚pMpAbKqq “ 0.

2.11.17. With notation as in the previous exercise, let B be the quotient C˚-
algebra MpAbKq{pAbKq. Show that natural map

π0

`

tp P B | p a projectonu
¯

Ñ K0pBq, rps ÞÑ rps

is a well-defined bijection. Analogously show that

π0

`

tu P B | u unitaryu
˘

Ñ K1pBq, rus ÞÑ rus

is a well-defined bijection.
Hint: for the projection case, you might want to start by showing that the class
r1s of the identity is zero in K-theory (this follows from the Exercise 2.11.17),
and that every projection p P M8pBq is Murray von Neumann equivalent to a
subprojection of 1.

2.11.18. Consider a pushout diagram of C˚-algebras as in Definition 2.7.13.
Define

C “ tf : r0, 1s Ñ A | fp0q P I and fp1q P Ju.
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Note that the evaluation maps at 0 and 1 gives rise to a short exact sequence

0 // SA // C // I ‘ J // 0 .

Deduce the existence of the pushout Mayer-Vietoris sequence from the six-term
exact sequence associated to this short exact sequence.

2.11.19. Consider a pullback diagram of C˚-algebras as in Definition 2.7.13.
Consider the C˚-algebra

C “ tpfA, fBq P CA‘ CB | πApfAp1qq “ πBpfBp1qqu.

The evaluation map pfA, fBq ÞÑ pfAp1q, fBp1qq from C to P fits into a short
exact sequence

0 // SA‘ SB // C // P // 0 .

Deduce the existence of the pushout Mayer-Vietoris sequence from the six-term
exact sequence associated to this short exact sequence.

2.11.20. Let G “ Z{3Z “ te, g, g2u, and let CrGs be its complex group algebra.
Note that CrGs – C3, so K0pCrGsq – Z3.

Write elements of CrGs as formal sums ae ` bg ` cg2 where a, b, c P C, and
equip CrGs with the `1 norm

}ae` bg ` cg2} :“ |a| ` |b| ` |c|

and ˚-operation
pae` bg ` cg2q˚ :“ ae` bg ` cg2,

so CrGs is a Banach ˚-algebra (it is not a C˚-algebra!). Let now

f “
1

3
e`

1

3
p´

1

2
`

?
3

2
qg `

1

3
p´

1

2
´

?
3

2
iqg2,

which is an idempotent in CrGs. Show that there is no self-adjoint idempotent
p P CrGs with rps “ rf s. Compare this to the statement of Proposition 2.2.5.

2.11.21. Prove Atkinson’s theorem as used in Example 2.8.3 above. This says
that an operator T P BpHq is invertible modulo KpHq if and only if it has closed
range, and finite dimensional kernel and cokernel.
Hint: the harder direction goes from invertibility modulo KpHq. Start by proving
that if T is invertible modulo KpHq, then it is actually invertible modulo finite
rank operators. Note that T having closed range actually follows from the fact
that cokernel H{ImpT q is finite dimensional: prove this too!

2.11.22. It follows from the discussion of doubles in Section 2.7 that if I is an
ideal in a C˚-algebra A and e, f are idempotents in A such that e´f is in I, then
there is a canonically associated class res´rf s in K0pIq. In Definition 2.1.13, we
defined K0pIq in terms of idempotents in matrices over the unitisation I`; the
purpose of this exercise is to give an explicit, and purely algebraic, formula for
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the class res ´ rf s in terms of matrices over I` (all this also works with general
rings; the fact that we are working with C˚-algebras is irrelevant).

Passing to the unitisation of A if necessary we may assume that A is unital,
and thus identify I` with a C˚-subalgebra of A. Define then

Zpfq :“

¨

˚

˚

˝

f 0 1´ f 0
1´ f 0 0 f

0 0 f 1´ f
0 1 0 0

˛

‹

‹

‚

.

(i) Check that Zpfq is invertible by showing that its inverse is

Zpfq´1 “

¨

˚

˚

˝

f 1´ f 0 0
0 0 0 1

1´ f 0 f 0
0 f 1´ f 0

˛

‹

‹

‚

.

(ii) Show that the difference below

Zpfq´1

¨

˚

˚

˝

e 0 0 0
0 1´ f 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‚

Zpfq ´

¨

˚

˚

˝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‚

is in M4pIq (and therefore the first matrix is in M4pI
`q), and thus it defines

an element of K0pIq.

(iii) Show that this is the same element as the class defined by the image of
rpe, fqs P K0pDApIqq under the canonical map K0pDApIqq Ñ K0pIq.

2.11.23. Let X be a locally compact space, and let U be an open subset. As
we commented in Example 2.7.16, there is a ‘wrong way map’ in K-theory
K˚pUq Ñ K˚pXq induced by the inclusion C0pUq Ñ C0pXq. What is the map
on the spatial (as opposed to C˚-algebraic) level that induces this map on K-
theory?
Hint: think about one-point compactifications.

2.11.24. Use the K-theory Mayer-Vietoris sequence(s) to compute the K-theory
groups of d-tori, d-spheres, and orientable surfaces.

2.11.25. Find explicit formulas for all the maps appearing in the two Mayer-
Vietoris sequences explicitly (including the vertical maps).

2.11.26. Let φ : A Ñ B be a ˚-homomorphism between two C˚-algebras. The
mapping cone of φ is the C˚-algebra defined by

Cpφq :“ tpa, fq P A‘ CB | φpaq “ fp1qu.

Show that the C˚-algebra C appearing in the proof of the ‘pullback’ Mayer-
Vietoris sequence in Exercise 2.11.19 identifies with the mapping cone of the
natural inclusion P ãÑ A‘B.
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2.11.27. With notation as in Exercise 2.11.26, show that a ˚-homomorphism
φ : AÑ B induces an isomorphism on K-theory if and only if K˚pCpφqq “ 0.

2.11.28. Let A be a C˚-algebra. Equip M2pAq with the standard inner grad-

ing induced by the element

ˆ

1 0
0 ´1

˙

of its multiplier algebra. Show that the

following two classes can be canonically identified.

• Pairs consisting of a graded representation of M2pAq on a graded Hilbert
space H, and an odd operator F in the multiplier algebra of M2pAq such
that F 2 ´ 1 is in M2pAq.

• Pairs consisting of representations of A on a Hilbert space, and pairs of
operators V,W : H Ñ H in the multiplier algebra of A such that VW ´ 1
and WV ´ 1 are in A.

2.11.29. Let A be a graded C˚-algebra equipped with a faithful graded repre-
sentation A Ď BpHq on a graded Hilbert space. Show that if φ : S Ñ A is a
graded ˚-homomorphism, then there is an odd (essentially) self-adjoint operator
D on H such that φpfq “ fpDq for all f P S .
Hint: one way to do this is to apply the Stone von Neumann theorem (Theorem
D.2.2) to the Fourier transform of φ in an appropriate sense.

2.11.30. In Lemma 2.9.4, if B is a graded C˚-algebra, then we identified the
collection tS , Bu of homotopy classes of graded ˚-homomorphisms from S to
B with the set of path components of the set

"

u P B` u is unitary, εB`puq “ u˚, and u maps to 1
under the canonical quotient B` Ñ C

*

.

Now, say B is gradedly represented on a Hilbert space H. Show that tS , Bu
bijectively identifies with the path components of the set

"

F P BpHq F is odd, F “ F˚, F 2 ´ 1 P B
}F } ď 1, and F 3 ´ F P B

*

.

Hint: the bijection we have in mind is canonical, up to a choice of continuous,
increasing, odd bijection f : RÑ p´1, 1q.

2.11.31. Show that

spKipCliffCpRqq –
"

0 i “ 0
Z i “ 1

.

Note that if we forget the grading, then CliffCpRq is isomorphic to C‘C. Hence
this shows that the analogue of Proposition 2.9.12 fails if the C˚-algebra is not
inner graded.
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2.12 Notes and references

There are several good texts on C˚-algebra K-theory. The texts [221] and [248]
are written at an introductory level, and a good place to start. The classic text
[33] expects more of the reader, and goes much further. The first two texts work
only in the context of C˚-algebras, while the latter sets up basic topological K-
theory in the more general context of so-called local Banach algebras; this is
very useful for some applications. From an operator algebraic point of view, an
important inspiration for K-theory comes from the ideas of von Neumann on
continuous geometries [242].

The text [71] is a more modern introduction to topological K-theory: it
works with the class of so-called bornological algebras, which provide a very
satisfactory setting for topological K-theory and related material. The first two
chapters are quite similar in spirit to the way we have presented this chapter.
Chapter 4 of [135] also contains a (brief) introduction to C˚-algebra K-theory
from a point of view that is well-suited to index-theoretic applications, amongst
other things.

In terms of the proofs we skipped, most of the material can be found in all,
or almost all, of the references above. There are two places where we skipped
proofs of slightly more non-standard material, however. First, the more alge-
braic treatments in Sections 2.1 and 2.4 can be found in much more detail in [71,
Chapter 1]. The result of Brown we quoted as Theorem 2.7.17 is [40, Corollary
2.6].

There are quite a few tools and tricks that we used in the above, some non-
obvious; unfortunately, we do not know the origins of most of them. Some of the
ones we know attributions for (or at least, where we know the references that we
learnt the material from) are: our treatment of the algebraic index map, which
is based on [183, Chapter 3]; the formulas in Exercise 2.11.22, which come from
[153, Section 6]; the idea of a quasi-morphism, which is based on work of Cuntz
[69].

The material in Section 2.3 is not found in any standard textbook as far as
we know, and is based on unpublished lecture notes of John Roe. The material
in Lemmas 2.3.14, 2.3.15 and Proposition 2.3.16 can also be found (in the more
general version of Exercise 2.11.12) in the paper [233] of Schweitzer. The basic
philosophy in that section – that sometimes one needs to pass to a dense subal-
gebra in order to pair certain objects with K-theory – is fundamental in cyclic
(co)homology theory and the so-called theory of noncommutative differential
geometry ; traces are the zero dimensional part of cyclic cohomology, and thus
in some sense the simplest manifestation of the general theory. See for example
[58] and [60, Chapter 3] for a look at the ideas involved here.

The spectral picture of K-theory and the associated definition of the ex-
ternal product is also not as standard as the other material, which is why we
went over it in more detail. The idea is exposited in the literature by Trout
[240] and Higson and Guentner [128, Lecture 1], and it is closely related to the
bivariant E-theory of Connes-Higson [61]. There is also a nice recent exposition
in [275, Section 1.1] that highlights the connections to index theory, and also in
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unpublished lecture notes of John Roe. Our exposition is based on all of these
sources.

For the reader interested in the purely algebraic theory (which is not directly
relevant for this book, but does connect to it in many ways), we recommend the
classic introduction to the basics [183], and the more modern and comprehensive
texts [224] and [250]. The survey article [67] gives a very nice introduction to
the relationship between topological and algebraic K-theory.

For the reader interested in the purely topological theory (more-or-less equiv-
alently, the K-theory of commutative C˚-algebras), we recommend the classic
texts of Atiyah [6] and Karoubi [147]. In particular, [6, Chapter 1] is an ex-
cellent source for the material needed to understand Exercise 2.11.4, amongst
other things.
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Chapter 3

Motivation: positive scalar
curvature on tori

In this chapter, we discuss the non-existence of positive scalar curvature metrics
on tori. This is a classical problem from Riemannian geometry. We have tried
to explain the ideas in a way that one can understand without much background
in manifold geometry. We generally do not give complete proofs in this chapter,
but most of the material will be justified and expanded on later in the book.

The chapter is structured as follows. Section 3.1 is differential-geometric: we
discuss the question of the existence of positive scalar curvature metrics, and
state a theorem relating this to so-called Dirac operators. In Section 3.2 we
introduce analysis: we discuss Hilbert space methods that are used to convert
the original geometric question to one about index elements in K-theory groups
of associated C˚-algebras. Then, in Section 3.3 we sketch K-theoretic computa-
tions that answer this question in the case of tori. The structure of these three
sections – starting with a geometric or topological problem, then introducing
Hilbert space techniques to frame the problem in terms of operator K-theory,
and finally solving the K-theoretic problem – mimics that of much research in
the area generally.

Section 3.4 then gives some historical discussion, partly to provide more
context. Finally, Section 3.5 discussed the content of the rest of the book, using
the material in this chapter as a framework.

3.1 Differential geometry

Let M be a d-dimensional Riemannian manifold: in other words, M is a topo-
logical space, locally modeled on Rd is a smooth way, and there is additional
‘Riemannian structure’ or ‘Riemannian metric’ that lets us talk about geomet-
ric notions. Intuitively, one can think of M as a subset of some N -dimensional
Euclidean space for N ě d, such as the sphere and torus below (with d “ 2 and
N “ 3).
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The canonical inner product on RN then induces a Riemannian structure on M
that induces the geometry ‘relevant to life on M ’. This means that the induced
distance function on M is not just the restriction of the distance function from
RN , but rather that as an ant living on M would see it: the distance between
two points on M is the distance you have to walk along the surface of M to get
there, not the straight line distance through the ambient Euclidean space.

Now, as well as a distance function on M , the Riemannian structure also
induces a measure, so it makes sense to speak of the volume of an r-ball Bpx; rq.
around some x P M . In particular, it makes sense to discuss how this volume
differs from the corresponding volume of an r-ball in Euclidean space Rd of the
same dimension as M . This difference is measured quantitatively by the scalar
curvature function of M .

The scalar curvature of M is the smooth function κ : M Ñ R determined
by the following condition: for any x PM and small r ą 0 we have

VolumepBM px; rqq

VolumepBRdpx; rqq
“ 1´

κpxq

6pd` 2q
r2 `Opr4q.

Thus κpxq measures how much the volume of the ball of radius r about x P M
differs from the volume of a ball of radius r in Rd. If κpxq is positive (for example,
if M is the sphere pictured above), balls in M are smaller than in Euclidean
space, and if it is negative (for example, if M is a hyperbolic space), they are
bigger. In many cases, a Riemannian manifold will have some points where the
scalar curvature is negative, and others where it is positive: this happens for
the torus above, where roughly the scalar curvature is positive on the bits of
the torus looking inwards to the ‘doughnut hole’, and positive on the ‘exterior
facing’ parts.

The possible values that can be taken by scalar curvature can depend on the
qualitative features of the manifold. The fundamental example of this is given
by the Gauss-Bonnet theorem.

Example 3.1.1. For a closed1 surface2 M , the Gauss-Bonnet theorem is the
formula

χpMq “
1

4π

ż

M

κpxqdx

for the Euler characteristic χpMq of M in terms of the integral3 of the scalar

1i.e. compact, with no boundary
2i.e. 2-dimensional manifold
3Defined using the measure determined by the Riemannian metric.
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curvature4. This puts restrictions on the possible scalar curvature functions that
can be admitted by M in terms of a purely topological invariant. In particular,
M admits a metric with positive scalar curvature only if it is a sphere or a
projective plane (i.e. if χpMq “ 1 or χpMq “ 2); with a constantly zero scalar
curvature function only if M is a torus or a Klein bottle (i.e. χpMq “ 0); and
with a negative scalar curvature function only if M is a (possibly non-orientable)
higher genus surface (i.e. χpMq ă 0).

In dimensions larger than two, it is thus natural5 to ask the following ques-
tion.

Question 3.1.2. For a fixed smooth manifold M , which functions κ : M Ñ R
arise as the scalar curvature of some Riemannian metric, and in particular, are
there obstructions to the particular types of scalar curvature arising purely from
the topology of M?

It seems at first as if this question might not have an interesting answer:
indeed, if we increase the dimension beyond that of surfaces, then there are
essentially no restrictions on the existence of negative scalar curvature metrics
thanks to the Kazhdan-Warner theorem.

Theorem 3.1.3 (Kazhdan-Warner). Let M be a smooth manifold of dimension
at least 3, and let κ : M Ñ R be a smooth function that takes a negative value
at some point of M . Then there is a metric on M for which κ is the scalar
curvature function.

However, we are still left with the following.

Question 3.1.4. Which smooth manifolds M admit positive scalar curvature,
i.e. a scalar curvature function that is everywhere positive?

Based on the Kazhdan-Warner theorem, it is tempting to guess that there are
no obstructions to the existence of a positive scalar curvature metric: perhaps
higher dimensional manifolds are so ‘flexible’ that they allow metrics of any
scalar curvature. It turns out that this is not the case: there are obstructions to
the existence of positive scalar curvature metrics for manifolds of any dimension.

One of the most important of these obstructions applies in the special case
that M is a spin manifold. This is a topological condition on M that is satisfied
by many natural examples: for example, all spheres and tori in any dimension
are spin. For us, the important property that (Riemannian) spin manifolds have
is the existence of a canonically associated differential operator D, the (spinor)
Dirac operator that is closely connected to the scalar curvature of M .

In order to precisely state the relevant property of the Dirac operator, we
need some notation. Let S be a Hermitian bundle over M : this means that S
is a smooth complex vector bundle over M such that for each x P M , the fibre

4The Gauss-Bonnet theorem is more usually stated in terms of the so-called Gaussian
curvature K: for a two dimensional manifold M , the scalar curvature κ is exactly twice
Gaussian curvature.

5And quite relevant to other areas of mathematics and physics!
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Sx over x is equipped with a non-degenerate Hermitian form x, yx in a way that
depends smoothly on x. Let C8c pM ;Sq denote the vector space of compactly
supported smooth sections of S, and note that C8c pM ;Sq is equipped with a
positive definite inner product defined by

xu, vy :“

ż

M

xupxq, vpxqyxdx. (3.1)

A linear operator T : C8c pM ;Sq Ñ C8c pM ;Sq is adjointable if there is a linear
operator T˚ : C8c pM ;Sq Ñ C8pM ;Sq satisfying

xu, Tvy “ xT˚u, vy.

If T is adjointable, the (necessarily unique) operator T˚ satisfying the above
condition is called the adjoint of T . For example, note that elements of the
˚-algebra C8pMq of smooth functions6 on M act on C8c pM ;Sq by pointwise
multiplication, and that all such operators are adjointable: the adjoint of (mul-
tiplication by) f is (multiplication by) the complex conjugate of f .

Other important examples of adjointable operators are given by differen-
tial operators: these are operators on C8c pM ;Sq that can be written in local
coordinates in terms of partial derivatives and (fibrewise) endomorphisms of S.

The following theorem is the first of our ‘unjustified ingredients’. It is fun-
damental for the index theoretic approach to positive scalar curvature.

Theorem 3.1.5. Let M be a Riemannian spin manifold. Then there is a
canonically associated Hermitian spinor bundle S and first order differential
operators ∇ (the spinor connection) and D ( the (spinor) Dirac operator) on
C8c pM ;Sq such that if κ : M Ñ R is the scalar curvature of M , then

D2 “ ∇˚∇` κ

4
.

Example 3.1.6. Let M “ R be the real line, with its usual metric. The spinor
bundle on R turns out to be the one dimensional trivial bundle S “ RˆC. The
Dirac operator is the differential operator D “ ´i ddx , and so D2 “ ´ d2

dx2 is the

negative of the usual Laplacian, i.e. it equals ∇˚∇, with ∇ “ d
dx . In this case,

the scalar curvature is zero.

The computation underlying Theorem 3.1.5 is purely differential geometric.
In the next section, we discuss how to bring some analysis into play.

3.2 Hilbert space techniques

Throughout this section, M is a Riemannian spin manifold, S the spinor bundle
over M , and D the Dirac operator as in Theorem 3.1.5.

We now bring some Hilbert space techniques into play, and in particular
some ideas from unbounded operator theory as briefly sketched in Appendix D.

6Or elements of C8c pMq, the ˚-algebra of smooth compactly supported functions.
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The first step is to complete some of the spaces of sections we were working on
in the last section to Hilbert spaces.

Let then L2pM ;Sq denote the Hilbert space completion of C8c pM ;Sq for
the inner product in line (3.1). We consider D as an unbounded operator on
L2pM ;Sq with domain C8c pM ;Sq.

We will need to use two results from the theory of analysis on manifolds -
Proposition 3.1.5 and Proposition 3.2.4 below - as black boxes. For the first of
these, recall the notion of essential self-adjointness from Definition D.1.4.

Proposition 3.2.1. Assume that the Riemannian metric on M is complete7.
Then D is essentially self-adjoint.

Example 3.2.2. Let M “ R be the real line, S be the one-dimensional trivial
bundle over R, and D “ ´i ddx be the Dirac operator as in Example 3.1.6. Then
L2pM ;Sq identifies with L2pRq. The subspace C8c pR;Sq “ C8c pRq of L2pRq
consisting of smooth compactly supported functions identifies under Fourier
transform with a subspace of the rapidly decaying functions on R, and the
operator ´i ddx with the operator of multiplication by x. Exercise 3.6.1 asks you
to prove directly that this operator is essentially self-adjoint.

Assume then that M is complete, so D is essentially self-adjoint by Proposi-
tion 3.2.1. Then for any continuous bounded function φ : RÑ C, the functional
calculus (Theorem D.1.7) lets us define a bounded normal operator φpDq on
L2pM ;Sq. We will need that, at least under certain conditions, the operators
φpDq are closely tied to the geometry of M .

Definition 3.2.3. Let T be a bounded operator on L2pM ;Sq. The propagation
of T , denoted proppT q, is the smallest number r in r0,8s with the following prop-
erty: whenever f1, f2 are elements of C8c pM ;Sq such that dpsupppf1q, supppf2qq ą

r we have that f1Tf2 “ 0.
The operator T is locally compact if for any f P C8c pMq (thought of as a

multiplication operator on L2pM ;Sq), the operators fT and Tf are compact.

We will need the following result as another black box.

Proposition 3.2.4. Assume that M is complete.

(i) If φ : R Ñ C has Fourier transform supported in r´r, rs, then φpDq has
propagation at most r.

(ii) If φ is compactly supported, then φpDq is locally compact.

Example 3.2.5. Let M “ R, S “ RˆC, and D “ ´i ddx be as in Example 3.1.6.
Using the Fourier transform, one computes that φpDq is (up to a constant,

depending on Fourier transform conventions) the operator of convolution by pφ.

7i.e. Cauchy sequences for the induced distance function converge; for Riemannian mani-
folds, this is equivalent to the statement that all closed balls are compact by Theorem A.3.6.
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If pφ has support contained in r´r, rs and if f P L2pM ;Sq is supported in some

compact set K, we have that pφ ˚ f is supported in

NrpKq :“ tx P R | dpx,Kq ď ru.

The fact that φpDq has propagation at most r follows from this.

Moreover, if φ is compactly supported, then the Fourier transform pφ is
Schwartz class. Hence for any f P C8c pM ;Sq, the operator T “ φpDqf is
given by

pTuqpxq “

ż

R
pφpx´ yqfpyqupyqdy.

The kernel kpx, yq “ pφpx´yqfpyq is square-integrable on RˆR, however, whence
Hilbert-Schmidt and in particular compact.

The C˚-algebra in the next definition allows us to bring index theory to
bear.

Definition 3.2.6. The Roe algebra of L2pM ;Sq, denoted C˚pMq, is the C˚-
algebra generated by all the locally compact, finite propagation operators on
L2pM ;Sq.

Note now that L2pM ;Sq comes equipped with a grading (see Definition
E.1.4) in the case that M is even dimensional, and that the Dirac operator D
is odd for this grading.

Lemma 3.2.7. Continue to assume that M is complete. Let ψ : R Ñ r´1, 1s
be an odd function such that

lim
xÑ`8

ψpxq “ `1 and lim
xÑ`8

ψpxq “ `1.

Then the operator F “ ψpDq is a self-adjoint multiplier of C˚pMq, which is odd
if M is even dimensional, and such that 1 ´ F 2 is an element of C˚pMq. In
particular it defines an index element

IndexrF s P KipC
˚pMqq

via Definition 2.8.5, where i agrees with the dimension of M modulo 2. This
class does not depend on the choice of χ.

Proof. Let g : RÑ r0,8q be an even function with compactly supported Fourier
transform, and such that

ş

R gpxqdx “ 1. Define gn by gnpxq :“ ngpnxq. Then
the convolutions gn ˚ ψ converge in supremum norm to ψ as nÑ8, whence

Fn :“ pgn ˚ ψqpDq Ñ ψpDq “ F

in norm as nÑ8. Moreover, as the Fourier transform converts convolution to
pointwise multiplication, gn ˚ ψ has compactly supported Fourier transform. It
follows now from proposition 3.2.4 that Fn has finite propagation.
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Let now T be a finite propagation, locally compact operator. To show that
F is a multiplier of C˚pMq, it suffices to show that FnT and TFn are in C˚pMq
for all n; we will focus on FnT , the other case being similar.

Say T has propagation s and Fn has propagation r. Let f1 and f2 be any
elements of C8c pM ;Sq, and assume that dpsupppf1q, supppf2qq ą r ` s` 1. Let
f P C8c pMq be supported in tx P M | dpsupppuq, xq ď r ` 2{3u, and equal to
one inside tx P M | dpsupppmq, xq ď r ` 1{3u. As Fn has propagation r, we
have that

f1TFnf2 “ f1TfFnf2,

which is zero as T has propagation at most s. It follows that TFn has propaga-
tion at most r ` s` 1.

To see that TFn is locally compact, let f be any element of C8c pMq. The
product fTFn is then compact as the compact operators are an ideal. On the
other hand, it follows just as above from finite propagation of Fn that there
exists compactly f0 P C

8
c pMq with Fnf “ f0Fnf , whence

TFnf “ Tf0Fnf,

which is compact by local compactness of T .
The fact that F is odd when D is follows as ψ is odd. To see that 1´ F 2 is

in C˚pMq, note
1´ F 2 “ p1´ ψ2qpDq.

The function 1´ψ2 is in C0pRq, however, so this follows from Proposition 3.2.4.
Finally, the fact that IndrF s does not depend on the choice of ψ follows as if
ψ1, ψ2 are any two such functions, then

ψ1pDq ´ ψ2pDq “ pψ1 ´ ψ2qpDq.

As ψ1 ´ ψ2 P C0pRq, this operator is in C˚pMq and we may apply Remark
2.8.6.

The following vanishing theorem is the key result needed for applications
of operator K-theory to questions on the existence of positive scalar curvature
metrics.

Theorem 3.2.8. Say M is a complete, spin, Riemannian manifold with positive
scalar curvature bounded below. Then the element

IndexrF s P K˚pC
˚pMqq

defined in Corollary 3.2.7 is zero.

Proof. Theorem 3.1.5, the fact that κ is bounded below, and essential self-
adjointness of D imply that the spectrum of D does not contain anything in
the interval r´c, cs for some c ą 0. We may choose ψ satisfying the conditions
in Lemma 3.2.7 and that satisfies ψpxq P t`1,´1u for all x R r´c, cs. It follows
from this that F 2 “ 1, and thus the result now follows from Lemma 2.8.7.

Here then is the basic strategy: we will show that certain manifolds cannot
admit a metric of positive scalar curvature by showing that the class associated
to the Dirac operator in K˚pC

˚pMqq is non-zero.
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3.3 K-theory computations

In this section, let M be the d-dimensional torus, so as a smooth manifold

M “ S1 ˆ ¨ ¨ ¨ ˆ S1
looooooomooooooon

d times

is the d-fold product of the circle with itself. This is then a spin manifold.
We assume that M is equipped with a fixed Riemannian metric, but do not
assume that M has the standard flat8 metric coming from the identification
M – Rd{Zd! Let ĂM denote the universal cover of M . Both the Riemannian

metric and spin structure on M can be canonically pulled back to ĂM . Thus ĂM
is diffeomorphic to Rd, but equipped with a possibly non-standard Riemannian
metric. Note that the lifted metric must be complete, as completeness is a local
property (see the Hopf-Rinow Theorem, A.3.6), and ĂM is locally isometric to
the complete (as compact) manifold M .

Let rS and rD be the spinor bundle and Dirac operator on ĂM respectively.
Let rF “ χp rDq denote an operator associated to rD as in Lemma 3.2.7, and let

Indexp rF q P K˚pC
˚pĂMqq

be the associated index class.
Now, as well as the Roe algebra C˚pĂMq, we may associate the following

C˚-algebra to the universal cover of our n-torus.

Definition 3.3.1. Consider the collection of all functions

pTtq : r1,8q Ñ BpL2pM ;Sqq

with the following properties:

(i) t ÞÑ Tt is uniformly continuous and uniformly bounded;

(ii) the propagation proppTtq is finite for all t P r1,8q, and tends to zero as t
tends to infinity;

(iii) all the operators Tt are locally compact.

These functions form a ˚-algebra. The completion of this ˚-algebra for the norm
}pTtq} :“ supt }Tt} is denoted C˚Lp

ĂMq, and called the localisation algebra of ĂM .

Our Dirac operator rD gives rise to a K-theory class for C˚Lp
ĂMq via the oper-

ator rF and the following construction. The proof is essentially the same as that
of Lemma 3.2.7, once we have noted that if φ has Fourier transform supported
in r´r, rs, then φpt´1¨q has Fourier transform supported in r´t´1r, t´1rs.

8i.e. locally isometric to Euclidean space
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Lemma 3.3.2. Let χ : RÑ r´1, 1s be a function with the properties in Lemma
3.2.7, and for t P r1,8q, define

rFt :“ χpt´1
rDq.

Then the family of operators pFtq is a multiplier of C˚Lp
ĂMq such that p1 ´ rF 2

t q

is in C˚Lp
ĂMq, and which is odd if the dimension of M is even.

In particular, there is an index class

IndexLp rF q P K˚pC
˚
Lp

ĂMqq

as in Definition 2.8.5.

Here is the last ‘black box’ we need. This piece is from the differential-
topological aspect of K-theory.

Proposition 3.3.3. The group KipC
˚
Lp

ĂMqq is isomorphic to Z if i equals the

dimension of M modulo 2, and zero otherwise. The class IndexLp rF q is a gen-
erator.

Now, there is clearly an ‘evaluation-at-one’ ˚-homomorphism

ev : C˚Lp
ĂMq Ñ C˚pĂMq, pTtq ÞÑ T1.

The following theorem is the main step in the proof that the tori do not admit
a metric of positive scalar curvature.

Theorem 3.3.4. When M is the d-torus equipped with any Riemannian metric,
the evaluation-at-one map

ev : C˚Lp
ĂMq Ñ C˚pĂMq

induces an isomorphism on K-theory.

Corollary 3.3.5. The d-torus does not admit a metric of positive scalar cur-
vature.

Proof. If it did, ĂM as above would have a metric with uniformly positive scalar
curvature. Corollary 3.2.8 forces IndexpF q to be zero, which contradicts the
combination of Proposition 3.3.3 and Theorem 3.3.4, and the fact that the
evaluation-at-one maps takes the class IndexLp rF q P K˚pC

˚
Lp

ĂMqq to Indexr rF s P

K˚pC
˚pĂMqq.

We spend the rest of this section sketching a proof of Theorem 3.3.4: this
is not trivial, but the ingredients required all come from elementary operator
K-theory. We do not provide full details, as the machinery we develop later will
enable us to do so more conveniently.

Let h : ĂM Ñ Rd be a diffeomorphic lift of the set-theoretic identity map
M Ñ Td, where Td “ Rd{Zd has the usual flat metric. As the derivatives of the
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identity M Ñ Td must be uniformly bounded by compactness, the same is true
for h, which forces h to be bi-Lipschitz (by the mean value theorem). In other
words, there is a constant c ą 0 such that

1

c
d
ĂM
px, yq ď dRdphpxq, hpyqq ď cd

ĂM
px, yq.

The first thing to note is that the definitions of C˚Lp
ĂMq and C˚pĂMq are not

changed under bi-Lipschitz equivalence. It thus suffices to prove the following
analogue of Theorem 3.3.4.

Theorem 3.3.6. The evaluation-at-zero map

e : C˚LpRdq Ñ C˚pRdq

induces an isomorphism on K-theory.

Sketch proof. We proceed by induction on the dimension. In the case n “ 0,
Rd is a single point. C˚pR0q is just a copy of the compact operators, so its
K-theory is Z, generated by a rank one projection. One can show directly that
K˚pC

˚
LpR0qq is also Z, and is generated by the constant map to any fixed rank

one projection; this completes the base case.
For the inductive step, write Rd “ E Y F , where E “ Rd´1 ˆ p´8, 0s and

F “ Rd´1ˆr0,8q. One can show by constructing natural pushout diagrams (see
Definition 2.7.13) that this decomposition gives rise to a commutative diagram
of Mayer-Vietoris sequences connected by the evaluation maps as follows

KipC
˚
LpE X F qq

��

ev˚ // KipC
˚pE X F qq

��
KipC

˚
LpEqq ‘KipC

˚
LpF qq

��

ev˚ // KipC
˚pEqq ‘KipC

˚pF qq

��
KipC

˚
LpRdqq

��

ev˚ // KipC
˚pRdqq

��
Ki´1pC

˚
LpE X F qq

��

ev˚ // Ki´1pC
˚pE X F qq

��
Ki´1pC

˚
LpE X F qq

ev˚ // Ki´1pC
˚pE X F qq

One can show by an Eilenberg swindle ‘pushing everything to infinity along
r0,8q’ that

K˚pC
˚pEqq “ K˚pC

˚pF qq “ K˚pC
˚
LpEqq “ K˚pC

˚
LpF qq “ 0,

whence the second and fifth horizontal maps are isomorphisms. On the other
hand, the top and fourth horizontal maps are an isomorphism by the inductive
hypothesis, so we are done by the five lemma.
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3.4 Some historical comments

Classical index theory proves topological formulas for the index of Fredholm
operators as in Example 2.8.3: [81, Chapter 5] is an excellent reference for
background here. As far as we know, the earliest appearance of such a theo-
rem is that of Fritz Noether [192] from 1920. From a modern point of view,
the most straightforward index theorem is probably that for Toeplitz operators
with continuous symbol, which seems to have been rediscovered separately by
several different mathematicians: see for example [81, Theorem 7.26] or [135,
Section 2.3] and surrounding discussion.

Integer valued index theory

To describe the Toeplitz index theorem, and give a flavour of what is meant
by a topological formula, let f : S1 Ñ C be a continuous function on the circle.
Then f acts on L2pS1q by multiplication. The Fourier transform identifies
L2pS1q and `2pZq, and f acts on this space by a convolution operator Cf . Now,
let V : `2pNq Ñ `2pZq be the natural isometric inclusion. The Toeplitz operator
associated to f is by definition the operator

Tf :“ V ˚CfV

on `2pNq. It turns out that Tf is Fredholm is and only if f : S1 Ñ C is
invertible (i.e. non-zero everywhere). Thus if Tf is Fredholm, the image of f
does not contain zero, and it makes sense to talk about the winding number of
f around zero.

Theorem 3.4.1. Let Tf : `2pNq Ñ `2pNq be a Toeplitz operator as above with
f : S1 Ñ C nowhere vanishing. Then

IndexpTf q “ ´(winding number)pfq.

This is the Toeplitz index theorem. The motivations for these early index
theorems come from single operator theory and the so-called ‘Fredholm alter-
native’: this is because vanishing of the index gives a useful criterion for such
operators to be invertible.

A little later, motivations for index theory came more from differential topol-
ogy and geometry. This is the case for the most famous index theorem comput-
ing Fredholm indices by a topological formula: the Atiyah-Singer index theorem
for elliptic pseudodifferential operators on closed manifolds [12], which dates to
about 1963 with the ‘canonical’ K-theoretic proof appearing in 1968. To give a
vague flavour of what this says, we give the cohomological form of its statement
from [13].

Theorem 3.4.2. Let M be a closed, smooth, oriented d-dimensional mani-
fold, and let P be an elliptic pseudodifferential operator on some bundle over
M . Then P is a Fredholm on an appropriate bundle of sections, and there are
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canonical classes rchpσP qs and rToddpTCMqs in the cohomology ring9 H˚pM ;Qq
such that if rM s P HdpM ;Qq is the fundamental class coming from the orienta-
tion, then

IndexpP q “ p´1qdxrchpσP qs Y rToddpTCMqs, rM sy

This looks (and indeed is!) much more complicated than the Toeplitz index
theorem; in fact, the latter is essentially the special case of the Atiyah-Singer
theorem for order zero pseudodifferential operators when M is the circle. Having
said that, the formula is explicitly computable in many cases, particularly when
the operator P is arising in a canonical way from the topology and geometry of
M ; these are typically the important cases for applications.

Higher index theory

The above theorems all describe integer-valued indices of Fredholm opera-
tors. However, it was realized fairly early on (at least by the late 1960s) that
one also has useful ‘indices’ defined using traces on von Neumann algebras [56],
and taking values in the representation ring of a compact group [11]. These
situations come under the following general framework. One has an operator D
in some unital algebra B with an ideal I, and so that the image of D is invertible
in B{I. The K-theoretic index map

K1pB{Iq Ñ K0pIq

then takes the class rDs in K1pB{Iq to a class in K0pIq, and one wants to use
this class in K0pIq to derive information about D (or the underlying geome-
try and topology). The special case when I is the compact operators K on
some Hilbert space, so K0pIq – Z, corresponds to the classical integer-valued
index for Fredholm operators thanks to Example 2.8.3. Indices taking values
in the representation ring of a compact group typically correspond to I be-
ing the stabilisation C˚pGq bK of the group C˚-algebra C˚pGq, in which case
K0pIq canonically identifies with the representation ring10 of G. Indices defined
using traces of a von Neumann algebra correspond to the case where I is a
von Neumann algebra with tracial state τ , and where one considers the class
τ˚pIndexpDqq P R, where τ˚ : K0pIq Ñ R is as in Remark 2.1.16.

The general scheme outlined above, i.e. considering indices taking values in
the K-groups K˚pAq of some (C˚-)algebra A, is sometimes called higher index
theory. Sometimes one pairs K˚pAq with other data to get numerical invariants
as in the work of Connes and Moscovici [65]11; or one might just consider the
classes in K-theory in of themselves. Such higher indices may live in the K-
theory of any algebras; however one gets a particularly powerful theory when the
algebra is a C˚-algebra, as then important analytic tools coming from positivity
and the functional calculus come to bear. Important examples of algebras used

9the product is the cup product Y
10In this case, K0pIq has a ring structure coming from the fact that one can take tensor

products of group representations.
11Page 346 of this paper seems to be where the term ‘higher index’ first appears appears
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here include group C˚-algebras and associated crossed products (for example,
[149, 125]), examples related to representation theory of non-compact Lie groups
(for example [10, 64]), foliation C˚-algebras (for example [57, 66, 59] and also
[205, 277] for some non-C˚-algebraic approaches to foliated index theory), and
Roe type algebras in coarse geometry (for example, [212, 214], and also [239]
for a theory combining Roe algebras and foliation C˚-algebras).

Back to positive scalar curvature

Having gone through this very brief survey of index theory and higher index
theory, let us get back to the existence of positive scalar curvature metrics. The
first index-theoretic approach12 to the question of existence of positive scalar
curvature metrics is due to Lichnerowicz13 [168] and is based on the Atiyah-
Singer index theorem as mentioned above. The Dirac operator on a closed
Riemannian spin manifold is Fredholm, meaning that as an operator on smooth
sections C8pM ;Sq of the spinor bundle S it has finite-dimensional kernel and
co-kernel, and thus a well-defined integer-valued index

IndexpDq :“ dimpKernelpDqq ´ dimpCokernelpDqq P Z.

The Atiyah-Singer theorem in this case specialises to the following result.

Theorem 3.4.3. Let M be a closed spin Riemannian manifold, and D the
associated Dirac operator. Then there is a differential form ÂpMq, the Â-form
of M , that depends only on the structure of the tangent bundle of M and that
satisfies

IndexpDq “

ż

M

ÂpMq.

Now, if M is closed (so in particular, complete) and has positive scalar
curvature, it follows from Theorem 3.1.5 and Proposition 3.2.1 that D has index
zero. Hence we have the following corollary.

Corollary 3.4.4. Let M be a closed spin manifold such that
ş

M
ÂpMq ‰ 0.

Then M does not admit a metric of positive scalar curvature.

Proof. The Atiyah-Singer theorem implies that the index of the Dirac operator
is non-zero, and in particular that D is not invertible. Theorem 3.1.5 and
Proposition 3.2.1 show that D is invertible in the presence of a positive scalar
curvature metric, however.

This corollary covers many interesting cases: see for example [164, Section
IV.4] for examples, including concrete complex algebraic surfaces. However, it
is fairly restrictive in some ways: for example if M has trivialisable tangent
bundle then the Â-form is trivial, and the corollary above gives no information.

12Not counting the Gauss-Bonnet theorem, which can also be viewed as a special case of
the Atiyah-Singer theorem.

13The formula D2 “ ∇˚∇`κ{4 from Theorem 3.1.5 is often called the Licherowicz formula.
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In particular, we get no information for tori14, so one cannot hope to apply
Corollary 3.4.4 here. The question of whether the d-tours admits a metric of
positive scalar curvature was open for many years before being solved for d ď 7
by Schoen and Yau [231, 232] using minimal hypersurfaces, and in arbitrary
dimensions by Gromov and Lawson [179] using an index theoretic proof. See
[180] for an inspiring overview of the methods of Gromov and Lawson.

The approach of Gromov and Lawson uses integer-valued Fredholm indices;
however, there are K-theoretic higher indices lurking in the background, as
seems to have first been observed in this context by Rosenberg [222]. The
approach discussed in the earlier sections of this chapter is one way of making
this higher index machinery precise. It applies in particular to the case of the
d-torus, to show that it does not admit a metric of positive scalar curvature.
The proof involves ingredients from differential geometry, analysis of differential
operators, algebraic topology and operator K-theory; as such it may seem rather
intimidating at first!

However, the ingredients that we used as ‘black boxes’ are all quite general:
they would apply to any manifold we were trying to study. We will develop
most of these in this book, but they can be regarded as background material.
The part of the proof that applied to the d-torus specifically, and that needs
to be generalised to apply the theory to other manifolds, is Theorem 3.3.4; the
essential ingredients here are operator K-theoretic in this nature, and this will
be the main focus of our text.

3.5 Content of this book

Part II of the book is taken up with expounding the purely metric and topolog-
ical aspects of the theory. One does not need background in manifold topology
and geometry to read this material.

• The construction of the Roe algebras and localization algebras can be car-
ried out in much more generality. For a metric space X (for example, a
Riemannian manifold, but discrete spaces are also very interesting here),
the basic idea is to consider Hilbert spaces equipped with a representa-
tion of C0pXq (for example, the Hilbert space L2pM ;Sq used in the above
is equipped with a multiplication representation of C0pMq). This allows
one to define notions of propagation and local compactness. In Chapter
4 we discuss geometric modules over a metric space X, i.e. Hilbert spaces
equipped with a representation of C0pXq, and various types of maps be-
tween them which model maps between the metric spaces themselves. We
also carry out the general constructions in the presence of an action of a
discrete group.

• In the above proof, we used that the Roe algebra C˚pĂMq of ĂM is invariant
under bi-Lipschitz equivalences. Bi-Lipschitz equivalences preserve a lot

14Tori have trivialisable tangent bundles, as one can see, for example, using that they are
Lie groups.

142



of structure on a space; all that was really relevant here, however, is that
they preserve the large scale or coarse metric structure. In Chapter 5 we
look at the underlying metric space theory, and show that the (K-theory
of) Roe algebras is a functor on an appropriate category of geometric
spaces, where the morphisms preserve only the large scale structure. We
allow also for the presence of a group action.

• On the other hand, the fact that the localisation algebra C˚Lp
ĂMq of ĂM

is invariant under bi-Lipschitz equivalence is due to the fact that it pre-
serves the small scale or topological structure. In Chapter 6 we develop
this much more fully, showing that the K-theory of (a slight variant of)
the localisation algebra is a functor on an appropriate category of topo-
logical spaces. In fact, it is a model for K-homology, the dual generalized
homology theory to K-theory. We also establish this in Chapter 6. Again,
we allow the presence of a group action.

• The evaluation-at-zero map

ev˚ : K˚pC
˚
LpMqq Ñ K˚pC

˚pMqq

used in the above proof is central to the theory. One can think of ev˚
as a ‘forget control’ map: it forgets the small scale metric structure of a
space in favour of its large scale structure. It is called the assembly map.
For reasons such as the application to positive scalar curvature discussed
above, one is interested in situations when ev˚ is an isomorphism; however,
one cannot expect this to happen in general. In Chapter 7 we set up
the basic theory of the assembly map, and construct a sort-of universal
assembly map - the Baum-Connes assembly map - that one hopes is an
isomorphism in general.

In Part III of the book, we go back to manifolds.

• In the above study of positive scalar curvature, we used some facts about
the analysis of Dirac operators on complete Riemannian spin manifolds
as a ‘black box’. In Chapter 8 we develop the necessary analysis to make
these ideas precise.

• In Chapter 9 we set up some general machinery involving pairings between
differential operators and vector bundles, and use this to prove the K-
theory Poincaré duality isomorphism. This is the key fact that underlies
the black box that we used in Proposition 3.3.3 above.

• The Dirac operator is one of several operators with particular geometric
importance. In Chapter 10 we sketch the two most important topological
and geometric applications of higher index theory. One - to the existence
of positive scalar curvature metrics - has been sketched out above, and is
based on the Dirac operator. Another - to the topological invariance of
higher signature - is based on the signature operator, and will be discussed
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more fully there. This material requires more background in differential
topology than we have assumed in this book, so the basic ideas will just be
sketched. We also discuss some applications to pure (operator) algebra,
proving non-existence of idempotents in group C˚-algebras.

Finally, in Part IV of the book we look at some results on the universal Baum-
Connes assembly map. Thanks to the discussion in Chapter 10, these have
important consequences in topology, geometry, and C˚-algebra theory.

• In Chapter 11, we discuss what we call almost constant bundles, and use
these to give an elementary proof that the coarse Baum-Connes assem-
bly map is injective in many case. This material provides a particularly
elementary approach to the non-positively curved situation.

• In Chapter 12 we discuss the coarse Baum-Connes conjecture for spaces
that coarsely embed into Hilbert spaces. This is a very general result:
despite being around twenty years at time of writing, it is still more-or-less
the state-of-the-art in terms of checking that a particular group satisfies
(for example) either the Novikov or Gromov-Lawson conjectures. The
proof takes the whole chapter, uses many of the ideas developed earlier,
and is the deepest theorem covered by this book.

• In Chapter 13 we discuss counterexamples to the coarse Baum-Connes
conjecture arising from expander graphs and sequences of large spheres.
Much remains to be understood here in terms of the geometric significance
of these examples.

3.6 Exercises

3.6.1. With notation as in Example 3.2.2, use the Fourier transform to show
directly that the operator D “ ´i ddx on L2pRq with domain C8c pRq is essentially
self-adjoint.

3.6.2. Justify the computations in Example 3.2.5, including working out the
various constants involved using your favourite Fourier transform conventions.

3.6.3. Let A be the C˚-subalgebra of `2pNq generated by all Toeplitz operators
Tf as in the discussion around Theorem 3.4.2. One can show that A contains
Kp`2pNqq as an ideal, and that there is a short exact sequence

0 // Kp`2pNqq // A // CpS1q // 0

with the map AÑ CpS1q determined by the fact it sends to Tf to f . Note that
this combined with Atkinson’s theorem (see Example 2.8.3) shows that Tf is
Fredholm if and only if f is invertible. Use this short exact sequence to prove
Theorem 3.4.2.
Hint: by Example 2.8.3, the index map

Z – K1pCpS
1qq Ñ K0pKp`2pNqq – Z
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takes the class rf s P K1pCpS
1qq of an invertible f P CpS1q to the index of Tf in

Z. It thus suffices to check the formula from Theorem 3.4.2 on a single example.
Consider fpzq “ z.
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Part II

Roe algebras, localisation
algebras, and assembly
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Chapter 4

Geometric Modules

A geometric module over X is a Hilbert space HX equipped with a suitable
representation of C0pXq. The motivating example is the Hilbert space L2pXq of
square-integrable functions on X with respect to some measure, with C0pXq act-
ing by multiplication. However, it is convenient to allow more general modules:
the idea is to give us a flexible setting in which to do analysis with operators as-
sociated to X. Our aim in this chapter is to set up the basic theory of geometric
modules, as well as discuss a lot of examples.

The material in this chapter should be regarded as technical background:
we recommend readers skim (or just skip) it on a first go through, coming back
to it later as necessary.

This chapter is structured as follows. In Section 4.1 we introduce geometric
modules, focusing on examples. The examples are important partly for intu-
ition, but also as they will allow us to do explicit computations later in the
book. Section 4.2 then discusses covering isometries: these are maps between
geometric modules that in some sense model functions between the underlying
spaces. Sections 4.3 and 4.4 then specialise the covering isometry machinery to
the specific settings relevant to large scale geometry and small scale topology
respectively. Finally, Section 4.5 discusses how the theory can be adapted in
the presence of a group action to take that extra structure into account.

Throughout this chapter, the symbols X and Y will always denote locally
compact, second countable, Hausdorff topological spaces. We have collected
together the basic facts and definitions in metric space theory and coarse ge-
ometry that we will need in Appendix A, but will also repeat any non-standard
definitions that come up as we need them.

4.1 Geometric modules

In this section we introduce geometric modules over topological spaces.
Throughout this section, X and Y are locally compact, second countable,

Hausdorff spaces.

147



For the next definition we will need the notion of a non-degenerate repre-
sentation of a C˚-algebra from Definition 1.6.4.

Definition 4.1.1. A (geometric) module over X, or (geometric) X module is
a separable Hilbert space HX equipped with a non-degenerate representation
ρ : C0pXq Ñ BpHXq.

A geometric module HX is ample if no non-zero element of C0pXq acts as a
compact operator, and if HX is infinite dimensional1.

We will often say something like ‘let HX be a geometric module’ without
explicitly mentioning the space. Note that if HX is an ample geometric module,
then the associated representation ρ : C0pXq Ñ BpHXq is faithful, but we do
not assume faithfulness in general. We will generally abuse notation, omitting ρ
unless it seems likely to cause confusion: for example, if f P C0pXq and u P HX ,
then fu denotes the image of u under ρpfq.

Example 4.1.2. Say µ is a Radon measure on X, and define HX :“ L2pX,µq to
be the usual Hilbert space of square integrable functions (modulo those that are
zero almost everywhere). Then HX is a geometric module when equipped with
the natural pointwise multiplication action of C0pXq. This is the motivating
example, and close to the general case by Exercise 4.6.2. Modules of this form
may or may not be ample: see the next two examples.

Example 4.1.3. Let X be a discrete space, and µ be counting measure, so
L2pX,µq “ `2pXq. This X module is never ample. However, if we fix an aux-
iliary separable infinite-dimensional Hilbert space H and set HX :“ `2pX,Hq
to be the space of square-summable functions from X to H, then we do get an
ample X module with the natural multiplication action.

Example 4.1.4. As another special case of Example 4.1.2 above, let X be a
Riemannian manifold equipped with the smooth measure µ associated to the
metric: for example X could be Rd equipped with its usual Euclidean metric
and Lebesgue measure. As above, we can build HX :“ L2pX,µq. This HX is
‘usually’2 ample.

Example 4.1.5. Let µ be a Radon measure on X as in Example 4.1.2, and let
S be a (non-zero) complex vector bundle over X. Assume S is equipped with a
Hermitian structure: this means that each fibre Sx is equipped with a Hermitian
inner product x, yx : Sx ˆ Sx Ñ C such that for any continuous sections s1, s2

of S, the function
X Ñ C, x ÞÑ xs1pxq, s2pxqyx

is continuous. Let CcpX;Sq denote the vector space of continuous, compactly
supported sections of S, and define a positive semi-definite inner product3 on

1Infinite dimensionality is automatic if X is non-empty, but it will be technically convenient
later that we allow X to be the empty set.

2Precisely, it is ample if and only if the dimension of every connected component of X is
non-zero.

3This means that is satisfies the usual axions of an inner product except that maybe there
can be non-zero s with xs, sy “ 0.
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this space by

xs1, s2y :“

ż

X

xs1pxq, s2pxqyxdµpxq.

The Cauchy-Schwarz inequality implies that the collection of s P CcpXq such
that xs, sy “ 0 is a subspace of CcpXq. Taking the vector space quotient by this
subspace gives a new vector space on which x, y descends to a positive definite
inner product, and taking the completion with respect to the associated norm
}s} :“

a

xs, sy defines the Hilbert space L2pX;Sq of square-integrable sections
(this process of taking a quotient by vectors of length zero, then completing, is
sometimes called taking the separated completion). Again, pointwise multipli-
cation makes this into an X module. Note that if X and µ are as in Example
4.1.4, then L2pX;Sq is ample if and only if (every component of) X has positive
dimension.

Example 4.1.6. Let H be a separable infinite-dimensional Hilbert space, and
Z Ď X be a countable dense subset (such a Z exists as X is second countable).
Then the Hilbert space HX :“ `2pZ,Hq is equipped with a natural pointwise
multiplication action of C0pXq by restriction to Z, and thus becomes an X
module. As H is infinite dimensional and Z is dense in X, it is moreover
ample. In particular, this example shows that ample (separable) X modules
always exist. Note that Example 4.1.3 is the special case of this one where X
is discrete.

Let now HX be an arbitrary X module. Then by Proposition 1.6.11 there is
a canonical extension of the representation of C0pXq on HX to a unital represen-
tation of BpXq, the C˚-algebra of bounded Borel functions on X. Moreover, this
extension takes pointwise convergent bounded sequences to strongly convergent
sequences. If E is a Borel subset of X, we will write χE for the characteris-
tic function of E, and for the corresponding projection operator on HX . One
should think of the subspace χEHX as the part of HX supported over E: note
that if X “ L2pX,µq as in Example 4.6.5 above, then χEHX identifies with
L2pE,µ|Eq.

The key definition that ties operators on HX to the structure of X is as
follows.

Definition 4.1.7. Let HX and HY be geometric modules, and let T : HX Ñ

HY be a bounded operator. The support of T , denoted supppT q, consists of all
points py, xq P Y ˆX such that for all open neighbourhoods U of x and V of y

χV TχU ‰ 0.

Note that the support of an operator is always a closed subset of Y ˆX.

Definition 4.1.8. Let HX be a geometric module over a metric space X, and
let T : HX Ñ HX be a bounded operator. The propagation of T is the extended
real number

proppT q :“ suptdpy, xq | py, xq P supppT qu P r0,8s.

149



We now look at some examples.

Example 4.1.9. Say HX is an X module and f a bounded Borel function on X.
Then the support of the corresponding multiplication operator is contained in
the closed subset

tpx, xq P X ˆX | fpxq ‰ 0u

of the diagonal of XˆX: see Exercise 4.6.3. If HX is ample and f is continuous
then the support of f is exactly equal to the above set, but not in general. The
propagation of such an operator (with respect to any metric) is always zero.

Example 4.1.10. Let µ be a Radon measure on X, and let HX “ L2pX,µq be
as in Example 4.1.2. Let T be a bounded operator defined by some continuous
kernel function k : X ˆX Ñ C, i.e. for u in the dense subset CcpXq of HX , Tu
is the function defined by

pTuqpxq “

ż

X

kpx, yqupyqdµpyq (4.1)

(note that one needs to put additional conditions on k to ensure boundedness
of T : see Exercise 4.6.4 for a useful sufficient condition). Then the support of
T is contained in that of k, i.e. the closure of the set

tpx, yq P X ˆX | kpx, yq ‰ 0u,

and is exactly the support of k if HX is ample (for example, if X is a positive-
dimensional Riemannian manifold with the associated measure as in Example
4.1.6): see Exercise 4.6.3. It follows that if X is equipped with a metric d, then

proppT q ď suptdpx, yq | kpx, yq ‰ 0u,

and this becomes an equality if HX is ample. More generally, this works for
sections of a bundle S over X, in which case k should be a continuous section of
the vector bundle over X ˆX with fibre over px, yq given by EndpSx, Syq, and
u in line (4.1) should be taken to be a compactly supported continuous section.

The ideas in this example apply more generally to operators with non-
continuous kernels, or even distributional kernels. We will not need it, but
for intuition it is worth mentioning that the classical Schwartz kernel theorem
implies that many natural classes of operators associated to manifolds roughly
have this form, where k is now assumed to be a distribution in some appropriate
sense.

Example 4.1.11. Let Z be a countable dense subset of X, H a separable infinite
dimensional Hilbert space and HX “ `2pZ,Hq be as in Example 4.1.6.

Then any bounded operator T : `2pZ,Hq Ñ `2pZ,Hq can be represented
uniquely as a Z-by-Z matrix pTxyqx,yPZ of bounded operators on H. Indeed,
for any z P Z, there is an isometry Vz : H Ñ `2pZ,Hq defined by

pVzuqpyq :“

"

u z “ y
0 z ‰ y

,
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and each matrix entry Txy : H Ñ H is defined by

Txy :“ V ˚x TVy.

The support of T is then the closure of the set

tpx, yq P Z ˆ Z | Txy ‰ 0u

in X ˆX.

The next lemma records how supports behave under the usual algebraic
operations on operators. We need some preliminary definitions. Recall first
that if E,F are subsets of ZˆY and Y ˆX respectively, then their composition
is defined to be

E ˝ F :“ tpz, xq P Z ˆX | there exists y P Y such that pz, yq P E, py, xq P F u
(4.2)

and the inverse of E is defined by

E´1 “ tpy, zq P Y ˆ Z | pz, yq P Eu.

Recall also (see Definition A.1.7) that a map f : X Ñ Y between topological
spaces is proper if for all compact K Ď Y , f´1pKq is also compact.

Definition 4.1.12. A bounded operator T : HX Ñ HY is properly supported
if the restrictions of the coordinate projections

πX : X ˆ Y Ñ X and πY : X ˆ Y Ñ Y

to supppT q are proper maps.

Lemma 4.1.13. Let HX , HY , HZ be modules over X, Y , Z respectively. Let
R,S : HX Ñ HY and T : HY Ñ HZ be bounded operators. Then:

(i) supppR` Sq Ď supppRq
Ť

supppSq;

(ii) supppT˚q “ supppT q´1;

(iii) supppTSq Ď supppT q ˝ supppSq.

Moreover, if either S or T is properly supported, then condition (iii) can be
replaced with

(iii 1) supppTSq Ď supppT q ˝ supppSq.

Proof. The statements on supports of sums and adjoints are immediate from
the definition of support. We look first at the condition in line (iii). For tech-
nical convenience, we fix metrics on all the spaces involved that induce their
topologies.

Let S, T be as given, and pz, xq P Z ˆ X be an element of supppTSq. We
claim first that for each n ě 1, there exists yn such that

χBpz;1{nqTχBpyn;εqSχBpx;1{nq ‰ 0
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for all ε ą 0. Indeed, if not, it would follow that for each y P Y there exists
εy ą 0 such that

χBpz;1{nqTχBpy;εyqSχBpx;1{nq “ 0.

As the collection tBpy; εyquyPY covers Y , Lemma A.1.10 implies that there exists
a decomposition Y “

Ů

iPI Ei of Y into countably many disjoint Borel subsets
Ei such that

χBpz;1{nqTχEiSχBpx;1{nq “ 0

for each i. Summing over i, using that the sum
ř

iPI χEi of operators on HY

converges strongly to the identity (see Proposition 1.6.11), then gives

χBpz;1{nqTSχBpx;1{nq “ 0.

This contradicts that pz, xq is in supppTSq.
Now, we have that for each n there is yn P Y such that for all ε ą 0

χBpz;1{nqTχBpyn;εq ‰ 0.

Assume that n is large enough so that Bpz, 1{nq is compact (this is possible as
X is locally compact). Applying a similar argument to the one that produced
yn, for all m ě 1 there exists znm P Bpz; 1{nq such that

χBpznm;1{mqTχBpyn;1{mq ‰ 0.

Let zn P Bpz, 1{nq be any limit point of the sequence pznmq
8
m“1, which exists

by compactness. Note then that if U Q zn and V Q yn are open sets then for
suitably large m, Bpznm; 1{mq Ď U and Bpyn; 1{mq Ď V , whence

0 ‰ χBpznm;1{mqTχBpyn;1{mq “ χBpznm;1{mqχUTχV χBpyn;1{mq;

this implies that χUTχV ‰ 0, and thus pzn, ynq is in supppT q. An exactly anal-
ogous argument shows that for all n suitably large there exists xn in Bpx, 1{nq
such that pyn, xnq is in supppSq. It follows that for all n suitably large, pzn, xnq
is in supppT q ˝ supppSq; as by construction, we have that pzn, xnq Ñ pz, xq as
nÑ8, we have shown that pz, xq is in supppT q ˝ supppSq.

For the last part of the proof, assume that S and T are properly supported
and that pz, xq is an element of supppTSq. Proceeding exactly as above, for
each n ě 1 we find elements xn P Bpx, 1{nq, yn P Y and zn P Bpz, 1{nq such
that pyn, xnq is in supppSq and pzn, xnq P supppT q for all n. Assume that T is
properly supported; the case where S is properly supported is similar. Let πZ :
supppT q Ñ Z be the coordinate projection. Then the sequence ppzn, ynqq

8
n“1 in

Z ˆ Y is contained in the compact subset

π´1
Z ptzn | n ě 1u Y tzuq X supppT q

of Z ˆ Y , and thus has a convergent subsequence. In other words, passing to a
subsequence, we may assume that pynq converges to some y P Y . As supppT q
and supppSq are closed, this gives that pz, yq P supppT q, py, xq P supppSq, and
thus pz, xq P supppT q ˝ supppSq as required.
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Corollary 4.1.14. Let HX be a module over a metric space X, and let S, T :
HX Ñ HX be bounded operators. Then:

(i) proppS ` T q ď maxtproppSq, proppT qu;

(ii) proppT˚q “ proppT q;

(iii) proppTSq ď proppT q ` proppSq.

Proof. These follow from each of the three points Lemma 4.1.13 in turn. Indeed,
the first is obvious, the second follows from symmetry of the metric, and the
third follows from condition (iii), the triangle inequality, and continuity of the
metric.

We finish this section with a technical lemma that will be used many times
in the remainder of this chapter. To state it we need a little notation: if F is a
subset of Y ˆX and K a subset of X, respectively Y , then define4

F ˝K :“ ty P Y | there is x P K such that py, xq P F u,

and
K ˝ F :“ tx P X | there is y P K such that py, xq P F u.

Lemma 4.1.15. Let T : HX Ñ HY be a bounded operator between geometric
modules, and F “ supppT q. Then for any compact subset K of X, respectively
Y , we have

TχK “ χF˝KTχK , χKT “ χKTχK˝F .

Proof. We assume K Ď X; the case K Ď Y can be proved similarly. Example
4.1.9 implies that the support of χK is a subset of tpx, xq P X ˆ X | x P Ku.
Hence Lemma 4.1.13 implies that

supppTχKq Ď tpy, xq P Y ˆX | x P K, py, xq P F u Ď F ˝K ˆK,

where the second inclusion uses that K is compact and F closed to deduce that
F ˝K is closed. Let now y be an element of Y zpF ˝Kq. Then for every x P K,
py, xq R supppTχKq, and thus there exist open sets Uyx Q y and Vxy Q x with
χUyxTχKχVyx “ 0. Take a finite cover Vyx1 , ..., Vyxn of K from among the open
sets Vyx. Set Uy :“

Şn
i“1 Uyxi . Let E1 “ K X Vyx1 and for each i P t2, ..., nu,

define

Ei :“ pK X Vyxiqz
´

i´1
ď

j“1

Vyxj

¯

.

Then each Ei is Borel, and

χUyTχK “
n
ÿ

i“1

χUyTχKχEi “
n
ÿ

i“1

χUyχUyxiTχKχEi “ 0.

4One can think of this as essentially the same as the composition defined in line (4.2)
above, on identifying K with tpx, xq P X ˆX | x P Ku.
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On the other hand, applying Lemma A.1.10 to the cover pUyq of Y zpF ˝ Kq
gives a countable cover pEiqiPI of Y zpF ˝ Kq by disjoint Borel sets such that
χEiTχK “ 0 for all n. Using strong convergence of

ř

iPI χEi to χY zpF˝Kq, this
gives

χY zpF˝KqTχK “
ÿ

iPI

χEiTχK “ 0,

which in turn is equivalent to the desired formula χF˝KTχK “ TχK .

4.2 Covering isometries

In this section, we discuss isometries between geometric modules that are meant
to simulate maps on the spatial level. The machinery we build here underlies
the functoriality of both the Roe algebras discussed in Chapter 5, and that of
the localisation algebras discussed in Chapter 6.

Throughout this section, X and Y are locally compact, second countable,
Hausdorff spaces.

Definition 4.2.1. Let HX , HY be geometric modules, let f : X Ñ Y be a
function, and let U be an open cover of Y . Then an isometry V : HX Ñ HY is
a U-cover of f if

supppV q Ď
ď

UPU
U ˆ f´1pUq.

One should think of the cover U as governing how good an approximation
V is to f : roughly, the set

Ť

UPU U ˆ f´1pUq can be thought of as a sort of
neighbourhood of the graph tpfpxq, xq P Y ˆX | x P Xu of f .

We will show that U-covers always exist later in this section. First, however,
we consider some natural examples.

Example 4.2.2. Let X, Y be Riemannian manifolds equipped with geometric
modules HX , HY of square integrable functions as in Example 4.1.2. Let f :
X Ñ Y be a diffeomorphism, and let J : X Ñ R be its Jacobian. For each
u P C8c pXq, define V u P C8c pY q by the formula

pV uqpyq “
upf´1pyqq

a

|Jpf´1pyqq|

Then V extends to a unitary operator on HX that U-covers f for any open cover
U of Y .

This example can be generalized to (some) spaces of square integrable func-
tions on more general spaces, with the role of the Jacobian being played by the
Radon-Nikodym derivative of f .

Example 4.2.3. Let f : X Ñ Y be an arbitrary function. Let ZX be a countable
dense subset of X, and ZY a countable dense subset of Y that contains fpZXq.
Let H be a separable infinite-dimensional Hilbert space, and let `2pZX , Hq and
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`2pZY , Hq be the ample X and Y modules considered in Example 4.1.6. For
each y P Y , choose an isometry

Vy : `2pf´1pyq, Hq Ñ `2ptyu, Hq

(this is possible as the left-hand-side is separable, and the right-hand-side infinite-
dimensional; note that Vy will be zero if f´1pyq “ ∅). Define

V :“
à

yPZY

Vy :
à

yPZY

`2pf´1pyq, Hq

looooooooooomooooooooooon

“HX

Ñ
à

yPZY

`2ptyu, Hq

loooooooomoooooooon

“HY

.

Then V is a U-cover of f for any open cover U of Y . This construction motivates
our general proof of the existence of U-covers.

Example 4.2.4. Let X “ r0, 1s and Y “ r0, 1s ˆ r0, 1s. Let f : X Ñ Y be
the natural inclusion as r0, 1s ˆ t0u, and let HX , HY be the standard Lebesgue
L2-spaces for X and Y . Then for any ε ą 0, the isometry defined by

Vε : HX Ñ HY , pVεuqps, tq “
1
?
ε
upsqχr0,εsptq

has support tps, tq P r0, 1s ˆ r0, 1s | t ď εu. Hence for any open cover U of Y , a
compactness argument shows that Vε is a U-cover of f for all suitably small ε.
However, there is no single V : HX Ñ HY that U-covers f for all possible U :
see Exercise 4.6.7.

Construction 4.2.5. Let f : X Ñ Y be a Borel function, and let HX , HY be
geometric modules, with HY ample.

Let pEiqiPI be a countable collection of Borel subsets of Y with the following
properties:

(i) Y is equal to the disjoint union
Ů

iPI Ei of the sets Ei;

(ii) each Ei has non-empty interior;

(iii) for any compact K Ď Y , the set

ti P I | Ei XK ‰ ∅u

is finite.

For each i, note that f´1pEiq is Borel (as f is Borel and Ei is Borel), whence
χf´1pEiqHX makes sense; moreover the fact that Ei has non-empty interior and
ampleness of HY implies that χEiHY is infinite dimensional. Hence for each i,
we may choose an isometry

Vi : χf´1pEiqHX Ñ χEiHY

(possibly zero). Set

V :“
à

iPI

Vi :
à

iPI

χf´1pEiqHX

loooooooomoooooooon

“HX

Ñ
à

iPI

χEiHY

looooomooooon

“HY

,

which is an isometry from HX to HY .
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Lemma 4.2.6. Let f : X Ñ Y , pEiqiPI , and V : HX Ñ HY be as in Construc-
tion 4.2.5 above. Then

supppV q Ď
ď

iPI

Ei ˆ f´1pEiq

Proof. Say py, xq R
Ť

iPI Ei ˆ f
´1pEiq, so for each i P I there exist open neigh-

bourhoods Wi Q y and Ui Q x such that

Wi ˆ Ui X Ei ˆ f
´1pEiq “ ∅.

Let W0 be a neighbourhood of y with compact closure, so by the properties of
the cover pEiq, the set J “ ti P I |W0 X Ei ‰ ∅u is finite. Set

U “
č

iPJ

Ui, W “ V0 X p
č

iPJ

Viq,

which are open neighbourhoods of y, x respectively. From the choice of W0 and
the Ui, Wi, then

χWV χU “ χW

´

à

iPJ

χEiV χf´1pEiq

¯

χU “ 0,

so py, xq is not in supppV q.

Corollary 4.2.7. Let f : X Ñ Y be a Borel map, and HX , HY be geometric
modules with HY ample. Then for any open cover U of Y , there exists an
isometry V : HX Ñ HY that U-covers f .

Proof. Using Lemma A.1.10, there exists a cover pEiqiPI with the properties in
Construction 4.2.5, and moreover so that each Ei is contained in some U P U .
Lemma 4.2.6 tells us that if we apply Construction 4.2.5 starting with this cover
pEiq, then the resulting isometry V : HX Ñ HY satisfies

supppV q Ď
ď

iPI

Ei ˆ f´1pEiq

The right hand side is contained in
Ť

UPU U ˆ f´1pUq, which is the desired
conclusion.

4.3 Covering isometries for coarse maps

In this section, we produce a specialization of the above material to the coarse
category. The coarse category is looked at in more detail in Section A.3; for the
reader’s convenience, we repeat the main definitions here.

Definition 4.3.1. For us, metrics are allowed to take the value infinity (but
otherwise satisfy all the usual conditions). A metric space X is proper if all
closed bounded sets are compact.
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Let f : X Ñ Y be any map between (proper) metric spaces. The expansion
function of f , denoted ωf : r0,8q Ñ r0,8s, is defined by

ωf prq :“ suptdY pfpx1q, fpx2qq | dXpx1, x2q ď ru.

The function f is coarse if:

(i) ωf prq is finite for all r ě 0;

(ii) f is a proper map, meaning that for any compact subset K of Y , the
pull-back f´1pKq has compact closure.

Two maps f, g : X Ñ Y are close if there exists c ě 0 such that for all x P X,
dY pfpxq, gpxqq ď c. The coarse category, denoted Coa, has objects proper metric
spaces, and morphisms closeness classes of coarse maps.

For the rest of the section, X, Y , Z will be objects of the category Coa. We
will use usual metric notions: in particular, the ball of radius r P p0,8q around
a point x P X is Bpx; rq :“ ty P X | dpx, yq ă ru.

Remark 4.3.2. Using the assumptions that our metrics are proper, a map f :
X Ñ Y is proper in the sense above if and only if it pulls back bounded sets to
finite unions of bounded sets. This is because a compact set is always a finite
union of bounded sets. Note, however, that as we allow our metrics to take the
value infinity, a finite union of bounded sets need not be bounded: compare
Lemma A.3.2.

The definition of covering isometry appropriate to the coarse category is as
follows.

Definition 4.3.3. Let HX , HY be geometric modules, and let f : X Ñ Y be a
coarse map. An isometry V : HX Ñ HY covers f , or is a covering isometry of
f , if there is t P p0,8q such that dY py, fpxqq ă t whenever py, xq P supppV q.

Proposition 4.3.4. Let f : X Ñ Y be a coarse map, and HX , HY be geometric
modules such that HY is ample. Then there is a covering isometry V : HX Ñ

HY for f .

Proof. Let r P p0,8q, and let U be the open cover tBpy; rq | y P Y u of Y .
Note that if g : X Ñ Y is a coarse map that is close to f , then any covering
isometry for g is also a covering isometry for f ; using Lemma A.3.12, then, we
may assume that f is Borel. Using Corollary 4.2.7 above, there exists a U-cover
V : HX Ñ HY and by definition of a U-cover,

supppV q Ď
ď

UPU
U ˆ f´1pUq.

It thus suffices to find t such that if py, xq P U ˆ f´1pUq for some U P U , then
dY py, fpxqq ă t. Indeed, as x P f´1pUq, there is x1 P f´1pUq with dXpx, x

1q ă r.
Using that y P U , there is y1 P U with dY py, y

1q ă r, and thus

dY py, fpx
1qq ď dY py, y

1q ` dY py
1, fpx1qq ă r ` diampUq ă 3r.
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Hence

dY py, fpxqq ď dY py, fpx
1qq ` dY pfpx

1q, fpxqq ă 3r ` ωf prq,

so we may take t “ 3r ` ωf prq.

A coarse equivalence is an isomorphism in the category Coa of Definition
4.3.1. In the case that we have a coarse equivalence from X to Y and both
modules are ample, we can use some machinery from Section A.3 to do a bit
better.

Proposition 4.3.5. Let f : X Ñ Y be a coarse equivalence, and HX , HY be
ample geometric modules. Then there is a covering isometry V : HX Ñ HY for
f which is also a unitary isomorphism.

Proof. Using Lemma A.3.12, we may assume that f is Borel. Using Exercise
A.4.3 and the fact that f : X Ñ Y is a coarse equivalence there exists c ą 0
such that for every y P Y is within c of some point in fpXq. Moreover, there
exists s ą 0 such that for all x P X, the diameter of fpBpx; sqq is at most s.
Let r “ c ` s ` 1, and let Z be a 2r-net in Y as in Definition A.3.10, which
exists by Lemma A.3.11. As Y is second countable, Z is countable, so we may
enumerate its elements as z1, z2, .... Iteratively define Borel subsets of Y in the
following way. Set

E1 :“ Bpz1; 3rqz
ď

zPZztz1u

Bpz; rq,

and given E1, ..., En´1, define

En :“ Bpzn; 3rqz
´

ď

zPZztznu

Bpz; rq Y
n´1
ď

i“1

Ei

¯

.

Then pEnqnPN is a Borel cover of Y by disjoint sets, such that each En is
contained in Bpzn; 3rq (and in particular the family is uniformly bounded), and
such that each contains Bpzn; rq.

We claim that for each n, each f´1pEnq contains an open set. Indeed, by
choice of c, there is some x P X with dpfpxq, znq ă c. On the other hand, by
choice of s, every point in Bpx; 1q is mapped into Bpfpxq; sq, and so Bpx; 1q is
mapped into Bpzn; c` sq, which is contained in En by choice of r.

As this point ampleness gives that both χf´1pEnqHX and χEnHY are (sep-
arable and) infinite dimensional, and so we may choose a unitary isomorphism
Vn : χf´1pEnqHX Ñ χEnHY . Define

V :“
à

nPN
Vi :

à

nPN
χf´1pEnqHX

looooooooomooooooooon

“HX

Ñ
à

nPN
χEiHY

looooomooooon

“HY

,

which is a unitary isomorphism. Checking that this is a covering isometry for
f is quite analogous to the argument in the proof of Proposition 4.3.4, and we
leave the remaining details to the reader.
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We finish this section with two technical results that will be useful later.
The first uses the notion of properly supported operator from Definition 4.1.12.

Lemma 4.3.6. Let f : X Ñ Y be a coarse map, HX , HY be geometric modules,
and T : HX Ñ HY a bounded operator such that there exists t P r0,8q with
ρpy, fpxqq ă t for all py, xq P supppT q. Then T is properly supported.

Proof. If K Ď Y , define the t-neighbourhood of K to be NtpKq :“
Ť

yPK Bpy; tq,
and similarly for K Ď X. Let πY : supppT q Ñ Y be the coordinate projection,
and let K Ď Y be compact. Then

π´1
Y pKq Ď K ˆ f´1pNtpKqq.

Note that as K is compact, it is a finite union of bounded sets (compare Remark
4.3.2), and thus NtpKq is also a finite union of bounded sets and so has compact
closure by properness of Y . As f is proper, the set f´1pNtpKqq thus has compact
closure, and thus π´1

Y pKq is compact. Similarly, if πX : supppT q Ñ X is the
coordinate projection, then

π´1
X pKq Ď NtpfpKqq ˆK.

As K is a finite union of bounded sets and ωf prq ă 8 for all r P r0,8q, NtpfpKqq
is also a finite union of bounded sets. Hence NtpfpKqq has compact closure,
and thus π´1

X pKq is compact.

Corollary 4.3.7. Say Vf : HX Ñ HY , Vg : HY Ñ HZ are covering isometries
for coarse maps f : X Ñ Y and g : Y Ñ Z. Then the composition Vg ˝ Vf is a
covering isometry of g ˝ f .

Proof. Let t P r0,8q be as in definition of covering isometry for both f and g.
Using Lemma 4.3.6 and Lemma 4.1.13, part (iii 1)

supppVgVf q Ď supppVgq ˝ supppVf q,

whence if pz, xq is in supppVgVf q there exists y P Y such that pz, yq, py, xq are
in supppVgq and supppVf q respectively. Hence

ρpz, gpfpxqqq ď ρpz, gpyqq ` dpgpyq, gpfpxqqq ď t` ωgptq;

as t` ωgptq is independent of x and z, this completes the proof.

4.4 Covering isometries for continuous maps

In this section, we discuss a parametrised version of Construction 4.2.5 that is
appropriate for continuous maps between topological spaces.

Throughout this section, X and Y are second countable, locally compact,
Hausdorff spaces. Recall that an open cover U of X refines an open cover V if
every U P U is contained in some V P V.
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Definition 4.4.1. Let HX , HY be geometric modules, and f : X Ñ Y a
function. Let pUnq be a sequence of open covers of Y such that Un`1 refines Un
for all n.

A family of isometries pVtqtPr1,8q covers f with respect to the sequence pUnq
if:

(i) for all n and all t ě n, Vt is a Un cover of f ;

(ii) the function t ÞÑ Vt from r1,8q to BpHX , HY q is uniformly norm contin-
uous.

Example 4.4.2. Let V : HX Ñ HY be a family of isometries that is a U-cover of
f for any U , as appearing in Examples 4.2.2 and 4.2.3. Then the corresponding
constant family defined by setting Vt “ V for all t is a cover for f with respect
to any sequence pUnq.

Proposition 4.4.3. Let f : X Ñ Y be a Borel map, HX , HY be geometric
modules with HY ample, and pUnq a sequence of open covers of Y such that
Un`1 refines Un for all n. Then there exists a cover pVtq for f with respect to
the sequence pUnq.

To prove this, we need a general lemma about the existence of paths between
isometries.

Lemma 4.4.4. Let H, H 1 be separable Hilbert spaces, and let V0, V1 be isome-
tries from H into H 1 such that the subspaces V0H and V1H have the same
(dimension and) codimension. Then there exists a path pVt : H Ñ H 1qtPr0,1s of
isometries connecting V0 and V1 such that

}Vt ´ Vs} ď 2π|s´ t|

for all s, t P r0, 1s.
Moreover, if V0 and V1 are unitary, then each Vt may also be chosen to be

unitary.

Proof. Note that the partial isometry V1V
˚
0 P BpH 1q is a unitary isomorphism

from V0H to V1H. Choose an arbitrary partial isometry W P BpH 1q that acts as
zero on V0H, and takes the orthogonal complement of V0H onto the orthogonal
complement of V1H (such exists as V0H and V1H have the same codimension).
Define U “ V1V

˚
0 `W P BpH 1q, which is a unitary operator. Let f : S1 Ñ r0, 2πq

be the (Borel) inverse to the exponential map t ÞÑ eit, and let T “ fpUq P BpH 1q
be defined using the Borel functional calculus of Corollary 1.6.12. Then T is
a self-adjoint bounded operator on H 1 of norm at most 2π such that U “ eiT .
The path of isometries

γ : t ÞÑ eitTV0

satisfies
}γptq ´ γpsq} “ }eitT ´ eisT } ď }T }|t´ s| ď 2π|t´ s|
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for all s, t P r0, 1s by the functional calculus. It moreover satisfies γp0q “ V0 and
that γp1q “ V1, so we are done in the case that V0 and V1 are isometries.

The statement about unitaries follows on noting that the above construction
automatically gives a path of unitaries if one starts with unitary V0 and V1.

Proof of Proposition 4.4.3. Using Lemma A.3.12, there exists a countable cover
pEiqiPI of Y by non-empty disjoint Borel sets such that each Ei has compact
closure, each is contained in the closure of its interior, each is contained in
some element of U1, and such that only finitely many of the sets Ei intersect
any compact subset of Y . Apply Construction 4.2.5 to this cover, with the
additional requirement that each isometry

Vi : χf´1pEiqHX Ñ χEiHY (4.3)

appearing in the construction has range of infinite codimension (we can do this,
as the right hand side above is infinite dimensional and the left hand side is
separable). Lemma 4.2.6 implies that the corresponding isometry V : HX Ñ HY

is a U1-cover of f ; we write V1 for this isometry and V1,i for each of the isometries
as in line (4.3) used to build it.

Now, that each Ei has compact closure and the fact that Ei is the closure
of its interior, we may subdivide Ei into finitely many non-empty Borel pieces
Ei “

ŮNi
j“1Eij such that each Eij is contained in the closure of its interior, and

such that for each i, j, we have that Eij is contained in some element of U2 .
For each i, j, there is an isometry

V2,ij : χf´1pEijqHX Ñ χEijHY

with range of infinite codimension. Consider the pair of isometries

V1,i, ‘
Ni
j“1 V2,ij : χf´1pEiqHX Ñ χEiHY .

These have range of infinite codimension, whence by Lemma 4.4.4 there is a
norm continuous path of isometries pVt,iqtPr1,2s connecting them. Moreover,
from the explicit estimate in Lemma 4.4.4, the family of paths

pVt,iqtPr1,2s

as i ranges over I can be chosen to be Lipschitz, with Lipschitz constant 2π. It
follows that the path

Vt :“
à

iPI

Vi,t : HX Ñ HY ;

of isometries is Lipschitz with Lipschitz constant 2π and connects V1 and V2 :“
‘i,jV2,ij . (The proof of) Corollary 4.2.7 implies that Vt is a U1-cover of f for
all t P r1, 2s, and a U2-cover for t “ 2.

We may now similarly subdivide each Eij into finitely many non-empty
Borel pieces, each of which is contained in the closure of its interior, and each
of which is contained in some element of U3; this decomposition can then be
used to construct V3 and a norm continuous path from V2 to V3 in much the
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same way. Connecting our two paths gives a path pVtqtPr1,3s such that t ÞÑ Vt is
Lipschitz with Lipschitz constant 2π, and such that Vt is a U1-cover of f for all
t P r1, 3s, a U2-cover for t P r2, 3s and a U3-cover for t “ 3.

Continuing this process gives a norm continuous path pVtqtPr1,8q with the
desired properties.

Remark 4.4.5. Say f : X Ñ Y is a homeomorphism, and that HX , HY are
geometric modules that are both ample. Then in the above construction we may
take all the various isometries appearing to be unitary isomorphisms, and thus
can assume that the final result is a continuous family pVt : HX Ñ HY qtPr1,8q of
unitary isomorphisms with the properties in the statement of Proposition 4.4.3.

The following definition and corollary give a particularly important special
case. To state, it recall that Y ` denotes the one point compactification of Y :
see Definition A.1.4.

Definition 4.4.6. Let f : X Ñ Y be a continuous map, and let HX , HY

be geometric modules. Then a continuous cover of f is a family of isometries
pVt : HX Ñ HY qtPr1,8q such that:

(i) the function t ÞÑ Vt from r1,8q to BpHX , HY q is uniformly norm contin-
uous;

(ii) for any open subset U Ď Y `ˆY ` that contains the diagonal, there exists
tU ě 0 such that for all t ě tU

supppVtq Ď tpy, xq P Y ˆX | py, fpxqq P Uu.

Corollary 4.4.7. Let f : X Ñ Y be a continuous map, and let HX , HY be
geometric modules with HY ample. Then a continuous cover of f exists.

Proof. Fix a metric d on Y ` that induces the topology. Using compactness of
Y `, it will suffice to find a uniformly continuous family pVtq such that for all
ε ą 0 we have

supppVtq Ď tpy, xq P Y ˆX | dpy, fpxqq ă εu

for all suitably large t. Let Un be the open cover of Y by balls of radius 2´n for
the restricted metric from Y `, and apply Proposition 4.4.3. Let ε ą 0, and let
n be such that 2´n ă ε{2; we claim tε “ n works. Indeed, let t ě n, and note
that Vt is a Un cover of f , whence by definition of a Un-cover (Definition 4.2.1)
we have that

supppVtq Ď
ď

yPY

Bpy; 2´nq ˆ f´1pBpy; 2´nqq.

Say py, xq P supppV q, whence there is z P Y with

py, xq P Bpz; 2´nq ˆ f´1pBpz; 2´nqq.

As f is continuous, x P f´1pBpz; 2´nqq implies that dpfpxq, zq ď 2´n. Hence

dpy, fpxqq ď dpy, zq ` dpz, fpxqq ď 2 ¨ 2´n ă ε,

completing the proof.
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Definition 4.4.8. A family of isometries pVt : HX Ñ HY qtPr1,8q satisfying
the conditions in the above lemma will be called a continuous cover of the
continuous map f : X Ñ Y .

4.5 Equivariant covering isometries

In this section, we will discuss geometric modules and covering isometries in
the presence of a group action. The basic ideas are largely the same as in the
previous sections, but using background from Section A.2 as opposed to Section
A.1 for the necessary ingredients. Unfortunately, some proofs end up being
technical; for most purposes, the reader would not lose much by treating them
as black boxes.

Throughout this section, G denotes a countable discrete group, and X, Y
are locally compact, second countable Hausdorff spaces. We always assume that
G acts properly on all spaces: recall from Definition A.2.2 that this means that
for any compact subset K of the relevant space, the set tg P G | gK XK ‰ ∅u
is finite. As in Proposition A.2.1, there is an induced action of G on C0pXq,
which we denote by α: in symbols

pαgfqpxq :“ fpg´1xq (4.4)

for all g P G, f P C0pXq, and x P X. See Section A.2 for associated definitions
and basic facts on group actions.

We will also need to work with unitary representations: a unitary represen-
tation of a group G is a homomorphism from G to the unitary group UpHq of
some Hilbert space H, and two unitary representations U, V on Hilbert spaces
HU , HV are isomorphic if there is a unitary isomorphism W : HU Ñ HV such
that WUg “ VgW for all g P G. See Section C.1 for a summary of definitions
and basic facts.

Equivariant geometric modules

We now discuss the equivariant geometric modules that we need to set up the
theory in the presence of a group action.

Definition 4.5.1. A (geometric) X-G module, or (geometric) module over X-
G, is an X module HX equipped with a unitary representation U : GÑ UpHXq

that spatially implements the action of G of C0pXq in the sense of Definition
C.1.8: precisely,

UgfU
˚
g “ αgpfq

for all f P C0pXq and g P G.

We will almost always denote the G-action on an X-G module HX by g ÞÑ Ug
without necessarily explicitly mentioning this.

Say that HX is an X-G module. Note that the C˚-algebra BpXq of bounded
Borel functions on X has a G action defined by the same formula as in line (4.4)
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above. Moreover, if we extend the representation of C0pXq on HX to one of
BpXq as in Proposition 1.6.11, checking the construction shows that the unitary
representation U : GÑ UpHXq also spatially implements the G action on BpXq.
In particular, if F is a subgroup of G and E Ď X an F -invariant Borel subset,
then for all g P F

UgχEU
˚
g “ αgpχEq “ χgE “ χE .

In other words, Ug commutes with χE for all g P F . It follows that the restriction
U |F : F Ñ UpHXq of the unitary representation to F induces a well-defined
unitary representation of F on χEHX .

Definition 4.5.2. An X-G module HX is locally free if for any finite subgroup
F of G and any F -invariant Borel subset E of X there is a Hilbert space HE

(possibly zero) equipped with the trivial representation of F such that χEHX

and `2pF q bHE are isomorphic as F representations.
The module HX is ample (as an X-G module) if it is locally free, and ample

as an X module.

It is possible for an X-G module to be ample as an X module, but not as
an X-G module (i.e. not locally free): for example, take X to be a point, G a
finite non-trivial group, and H any infinite dimensional Hilbert space equipped
with the unital action of CpXq “ C, and the trivial action of G. This ambiguity
of terminology should not cause any confusion.

Example 4.5.3. Say X “ G, and HX “ `2pG,Hq for some Hilbert space H with
C0pGq acting on HX by pointwise multiplication. Define a unitary representa-
tion of G by pUguqphq :“ upg´1hq for all g, h P G and u : GÑ H. This module
is always locally free. Indeed, for an F -invariant (Borel) subset E of G, one can
choose a subset S of G such that

E “
ğ

gPS

Fg.

It follows that

χE`
2pG,Hq – `2pE,Hq – `2pF ˆ S,Hq – `2pF q b `2pS,Hq

as F representations, where F acts trivially on S. This representation is ample
if and only if H is infinite dimensional.

Example 4.5.4. Let µ be a Radon measure on X and consider the X module
HX :“ L2pX,µq from Example 4.1.2. Assume moreover that µ is G-invariant,
meaning that µpgEq “ µpEq for all Borel subsets E Ď G. Then the formula

pUguqpxq :“ upg´1xq, u P HX , g P G, x P X,

defines a unitary representation of G on L2pX,µq that makes it into an X-G
module.

For example, X could be the real line equipped with Lebesgue measure, and
G could be Z acting by translations in the usual way. More generally, X could
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be a complete Riemannian manifold with a G action by proper isometries, and
µ the measure defined by the Riemannian structure.

We claim that if the G action on X is free, then the module HX is locally
free.5. Indeed, say F is a finite subgroup of G. One can show (either derive it
from Lemma A.2.9 with G “ F , or do it directly) that there is a Borel subset D
of X and a decomposition X “

Ů

gPF gD. If then E is an arbitrary F -invariant
Borel subset of X, set HE :“ χEXDHX , equipped with the trivial F action and
define an operator

V : χEHX Ñ `2pF q bHE , u ÞÑ
ÿ

gPF

δg b U
˚
g χgDu.

We leave it as an exercise for the reader to check that V is an isomorphism of
F representations.

In particular, if X is a Riemannian manifold of positive dimension with
associated measure µ, and G acts freely and properly by isometries on X, then
L2pX,µq is naturally an ample X-G module. One could also include a bundle
as in Example 4.1.5, as long as it is G-equivariant.

We now go back to generalities.

Lemma 4.5.5. Ample X-G modules always exist.

Proof. As G is countable and X is second countable, there exists a countable,
dense, and G-invariant subset Z of X. Let H be an infinite dimensional sepa-
rable Hilbert space. Define

HX :“ `2pZq bH b `2pGq

equipped with the ‘diagonal’ action of G defined by

Ug : δz b ub δh ÞÑ δgz b ub δgh.

Define an action of C0pXq by pointwise multiplication

f : δz b ub δh ÞÑ fpzqδz b ub δh.

Then one computes that

pUgfU
˚
g qpδz b ub δhq “ pUgfqpδg´1z b ub δg´1hq

“ Ugpfpg
´1zqδg´1z b ub δg´1hq

“ fpg´1zqpδz b ub δhq

“ pαgfqpδz b ub δhq,

which proves the covariance relation.
As H is infinite dimensional and Z is dense in X, HX is ample as an X

module (compare Example 4.1.6), so it remains to check local freeness. Let

5This can fail without the freeness assumption: consider again a finite group acting trivially
on X.
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then F be a finite subgroup of G, and let E be an F -invariant Borel subset of
X. We then have that

χEHX “ `2pZ X Eq bH b `2pGq.

Note that the F action on G identifies with the left multiplication action of F
on F ˆ pF zGq (where the right coset space F zG has trivial F action), whence
as F representations

`2pGq – `2pF q b `2pF zGq

and so
χEHX – `2pF q b

´

`2pE X Zq b `2pF zGq bH
¯

as F representations. On the other hand, if HE is defined to be the Hilbert
space `2pEXZqb`2pF zGqbH equipped with the trivial F representation, then
Fell’s trick (Proposition C.2.1) implies that

`2pF q b
´

`2pE X Zq b `2pF zGq bH
¯

– `2pF q bHE

as F representations and we are done.

Equivariant covering isometries

In the rest of this section we look at covering isometries: the appropriate notions
are similar to before, but with additional equivariance conditions.

Definition 4.5.6. Let HX and HY be geometric modules, f : X Ñ Y a
function, and U an open cover of Y . Write GU for the open cover

tgU | g P G, U P Uu

of Y . An isometry V : HX Ñ HY is an equivariant U-cover of f if it is
equivariant for the G representations on HX and HY and if it GU-covers f in
the sense of Definition 4.2.1.

The analogue of Construction 4.2.5 in the equivariant case is then as follows.

Construction 4.5.7. Let f : X Ñ Y be an equivariant Borel function. Let
HX , HY be geometric modules, with HY ample. Let pEiqiPI be a countable
collection of Borel subsets of Y with the following properties:

(i) Y is equal to the disjoint union
ğ

iPI

GEi of the sets GEi;

(ii) each Ei has non-empty interior;

(iii) for any compact K Ď Y , the set

ti P I | Ei XK ‰ ∅u

is finite;
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(iv) for each i, there is a finite subgroup Fi of G such that Ei is Fi-invariant,

and such that GEi is equal to the disjoint union
ğ

gFiPG{Fi

gEi.

Now, by the local freeness condition there is a Hilbert space Hi equipped
with a trivial Fi action and an isomorphism

χEiHY – `2pFiq bHi

of Fi representations. Moreover, as Ei has non-empty interior, ampleness implies
that χEiHY is infinite dimensional and thus Hi is too. Note that f´1pEiq is
also Fi invariant, whence χf´1pEiqHX is equipped with an Fi representation.
Corollary C.2.2 thus implies that we may choose an F -equivariant isometry

Wi : χf´1pEiqHX Ñ χEiHY . (4.5)

Define an isometry Vi : χf´1pGEiqHX Ñ χGEiHY by the formula

Vi :“
à

gFiPG{Fi

UgWiχf´1pEiqU
˚
g :

à

gFiPG{Fi

χgf´1pEiqHX

loooooooooooomoooooooooooon

“χf´1pGEiq
HX

Ñ
à

gFiPG{Fi

χgEiHY

looooooooomooooooooon

“χGEiHY

(convergence in the strong operator topology). This isometry does not depend
on the choice of coset representatives from G{Fi by Fi equivariance of Wi and
Fi invariance of χf´1Ei . It is moreover G equivariant as for any h P G

ViUh “
à

gFiPG{Fi

UgWiχf´1pEiqU
˚
h´1g

“
à

kFiPG{Fi

UhkVEiχf´1pEiqU
˚
k “ UhVi,

where we used the ‘change of variables’ k “ h´1g in the second equality. Define
finally

V :“
à

iPI

Vi :
à

iPI

χf´1pGEiqHX

looooooooomooooooooon

“HX

Ñ
à

iPI

χGEiHY

loooooomoooooon

“HY

,

which is a G-equivariant isometry from HX to HY .

Remark 4.5.8. Assume that HX is also ample and that we can choose the cover
pEiq above with the additional property that each pullback f´1pEiq also has
non-empty interior. Then we have both χf´1pEiqHX and χEiHY are isomorphic
as F -representations to `2pF qbH for some infinite-dimensional Hilbert space H
equipped with the trivial Fi representation. In particular, in line (4.5) above we
may choose Wi to be a unitary F -equivariant map. The rest of the construction
will then give that V itself is also unitary.

We now have an equivariant version of Lemma 4.2.6.
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Lemma 4.5.9. With notation as in Construction 4.5.7, we have

supppV q Ď
ď

iPI

ď

gPG{Fi

gEi ˆ f´1pgEiq.

Proof. This is actually a special case of Lemma 4.2.6 in disguise. With notation
as in Construction 4.5.7, Y is covered by the disjoint sets in the collection

pgEiqgPG{Fi,iPI .

This collection has the properties in the statement of Construction 4.2.5. On
the other hand, the isometry V is built as a direct sum of the isometries

Vi,gFi :“ UgWiχf´1pEiqU
˚
g : χf´1pgEiqHX Ñ χgEiHY

as i ranges over I and gFi over G{Fi, and these have the properties required in
Construction 4.2.5. Lemma 4.2.6 thus applies verbatim.

Now, let U be an open cover of Y . Then Lemma A.2.9 implies that we may
always find a countable collection pEiq as in the statement of construction 4.5.7
such that each Ei is contained in some element of U . The proof of the following
result now goes in much the same way as in the non-equivariant case: we leave
the details to the reader.

Corollary 4.5.10. Let f : X Ñ Y be an equivariant Borel map, and HX , HY

be geometric modules with HY ample. Then for any open cover U of Y , there
exists an equivariant isometry V : HX Ñ HY that equivariantly U-covers f .

Equivariant covering isometries for continuous maps

We now turn to the appropriate covering isometries for equivariant continuous
maps.

Definition 4.5.11. Let f : X Ñ Y be an equivariant continuous map, and let
HX , HY be geometric modules. Then an equivariant continuous cover of f is a
family pVt : HX Ñ HY q of isometries with the following properties.

(i) the function t ÞÑ Vt from r1,8q to BpHX , HY q is uniformly norm contin-
uous;

(ii) for any open subset U Ď Y `ˆY ` that contains the diagonal, there exists
tU ě 1 such that for all t ě tU

supppVtq Ď tpy, xq P Y ˆX | py, fpxqq P Uu;

(iii) each Vt is G equivariant (in symbols, UgV “ V Ug for all g P G).
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Proposition 4.5.12. Let f : X Ñ Y be an equivariant continuous map, HX ,
HY be geometric modules with HY ample. Then there exists an equivariant
continuous cover pVtq for f .

Moreover, if HX and HY are both ample, and f is an equivariant homeo-
morphism, then there exists an equivariant continuous cover pVtq for f where
each Vt is a unitary isomorphism.

Proof. We fix an open set U Ď Y ` ˆ Y ` containing the diagonal, and first
show that we can get a single equivariant isometry V : HX Ñ HY such that
supppV q Ď tpy, xq P Y ˆX | py, fpxqq P Uu.

Let then U Ď Y ` ˆ Y ` be given. As p8,8q P U , there exists a sequence
of compact subsets K1 Ď K2 Ď ¨ ¨ ¨ of Y , each contained in the interior of the
next, such that Y zKn ˆ Y zKn Ď U for all n, and such that Y “

Ť8

n“1Kn. For
each, let Sn “ tg P G | gKnXKn ‰ ∅u, a finite subset of G by properness. For
each n, let Un be a finite cover of Kn with the properties that every W P Un is
contained in Kn`1, and such that for all g P Sn`1 we have that

gW ˆ gW Ď U ;

to see that such a finite cover exists, use finiteness of Sn to get a possibly
infinite cover of K satisfying the properties, then use compactness of Kn to get
a finite subcover. Set now U “

Ť8

n“1 Un, and let pEiq be a countable collection
of Borel subsets of Y with the properties in Lemma A.2.9 with respect to this
cover. Apply Construction 4.5.7 and Lemma 4.5.9 to get an equivariant isometry
V : HX Ñ HY such that

supppV q Ď
ď

iPI

ď

gPG{Fi

gEi ˆ f´1pgEiq.

We claim that in fact this V satisfies tpy, fpxqq | py, xq P supppV qu Ď U . Indeed,
let py, xq be an element of supppV q, so there exist g P G and i P I such that
py, xq P gEiˆf´1pgEiq. Then there are n P N and W P Un such that gEi Ď gW .
If g P Sn`1, then we have

py, fpxqq P gEi ˆ fpf´1pgEiqq Ď gEi ˆ gEi Ď gW ˆ gW Ď U

where the first set inclusion uses continuity of f , the second that Ei Ď W , and
the third uses the construction of Un. On the other hand, if g R Sn`1, then
gW XKn “ ∅ and thus

py, fpxqq P gEi ˆ fpf´1pgEiqq Ď gEi ˆ gEi Ď Y zKn ˆ Y zKn Ď U.

This completes the proof that V has the right properties.
Having explained the above, the construction of a family pVtq proceeds much

as in the proof of Proposition 4.4.3. Indeed, the construction in Lemma 4.4.4
preserves equivariance, so one has a completely analogous equivariant version
of that lemma. Having noted this, use metrisability and compactness of Y ` to
construct a decreasing sequence

U1 Ě U2 Ě ¨ ¨ ¨
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of (not necessarily G-invariant) open subsets of Y `ˆY ` that contain the diago-
nal and are eventually contained in any open subset U Ď Y `ˆY ` that contains
the diagonal. An iterative construction as in the proof of Proposition 4.4.3 will
then complete the construction of a family pVtq with the right properties: we
leave the remaining details to the reader.

For the remaining comment about homeomorphisms, we just note that in
that case we may use Remark 4.5.8 and the unitary case of Lemma 4.4.4 to
produce unitaries at every stage in the above process.

Equivariant covering isometries for coarse maps

In the coarse setting, we will assume that X and Y are proper metric spaces as in
Definition 4.3.1, equipped with proper isometric actions of a countable discrete
group G. We will be interested in building covering isometries for coarse maps
f : X Ñ Y as in Definition 4.3.1 that are also equivariant.

Definition 4.5.13. Let HX , HY be geometric modules, and let f : X Ñ Y be
an equivariant coarse map between G-spaces as above. An isometry V : HX Ñ

HY is said to equivariantly cover f , or to be an equivariant covering isometry
of f , if it is equivariant, and if there is r P p0,8q such that dY py, fpxqq ă r
whenever py, xq P supppV q.

Proposition 4.5.14. Let f : X Ñ Y be a coarse map, and HX , HY be geo-
metric modules such that HY is ample. Then there is an equivariant covering
isometry V : HX Ñ HY for f .

Moreover, any equivariant covering isometry is properly supported, and if
Vf : HX Ñ HY and Vg : HY Ñ HZ are equivariant covering isometries for
f : X Ñ Y and g : Y Ñ Z respectively, then Vg ˝ Vf is an equivariant covering
isometry for g ˝ f .

Proof. Using Lemma A.3.18, we may assume that f is Borel. The proofs of
Proposition 4.3.4, Lemma 4.3.6, and Corollary 4.3.7 adapt directly, where we
use Corollary 4.5.10 (as opposed to Corollary 4.2.7) as the basic ingredient for
existence.

We would also like an analogue of Proposition 4.3.5 in this context, i.e. a
version that shows that any equivariant coarse equivalence can be covered by a
unitary isomorphism. This is more technical, and requires a somewhat different
technique. The key point is the following structure lemma, which says that any
ample X-G module is ‘locally isomorphic’ to `2pGq bH in a controlled way.

Lemma 4.5.15. Let HX be an ample X-G module, let E Ď X be a G-invariant
Borel subset with non-empty interior, and let W be an open subset of X such
that GW Ě E. Then there is a projection P on HX with the following properties:

(i) P has infinite rank;

(ii) χWP “ PχW “ P (in other words, the image of P is a subspace of the
image of χW );
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(iii) the collection pUgPU
˚
g qgPG consists of mutually orthogonal projections whose

sum converges strongly to χE;

(iv) if the tensor product `2pGq b PHX is equipped with the G representation
defined by

Vg : δh b u ÞÑ δgh b u,

then the formula

U : χEHX Ñ `2pGq b PHX , u ÞÑ
ÿ

gPG

δg b PU
˚
g u

defines a unitary isomorphism6 of G-representations.

Proof. Note that the closure E of E is a proper metric space equipped with a
proper isometric G-action. Apply Lemma A.2.9 to the open cover U :“ tgW |

g P Gu of E to get a countable collection pEiqiPI of Borel subsets of E with the
following properties:

(a) the collection pGEiqiPI is a disjoint cover of E;

(b) for i ‰ j, GEi XGEj “ ∅;

(c) each Ei is contained in some set giW ;

(d) each Ei is contained in the closure of its interior (for the induced topology
on E);

(e) for each i there is a finite subgroup Fi ď G such that Ei is invariant under
Fi, and such that the function

GˆFi Ei Ñ GEi, rg, xs ÞÑ gx

is an equivariant homeomorphism for the natural G-actions on each side
(recall from Example A.2.6 that GˆFi Ei is the quotient of Gi ˆEi by the
Fi action f ¨ pg, xq :“ pgf´1, fxq).

Note that by replacing each Ei with the translate g´1
i Ei, we may assume that

Ei is contained in W ; this does not alter the other properties of the cover.
Now, as HX is locally free (see Definition 4.5.2) and EXEi is Fi invariant, we

get Hilbert spaces Hi (possibly zero) equipped with the trivial Fi representation
and unitary isomorphisms

χEXEiHX Ñ `2pFiq bHi

of Fi representations. Extending these isomorphisms by zero on χEzEiHX for
each i gives a surjective partial isometry

Vi : χEHX Ñ `2pFiq bHi

6Recall this means that U is a unitary isomorphism such that VgU “ UUg for all g P G:
see Definition C.1.1.
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that is equivariant for the Fi actions on both sides. Let now e be the identity
element of G, and define

Pi :“ V ˚i pχteu b 1HiqVi,

so each Pi is a projection on HX with image a subspace of χEXEiHX . For i ‰ j
we have EiXEj “ ∅, and so the projections Pi and Pj are mutually orthogonal.
Hence the sum

P :“
ÿ

iPI

Pi

converges strongly to a projection on HX . We claim that P has the right
properties.

Indeed, for property (i), note that E has non-empty interior E˝. As the
collection pgpEXEiqqgPG,iPI is a disjoint cover of E, one of the sets EXEi must
intersect E˝. As Ei is the closure of its interior, this implies that the interior
of Ei intersects E˝, so in particular that Ei X E˝ contains an open set. Using
ampleness, it follows that χEXEi has infinite rank, and thus that Hi is infinite
dimensional for this i. Hence Pi is infinite rank, and thus P is infinite rank as
Pi is a subprojection of P .

Property (ii) follows as each E X Ei is contained in W , whence we have

PHX “
à

iPI

PiHX Ď
à

iPI

χEXEiHX Ď χWHX .

We leave it to the reader to check that property (iv) is a direct consequence of
property (iii), so it remains to prove property (iii).

For property (iii), we claim that for each i, the family pUgPiU
˚
g qgPG con-

sists of mutually orthogonal projections that sum strongly to the identity on
χGpEXEiq. This will imply property (iii): indeed, as the collection pGpEXEiqqiPI
consists of disjoint sets, this implies that the collection pUgPiU

˚
g qiPI,gPG also

consists of orthogonal projections. Moreover, we have

ÿ

gPG

UgPU
˚
g “

ÿ

gPG

ÿ

iPI

UgPiU
˚
g “

ÿ

iPI

ÿ

gPG

UgPiU
˚
g “

ÿ

iPI

ÿ

gPG

χgpEXEiq “ χE ,

where the last equality uses that the collection pGpE X EiqqiPI is a cover of E.
It now remains to establish the claim. Note first that by Fi-equivariance of

Vi, for each h P Fi,
UhPiU

˚
h “ V ˚i pχthu b 1HiqVi.

As the projections pχthu b 1HiqhPFi are mutually orthogonal and sum to the
identity on `2pFiqbHi, and as the restriction of Vi to a map χEiHX Ñ `2pFiqb
Hi is a unitary isomorphism, it follows that the projections pUhPiU

˚
h qhPFi are

mutually orthogonal and sum to χEXEi . On the other hand, let S Ď G be a set

of right coset representatives for G{Fi, i.e. so that G “
ğ

gPS

gFi. Using that the

map
GˆFi pE X Eiq Ñ GpE X Eiq, rg, xs ÞÑ gx
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is an equivariant homeomorphism, we have that GpE X Eiq “
ğ

sPS

spE X Eiq,

whence there is an orthogonal direct sum decomposition

χGpEXEiqHX “
à

sPS

UsχEXEiHX .

Combined with our earlier observations that the collection pUhPiU
˚
h qhPFi con-

sists of mutually orthogonal projections that sum to χEXEi , this implies that
the collection pUsUhPiU

˚
hU

˚
s qhPFi,sPS consist of mutually orthogonal projections

that sum to χGpEXEiq. As each g P G can be uniquely represented as sh for
s P S and h P Fi, the collections pUsUhPiU

˚
hU

˚
s qhPFi,sPS and pUgPiU

˚
g qgPG are

the same, so we are done.

Proposition 4.5.16. Let f : X Ñ Y be an equivariant coarse equivalence, and
HX , HY be ample equivariant geometric modules. Then there is an equivariant
covering isometry V : HX Ñ HY for f which is also a unitary isomorphism.

Proof. Using Lemma A.3.12, we may assume that f is Borel. Using Exercise
A.4.3 and the fact that f : X Ñ Y is a coarse equivalence there exists c ą 0
such that for every y P Y is within c of some point in fpXq. Moreover, there
exists s ą 0 such that for all x P X, the diameter of fpBpx; 1qq is at most s.
Let r “ c ` s ` 1. Using Zorn’s lemma, we see that there is a maximal subset
Z of Y with the following property: for any distinct x, y P Z, and any g, h P G,
dpgx, hyq ě 3r. In other words, Z is maximal subject to the condition that the
orbits of any two points in Z are 3r-separated (we do not make any assumptions
on how well-separated points are in the same orbit of an element of Z).

As Y is second countable, Z must be countable, so we may enumerate it as
z1, z2, .... Define

E1 :“
´

ď

gPG

Bpgz1; 4rq
¯

z

´

ď

m‰1

ď

gPG

Bpgzm; rq
¯

and for n ě 1, iteratively define

En :“
´

ď

gPG

Bpgzn; 4rq
¯

z

´

ď

m‰n

ď

gPG

Bpgzm; rq Y
n´1
ď

i“1

Ei

¯

.

Then the collection pEnqnPN consists of disjoint, Borel, G-invariant sets that
cover Y . Moreover, each En contains

Ť

gPGBpgzn; rq by construction and so in
particular has non-empty interior.

For the remainder of the proof, we write Ug for the unitary operators on HY

inducing the action of G, and UXg for those on HX .

Let now Wn “ Bpgzn; 5rq. Then each Wn is open, and GWn contains En.
Hence using Lemma 4.5.15, there is an infinite rank projection Pn on HY such
that Pn “ χWnPnχWn , so that

ÿ

gPG

UgPU
˚
g “ χEn , and so that we have an
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isomorphism

Un : χEnHY Ñ `2pGq b PHY , u ÞÑ
ÿ

gPG

δg b PU
˚
g u

For each n, consider now the pullback f´1pEnq, which is a G-invariant Borel
subset of X. As any point of Y is within c of a point of fpXq, there exists x P X
with dpfpxq, znq ď c. Hence by choice of s and r, we have that fpBpx; 1qq is
completely contained in Bpzn; rq, and so in En, whence Bpx; 1q is contained in
f´1pEnq. In particular f´1pEnq has non-empty interior. Moreover, using that f
is a coarse equivalence there exists t ě 0 and for each n a point xn P X such that
f´1pWnq Ď Bpxn; tq. Setting WX

n :“ Bpxn; tq, we therefore have that WX
n is an

open set such that GWX
n contains f´1pEnq. Hence we may apply Lemma 4.5.15

to get an infinite rank projection PXn on HX such that PXn “ χWX
n
PXn χWX

n
, so

that
ÿ

gPG

UXg P
X
n pU

X
g q

˚ “ χf´1pEnq, and so that we have a unitary isomorphism

UXn : χEnHX Ñ `2pGq b PXn HX , u ÞÑ
ÿ

gPG

δg b P
X
n pU

X
g q

˚u.

which is also G-equivariant.
To complete the construction, choose a unitary isomorphism Vn,00 : PXn HX Ñ

PnHY (this is possible as Pn and PXn have infinite rank), and define

Vn,0 : `2pGq b PXn HX Ñ `2pGq b PnHY , δg b u ÞÑ δg b Vn,00u,

and
Vn : χf´1pEnqHX Ñ χEnHY , Vn :“ U˚nVn,0U

X
n .

We claim that the unitary isomorphism

V :“
à

nPN
Vn :

à

nPN
χf´1pEnqHY

loooooooomoooooooon

“HX

Ñ
à

nPN
χEnHX

looooomooooon

“HY

has the right properties. Indeed, note first that each Vn is G-equivariant, as it
is the composition U˚nVn,0U

X
n , and each of these maps is G-equivariant.

It remains to show that V is a covering isometry for f . For this we claim
that

supppV q Ď
ď

nPN

ď

gPG

gWn ˆ gWX
n . (4.6)

The claim will suffice to complete the proof. Indeed, say py, xq is in supppV q.

Then there is some g P G and n P N such that py, xq P gWn ˆ gWX
n . Choose

w P f´1pWnq, so in particular w is contained in WX
n by choice of WX

n . We then
have that

dpy, fpxqq ď dpy, fpwqq ` dpfpwq, fpxqq.

As fpwq and y are in gWn “ Bpgzn; 5rq, we have that dpy, fpwqq ď 10r; and

as w and x are in gWX
n “ Bpxn; tq, we have that dpfpwq, fpxqq ď ωf p2tq,
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where ωf is the expansion function of Definition A.3.9. Putting this together,
dpy, fpxqq ď 10r ` ωf p2tq, so we are done modulo the claim.

To establish the claim in line (4.6), it suffices to show that for some fixed n,

supppVnq Ď
Ť

gPG gWn ˆ gWX
n . Assume then that py, xq is in supppVnq, so for

arbitrary open neighbourhoods Wx Q x and Wy Q y we have that χWy
VnχWx

‰

0, or in other words that

χWy
U˚nVn,0U

X
n χWx

‰ 0.

As
ř

gPG UgPnU
˚
g “ χEn , and as

ř

hPG U
X
h P

X
n pU

X
h q

˚ “ χf´1pEnq, there must
exist g, h P G such that

χWy
UgPnU

˚
g U

˚
nVn,0U

X
n U

X
h P

X
n pU

X
h q

˚χWx
‰ 0

and so

χWyU
˚
nUnUgPnU

˚
g U

˚
nVn,0U

X
n U

X
h P

X
n pU

X
h q

˚pUXn q
˚UXn χWx ‰ 0.

Write pg P Bp`2pGqq for the rank one projection with range the span of δg.
Then UnUgPnU

˚
g U

˚
n “ pgbidPnHY and UXn U

X
h P

X
n pU

X
h q

˚pUXn q
˚ “ phbidPXn HX .

Hence from the previous displayed line, we get that

χWyU
˚
npgph b Vn,00U

X
n χWx ‰ 0,

which is impossible unless g “ h, so we now have that

χWy
U˚npg b Vn,00U

X
n χWx

‰ 0

for some g P G. Going backwards through the same argument but with g “ h,
we get

χWyUgPnU
˚
g U

˚
npg b Vn,00U

X
n U

X
g P

X
n pU

X
g q

˚χWx ‰ 0,

and so
χWyUgPnU

˚
g ‰ 0 and UXg P

X
n pU

X
g q

˚χWx ‰ 0.

As UgPnU
˚
g “ χgWn

UgPnU
˚
g and UgPnU

˚
g “ UgPnU

˚
g χgWX

n
, this implies that

χWy
χgWn

‰ 0 and χgWX
n
χWy

‰ 0.

In other words, we have shown that for any open neighborhoods of Wx Q x
and Wy Q y, there exists g P G such that the above inequalities hold. Using
properness of the action, we may assume that there exists g P G and ε ą 0 such
that for all open neighbourhoods Wx Q x and Wy Q y of diameter at most ε, we
have

χWy
χgWn

‰ 0 and χgWX
n
χWy

‰ 0.

This implies that x P gWn and y PWX
n , completing the claim.
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4.6 Exercises

4.6.1. Let HX be an X module. The more usual definition of the support of a
bounded operator T on HX in the literature is as follows: the support of T is
the complement of all those points px, yq for which there exist f, g P C0pXq for
which fpxq ‰ 0 and gpyq ‰ 0 and for which fTg “ 0. Show that this definition
is equivalent to Definition 4.1.7 above.

4.6.2. Using the representation theory of commutative C˚-algebras (on sepa-
rable Hilbert spaces), show that any separable X module identifies (as an X
module: this means there is a unitary isomorphism intertwining the represen-
tations) with a direct sum

8
à

n“1

L2pX,µnq

for some collection pµnq of Radon measures on X, equipped with the direct
sum of the multiplication representations. Find explicit measures that have the
above property for Example 4.1.6.

4.6.3. Let HX be an X module.

(i) Show that if f is a bounded Borel function on X, then the support of the
corresponding multiplication operator is contained in

tpx, xq P X ˆX | fpxq ‰ 0u,

and that the support is exactly equal to this set if f is continuous and HX

is ample.

(ii) Similarly, if T is a bounded operator associated to a continuous kernel k
as in Example 4.1.10, show that the support of T is contained in

tpx, yq P X ˆX | kpx, yq ‰ 0u,

and that the support equals this set if HX is ample.

4.6.4. Let µ be a Radon measure on X, and HX “ L2pX,µq. Let k : XˆX Ñ C
be a continuous function, and assume that there is c ą 0 such that

ż

X

|kpx, yq|dµpxq ď c and

ż

X

|kpy, xq|dµpxq ď c

for all y P X. For u P CcpXq define Tu : X Ñ C by the formula

pTuqpxq :“

ż

X

kpx, yqupyqdµpyq.

Show that T extends (uniquely) to a bounded operator on HX .

4.6.5. Let HX be an X module, and let T be a bounded operator on HX . Show
that supppT q is contained in the diagonal tpx, xq P X ˆX | x P Xu if and only
if T commutes with C0pXq.
Hint: the proof of Lemma 6.1.2 might help.
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4.6.6. In Lemma 4.1.13, we showed that

supppTSq Ď supppT q ˝ supppSq (4.7)

for operators T, S on geometric modules such that the above composition is
defined, and moreover that taking the closure on the right is not necessary if T
and S are properly supported. Show that the closure is necessary in general.

4.6.7. Show that if X “ r0, 1s, Y “ r0, 1s ˆ r0, 1s, f : X Ñ Y is the natural
inclusion as r0, 1s ˆ t0u and HX , HY are the usual Lebesgue spaces, then there
is no isometry V : HX Ñ HY that U-covers f for all open covers U of Y .

4.6.8. Show that if G acts freely on X, and HX is an X-G module that is ample
as an X module, then it is also ample as an X-G module.

4.6.9. Say G acts by isometries on a Riemannian manifold X of positive dimen-
sion with associated measure µ, and that the measure of the set

tx P X | there exists g P Gzteu such that gx “ xu

is zero. Show that L2pX,µq is ample as an X-G module. Find ‘reasonable’
generalisations of this statement to other metric measure spaces.

4.7 Notes and references

The material in this chapter is largely folklore by now, although the details of
our approach are somewhat different from those in the existing literature. The
idea of using something like X modules as an abstract setting for operators
associated to a space X goes back to at least as far as Atiyah’s ideas about
analytic models for K-homology [7]. A detailed exposition of a similar idea in
the measure-theoretic context can be found in [186, Chapter I].

Early references for covering isometries are [139] and [124]. Chapter 5 of
the text [135] develops covering isometry ideas for representations of possibly
noncommutative C˚-algebras; this requires quite a different approach based
around Voiculescu’s theorem from general C˚-algebra theory. The idea of using
continuous families of covering isometries comes from [270].
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Chapter 5

Roe algebras

Roe algebras are C˚-algebras associated to metric spaces. The K-theory of
Roe algebras provides a natural home for higher indices of elliptic operators,
and is a central focus of this book. In this chapter, we introduce Roe algebras
and discuss their basic functoriality properties: it turns out that Roe algebras
are insensitive to the local topology of a space, seeing only the large scale, or
‘coarse’, geometry. We also introduce equivariant Roe algebras, which take into
account a group action on the space, and discuss their relationship with group
C˚-algebras.

The chapter is structured as follows. In Section 5.1 we introduce Roe al-
gebras and discuss their functoriality properties. In Section 5.2 we introduce
group actions into the picture, sketch the changes this necessitates, Finally, in
Section 5.3, we relate equivariant Roe algebras to group C˚-algebras.

Throughout this chapter, X, Y denote proper1 metric spaces. The metric
on X will be denoted d, or dX if we need to clarify which space it is associated
to. See section A.3 for more discussion and examples.

5.1 Roe algebras

In this section, we introduce Roe algebras and study their functoriality proper-
ties.

Throughout the section, X, Y are proper metric spaces.

Definition 5.1.1. Let HX be a geometric module (Definiton 4.1.1), and let T
be a bounded operator on HX .

(i) T is locally compact if for any compact subset K of X, we have that

χKT and TχK

are compact operators.

1Recall that a metric space is proper if all closed balls are compact.
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(ii) T has finite propagation if the extended real number

proppT q :“ suptρpy, xq | py, xq P supppT qu P r0,8s

from Definition 4.1.8 is finite.

The following basic result is the special case of Lemma 4.3.6 where X “ Y
and f : X Ñ Y is the identity map.

Lemma 5.1.2. A finite propagation operator on HX is properly supported.

Corollary 5.1.3. With notations as in Definition 5.1.1, the collection of all
bounded locally compact operators on HX is a C˚-algebra. The collection of all
bounded finite propagation operators on HX is a ˚-algebra.

Proof. The locally compact operators are a C˚-algebra as the compact operators
are a closed ideal in BpHXq. The finite propagation operators are a ˚-algebra
by Corollary 4.1.14.

Lemma 5.1.3 implies that the following objects are ˚-algebras.

Definition 5.1.4. Let HX be a geometric module. The Roe ˚-algebra of HX ,
denoted CrHX s, is the ˚-algebra of all finite propagation, locally compact oper-
ators on HX .

The Roe C˚-algebra, or just Roe algebra, of HX , denoted C˚pHXq, is the
norm closure of CrHX s in the bounded operators on HX .

To get a bit more intuition for Roe algebras, the next examples give more
concrete pictures in some motivating special cases.

Example 5.1.5. Let X be a complete Riemannian manifold; note that X is
proper as a metric space by Theorem A.3.6 in the appendix. Let µ be the
smooth measure defined by the Riemannian structure, and assume that for
each r ą 0 the extended real number

µprq :“ suptµpBpx; rqq | x P Xu

is finite: this happens for example if the Ricci curvature is uniformly bounded
below (see the discussion in Example A.3.21). Let HX “ L2pX,µq be the
geometric module from Example 4.1.4 above.

Now, let k : X ˆ X Ñ C be a bounded smooth function such that the
‘propagation’

proppkq :“ suptdpx, yq | kpx, yq ‰ 0u

is finite. As in Example 4.1.10, define an integral operator T : C8c pXq Ñ C8c pXq
by the formula

pTuqpxq “

ż

X

kpx, yqupyqdµpyq

(the image is in C8c pXq as k is smooth and has finite propagation, and as X is
proper). Our assumptions that µprq is always finite, and that k is bounded and
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finite propagation imply that T extends (uniquely) to a bounded operator on
HX : indeed, this follows from the result of Exercise 4.6.4. The propagation of
T is equal to the propagation of k: compare Exercise 4.6.3. Moreover, if K is a
compact subset of X, then the assumptions imply that the operators χKT and
TχK are defined by integration against the kernels

px, yq ÞÑ χKpxqkpx, yq and px, yq ÞÑ kpx, yqχKpyq

respectively. These functions are bounded and compactly supported, whence
L2-integrable on X ˆ X. Hence the operators χKT and TχK are Hilbert-
Schmidt, so in particular compact.

Putting this together, any such kernel operator defines an element of C˚pHXq.
With a bit more work, one can show that the collection of all such kernel opera-
tors is a dense ˚-subalgebra of C˚pHXq: the reader is asked to do this in Exercise
5.4.3. The construction above can also be adapted to the case of sections of a
vector bundle S over X: compare Examples 4.1.4 and 4.1.10 above.

Example 5.1.6. Let Z be a metric space with bounded geometry : as in Definition
A.3.19, this means that for every r P p0,8q there exists nprq P N such that all
balls of radius r in Z have cardinality bounded above by nprq. Let HZ :“ `2pZq
equipped with the multiplication action of C0pZq as in Example 4.1.3 above;
this is a Z-module, which is never ample. Then the algebra CrHZs consists
precisely of all Z-by-Z indexed matrices pTxyqx,yPZ such that:

(i) each Txy is a complex number;

(ii) there exists M ą 0 such that }Txy} ďM for all x, y P X;

(iii) there exists r P r0,8q such that if dpx, yq ą r then Txy “ 0.

The algebra operations are just the usual matrix operations: see Exercise 5.4.3.
Note that without the bounded geometry assumption, it would still be true that
operators in CrHZs identify with matrices satisfying conditions (i), (ii), and (iii)
above; however, it would not necessarily be true that every such matrix defines
an element of CrHZs. Indeed determining when such a matrix give rise to an
operator in CrHZs comes down to determining whether it defines a bounded
operator, which may not be obvious.

In this case, the Roe algebra C˚pHZq is usually denoted C˚u pZq, and called
the uniform Roe algebra of Z.

Example 5.1.7. Let H be a separable Hilbert space, and HZ “ `2pZ,Hq be as
in Example 4.1.6 above, equipped with the pointwise multiplication action of
C0pZq. The algebra CrHZs can be characterised just as in Example 5.1.6 above,
except now each matrix entry Txy will be a compact operator on H.

For a general proper metric space X, assume that Z Ď X is a net: as in
Definition A.3.10 that this means that Z is a discrete subset of X such that for
some r P p0,8q, dpz1, z2q ě r for all z1, z2 P Z, and that for all x P X there is
z P Z with dpx, zq ă r. Nets always exist, as shown in Lemma A.3.11. Moreover,
the restriction of d to such a net Z is a proper metric. Assume moreover that Z
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has bounded geometry; the existence of such a Z is not automatic, but happens
in many interesting cases as discussed in Examples A.3.20 and A.3.21. Then
for any ample X module HX , there is a (spatially implemented) isomorphism of
CrHX s with CrHZs where HZ “ `2pZ,Hq as above for some infinite dimensional
H: see Exercise 5.4.1 (note that this isomorphism does not require bounded
geometry).

One takeaway from this discussion is that many Roe ˚-algebras that arise in
applications admit a simple ‘matricial’ description.

The next two lemmas follow directly from the definitions: we leave the proofs
to the reader.

Lemma 5.1.8. If X is bounded, then for any X module HX , C˚pHXq “

KpHXq.

Lemma 5.1.9. For any geometric module HX , the canonical action of the
bounded Borel functions BpXq on HX (see Proposition 1.6.11) makes CrHX s

and C˚pHXq into both left and right modules over BpXq.

In the remainder of this section we will study functoriality properties of Roe
C˚-algebras. The Roe C˚-algebras themselves are not precisely functorial for
any reasonable class of maps between metric spaces: this is due to the choices
involved in their construction. However, this non-canonicality disappears on
passage to K-theory: it turns out that the K-theory of Roe algebras is precisely
functorial on the coarse category.

The coarse category is discussed in in Section A.3: for the reader’s conve-
nience, we recall the definition here.

Definition 5.1.10. Let f : X Ñ Y be any map. The expansion function of f ,
denoted ωf : r0,8q Ñ r0,8s, is defined by

ωf prq :“ suptdY pfpx1q, fpx2q | dXpx1, x2q ď ru.

The function f is coarse if:

(i) ωf prq is finite for all r ě 0;

(ii) f is a proper map, meaning that for any compact subset K of Y , the
pull-back f´1pKq has compact closure.

Two maps f, g : X Ñ Y are close if there exists c ě 0 such that for all
x P X, dY pfpxq, gpxqq ď c. Closeness is clearly an equivalence relation on the
set of maps from X to Y . The coarse category, denoted Coa, has proper metric
spaces for objects, and morphisms are closeness classes of coarse maps.

For the reader’s convenience, we also repeat Definition 4.3.3 from Section
4.3 above.

Definition 5.1.11. Let HX , HY be geometric modules, and let f : X Ñ Y
be a coarse map. An isometry V : HX Ñ HY is said to cover f , or to be a
covering isometry of f , if there is t P p0,8q such that dpy, fpxqq ă t whenever
py, xq P supppV q.
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Lemma 5.1.12. Let HX , HY be geometric modules, let f : X Ñ Y be a coarse
map, and let V : HX Ñ HY be a covering isometry for f . The ˚-homomorphism

adV : BpHXq Ñ BpHY q, T ÞÑ V TV ˚

restricts to ˚-homomorphism from C˚pHXq to C˚pHY q, and from CrHX s to
CrHY s.

Moreover, the map induced by adV on K-theory depends only on f and not
on the choice of V .

Proof. We first show that if T P BpHXq has finite propagation and is locally
compact, then adV pT q has these properties too.

Assume first that T P BpHXq has finite propagation. Let t ą 0 be as in Def-
inition 5.1.11 so dpfpxq, yq ă t whenever py, xq P supppV q. Using Lemma 4.1.13
part (ii), we can also conclude that dpfpxq, yq ă t when px, yq P supppV ˚q. Let
py1, y2q be an element of supppV TV ˚q. Combining Lemma 4.3.6 with Lemma
4.1.13, part (iii 1), we have that

supppV TV ˚q Ď supppV q ˝ supppT q ˝ supppV ˚q.

Hence there exist x1, x2 P X such that py1, x1q P supppV q, px1, x2q P supppT q
and px2, y2q P supppV ˚q. We thus have that ρpy1, y2q is bounded above by

dpy1, fpx1qq ` dpfpx1q, fpx2qq ` dpfpx2q, y2q ď 2t` ωf pproppT qq.

As this bound is independent of py1, y2q, this completes the proof of finite prop-
agation.

Assume now that T is locally compact, let K be a compact subset of Y , and
write F “ supppV q. Then

χKV TV
˚ “ χKV χK˝FTV

˚

by Lemma 4.1.15. Lemma 4.3.6 tells us that the coordinate projection πY : F Ñ
Y is a proper map, whence K ˝ F “ πXpπ

´1
Y pKqq is a compact set. Hence by

local compactness of T , χK˝FT is a compact operator, and thus χKV χK˝FTV
˚

is too as the compact operators form an ideal. The case of V TV ˚χK is similar.
We have now shown that the ˚-homomorphism adV : BpHXq Ñ BpHY q re-

stricts to a ˚-homomorphism from CrHX s to CrHY s, whence also from C˚pHXq

to C˚pHY q.
For the K-theoretic statement, let V1 and V2 be isometries that cover f :

X Ñ Y . We must show that adV1
and adV2

induce the same map on K-theory.
It suffices to prove that the ˚-homomorphisms from C˚pHXq to M2pC

˚pHY qq

defined by

α1 : T ÞÑ

ˆ

V1TV
˚
1 0

0 0

˙

and α2 : T ÞÑ

ˆ

0 0
0 V2TV

˚
2

˙

agree on the level of K-theory. Analogous arguments to the above show that
the partial isometries V1V

˚
2 and V2V

˚
1 , and projections V1V

˚
1 and V2V

˚
2 , are
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multipliers of C˚pHY q, whence the operator

U “

ˆ

1´ V1V
˚
1 V1V

˚
2

V2V
˚
1 1´ V2V

˚
2

˙

is a (unitary) multiplier of M2pC
˚pHY qq. In particular, conjugation by U in-

duces the identity map on K˚pC
˚pHY qq by Proposition 2.7.5. Note, however,

that
Uα1pT qU

˚ “ α2pT q,

which completes the proof.

Remark 5.1.13. More generally, if f : X Ñ Y is an isomorphism in Coa, and HX

and HY are ample modules, then Proposition 4.3.5 gives a unitary isomorphism
V : HX Ñ HY that covers f . Hence adV gives ˚-isomorphisms between CrHX s

and CrHY s, and between C˚pHXq and C˚pHY q that ‘model’ the action of f .
Moreover, the map induced on K-theory by adV depends only on f .

In particular, we may apply this to the identity map on X, and two ample
X modules HX and H 1X to get ˚-isomorphisms between CrHX s any CrH 1X s, and
between C˚pHXq and C˚pH 1Xq arising from an isometry that covers the identity
map. Thus Roe algebras associated to ample modules are all non-canonically
isomorphic. Moreover, any two such isomorphisms induce the same map on
K-theory so their K-theory groups are canonically isomorphic.

Proposition 4.3.4 says that covering isometries always exist as long as HY is
ample. Therefore the following definition makes sense.

Definition 5.1.14. Let HX , HY be geometric modules with HY ample and let
f : X Ñ Y be a coarse map. Define

f˚ : K˚pC
˚pHXqq Ñ K˚pC

˚pHY qq

to be the map on K-theory induced by the ˚-homomorphism

adV : C˚pHXq Ñ C˚pHY q

associated to some covering isometry for f as in Lemma 5.1.12 above.

Theorem 5.1.15. For each X in Coa choose2 an ample X module HX . Then
the assignments

X ÞÑ K˚pC
˚pHXqq, f ÞÑ f˚

give a well-defined functor from Coa to the category GA of graded abelian groups.
Moreover, the functor that one gets in this way does not depend on the choice

of modules up to canonical equivalence.

2This is a dubious manoeuvre: the collection of objects of Coa is not a set! We leave it as
an exercise to find a way to do this without getting into set-theoretic difficulties.
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Proof. Corollary 4.2.7 and Lemma 5.1.12 together imply that the assignments

X ÞÑ K˚pC
˚pHXqq, f ÞÑ f˚

make sense, and are well-defined (given the choice of ample X module). To
check that this defines a functor from Coa to GA it thus suffices to check the
following facts: (i) if f, g : X Ñ Y are close coarse maps, and V covers f , then
V also covers g; (ii) any isometry covering the identity map induces the identity
on K-theory; (iii) if f : X Ñ Y and g : Y Ñ Z are coarse maps, and Vf , Vg
cover f, g respectively, then Vg ˝ Vf covers g ˝ f .

Part (i) is straightforward from the definition of covering isometries. Part
(ii) follows from Lemma 5.1.12 and the fact that the identity map from HX to
itself is an isometry covering the identity map from X to itself. Part (iii) is
immediate from Corollary 4.3.7.

We must now check that the functors defined by any two choices tX ÞÑ

HXu and tX ÞÑ H 1Xu of assignments of ample geometric modules are naturally
equivalent. Indeed, Remark 5.1.13 implies that for each X there exists a unitary
isomorphism VX : HX Ñ H 1X covering the identity map. Moreover, Lemma
5.1.12 implies that there are maps on K-theory

ad˚VX : K˚pC
˚pHXqq Ñ K˚pC

˚pH 1Xqq

that do not depend on the choice of VX ; note moreover that as VX is unitary,
these maps are isomorphisms. Finally, note that if f : X Ñ Y is a coarse map,
covered by V : HX Ñ HY and V 1 : H 1X Ñ H 1Y then the diagram

K˚pC
˚pHXqq

ad˚VX–

��

ad˚V “f˚ // K˚pC˚pHY qq

ad˚VY–

��
K˚pC

˚pH 1Xqq
ad˚
V 1
“f˚ // K˚pC˚pH 1Y qq

commutes by the fact that both ‘right-down’ and ‘down-right’ compositions are
induced by covering isometries for f and point (iii) from the first part of the
proof.

Convention 5.1.16. If HX is an ample X module, we will usually write CrXs
and C˚pXq for CrHX s and C˚pHXq respectively, and (abusively) refer to these
as the Roe ˚-/C˚-algebra of X. Justification for this is provided by Remark
5.1.13, which implies that these algebras do not depend on the choice of ample
module up to non-canonical isomorphism, and by Theorem 5.1.15, which implies
that the K-theory groups of the C˚-algebras do not depend on the choice of
modules up to canonical isomorphism.

There is, however, one important way in which the choice of ample module
HX does matter: the BpXq module structure on C˚pHXq from Lemma 5.1.9
does depend HX . It will sometimes be useful to choose HX so that this module
structure has good properties.
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We will also often want to consider Roe algebras of a countable discrete
group G, where G is considered with a left-invariant bounded geometry metric
as in Lemma A.3.13. We use the notations Cr|G|s and C˚p|G|q to denote the
Roe ˚-algebras and Roe C˚-algebra associated to G, to avoid confusion with
the group algebra CrGs and group C˚-algebra C˚pGq. The notation ‘|G|’ refers
to G considered as a metric space, without its group structure.

5.2 Equivariant Roe algebras

In this section, we define equivariant Roe algebras, which also take into account
a group action. Equivariant Roe algebras are a setting in which to do higher
index theory in the presence of a group action.

For the reader’s convenience, let us recall that an action of a discrete group
G on a metric space X is proper if for any compact subset K of X, the set
tg P G | gK XK ‰ ∅u is finite, and is isometric if for any g P G and x, y P X,
we have dpx, yq “ dpgx, gyq. See Sections A.2 and A.3 for some more conventions
and basic facts on group actions.

Throughout this section, X, Y are proper metric spaces as in Definition
A.3.3 (recall this means that all closed balls are compact), and G is a countable
discrete group acting on X and Y via a proper isometric action. We will assume
that all geometric modules appearing in this section are equivariant (see Section
4.5); to avoid too much repetition, we will generally not repeat this.

Definition 5.2.1. Let HX be a geometric module, and let CrHX s be the associ-
ated Roe ˚-algebra. The equivariant Roe ˚-algebra of HX , denoted CrHX s

G, is
defined to be the ˚-subalgebra of CrHX s consisting of operators T that commute
with the group action, i.e. so that UgT “ TUg for all g P G.

The equivariant Roe C˚-algebra of HX , denoted C˚pHXq
G, is the closure of

CrHX s
G in the operator norm.

Note that one can equivalently define CrHX s
G to be the ˚-algebra of fixed

points under the conjugation G action on CrHX s defined by

T ÞÑ UgTU
˚
g (5.1)

(we leave it as an exercise to show that this formula does define a G action
on CrHX s: this uses that G acts on X by isometric homeomorphisms). This
description inspires the ‘¨G’ notation, which often means ‘fixed points of ¨’.

Example 5.2.2. The basic, and probably most important example of an equiv-
ariant Roe algebra occurs when X “ G itself. Recall that we can equip G
with a proper (meaning balls are finite in this case) left-invariant (meaning
dpgx, gyq “ dpx, yq for all g, x, y P G) metric. Then G itself is a proper metric
space, and the left action of G is by isometries. Let HX :“ `2pGq equipped with
the left translation of G. Let CrGs be the group algebra of G, and recall that
the right regular representation of G on `2pGq is defined by

ρg : δh ÞÑ δhg´1
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(see Definition C.1.2). Then we get a map

CrGs Ñ CrHX s
G, g ÞÑ ρg;

we leave it as an exercise for the reader to check that this is a well-defined ˚-
isomorphism. Hence in this case C˚pHXq

G identifies with the (right) reduced
group C˚-algebra C˚ρ pGq as in Definition C.1.7.

For readers familiar with group von Neumann algebras, it may aid intuition
to note that CrHX s

G is just the intersection of CrHX s with the commutant of
the left regular representation, or in other words with the von Neumann algebra
generated by the right regular representation.

More generally, let H be a separable Hilbert space, and define HX :“
`2pG,Hq “ `2pGq b H, equipped with the left translation action of G again.
This HX is ample as an X-G module if H is infinite dimensional. One checks
that

CrGs dKpHq Ñ CrHX s
G, g b T ÞÑ ρg b T

is a ˚-isomorphism, and therefore that C˚pHXq
G – C˚ρ pGq bKpHq.

Remark 5.2.3. The notation ‘C˚pHXq
G’ suggests that one first completes, then

takes the invariant part to define an equivariant Roe algebra; in fact, one first
takes the invariant part, and then takes the completion. For many groups, the
order ‘take invariants, then complete’ versus ‘complete, then take invariants’
does not matter: see Exercise 5.4.13 for an example. It seems plausible, however,
that the order does matter in general, even for the basic case of Example 5.2.2
above. See the notes and references at the end of this chapter for a little more
discussion of this.

Our next task is to discuss functoriality of equivariant Roe algebras. This
requires only minor elaborations of our work in Section 5.1 (using material from
Section 4.5 rather than Section 4.3 as appropriate), so we will just sketch the
arguments.

Here is the category of spaces we will be working with.

Definition 5.2.4. Let G be a countable discrete group. Let CoaG be the
category with objects given by proper metric spaces, equipped with a proper
action ofG by isometries. Morphisms in CoaG are closeness classes of equivariant
coarse maps.

Now, quite analogously to Lemma 5.1.12, one sees that if V : HX Ñ HY is
any isometry equivariantly covering f : X Ñ Y in the sense of Definition 4.5.13,
then adV defines ˚-homomorphisms

adV : CrHX s
G Ñ CrHY s

G and adV : C˚pHXq
G Ñ C˚pHY q

G.

Moreover, the map on K-theory induced by adV : C˚pHXq
G Ñ C˚pHY q

G

depends only on f , and not on any of the choices involved in the construction:
again the same arguments used for Lemma 5.1.12 go through. We may thus
make the following definition.
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Definition 5.2.5. Let f : X Ñ Y be an equivariant coarse function and let
C˚pHXq

G and C˚pHY q
G be equivariant Roe algebras associated to ample G-

geometric modules. Define

f˚ : K˚pC
˚pHXq

Gq Ñ K˚pC
˚pHY q

Gq

to be the map on K-theory induced by the ˚-homomorphism

adV : C˚pHXq
G Ñ C˚pHY q

G

associated to some equivariant cover for f as in Lemma 5.1.12 above.

The following theorem records the basic functoriality properties of C˚pHXq
G.

The proof is essentially the same as that of Theorem 5.1.15 (using the results
of Proposition 4.5.14 in place of the non-equivariant versions), and is thus left
to the reader.

Theorem 5.2.6. For each X in CoaG choose3 an ample X-G module HX .
Then the assignments

X ÞÑ K˚pC
˚pHXq

Gq, f ÞÑ f˚

give a well-defined functor from CoaG to the category GA of graded abelian
groups.

Moreover, the functor that one gets in this way does not depend on the choice
of modules up to canonical equivalence.

Just as for the non-equivariant Roe algebras, we will often abuse notation
and terminology, writing C˚pXqG for C˚pHXq

G when HX is ample and speaking
of ‘the’ equivariant Roe algebra of X.

5.3 Relationship to group C˚-algebras

In this section we will discuss the relationship between equivariant Roe algebras
and group C˚-algebras, substantially generalising Example 5.2.2.

Throughout this section, X, Y are proper metric spaces as in Definition
A.3.3, and G is a countable discrete group acting on X and Y via a proper
isometric action. We will assume that all geometric modules appearing in this
section are equivariant (see Section 4.5); to avoid too much repetition, we will
generally not repeat this.

We start with a definition.

Definition 5.3.1. The action of G on X is cobounded if there is a bounded
subset B of X such that GB “ X.

For the statement of the next theorem, recall from Definition C.1.7 that
C˚ρ pGq denotes the reduced group C˚-algebra of G defined by the right regular
representation. We let K denote an abstract copy of the compact operators.

3Again, this can be done in such a way as to avoid set-theoretic difficulties: exercise.
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Theorem 5.3.2. Say the action of G on X is cobounded. Then there is a
canonical family of ˚-isomorphisms

C˚ρ pGq bKÑ C˚pXqG.

that all induce the same isomorphism

φX : K˚pC
˚pXqGq Ñ K˚pC

˚
ρ pGqq.

on K-theory.
Moreover, if f : X Ñ Y is an equivariant coarse equivalence, then the

diagram

K˚pC
˚pXqGq

f˚

��

φX // K˚pC˚ρ pGqq

K˚pC
˚pY qGq

φY // K˚pC˚ρ pGqq

commutes.

Proof. From the Svarc-Milnor Lemma (Lemma A.3.14), under our cobounded-
ness assumption any orbit inclusion

GÑ X, g ÞÑ gx

is an equivariant coarse equivalence. Hence Proposition 4.5.16 gives us an equiv-
ariant unitary isomorphism of the modules underline C˚pXqG and C˚p|G|q that
covers this orbit inclusion, giving a ˚-isomorphism

C˚p|G|q Ñ C˚pXqG.

Moreover, coboundedness implies that any two orbit inclusions GÑ X are close,
and thus the maps induced on K-theory by any of the ˚-isomorphisms above are
the same by Theorem 5.2.6. Using Example 5.2.2, the left hand side C˚p|G|q
identifies canonically with K˚pC

˚
ρ pGq b Kq, which identifies with K˚pC

˚
ρ pGqq

using stability of K-theory so we are done with the first part.
The second part is an immediate consequence of the description of the iso-

morphisms given in the first part, and of Theorem 5.2.6.

For certain applications we need the isomorphism of Theorem 5.3.2 to be
more concrete. In the remainder of this section, we thus give a concrete isomor-
phism that works in a special case. This might also aid intuition a little.

Definition 5.3.3. A fundamental domain for X is a Borel subset D Ď X such
that X is the disjoint union X “

Ů

gPG gD.

See Appendix C for the representation-theoretic terminology in the next
result.
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Proposition 5.3.4. Assume that there is a bounded fundamental domain D for
the action of G on X. Let HX be an ample X-G module, and let HD “ χDHX .
Let the algebraic tensor product CrGs d KpHDq be represented on `2pGq bHD

by the tensor product of the right regular and trivial representations. Then the
map

U : HX Ñ `2pGq bHD, u ÞÑ
ÿ

gPG

δg b χDU
˚
g u

is a well-defined unitary isomorphism, which is equivariant when `2pGqbHD is
equipped with the tensor product of the left regular and trivial representations.
Moreover, conjugation by U induces ˚-isomorphisms

adU : CrHX s
G Ñ CrGs dKpHDq and adU : C˚pHXq

G Ñ C˚ρ pGq bKpHDq.

Proof. Note that the formula for U at least makes sense when u has bounded
support, as then the sum defining Uu has only finitely many non-zero terms.
One computes directly that for U as given,

xUu,Uuy “
ÿ

gPG

xχDU
˚
g u, χDU

˚
g uy “

A

ÿ

gPG

χgDu, uy.

As X “
Ů

gPG gD, the sum
ř

gPD χgD converges in the strong operator topology
to the identity, and so this equals xu, uy. Thus the formula for U gives a well-
defined isometry on all of HX . Moreover, one computes that

U˚pδg b vq “ Ugv,

and from this that U is unitary as claimed. The computation

λgUu “
ÿ

hPG

δgh b χDU
˚
h u “

ÿ

kPG

δk b χDU
˚
g´1ku “

ÿ

kPG

δk b χDU
˚
k Ugu

“ UUgu

(using the change of variables k “ gh for the second equality) shows that U is
equivariant.

Now, say T is in CrXsG. Then using the formula above for U˚ we compute
that

UTU˚ “
ÿ

gPG

ρg b χDTUgχD.

For each g P G, we have that

χDTUgχD “ χDTχgDUg.

This equals zero unless g is in the set tg P G | dpD, gDq ď proppT qu, which
is a finite set by properness of the G-action, and properness of the metric on
X. Moreover, as T is locally compact, all the terms χDTUgχD are compact
operators. Hence UTU˚ is in CrGs dKpHDq.
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Conversely, if S “ ρg b T is an elementary tensor in CrGs bKpHDq then we
compute that

U˚SU “
ÿ

hPG

UhU
˚
g TU

˚
h .

This is clearly G-invariant. To see that it is locally compact, note that if K Ď X
is compact, then properness of the action combined with the fact that χDTχD “
T implies that only finitely many terms in the sums making up χKUSU

˚ and
USU˚χK are non-zero; as each term in the sum is compact, this implies that
USU˚ is compact. Finally, to see finite propagation, say that px, yq is in the
support of USU˚. We may assume using G-invariance of S and the fact that
X “

Ů

gPG gD that x is an element of D. Then for any open sets Wx Q x and
Wy Q y, we have χWxUSU

˚χWy is non-zero, and so

0 ‰ χWx

´

ÿ

hPG

UhU
˚
g TU

˚
h

¯

χWy
“

ÿ

hPG

UhU
˚
g χgh´1Wx

Tχh´1Wy
U˚h .

Hence there is some h P G for which pgh´1x, h´1yq is in the support of T , which
implies that gh´1x and h´1y are in the closure of D. As x is in D and G acts
properly, there is only a finite subset F of G (independent of x and y, although
possibly depending on g) for which gh´1x can be in the closure of D. Hence

dpx, yq ď sup
hPF,xPD

dpx, hgh´1xq ` dphgh´1x, yq ďM ` proppT q

for some absolute bound M , independent of the choice of x P D and y P X
(although possibly depending on g).

To summarize, we now have that U is an equivariant unitary isomorphism,
and that

UCrXsGU˚ Ď CrGs dKpHDq and U˚
`

CrGs dKpHDq
˘

U Ď CrXsG.

This suffices to establish the statement.

5.4 Exercises

5.4.1. Let X be a proper metric space and Z a net in X (see Definition A.3.10).
Let H be a separable infinite dimensional separable Hilbert space and HZ “

`2pZ,Hq, equipped with the Z module structure coming from multiplication.
Show that if HX is any ample X module, then there is a unitary isomorphism
U : HZ Ñ HX such that UpCrHZsqU

˚ “ CrHX s, and similarly on the level of
completions.
Note: you can do this by appealing to Proposition 4.3.5, but it is possible to give
a slightly simpler proof directly.

5.4.2. Let X be a proper metric space. Show that C˚pXq admits a directed
approximate unit of projections (and thus that the K0 group of C˚pXq can be
described as in Corollary 2.7.4).
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Hint: use an isomorphism C˚pXq – C˚pZq as in Exercise 5.4.1. Note that
C˚pZq contains `8pZ,KpHqq acting on `2pZ,Hq in the natural way, and show
that the collection of projection-valued functions in `8pZ,KpHqq is a (non-
sequential) approximate unit for C˚pZq made up of projections.

5.4.3. With the set up in Examples 5.1.5 and 5.1.7, show that the operators
T satisfying the conditions there are bounded, finite propagation and locally
compact (this is significantly easier in the case of 5.1.7, but the ideas in both
cases are similar).

Show moreover that the collection of all kernel operators as in Example 5.1.7
form a dense ˚-subalgebra of C˚pHXq.

5.4.4. Let X be a locally compact, second countable, Hausdorff space, that is
equipped with a coarse structure in the sense of Remark A.3.7. For an X module
HX define the associated Roe ˚-algebra CrHX s to consist of all locally compact
bounded operators T on HX such that the support of T (see Definition 4.1.7)
is a controlled set for the coarse structure. Show that CrHX s is a ˚-algebra and
that this construction generalizes Definition 5.1.4. Also develop functoriality
properties for these ˚-algebras (this includes either making up, or looking up,
the correct definition of ‘coarse map’ in this context).

5.4.5. Let X be a proper metric space, and assume that any non-empty open
subset of X is infinite. Let `2pXq be the collection of all square summable
functions from X to C. This Hilbert space satisfies all the conditions to be an
ample X module, except (if X is uncountable) it is not separable. Show that
nonetheless the Roe algebra defined on this space has the same K-theory as
‘the’ usual version.

5.4.6. Let X be a bounded geometry metric space (see Definition A.3.19). Let
CurXs denote the collection of all bounded kernels k : XˆX Ñ C with support
in a set of the form tpx, yq P X ˆX | dpx, yq ă ru for some r P p0,8q (that is
allowed to depend on k). Show that CurXs is ˚-algebra for the natural ‘matrix
operations’. For k P CurXs provisionally define an operator Tk on `2pXq by

Tk : δx ÞÑ
ÿ

yPX

kpy, xqδy.

(i) Show that Tk is a bounded operator, and that k ÞÑ Tk defines a faithful
˚-representation of CurXs.

The uniform Roe algebra, denoted C˚u pXq, is defined to be the completion of
CurXs under the norm inherited from this ˚-representation. Let now H be an
infinite dimensional separable Hilbert space, and let HX be the ample X-module
`2pXq bH (equipped with the pointwise multiplication action of C0pXq).

(ii) Show that if KpHq denotes the compact operators on H, then the natural
representation of the spatial tensor product C˚u pXqbKpHq on HX induces
an embedding C˚u pXqbKpHq Ñ C˚pHXq, but that this embedding is not
surjective if X is infinite.
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5.4.7. Lemma 5.1.8 states that ifX is a bounded space (so in particular compact)
and HX is ample, then C˚pHXq “ KpHXq. What happens if X is not assumed
bounded, but ‘only’ compact (recall that our metrics are allowed to take infinite
values)?

5.4.8. (i) Show that C˚pXq is not separable if X is not bounded.

(ii) A C˚-algebra is σ-unital if it has a countable approximate unit. Show
that C˚pXq is not σ-unital for unbounded X (this is stronger than non-
separability).
Hint: with Z as in Exercise 5.4.1, show that a countable approximate unit
for C˚pXq would give rise to a countable approximate unit for `8pZ,Kq
by ‘restriction to the diagonal’. Use this to derive a contradiction.

(iii) If you know what it means for a C˚-algebra to be exact, show that C˚pXq
is also not exact when X is unbounded.
Hint: it suffices to show that C˚pXq contains a non-exact C˚-algebra.
With Z as in Exercise 5.4.1, `8pZ,Kq works.

5.4.9. Let HX be an ample module for a locally compact, second countable
space X. Let LC˚pXq denote the C˚-algebra of all locally compact operators
on HX (see Definition 5.1.1 and Lemma 5.1.3). Show that if X is non-compact,
then K˚pLC

˚pXqq “ 0.
Hint: Show that for any non-compact X, LC˚pXq – LC˚pNq, the latter being
defined using the module `2pNqbH where H is a separable infinite-dimensional
Hilbert space. Now do an Eilenberg swindle.

5.4.10. Let X be a proper metric space, and assume that there exists a bounded
geometry net Z Ď X (see Definitions A.3.10 and A.3.19).

(i) Show that there is a Borel cover pExqxPZ of X and S ą 0 with the prop-
erties in Lemma A.1.10, such that diampExq ď S for all x, and such that
each Ex contains x.

(ii) Let r, S ą 0. Then there exists a constant c “ cpr, S, Zq with the follow-
ing property. For any Borel cover pExqxPZ as above, any X-module HX ,
and any bounded operator T on HX , define Txy “ χExTχEy . Then if
proppT q ď r, one has

}T } ď cr sup
x,yPZ

}Txy}.

5.4.11. (This requires some background in crossed products). LetG be a discrete
group and H be a separable infinite dimensional Hilbert space. Let HG be the
ample equivariant G-module `2pG,Hq. Represent the Roe algebra C˚p|G|q on
`2pG,Hq b `2pGq by the formula

T pub vq “ Tub v

(in other words, this is just the amplification of the representation of C˚p|G|q
on `2pG,Hq). By adapting ‘Fell’s trick’ (see Proposition C.2.1) show that there
is a unitary U on `2pG,Hq b `2pGq such that

UC˚p|G|qU˚ “ `8pG,KpHqq ¸r G.
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5.4.12. The Pimsener-Voiculescu theorem in C˚-algebra K-theory gives an ex-
act sequence

K0p`
8pZ,Kqq 1´α // K0p`

8pZ,Kqq // K0p`
8pZ,Kq ¸r Zq

��
K1p`

8pZ,Kq ¸r Zq

OO

K1p`
8pZ,Kqqoo K1p`

8pZ,Kqq
1´α

oo

,

where α : K˚p`
8pZ,Kqq Ñ K˚p`

8pZ,Kqq is the map on K-theory induced by
shifting one unit right on Z. Use this and the result of the previous exercise
to compute the groups K˚pC

˚p|Z|qq (and thus also to compute K˚pC
˚p|R|qq).

You do not need to understand what a crossed product is to do this exercise.
Hint: show first directly that the K-theory groups of l8pZ,Kq are ZZ (the abelian
group of all maps from Z to Z) in dimension zero, and 0 in dimension one. Be
warned that l8pZ,Kq is not isomorphic to `8pZq bK, and the two do not have
the same K-theory; this is related to the discussion of Exercise 5.4.6

5.4.13. (This requires some background in amenability and its relation to ap-
proximation properties of C˚-algebras). LetG be an amenable group. Use Schur
multipliers constructed from a Følner sequence to show that theG-invariant part
of C˚p|G|q identifies with the completion of Cr|G|sG.

5.4.14. Let G be a finite group, and let Ĝ be the (finite) set of equivalence
classes of irreducible unitary representations of G, and for each rπs P Ĝ, let
dimpπq denote its dimension. It follows from elementary representation theory
that the reduced group C˚-algebra of G satisfies

C˚ρ pGq –
à

πPĜ

MdimpπqpCq.

Let X be a compact bounded space with a G-action. Show that the K-theory

of the equivariant Roe algebra C˚pXqG is given by ZĜ in dimension zero and 0
in dimension one.

5.5 Notes and references

A version of the Roe algebra was introduced by Roe [212], [213] in order to do
index theory on non-compact manifolds. The theory was since extensively de-
veloped by several authors: some general references include [216], [135, Chapter
6], and [218, Chapter 4]. The use of covering isometries to get functoriality goes
back at least as far as [139]. The material relating equivariant Roe algebras
and group C˚-algebras goes back at least as far as the approach to equivariant
assembly in [216, Chapter 5].

The technical functional analytic issue mentioned in Remark 5.2.3 is closely
related to the invariant translation approximation property as discussed by Roe
in [218, Section 11.5.3]; in particular, this reference is the source of Exercise
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5.4.13. It follows from work of Zacharias [274] that this property is in turn
closely related to the AP of Haagerup and Kraus [119], which is known to fail
for some groups: for example, Lafforgue and de la Salle [162] showed the AP
fails for SLp3,Zq. From these results, it seems likely that ‘order matters’ in
the situation of Remark 5.2.3. However, this is not a proof, and it remains
an interesting open question whether this is really the case (and even more so
whether or not any difference can be detected on the level of K-theory).

The uniform Roe algebra C˚u pXq of Example 5.1.6 and Exercise 5.4.6 has
been extensively studied, partly as some of its C˚-algebraic properties closely
mirror the coarse geometric properties of X. See [44, Section 5.5] for a nice
discussion of some aspects of this. The algebraic version CurXs, sometimes
called the translation algebra of X, is also quite well-studied: see for example
[110, page 262] for an early reference, and [218, Chapter 4] for a discussion of
some aspects.

Both the Roe algebra and uniform Roe algebra remember a lot of the struc-
ture of the underlying metric space, at least in good situations: see for example
[244, 37, 256]. This is in some ways quite surprising, as related geometrically or
dynamically defined C˚-algebras typically remember very little about the un-
derlying object: see for example [167]. Other results about how coarse geometry
of the underlying space is reflected in the structure of the uniform Roe algebra
can be found for example in [55, 53, 261, 249, 3, 166].

The result of Exercise 5.4.11 was first observed by Higson and Yu: see for
example [268, Lemma 2.4] or [44, Proposition 5.1.3]. The Pimsner-Voiculescu
theorem of Exercise 5.4.12 was first proved in [207], and is a widely-used tool in
C˚-algebra K-theory. Further discussion of the theorem and its generalizations
and applications can be found in [33, Chapter 10] and [71, Chapter 5].
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Chapter 6

Localisation algebras and
K-homology

K-homology for spaces is the dual homology theory to K-theory. The existence
of K-homology follows from abstract nonsense. However, for applications, it
is useful to have a more concrete construction of the theory. Our goal in this
chapter is to construct an analytic model for K-homology. Our approach will
be to define the K-homology groups of a space X to be the K-theory groups of
an associated C˚-algebra L˚pXq, the localisation algebra of X.

These localisation algebras might initially look intimidating, and indeed
more complicated than the Roe algebras of Chapter 5. This is not the case,
however: at least on the level of K-theory, they are much friendlier, more com-
putable objects. Indeed, one has many of the usual tools of algebraic topology,
such as Mayer-Vietoris sequences, available to aid in its computation.

The approach to K-homology via localisation algebras is originally due to
Yu. Our approach here is closely based on Yu’s original one, but is not quite the
same: this is to ensure that our localisation algebras have better functoriality
properties than the original version, and that they are more closely related to
elliptic differential operators.

This chapter is structured as follows. In Section 6.1 we give motivation for
the definition of the localisation algebra1 using a precise relationship between
small propagation and small commutators: this turns out to be fundamental for
many topics discussed later in the book. In Section 6.2 we introduce the locali-
sation algebras themselves based on this motivation, and prove the functoriality
properties that we will need to set up K-homology.

The next two sections are the core of the chapter. Section 6.3 proves some of
the homological properties of K-homology, like the existence of Mayer-Vietoris
sequences, and computes the K-homology groups of the empty set and a point.

1The second, very important, motivation for our definition, is that differential operators
on manifolds naturally give rise to elements of localisation algebras; we will not discuss that
until Chapter 8, however.
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Section 6.4 then introduces a slightly less concrete version of the localisation
algebra in order to prove functoriality in the ‘correct’ setting, and finish off the
establishment of all the homological properties that K-homology ‘should’ have
(compare Section B.2) such as homotopy invariance.

The last three sections are a collection of further topics. Section 6.5 sketches
the changes to the definitions one has to make in the presence of a group action,
and relates the equivariant theory to the non-equivariant theory of quotient
spaces. Section 6.6 gives a variant of the localisation algebra whose K-theory
is also a model for K-homology. This is not really used in this chapter, but will
be important in Chapter 7 when we come to discuss assembly maps and the
Baum-Connes conjecture. Finally, Section 6.7 sketches the relationship to the
some other analytic models of K-homology in the literature.

Throughout this chapter, X, Y denote locally compact, second countable
Hausdorff spaces. Such spaces are metrizable, and we will assume they have a
metric when convenient.

6.1 Asymptotically commuting families

In this section, we motivate our definition of K-homology. We start with a
discussion for a general (unital) C˚-algebra, and then show that the general
picture specialises to something geometrically meaningful in the commutative
case.

Working in general, let A Ď BpHq be a concrete C˚-algebra, for simplicity
containing the unit of BpHq. Let pPtqtPr1,8q be a family of projections in BpHq
parametrised by r1,8q such that:

(i) the map t ÞÑ Pt is norm continuous;

(ii) for all t, Pt is a compact operator;

(iii) for each a P A, the commutators rPt, as tend to zero as t tends to infinity.

Let q P A be a projection. Then

pPtqq
2 “ PtqPtq “ P 2

t q
2 ` Ptrq, Ptsq “ Ptq ` Ptrq, Ptsq,

and thus
}pPtqq

2 ´ Ptq} Ñ 0 as tÑ8.

Let χ : CÑ C be the characteristic function of the subset tz P Z | Repzq ą 1{2u
of C. Then for all suitably large t, χ is holomorphic on an open neighbourhood
of the spectrum of the compact operator Ptq, and thus by the holomorphic
functional calculus (see Theorem 1.4.6) χpPtqq is a well-defined, compact idem-
potent ion H. Moreover, the map t ÞÑ χpPtqq is norm continuous by Theorem
1.4.6. Hence the K-theory class

rχpPtqqs P K0pKq “ Z
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is well-defined for all large t, and does not depend on the specific choice of t.
One can elaborate on this idea to take into account formal differences of

projections in matrix algebras over A, and thus see that pPtq defines a map

P˚ : K0pAq Ñ Z, rq1s ´ rq2s ÞÑ rχpPtq1qs ´ rχpPtq2qs.

Thus pPtq defines a ‘functional’ on K-theory. These computations suggest trying
to build a model for K-homology based on such ‘asymptotically commuting’
families of operators.

Now, let us specialize to the case A “ CpXq, where X is a compact metric
space. In this case, families of operators that asymptotically commute with A
admit a nice geometric description (at least up to an approximation): this is
the content of the next result. See Definition 4.1.1 above for the definition of
an X module, and Definition 4.1.8 for the propagation proppT q of an operator
on an X module.

Proposition 6.1.1. Let X be a compact metric space, and let HX be an X
module. Let pTtqtPr1,8q be a norm continuous, uniformly bounded family of
operators on HX . Then the following are equivalent:

(i) for each f P CpXq, lim
tÑ8

}rTt, f s} “ 0;

(ii) there exists a norm continuous family pStqtPr1,8q of bounded operators on
HX such that proppStq Ñ 0 as t Ñ 8 and such that }Tt ´ St} Ñ 0 as
tÑ8.

For the proof of this, we need a technical lemma. Recall from Definition
A.3.9 that if f : X Ñ Y is a function between metric spaces, then the associated
expansion function of f is defined by

ωf : r0,8q Ñ r0,8s, ωf prq :“ suptdpfpxq, fpyqq | dpx, yq ď ru.

Lemma 6.1.2. Let X be a metric space and let HX be an X module. Let T
be a finite propagation operator on HX , and let f : X Ñ C be a bounded Borel
function considered as an operator on HX via the X module structure. Then

}fT ´ Tf} ď 8ωf pproppT qq}T }.

Proof. Note first that the expansion functions of the real and imaginary parts
of f are bounded by the expansion function of f itself. Hence it suffices to prove
that

}fT ´ Tf} ď 4ωf pproppT qq}T }

for a real-valued bounded Borel function f on X. As f is bounded, ε :“
ωf pproppT qq is finite. For each k P Z, define

Xk :“ f´1rkε , pk ` 1qεq.

Let χk be the characteristic function of the Borel set Xk, and define

g :“
ÿ

kPZ
kεχk;
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as only finitely many of the sets Xk are non-empty, g is a real-valued Borel
function. Clearly }f ´ g} ď ε, whence

}fT ´ Tf} ď }gT ´ Tg} ` 2ε}T }. (6.1)

To estimate the norm of gT ´ Tg, note that if x P Xk, y P Xj and |k ´ j| ą 1,
then |fpxq ´ fpyq| ą ε and so dpx, yq ą proppT q by choice of ε. Hence

gT ´ Tg “
ÿ

kPZ
kεpχkT ´ Tχkq

“
ÿ

kPZ
kεpχkT pχk´1 ` χk ` χk`1q ´ pχk´1 ` χk ` χk`1qTχkq,

Rearranging the sum and cancelling terms gives

gT ´ Tg “ ε
´

ÿ

kPZ
χkTχk`1 `

ÿ

kPZ
χk`1Tχk

¯

.

As the operators in each sum are mutually orthogonal and have norm at most
}T }, this implies that }gT ´Tg} ď 2ε}T }. Combining this with line (6.1) above
gives that

}fT ´ Tf} ď 4ε}T } “ 4ωf pproppT qq}T },

which completes the proof.

Proof of Proposition 6.1.1. The fact that the second condition implies the first
follows from Lemma 6.1.2 and that a continuous function f on a compact space
is uniformly continuous, whence lim

rÑ0
ωf prq “ 0.

For the other implication, let pTtq be a family of operators that asymptot-
ically commutes with CpXq, i.e. that satisfies rTt, f s Ñ 0 as t Ñ 8. For each
n ě 1, let pφi,nqiPIn be a finite partition of unity subordinate to the cover of X
by balls of radius 1{n (such exists by Theorem A.1.3). Set S0,t “ T0,t and for
each n define

Sn,t :“
ÿ

iPIn

a

φi,nTt
a

φi,n.

Note that proppSn,tq ď 1{n for each n and that

Sn,t ´ Tt “
ÿ

iPIn

a

φi,nTt
a

φi,n ´
ÿ

iPIn

φi,nTt “
ÿ

iPIn

a

φi,nrTt,
a

φi,ns.

As In is finite, this tends to zero as t tends to infinity by assumption on pTtq.
Hence for each n there exists tn such that for all t ě tn

}Sn,t ´ Tt} ď 1{n.

We may assume that the sequence ptnq is strictly increasing and tending to
infinity, and that t1 ą 1. Set t0 “ 1. Let now pψnq

8
n“0 be a partition of unity

on r1,8q such that each ψn is supported in rtn, tn`2s. Define finally

St “
8
ÿ

n“0

ψnptqSn,t.
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We leave it as an exercise for the reader to show that this has the right properties.

To summarise, let X be a compact metric space and let HX be an X module.
Let A be the C˚-subalgebra of the C˚-algebra Cbpr1,8q,KpHqq of bounded
continuous functions from r1,8q to KpHq generated by families pTtqtPr1,8q with
proppTtq Ñ 0 as t Ñ 8. One thinks of elements pTtq of A as getting more
and more ‘local’ as time t advances. Then our discussion above shows that a
projection pPtq in A defines in a natural way a ‘functional’

P˚ : K0pXq Ñ Z.

It is not too difficult to extend this idea, and show that there is a pairing

K0pAq bK
0pXq Ñ Z

that extends the above construction of linear functionals. This leads one to
guess that K0pAq might be a good model for the K-homology group K0pXq,
and indeed this gives the ‘correct’ group if HX is ample (see Definition 4.1.1).
Our approach to K-homology will be based on this idea, but the technical details
will be a little different in order to facilitate some arguments in both this chapter
and Chapter 8.

6.2 Localisation algebras

In this section, we define the localisation algebras that will form the basis of
our treatment for K-homology.

Throughout this section, X, Y denote locally compact, second countable,
Hausdorff topological spaces. The one point compactifications (see Definition
A.1.4) of X and Y are denoted X` and Y ` respectively. Such spaces X, Y and
their one point compactifications are metrisable, and we will assume that they
are equipped with a metric when convenient. For additional background, see
Section A.1 for our conventions on topological spaces, and Sections 4.1 and 4.4
for the background on geometric modules and covering isometries that we will
need.

Throughout this section, we will be working with functions from r1,8q to
the C˚-algebra BpHq of bounded operators on some Hilbert space. We think of
such a function as a family of operators pTtqtPr1,8q parametrized by t P r1,8q.

Definition 6.2.1. Let HX be an X module. Define LrHX s to be the collection
of all bounded functions pTtq from r1,8q to BpHXq such that:

(i) for any compact subset K of X, there exists tK ě 0 such that for all
t ě tK , the operators

χKTt and TtχK

are compact, and the functions

t ÞÑ χKTt and t ÞÑ TtχK
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are uniformly norm continuous when restricted to rtK ,8q;

(ii) for any open neighbourhood U of the diagonal in X` ˆX`, there exists
tU ě 1 such that for all t ą tU

supppTtq Ď U.

Remark 6.2.2. We stated condition (ii) above in terms of open sets to emphasise
its topological nature. In metric terms, if we fix a metric d on X` then it is
equivalent to the following: for every ε ą 0 there exists tε ě 1 such that for all
t ą tε, proppTtq ă ε. The metric formulation is often more convenient to work
with in practice, and we will often do so. There are also equivalent conditions in
terms of neighbourhoods of the diagonal in X ˆX, and with respect to metrics
on X, although these are only asked to hold ‘locally’. The reader is asked to
explore all of this in Exercise 6.8.1.

Recall now from Lemma 4.1.13 that supports of operators behave well under
sums, adjoints and compositions. Using this and the fact that the compact
operators are an ideal in BpHXq, it follows directly that LrHX s is a ˚-algebra.

Definition 6.2.3. Define L˚pHXq to be the C˚-algebra completion of LrHX s

for the norm
}pTtq} :“ sup

t
}Tt}BpHXq.

We call LrHX s the localisation ˚-algebra of HX and L˚pHXq the localisation
C˚-algebra, or just localisation algebra of HX .

Localisation algebras may initially look more complicated than the Roe al-
gebras of Chapter 5. However, from a K-theoretic point of view, they are much
simpler: in particular, their K-theory is typically easier to compute.

Remark 6.2.4. Let HX be an X module, and let f be a bounded Borel function
on f . Note that L˚pHXq is naturally represented on the (non-separable) Hilbert
space `2pr1,8q, HXq, and that f defines a bounded operator on this Hilbert
space by the formula

pf ¨ uqptq :“ fuptq

for u P `2pr1,8q, HXq and t P r1,8q, where the right hand side uses the action
of the bounded Borel functions on the X module HX (see Proposition 1.6.11).
It is not difficult to see that the multiplication operator thus defined is in the
multiplier algebra of L˚pHXq as in Definition 1.7.6. To summarize, bounded
Borel functions on X naturally define multipliers of L˚pHXq.

In the remainder of this section, we discuss functoriality of the localisation
algebras for proper continuous maps. In Section 6.4 we will bootstrap these
results up to functoriality on a larger category, but we deal with the special case
now as it is more intuitive (and suffices for many applications). The construction
underlying functoriality is based on the machinery of continuous covers from
Section 4.4. For the reader’s convenience, we repeat Definition 4.4.6.
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Definition 6.2.5. Let HX , HY be geometric modules, and f : X Ñ Y a
function. A family of isometries pVt : HX Ñ HY qtPr1,8q is a continuous cover
of f if:

(i) the function t ÞÑ Vt from r1,8q to BpHX , HY q is uniformly norm contin-
uous;

(ii) for any open subset U Ď Y `ˆY ` that contains the diagonal, there exists
tU ě 1 such that for all t ě tU

supppVtq Ď tpy, xq P Y ˆX | py, fpxqq P Uu.

Remark 6.2.6. Analogously to Remark 6.2.2, it is important that we use open
neighbourhoods of the diagonal in Y ` ˆ Y `, and not in Y ˆ Y , in the above.

If we fix a metric d on Y `, then we can restate condition (ii) above as
follows: for any ε ą 0 there exists tε ě 1 such that for all t ě tε, supppVtq Ď
tpy, xq P Y ˆ X | dpy, fpxqq ă εu; compare Exercise 6.8.1. This is often the
more convenient formulation to work with; we stated the ‘official’ definition in
the form above to emphasise its topological nature.

Lemma 6.2.7. Let HX , HY be geometric modules. Let f : X Ñ Y be a
continuous and proper map, and let pVtq be a continuous cover for f . Then

pTtq ÞÑ pVtTtV
˚
t q

defines a ˚-homomorphism

adpVtq : LrHX s Ñ LrHY s

that extends to a ˚-homomorphism from L˚pHXq to L˚pHY q.
Moreover, the map induced by adpVtq on K-theory depends only on f and not

on the choice of pVtq.

Proof. The formula adpVtq : pTtq ÞÑ pVtTtV
˚
t q clearly defines a ˚-homomorphism

from the C˚-algebra `8pr1,8q,BpHXqq of bounded functions from r1,8q to
BpHXq to `8pr1,8q,BpHY qq. We have to show that it restricts to a map from
LrHX s to LrHY s.

Let us fix a metric d on Y `, and work with metric language. Let K be any
compact subset of Y and for ε ą 0 let

NεpKq :“
ď

yPK

Bpy; εq

be the ε-neighbourhood of K. As Y is locally compact, there is ε ą 0 such
that NεpKq is a compact subset of Y , whence as f is proper, f´1pNεpKqq is
a compact subset of X. Using Lemma 4.1.15 (and with notation as in that
lemma),

K ˝ supppVtq Ď tx P X | there exists y P K with dpfpxq, yq ă εu “ f´1pNεpKqq
(6.2)
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for all suitably large t. Hence by Lemma 4.1.15,

χKVtTtV
˚
t “ χKVtχK˝supppVtqTtV

˚
t .

Line (6.2) and the preceding comments imply that K ˝ supppVtq has compact
closure, whence condition (i) from Definition 6.2.1 implies that there is t0 such
that for all t ě t0, χK˝supppVtqTt is a compact operator and the map

rt0,8q Ñ KpHY q, t ÞÑ χK˝supppVtqTt

is uniformly continuous. The case of VtTtV
˚
t χK is analogous, using the ‘adjoint’

of the formula from Lemma 4.1.15. This shows that the family pVtTtV
˚
t q satisfies

condition (i) from Definition 6.2.1.
For condition (ii), let us also fix a metric on X`. Let tε be so large

such for all t ě tε, if py, xq is in supppVtq (equivalently by Lemma 4.1.13, if
px, yq P supppV ˚t q), then dpy, fpxqq ď ε, and moreover such that if t ě tε, then
proppTtq ă ε. Lemma 4.1.13 gives us that for any t

supppVtTtV
˚
t q Ď supppVtq ˝ supppTtq ˝ supppV ˚t q.

Let now t ě tε, and let py, zq be a point in the support of VtTtV
˚
t . Then

the above implies that there are sequences pynq and pznq in Y and pxnq in X
such that yn Ñ y and zn Ñ z as n Ñ 8, and such that pyn, xnq P supppVtq,
and pxn, znq P supppTtq ˝ supppV ˚t q for all n. Moreover, for each n there are
sequences pxnmq

8
m“1 and pvnmq

8
m“1 in X and pznmq

8
m“1 in Y such that xnm Ñ

xn and znm Ñ zn as m Ñ 8, such that pxnm, vnmq P supppTtq, and such that
pvnm, znmq P supppV ˚t q for all n,m. Let now

ωf pεq :“ suptdpfpx1q, fpx2qq | dpx1, x2q ď εu.

Then putting the above discussion together, we get

dpy, zq “ lim
nÑ8

dpyn, znq

ď lim sup
nÑ8

dpyn, fpxnqq ` dpfpxnq, znq

ď ε` lim sup
nÑ8

lim sup
mÑ8

dpfpxnmq, fpvnmqq ` dpfpvnmq, znmq

ď ε` ωf pεq ` ε. (6.3)

As f : X Ñ Y is continuous and proper, it extends (uniquely) to a continuous
map f : X` Ñ Y `. As X` is compact, f is therefore uniformly continuous for
the metrics we are using. Hence the expression 2ε`ωf pεq bounding dpy, zq in line
(6.3) tends to zero as ε tends to zero. We have thus shown that proppVtTtV

˚
t q

tends to zero as t tends to infinity, so condition (ii) is satisfied.
We now have that adpVtq defines a ˚-homomorphism from LrHX s to LrHY s,

and therefore also from L˚pHXq to L˚pHY q. The statement about K-theory is
proved in exactly the same way as the corresponding statement for Roe algebras
in Lemma 5.1.12; we leave this to the reader.
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Remark 6.2.8. Using Remark 4.4.5, if f : X Ñ X is the identity map and
HX , H 1X are both ample X modules, then there is a continuous cover pVt :
HX Ñ H 1Xq of the identity map that consists of unitary operators. It follows
that LrHX s and LrH 1X s are isomorphic, and so are their completions. Thus
the localisation ˚-algebras and C˚-algebras do not depend on the modules used
to define them up to non-canonical isomorphism, as long as these modules are
ample. Moreover, Lemma 6.2.7 above implies that the isomorphism one gets
this way is canonical on the level of K-theory.

Corollary 4.4.7 implies that continuous covers exist whenever f : X Ñ Y is
continuous and HY is ample. The following definition thus makes sense.

Definition 6.2.9. Let f : X Ñ Y be a continuous and proper function, and
HX , HY be geometric modules with HY ample. Let L˚pHXq and L˚pHY q be
localisation algebras associated to ample geometric modules. Define

f˚ : K˚pL
˚pHXqq Ñ K˚pL

˚pHY qq

to be the map on K-theory induced by the ˚-homomorphism

adpVtq : L˚pHXq Ñ L˚pHY q

associated to some continuous cover for f as in Lemma 6.2.7 above.

Theorem 6.2.10. For each second countable, locally compact, Hausdorff space
X choose2 an ample X module HX . Then the assignments

X ÞÑ K˚pL
˚pHXqq, f ÞÑ f˚

give a well-defined functor from the category of such spaces and continuous,
proper maps to the category GA of graded abelian groups.

Moreover, the functor that one gets in this way does not depend on the choice
of modules up to canonical equivalence.

Proof. The proof is very similar to that of Theorem 5.1.15: we leave it to the
reader to check the details.

Analogously to the case of Roe algebras, we make the following convention.

Convention 6.2.11. If HX is an ample X module, we will often write LrXs and
L˚pXq for LrHX s and L˚pHXq respectively, and refer to these as the localisation
˚-/C˚-algebra of X.

This is justified by Theorem 6.2.10, which in particular implies that at the
level of K-theory, K˚pL

˚pXqq is determined by X up to canonical isomorphism,
and by Remark 6.2.8 which implies that LrXs and L˚pXq are determined by X
up to non-canonical isomorphism. As a technical point, note that the multiplier
action of the bounded Borel functions BpXq on L˚pXq of Remark 6.2.4 does
depend on the choice of X module, however: this sometimes makes particular
choices of X module more convenient for certain proofs.

2Just as with Theorem 5.1.15, we leave it as an exercise to find a legitimate way to do this.
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6.3 K-homology

In this section we define the K-homology groups of a space as the K-theory
groups of the associated localisation algebra. We then compute the K-homology
of the empty set and of a point, and prove that K-homology has Mayer-Vietoris
sequences in an appropriate sense.

Throughout this section, X, Y denote second countable, locally compact,
Hausdorff topological spaces.

Definition 6.3.1. The K-homology groups of X are defined by the formula

KnpXq :“ KnpL
˚pXqq, K˚pXq :“ K0pXq ‘K1pXq.

The assignments X ÞÑ KnpXq are well-defined up to canonical equivalence.
They are covariant functors from the category of locally compact, second count-
able, Hausdorff spaces and proper continuous maps to the category of graded
abelian groups by Theorem 6.2.10.

Remark 6.3.2. One can also get elements of K-homology from localisation al-
gebras over not-necessarily ample X modules in the following way. Say HX,0

is any X module, and HX an ample X module. Then using Corollary 4.4.7
(which only requires ampleness on the target module), there is a continuous
cover pVt : HX,0 Ñ HXq for the identity map. Using Lemma 6.2.7, this gives us
a ˚-homomorphism

padpVtqq˚ : K˚pL
˚pHX,0qq Ñ K˚pL

˚pHXqq

and thus a map from K˚pL
˚pHX,0qq to K-homology; moreover, the map in-

duced on K-theory does not depend on the choice of pVtq. Hence elements of
K˚pL

˚pHX,0qq canonically give rise to elements of K-homology.

As the C˚-algebra L˚pXq is fairly large, it is not completely obvious what
KnpXq is, even for very simple X. We start with direct computations for the
two simplest cases: the empty set, and a single point.

Proposition 6.3.3. The K-homology of the empty set is given by Knp∅q “ 0
for all n.

If X is a single point space, then

KnpXq “

"

Z n “ 0 mod 2
0 n “ 1 mod 2

Moreover, if HX is an ample X module, then the group K0pXq “ K0pL
˚pHXqq

is generated by any constant function from r1,8q to a rank one projection in
the compact operators on HX .

Proof. First, let X be the empty set ∅. Then Cp∅q “ t0u, and the conditions
defining L˚pXq are vacuous. Hence L˚pXq is just the C˚-algebra

l8pr1,8q,BpHqq
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of bounded functions from r1,8q to the bounded operators on some separable
infinite dimensional Hilbert space. This has zero K-theory by applying the
Eilenberg swindle showing that BpHq has zero K-theory from Proposition 2.7.7
pointwise in r1,8q.

Let now X be a single point. Hence CpXq “ C and an ample X module
HX is necessarily a separable infinite dimensional Hilbert space, equipped with
the unital action of C. The conditions defining LrXs specialize to say that it
consists of bounded functions pTtqtPr1,8q from r1,8q to BpHXq such that there
is some t0 so that the restriction pTtqtPrt0,8q is compact operator valued, and
uniformly continuous. Define also

L0rXs :“ tpTtq P `
8pr1,8q,BpHqq | there is t0 such that Tt “ 0 for t ě t0u,

which is a ˚-subalgebra of LrXs, and let L˚0 pXq be the closure of L0rXs, which
is an ideal in L˚pXq.

Now, write Cubpr1,8q,KpHqq for the C˚-algebra of bounded uniformly con-
tinuous functions from r1,8q to the compact operators in H. Then the discus-
sion in the previous paragraph shows that the natural inclusion

Cubpr1,8q,KpHqq Ñ L˚pXq (6.4)

induces an isomorphism

Cubpr1,8q,KpHqq
C0pr1,8q,KpHqq

–
L˚pXq

L˚0 pXq
.

Moreover, both C0pr1,8q,KpHqq and L˚0 pXq have zero K-theory: the former as
it is contractible, and the latter by applying the Eilenberg swindle showing that
BpHq has zero K-theory (see Proposition 2.7.7) pointwise in r1,8q. Hence the
inclusion in line (6.4) induces an isomorphism on K-theory. Thus to complete
the proof, it will suffice to show that the evaluation-at-one ˚-homomorphism

ev : Cubpr1,8q,KpHqq Ñ KpHq

induces an isomorphism on K-theory (note that this also shows that the K-
theory is generated by an element of the form claimed). Moreover, using the
six-term exact sequence again, it will suffice to show that the kernel I of ev has
zero K-theory; we will now proceed to do this using an Eilenberg swindle.

Write

H “

8
à

n“0

Hn

where each Hn is infinite dimensional. For each n ě 0 choose a unitary isomor-
phism Vn : H Ñ Hn. Extend each pTtq P I to a continuous function on all of
R by defining Tt “ 0 for t ă 1 (this is uniformly continuous as T P I forces
T1 “ 0). Provisionally define a ˚-homomorphism α : I Ñ I by

αppTtqq “
´

8
ÿ

n“1

VnTt´pn´1qV
˚
n

¯

;
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note that uniform continuity of αppTtqq follows from that of t ÞÑ Tt, and that
for each fixed t P r1,8q, αppTtqqt is in K as all but finitely many terms in the
direct sum are zero; hence α is well-defined.

Let now β : I Ñ I be the ˚-homomorphism defined by conjugating by V0

pointwise in t, which induces an isomorphism on K-theory by Proposition 2.7.5.
Then α and β have orthogonal images, whence the map γp0q :“ α ` β is a ˚-
homomorphism, and induces the same map on K-theory as α˚ ` β˚ by Lemma
2.7.6. The homotopy defined for s P r0, 1s by

γpsq : pTtq ÞÑ
´

V0TtV
˚
0 `

8
ÿ

n“1

VnTt´pn´1q´sV
˚
n

¯

between γp0q and a new ˚-homomorphism γp1q shows that these two maps induce
the same map on K-theory (here we use uniform continuity to show that this
a homotopy). On the other hand, γp1q is conjugate to α via the isometric
multiplier of I defined by applying the isometry

V :“
8
ÿ

n“0

Vn`1V
˚
n

pointwise in t. Hence γp1q and α induce the same map on K-theory by Propo-
sition 2.7.5.

Putting the above together

α˚ ` β˚ “ γ
p0q
˚ “ γ

p1q
˚ “ α˚,

and cancelling α˚ gives that β˚ is zero. However, we know that β˚ is an iso-
morphism, so this forces K˚pIq “ 0.

Our remaining goal in this section is to prove the existence of Mayer-Vietoris
sequences.

Theorem 6.3.4. Let X “ EYF be a cover of X by closed subsets. Then there
exists an exact Mayer-Vietoris sequence

K0pE X F q // K0pEq ‘K0pF q // K0pXq

��
K1pXq

OO

K1pEq ‘K1pF qoo K1pE X F qoo

where all the horizontal arrows are those functorially induced by the relevant
inclusions.

Moreover, the Mayer-Vietoris sequence is natural in the following sense. Let
W “ C YD be another decomposition into closed subsets, and let f : W Ñ X
is a proper continuous map that satisfies fpCq Ď E and fpDq Ď F . Then the
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diagram

K0pC XDq

&&

// K0pCq ‘K0pDq
//

((

K0pW q

��

''
K0pE X F q

// K0pEq ‘K0pF q
// K0pXq

��

K1pW q

OO

&&

K1pCq ‘K1pDq
oo

((

K1pC XDq
oo

''
K1pXq

OO

K1pEq ‘K1pF q
oo K1pE X F q ,

oo

in which all diagonal maps are induced by f , commutes.

The key technical ingredient in the proof of Theorem 6.3.4 is a construction
that models the K-homology of a closed subspace Y of X using the K-theory
of an ideal inside L˚pXq. This is the content of the next definition and lemma.

Definition 6.3.5. Let Y be a closed subspace of X, and let HX be an X
module. Define LY rHX s to be the subset of LrHX s consisting of pTtq such that
for any open subset U of X`ˆX` that contains Y `ˆY `, there exists tU such
that for all t ě tU

supppTtq Ď U

Define L˚Y pHXq to be the closure of LY rHX s inside L˚pHXq.

Note that LY rHX s is a ˚-ideal in LrHX s (we leave this as an exercise for the
reader), whence L˚Y pHXq is an ideal in L˚pHXq.

Lemma 6.3.6. Let Y be a closed subspace of X, let HY and HX be ample
modules over these spaces, and let pVt : HY Ñ HXqtPr1,8q be any continuous
cover of the inclusion map Y Ñ X. Then the map

adpVtq : L˚pHY q Ñ L˚pHXq

of Lemma 6.2.7 takes image in L˚Y pHXq, and the associated map

adpVtq : L˚pHY q Ñ L˚Y pHXq

induces an isomorphism on K-theory.

Proof. It is not difficult to show that if pWt : HX Ñ H 1Xq is any continuous
cover isometry of the identity map, then adpWtq takes L˚Y pHXq isomorphically
onto L˚Y pH

1
Xq. Hence it suffices to prove the lemma for a specific choice of X

module, and also of continuous cover pVtq for the inclusion Y Ñ X. Let ZX
be a countable dense subset of X whose intersection with Y is also dense. Let
H be a separable, infinite-dimensional Hilbert space, and define ample X and
Y modules respectively by HX :“ `2pZX , Hq and HY :“ `2pZY , Hq. Then the
natural inclusion HY Ñ HX induced by the inclusion ZY Ñ ZX gives rise to a
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constant family pVt : HX Ñ HY q of isometries, which is a continuous cover for
the inclusion map (compare Example 4.4.2); we will prove the lemma for this
particular case.

Let now χY be the characteristic function of Y , which acts as a multiplier of
L˚pHXq (see Remark 6.2.4). Then it is immediate that the corner χY L

˚pHXqχY
identifies with the image of L˚pHY q under adpVtq. Clearly χY L

˚pHXqχY is a
C˚-subalgebra of L˚Y pHXq, which gives the inclusion. We claim that L˚Y pHXq

is the ideal in L˚pHXq generated by χY by L˚pHXqχY L
˚pHXq (compare Def-

inition 1.7.8 for notation). This will imply that χY L
˚pHXqχY is a full corner

in L˚Y pHXq in the sense of Definition 1.7.8, which will suffice to complete the
proof by Proposition 2.7.19.

Fix a metric d on X`, and equip X and Y with the induced metrics for the
remainder of the proof. First, if pTtq and pStq are elements of LrHX s then it is
straightforward from Lemma 4.1.15 and the fact that the propagations of Tt, St
tend to zero that pStχY Ttq is in LY rHX s. This implies that L˚Y pHXq contains
the ideal generated by χY .

For the converse inclusion, note that L˚Y pHXq is a C˚-algebra, and so the col-
lection of products pStq ¨ pTtq of two elements from LY rHX s is dense in L˚Y pHXq

(see for example Exercise 1.9.9). It thus suffices to show that any such product
is in the ideal generated by χY . Write H as an infinite direct sum

H “
à

xPZX

Hx

parametrised by ZX , where each Hx is infinite dimensional; this is possible
as ZX is countable. For each x P ZX , let Ux : H Ñ Hx be any unitary
isomorphism. Choose a function f : ZX Ñ ZY such that dpx, fpxqq ď 2dpx, ZY q
for all x P ZX ; note that f is the identity on Y . For each x P ZX , let Vx :
H Ñ HX be the natural isometry with image functions supported at x, and let
Wx : HX Ñ HX be the partial isometry defined by Wx :“ VfpxqUxV

˚
x . Note

that W :“
À

xPZX
Wx : HX Ñ HX is then an isometry with range contained

in HY , where the latter is identified with a subspace of HX in the natural way.
Define new operators

S1t :“ StW
˚, T 1t :“WTt.

As W is an isometry with range contained in HY and χYHY “ HY we have

StTt “ StW
˚WTt “ StW

˚χYWTt “ S1tχY `T
1
t .

To complete the proof, it thus suffices to show that pS1tq and pT 1tq are in LrHX s;
as pStq and pTtq are arbitrary elements of the ˚-algebra LY rHX s, either case
follows from the other on taking adjoints, so we focus on pT 1tq.

For x, y P ZX , write Tt,xy :“ VyTtV
˚
x : H Ñ H for the ‘px, yqth matrix entry’

of Tt, and let ε ą 0. Then for large t, supppTtq is contained in NεpY q ˆNεpY q
and proppTtq ă ε. Now, for such t and some y P U , if the matrix entry T 1t,yz is
not 0, there must exist x P ZX with fpxq “ y and Tt,xz ‰ 0. Hence dpx, zq ă ε
and there exists y1 P ZY with dpz, y1q ă ε. Hence

dpfpxq, xq ď 2dpx, ZY q ď 2dpx, y1q ď 2pdpx, zq ` dpz, y1qq ă 4ε
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and so
dpy, zq “ dpfpxq, zq ď dpx, fpxqq ` dpx, zq ă 5ε.

This implies that proppT 1tq tends to zero as t tends to infinity. Now, let K Ď X
be compact. As T 1t “ WTt it is clear from the corresponding properties for Tt
that for suitably large t, the function t ÞÑ T 1tχK is uniformly continuous, and
that the operator T 1tχK is compact. On the other hand, if ε ą 0 is such that
NεpKq is compact, then from what we already proved abut the propagation of
T 1t , we have

χKT
1
t “ χKT

1
tχNεpKq

for all suitably large t. Hence χKT
1
t is compact and t ÞÑ χKT

1
t is uniformly

continuous for all large t by the discussion of right multiplication by χK .

Proof of Theorem 6.3.4. Fix a metric d on X`, and equip each of X, E, F and
EXF with the restriction of this metric. Let ZEXF be a countable dense subset
of EXF , and let ZE , ZF be countable dense subsets of E, F respectively whose
intersection is ZEXF . Let ZX “ ZE Y ZF , which is a countable dense subset of
X. Let H be a fixed infinite dimensional separable Hilbert space, and for each
of the four possible choices Y P tX,E, F,E X F u, define

HY :“ `2pZY , Hq,

which is an ample Y module. We will use this HY to define K˚pY q in each case.
We claim first that there is a pushout diagram

L˚EXF pHXq //

��

L˚EpHXq

��
L˚F pHXq // L˚pHXq

of C˚-ideals in L˚pXq in the sense of Definition 2.7.13: recall that this means
that

L˚pHXq “ L˚EpHXq ` L
˚
F pHXq and L˚EpHXq X L

˚
F pHXq “ L˚EXF pHXq.

To see that L˚pHXq “ L˚EpHXq ` L˚F pHXq, note that any element pTtq of
L˚pHXq can be written as a sum pTtχEq ` pTtχXzEχF q of elements of L˚EpHXq

and L˚F pHXq respectively. That L˚EpHXqXL
˚
F pHXq Ě L˚EXF pHXq is clear. The

converse inclusion is a consequence of the following fact from metric topology:
for a compact metric space Y , closed3, subsets A, B of Y and any ε ą 0 there
exists δ ą 0 such that NδpAq XNδpBq Ď NεpAX Bq. We leave the proof as an
exercise for the reader.

3This is the only place in the proof that we use the assumption that E and F are closed
subsets of X.

209



It follows then from Proposition 2.7.15 that there is a Mayer-Vietoris se-
quence

K0pL
˚
EXF pHXqq // K0pL

˚
EpHXqq ‘K0pL

˚
F pHXqq // K0pL

˚pHXqq

��
K1pL

˚pHXqq

OO

K1pL
˚
EpHXqq ‘K1pL

˚
F pHXqqoo K1pL

˚
EXF pHXqq .oo

On the other hand, there is also a commutative diagram

L˚pHEXF q //

''

��

L˚pHEq

%%

��

L˚EXF pHXq //

��

L˚EpHXq

��

L˚pHF q

''

// L˚pHXq

L˚F pHXq // L˚pHXq

where all the arrows are the natural inclusions. The arrows in the rear square
are all defined by families of isometries, constant in t, that continuously cover
the respective inclusion maps of spaces, and thus (compare Example 4.4.2) give
the maps on K-homology induced by the respective inclusions of spaces. Lemma
6.3.6 implies moreover that the diagonal maps all induce isomorphisms on K-
theory. The existence of the Mayer-Vietoris sequence in the statement, and the
identification of the horizontal arrows, follows from this.

It remains to prove naturality. Given decompositions W “ C Y D and
X “ E Y F satisfying the assumptions of the theorem, and a map between
them one can use the construction above together with that of Example 4.2.3
to build a commutative diagram

L˚CXDpHW q //

''

��

L˚CpHW q

%%

��

L˚EXF pHXq //

��

L˚EpHXq

��

L˚DpHW q

''

// L˚pHW q

%%
L˚F pHXq // L˚pHXq

of pushout squares. The result follows from this, the discussion above, and
naturality of the K-theory Mayer-Vietoris sequence (Proposition 2.7.15).

210



6.4 General functoriality

In this section, we prove functoriality results for a larger category of morphisms.
This is important in of itself for applications, and also useful to extend homo-
logical properties of K-homology beyond those of the last section. In particular
show that K-homology is a homology theory (see Definition B.2.2) on the cat-
egory LC of Definition 6.4.1 below. All of this necessitates working with some
variants of the localisation algebra that are a little less concrete but more flexi-
ble.

Throughout the section, X and Y denote locally compact, second countable
topological spaces. Their one-point compactifications (see Definition A.1.4) are
denoted by X` and Y ` respectively, and the point at infinity by 8.

Definition 6.4.1. The category LC has as objects second countable, locally
compact Hausdorff topological spaces; and morphisms from X to Y are contin-
uous functions f : X` Ñ Y ` such that fp8q “ 8.

See Remark A.1.6 and Proposition A.1.8 for some equivalent descriptions of
LC.
Remark 6.4.2. A continuous proper map f : X Ñ Y extends uniquely to a con-
tinuous map f : X` Ñ Y ` that takes infinity to infinity, and thus a morphism
in LC. On the other hand, not every morphism in LC arises in this way: for
example let f : pRq` Ñ p0, 1q` be the map that is the identity on p0, 1q, and
sends all of pRq`zp0, 1q to 8 P p0, 1q`. In this way, LC can be regarded as
strictly larger than the category with the same objects, and morphisms being
proper continuous maps.

Definition 6.4.3. Let HX` be an X` module. Define LrHX` ;8s to be the
collection of all bounded functions pTtq from r1,8q to BpHX`q such that:

(i) for any compact subset K of X (not of X`!), there exists tK ě 0 such
that for all t ě tK , the operators

χKTt and TtχK

are compact, and the functions

t ÞÑ χKTt and t ÞÑ TtχK

are uniformly norm continuous when restricted to rtK ,8q;

(ii) for any open neighbourhood U of the diagonal in X` ˆX`, there exists
tU ě 1 such that for all t ą tU

supppTtq Ď U.

Define L˚pHX` ;8q to be the completion of LrHX` ;8s for the norm

}pTtq} :“ sup
t
}Tt}BpHX` q.
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Similarly to the localisation algebras, one can use that supports of operators
behave well under sums, adjoints and compositions (Lemma 4.1.13) and the fact
that the compact operators are an ideal in BpHXq, to see that LrHX` ;8s is
a ˚-algebra and L˚pHX` ;8q a C˚-algebra. The notation is meant to suggest
that we taking the localisation algebra of HX` ‘relative to infinity’.

Now, completely analogously to the corresponding material in Section 6.2 we
have the following definitions and results. The proofs are essentially the same
as in Section 6.2: we leave it to the reader to check the details.

Lemma 6.4.4. Let HX` , HY ` be geometric modules. Let f be a morphism in
LC from X to Y , and let pVtq be a continuous cover for the function f : X` Ñ
Y `. Then

pTtq ÞÑ pVtTtV
˚
t q

defines a ˚-homomorphism

adpVtq : LrHX` ;8s Ñ LrHY ` ;8s

that extends to a ˚-homomorphism from L˚pHX` ;8q to L˚pHY ` ;8q.
Moreover, the map induced by adpVtq on K-theory depends only on f and not

on the choice of pVtq.

Definition 6.4.5. Let f : X Ñ Y be a morphism in LC, and HX` , HY `

be geometric modules with HY ` ample. Let L˚pHX` ;8q and L˚pHY ` ;8q be
localisation algebras associated to ample geometric modules. Define

f˚ : K˚pL
˚pHX` ;8qq Ñ K˚pL

˚pHY ` ;8qq

to be the map on K-theory induced by the ˚-homomorphism

adpVtq : L˚pHX` ;8q Ñ L˚pHY ` ;8q

associated to some continuous cover of the function f : X` Ñ Y `.

Theorem 6.4.6. For each X in the second countable, locally compact, Haus-
dorff space X choose4 an ample X` module HX` . Then the assignments

X ÞÑ K˚pL
˚pHX` ;8qq, f ÞÑ f˚

give a well-defined functor from the category LC to the category GA of graded
abelian groups.

Moreover, the functor that one gets in this way does not depend on the choice
of modules up to canonical equivalence.

Our next goal is to show that this new functor extends the one from Theorem
6.2.10. We first need a canonical way to extend an ample X module HX to an
ample X` module. Fix a separable infinite-dimensional Hilbert space H and
equip HX ‘H with the CpX`q representation defined on pu, vq P HX ‘H by

f ¨ pu, vq :“ pf |Xu, fp8qvq.

4Just as with Theorem 5.1.15, we leave it as an exercise to find a legitimate way to do this.

212



Call this module H`X . Note that the natural inclusion HX Ñ H`X induces a
˚-homomorphism

φX : L˚pHXq Ñ L˚pH`X ;8q. (6.5)

Proposition 6.4.7. For any ample X module HX the map φX of line (6.5)
induces an isomorphism on K-theory. Moreover, if f : X Ñ Y is a proper
continuous map, then the diagram

K˚pL
˚pHXqq

φX˚ //

f˚

��

K˚pL
˚pH`X ;8qq

f˚

��
K˚pL

˚pHY qq
φY˚ // K˚pL˚pH

`
Y ;8qq

commutes.

To prove this, we will introduce a technical variation of the localisation
algebra that will also be useful for some other purposes.

Definition 6.4.8. LetHX be a geometric module. Let L0rHX s be the collection
of all pTtq P LrHX s such that for any compact subset K of X there exists tK ě 0
such that for all t ě tK ,

χKTt “ TtχK “ 0.

It is not difficult to see that L0rHX s is a ˚-ideal in LrHX s. Let L˚0 pHXq be the
closure of L0rHX s inside L˚pHXq, let

L˚QpHXq :“ L˚pHXq{L
˚
0 pHXq

be the corresponding quotient C˚-algebra.
Analogously, if HX` is a geometric module, let L0rHX` ;8s be the collection

of all pTtq P LrHX` ;8s such that for any compact subset K of X there exists
tK ě 0 such that for all t ě tK ,

χKTt “ TtχK “ 0.

Again, the closure L˚0 pHX` ;8q of this in L˚pHX` ;8q is an ideal, and we let

L˚QpHX` ;8q :“ L˚pHX` ;8q{L˚0 pHX` ;8q

be the corresponding quotient C˚-algebra.

Remark 6.4.9. We could replace the condition ‘for any compact subset K of
X there exists tK ě 1 such that for all t ě tK , we have χKTt “ TtχK “ 0’
appearing in the definition above with ‘for any compact subset K of X we have
lim
tÑ8

χKTt “ lim
tÑ8

TtχK “ 0’. This would make no difference on the level of the

C˚-algebraic closure. Indeed, it suffices to show that any pTtq satisfying the
weaker second condition can be approximated arbitrarily well by one satisfying
the stronger first condition. This can be done by replacing pTtq by a suitable
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compression pψtTtψtq where pψtq is a r1,8q-parameterized family of continuous
functions from X to r0, 1s with the property that for any compact K, ψt|K is
one for small t, and zero for large t. We leave the details to the reader: see
Exercise 6.8.2.

Remark 6.4.10. One can check that the analogues of Lemma 6.2.7 and Theorem
6.2.10 also hold for L˚0 pHXq and L˚QpHXq as long as we assume the modules
are ample; this comes down to the fact that if pVt : HX Ñ HY q is a continuous
cover of a continuous proper map f : X Ñ Y , then the family pVtq conjugates
L0pHXq into L0pHY q. Analogously to Convention 6.2.11, we will sometimes
streamline the notation and write L˚QpXq for L˚QpHXq when the choice of HX

is not important. Similar remarks pertain to L˚0 pHX` ;8q and L˚QpHX` ;8q.

Lemma 6.4.11. If HX (respectively, HX`) is an ample geometric module, then
the quotient map L˚pHXq Ñ L˚QpHXq (respectively, L˚pHX` ;8q Ñ L˚QpHX` ;8q)
induces an isomorphism on K-theory.

Proof. We will focus on the case of L˚pHXq; the case of L˚pHX` ;8q is entirely
analogous. Using the six-term exact sequence in K-theory it suffices to show
that K˚pL

˚
0 pHXqq “ 0. Define H8X to be the infinite direct sum

H8X “
8
à

n“0

HX ,

which is also an ample X module when equipped with the diagonal action of
C0pXq. Let α : L˚0 pHXq Ñ L˚0 pH

8
X q be the ˚-homomorphism induced by the

inclusion HX Ñ H8X as the first summand. The ˚-homomorphism α is induced
by a (constant) family of isometries pVtqtPr1,8q that continuously covers the
identity map, so by Remark 6.4.10 induces an isomorphism on K-theory.

Consider the formula

β : pTtq ÞÑ
´

0‘
8
à

n“1

Tt

¯

.

We claim that this defines a ˚-homomorphism L0pHXq Ñ L0pH
8
X q: the key

point is to show that the image is in L0pH
8
X q, and this follows as for any compact

subset K of X we have that

χKφppTtqq “
´

0‘
8
à

n“1

χKTt

¯

,

and for all suitably large t, χKTt “ 0. Clearly β extends to a ˚-homomorphism
β : L˚0 pHXq Ñ L˚0 pH

8
X q on the completions.

Now, α has orthogonal image to β and thus α ` β is a ˚-homomorphism,
and as maps on K-theory pα ` βq˚ “ α˚ ` β˚ by Lemma 2.7.6. On the other
hand, α ` β is conjugate to β via the isometric multiplier of L˚pH8X q induced
by applying the shift isometry

V : H8X Ñ H8X , pv0, v1, v2, ...q ÞÑ p0, v0, v1, ...q
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constantly in t, whence by Proposition 2.7.5 α` β and β induce the same map
on K-theory. Hence

β˚ “ pα` βq˚ “ α˚ ` β˚.

Cancelling β˚, we conclude that α˚ is zero. However, we already noted that it
is an an isomorphism, so K˚pL

˚
0 pHXqq “ 0 as claimed.

Proof of Proposition 6.4.7. Note that φX takes L˚0 pHXq into L˚0 pH
`
X ;8q, whence

it induces a map on the quotients φXQ : L˚QpHXq Ñ L˚QpH
`
X ;8q. Using Lemma

6.4.10, it to show that φX induces an isomorphism on K-theory, it suffices to
show that φXQ does. We claim in fact that φXQ is actually an isomorphism of

C˚-algebras. Indeed, as L˚pHXq X L˚0 pH
`
X ;8q “ L˚0 pHXq, φ

X
Q is injective. To

see surjectivity, let pTtq be an element of L˚pH`X ;8q, and let P : H`X Ñ HX

be the projection onto the first factor. Then pPTtP q is in the image of φX .
Moreover, for any compact subset K of X we have that PχK “ χKP “ χK .
Hence

χKppPTtP q ´ pTtqq “ pPχKTtP ´ PχKTtq.

Fix a metric on X`. For any ε ą 0 and all sufficiently large t, we have from
Lemma 4.1.15 that χKTt “ χKTtNεpKq, where as usual

NεpKq :“
ď

xPK

Bpx; εq

is the ε-neighbourhood of K. If ε is small enough that NεpKq is a subset of
X with compact closure, then χNεpKqP “ PχNεpKq “ χNεpKq and so for all
suitably large t

PχKTtP ´ PχKTt “ PχKTtχNεpKqP ´ PχKTtχNεpKqP “ 0.

This shows that χKppPTtP q´ pTtqq is in L˚0 pH
`
X ;8q, completing the proof that

φXQ is an isomorphism.
For the naturality statement, let f : X Ñ Y be continuous and proper, and

let pVt : HX Ñ HY q be a continuous cover for f . For each t, define

Wt :“ Vt ‘ Id : HX ‘H Ñ HY ‘H.

Then pWt : H`X Ñ H`Y q is a covering isometry for the extended function f :
X` Ñ Y `. Using Remark 6.4.10, we get induced maps on the quotients

adpVtq : L˚QpHXq Ñ L˚QpHY q and adpWtq : L˚QpH
`
X ;8q Ñ L˚QpH

`
Y ;8q.

The diagram

L˚QpHXq
φQ //

adpVtq

��

L˚QpH
`
X ;8q

adpWtq

��
L˚QpHY q

φQ // L˚pH`Y ;8q

commutes, which suffices to complete the proof.
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To summarise, we now have the following.

Corollary 6.4.12. The functor defined in Theorem 6.4.6 is an extension of the
functor in Theorem 6.2.10, up to canonical equivalence.

Convention 6.4.13. From now, on, we will just write K˚pXq and f˚ for the
results of either of the functors defined in Theorem 6.4.6 or Theorem 6.2.10,
and call both K-homology.

There is one situation where it is natural to change the notation for mor-
phisms. Say i : U Ñ X is the inclusion of an open set. Then there is a mor-
phism c : X` Ñ U` in LC defined by collapsing the complement of U in X`

to the point at infinity in U`. Thus we get a ‘restriction’ map on K-homology
c˚ : K˚pXq Ñ K˚pUq. As we would like to think of this map as induced by the
inclusion i : U Ñ X, but it goes in the opposite direction, we will denote it by
i˚ : K˚pXq Ñ K˚pUq.

Our first goal using the more flexible model for K-homology is to prove
homotopy invariance. The proposition below is the main ingredient.

Proposition 6.4.14. For any X, the K-homology of X ˆ r0,8q is zero.

Unfortunately, the proof of this is quite technical. In order to make it more
palatable, we split off a K-theoretic lemma.

Lemma 6.4.15. Let Y be a locally compact space, HY ` an ample Y `-module
and consider the localisation algebra L˚pHY ` b H;8q, where HY ` b H is
equipped with the amplification of the CpY `q action on HY ` . Choose a de-
composition H “

À

nPNHn and for each n, let Un : H Ñ H be an isometry
with image Hn, considered as a multiplier of L˚pHY ` bH;8q (constant in t)
in the natural way. Assume finally that there exists a sequence of isometries
pVnptq : HY ` Ñ HY `qnPNYt8u,tPr1,8q with the following properties:

(i) for each 0 ď n ď 8, the map

pTtq Ñ pVnptqTtVnptq
˚q

conjugates L˚pHY ` ;8q into itself;

(ii) for all 0 ď n ď 8, pVnptqVn`1ptq
˚q (where 8`1 “ 8) defines a multiplier

of L˚pHY ` ;8q and the sums5

ÿ

1ďnă8

UnVnptqVn`1ptq
˚U˚n and

ÿ

1ďnă8

UnV8ptqV8ptq
˚U˚n ,

converge strongly for each fixed t, and the functions of t thus defined are
multipliers of L˚pHY ` bH;8q;

5The slightly unusual indexing is to emphasize that n “ 8 is not included in the sum.
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(iii) for all pTtq P L
˚pHY ` bH;8q, the elements

´

ÿ

1ďnă8

UnTtpV8ptqV8ptq
˚ ´ Vn`1ptqVnptq

˚qU˚n

¯

and
´

ÿ

1ďnă8

UnpV8ptqV8ptq
˚ ´ Vn`1ptqVnptq

˚qTtU
˚
n

¯

are in L˚pHY ` bH;8q;

(iv) for each pTtq P L
˚pHY ` bH;8q and each fixed t, the sums

ÿ

1ďnă8

UnVnptqTtVnptq
˚U˚n and

ÿ

1ďnă8

UnTtU
˚
n

converges strongly in BpHY ` bHq and moreover the functions sending t
to the above sums define multipliers of L˚pHY ` bH;8q;

(v) for any pTtq P L
˚pHY ` bH;8q, the difference

´

ÿ

1ďnă8

UnVnptqTtVnptq
˚Un

¯

´

´

8
ÿ

n“1

UnV8ptqTtV8ptq
˚Un

¯

of elements of the multiplier algebra of L˚pHY ` bH;8q is in L˚pHY ` b

H;8q.

Then the ˚-homomorphisms

pTtq ÞÑ V1ptqTtV1ptq
˚ and pTtq ÞÑ V8ptqTtV8ptq

˚

from L˚pHY ` ;8q to itself induce the same map on K-theory.

Proof. To avoid the notation getting too cluttered by indices, writeA “ L˚pHY `b

H;8q, write elements of A as a (rather than pTtq, and write un “ Un, and
vn “ Vnptq. Let

D :“ tpa, bq PMpAq ‘MpAq | a´ b P Au

be the double of MpAq along A as in Definition 2.7.8. Let

C “
!

pc, dq P D | d “
8
ÿ

n“0

unv8av
˚
8u

˚
n for some a P A

)

,

which is a C˚-subalgebra of D. Define also

w1 :“
8
ÿ

n“0

unvn`1v
˚
nu
˚
n, w2 :“

8
ÿ

n“0

unv8v
˚
8u

˚
n

217



(which are elements of MpAq by condition (ii) in the statement) and set w :“
pw1, w2q PMpAq‘MpAq. We claim that w is actually in the multiplier algebra
of C.

Indeed, if pc, dq is in C, then dw2 “ w2d “ d, so it suffices to show that
cw1´ d and w1c´ d are in A; we focus on w1c´ d, the other case being similar.
We have

w1c´ d “ w1pc´ dq ` pw1d´ dq,

whence as c ´ d P A and w1 P MpAq, it suffices to show that w1d ´ d is in A.
There exists a P A with

w1d´ d “
8
ÿ

n“0

unpvn`1v
˚
nv8av

˚
8 ´ v8av

˚
8qu

˚
n

“

8
ÿ

n“0

unpvn`1v
˚
n ´ v8v

˚
8qv8av

˚
8u

˚
n,

and this is in A by condition (iii) of the statement, completing the proof of the
claim.

Now, provisionally define ˚-homomorphisms

α, β : AÑ C

by the formulas

αpaq :“

˜

8
ÿ

n“0

unvnav
˚
nu
˚
n ,

8
ÿ

n“0

unv8av
˚
8u

˚
n

¸

and

βpaq :“

˜

8
ÿ

n“0

unvn`1av
˚
n`1u

˚
n ,

8
ÿ

n“0

unv8av
˚
8u

˚
n

¸

.

It follows from conditions (iv) and (v) that α : A Ñ C is a ˚-homomorphism.
That β is a ˚-homomorphism and has image in C follows as w is in the mul-
tiplier algebra of C, and as wαpaqw˚ “ βpaq for all a P A. Moreover, a direct
computation gives that αpaqw˚w “ αpaq, whence α and β induce the same
map K˚pAq Ñ K˚pCq by Proposition 2.7.5. Post-composing with the map
K˚pCq Ñ K˚pDq induced by the inclusion of C into D, it follows that α and β
induce the same map K˚pAq Ñ K˚pDq.

Let now
v “

ÿ

1ďnă8

un`1u
˚
n,

which converges pointwise (in t) strongly to an isometry in MpAq. Then pv, vq
is a multiplier of D; conjugating by pv, vq and applying Proposition 2.7.5 shows
that β induces the same map K˚pAq Ñ K˚pDq as the ˚-homomorphism γ :
AÑ D defined by

γpaq :“

˜

8
ÿ

n“1

unvnav
˚
nu
˚
n ,

8
ÿ

n“1

unv8av
˚
8u

˚
n

¸

.
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On the other hand, the ˚-homomorphism δ : AÑ D defined by

δ : a ÞÑ pu0v8av
˚
8u

˚
0 , u0v8av

˚
8u

˚
0 q

induces the zero map onK-theory by Lemma 2.7.8 and the fact thatK˚pMpAqq “
0, which can be proved in exactly the same way as Corollary 2.7.7, using the
isometries un to perform an Eilenberg swindle. Moreover, δ has orthogonal
image to γ. Hence from Lemma 2.7.6 the sum ε :“ γ ` δ is a well-defined
˚-homomorphism that induces the same map on K-theory as β.

Compiling our discussion so far, we have

α˚ “ β˚ “ γ˚ “ γ˚ ` δ˚ “ ε˚ (6.6)

as maps K˚pAq Ñ K˚pDq. Let ψ0, ψ8 : A Ñ D be the ˚-homomorphisms
defined by

ψ0 : a ÞÑ pu0v0av
˚
0 u
˚
0 , 0q, and ψ8 : a ÞÑ pu0v8av

˚
8u

˚
0 , 0q,

and define ζ : AÑ D by

ζpaq :“

˜

8
ÿ

n“1

unvnav
˚
nu
˚
n ,

8
ÿ

n“0

unv8av
˚
8u

˚
n

¸

.

Note that ζ has orthogonal image to ψ0 and ψ8, and that

ψ0 ` ζ “ α and ψ8 ` ζ “ ε;

hence from Lemma 2.7.6 and line (6.6),

pψ0q˚ ` ζ˚ “ α˚ “ ε˚ “ pψ8q˚ ` ζ˚.

Cancelling ζ˚ thus gives that ψ0 and ψ8 induce the same maps on K-theory.
Finally, note that if ι : AÑ D is the map ιpaq “ pa, 0q, then

ψipaq “ u0ιpφipaqqu
˚
0

for all a P A and i P t0,8u. This implies the desired result as Proposition 2.7.5
and 2.7.9 imply respectively that conjugation of D by pu0, u0q and ι : A Ñ D
both induce isomorphisms on K-theory.

Proof of Proposition 6.4.14. We may replace X ˆ r0,8q by X ˆ p0, 1s. Let HX

be an ample X-module, let Z “ r0, 1s X Q, and let H be a separable infinite-
dimensional Hilbert space. For f P CppX ˆ p0, 1sq`q and z P Z, let fz denote
the restriction of f to X ˆ tzu, or the scalar fp8q if z “ 0. Let HpXˆp0,1sq` :“
HX b `

2pZq bH, equipped with the representation of CppX ˆ p0, 1sq`q defined
by

f ¨ pub δz b vq “ fzub δz b v;

it is not difficult to see that HpXˆp0,1sq` is then an ample pX ˆp0, 1sq` module.
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Choose a decomposition H “
À

zPZ Hz where each Hz is separable and
infinite-dimensional, which is possible as Z is countable, and let Wz : H Ñ H
be a choice of isometry with image Hz. For r P QX r0, 1s, define

W prq : HpXˆp0,1sq` Ñ HpXˆp0,1sq` , ub δz b v ÞÑ ub δp1´rqz bWzv.

For each t P r1,8q, and each n P Ną0 Y t8u define Vnptq : HpXˆp0,1sq` Ñ

HpXˆp0,1sq` by the following cases:

(i) if t ă n, define Vnptq :“W p0q;

(ii) if m P rn, 2nq X N, t P rm,m` 1q and z ‰ 0, define the action of Vnptq on
ub δz b v to agree with that of

| cosp
π

2
pt´mqq|W p

m´ n

n
q| ` | sinp

π

2
pt´mq|W p

m` 1´ n

n
q ;

(iii) if t P rn, 2nq, define

Vnptqpub δ0 b vq “ ub δ0 bW0v ;

(iv) if t ě 2n, define Vnptq :“W p1q.

The following schematic may help to visualize the operators Vnptq.

-

t

ss
ss
ss
ss
s6n

�
�
�
�
�
�
�
�
�
�
��

t “ n

��
�
��

�
��

�
��

�
��

�
��

�
��

��
�
t “ 2n

W p0q

W p1q

-

-

-

-

-

-

-

Here Vnptq is constantly equal to W p0q in the left triangular region, and con-
stantly equal to W p1q in the right triangular region. Along each of the horizontal
arrows in the intermediate region, Vnptq interpolates between W p0q and W p1q,
taking longer and longer to do so as n increases.

Finally, we also choose a decomposition H “
À

Hn, and corresponding
isometries Un : H Ñ Hn as in Lemma 6.4.15. We leave to the reader the
tedious, yet essentially elementary, checks that the families of operators Vnptq
and Un satisfy the hypotheses of Lemma 6.4.15. It follows, then, from the
conclusion of that lemma that the ˚-homomorphisms

pTtq ÞÑ V1ptqTtV1ptq
˚ and pTtq ÞÑ V8ptqTtV8ptq

˚ (6.7)
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from L˚pHpXˆp0,1sq` ;8q to itself induce the same map on K-theory. The con-
clusion will then follow once we show that the first map in line (6.7) induces
the zero map on K-theory, while the second map induces the identity map on
K-theory.

Indeed, for the first map this follows as for all t ě 2, V1ptq “ W p1q, whence
the first map in line (6.7) induces the same map on K-theory as conjugation
by W p1q by Remark 6.4.10, so it suffices to show that conjugation by W p1q
induces the zero map on K-theory. This follows as W p1q conjugates all of
HpXˆp0,1sq` into the part of this Hilbert space supported over the point at
infinity, on which L˚pHpXˆp0,1sq` ;8q puts no conditions. It follows that we
may perform an Eilenberg swindle showing that the map W p1q induces the zero
map on K-theory as required; we leave the details to the reader.

For the second map in line (6.7), we have that V8ptq “ W p0q for all t, so
to complete the proof we mist show that W p0q induces the identity map on K-
theory. However, W p0q is an isometry in the multiplier algebra of L˚pHpXˆp0,1sq` ;8q,
whence induces the identity map on K-theory by Proposition 2.7.5 and we are
done.

Theorem 6.4.16. Let f p0q, f p1q : X Ñ Y be morphisms in LC that are homo-

topic through a morphism h : X ˆ r0, 1s Ñ Y . Then f
p0q
˚ “ f

p1q
˚ as maps from

K˚pXq to K˚pY q.

Proof. Consider the following closed subspaces of RˆX:

A “ p´8, 0s ˆX, B “ r0,8q ˆX, C “ p´8, 1s ˆX.

Then R ˆX “ A Y B “ C Y B and the identity map from X to X gives rise
to a map of these decompositions as in the naturality statement in Theorem
6.3.4. Theorem 6.3.4 thus gives rise to a commutative diagram of Mayer-Vietoris
sequences

¨ ¨ ¨ // KipAXBq

��

// KipAq ‘KipBq

��

// KipRˆXq // ¨ ¨ ¨

¨ ¨ ¨ // KipC XBq // KipCq ‘KipBq // KipRˆXq // ¨ ¨ ¨

.

Now, all the groups KipAq, KipBq and KipCq are zero by Proposition 6.4.14;
substituting this information and the identifications A X B – X and C X B –
X ˆ r0, 1s gives

¨ ¨ ¨ // KipXq

��

// 0 // KipRˆXq // ¨ ¨ ¨

¨ ¨ ¨ // KipX ˆ r0, 1sq // 0 // KipRˆXq // ¨ ¨ ¨

.

Applying the five lemma, the left-hand vertical arrow, which is induced by the
inclusion ip0q : X Ñ X ˆ r0, 1s defined by x ÞÑ px, 0q, is an isomorphism.
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Now, let π : X ˆ r0, 1s Ñ X be the projection. As π ˝ ip0q is the identity, it

follows that π˚ is a one-sided inverse to i
p0q
˚ ; as the latter is an isomorphism, π˚

is itself an isomorphism. Moreover, π˚ is therefore also an inverse to i
p1q
˚ (with

the obvious notation), as it is a one-sided inverse, and so i
p0q
˚ “ i

p1q
˚ as both are

inverses to the same map. Finally, note that if h : pX ˆ r0, 1sq` Ñ Y ` is a
homotopy between f p0q and f p1q we get

f
p0q
˚ “ h˚ ˝ i

p0q
˚ “ h˚ ˝ i

p1q
˚ “ f

p1q
˚ .

Our next result, the long exact sequence for an open inclusion, now follows
directly from the proof of the very general Proposition B.2.3.

Theorem 6.4.17. Let i : U Ñ X be the inclusion of an open set, F “ XzU
the complementary closed set, and j : F Ñ X be the inclusion. Then there is a
six-term exact sequence

K0pF q
j˚ // K0pXq

i˚ // K0pUq

��
K1pUq

OO

K1pXq
i˚
oo K1pF q

j˚
oo

that is natural for maps of pairs.

The final homological property of K-homology that we discuss is that it takes
countable disjoint unions to products. First, we have two technical lemmas. To
state the first one, recall that by Remark 6.2.4 a bounded Borel function f on X
defines a multiplier of L˚pHXq: for example, left multiplication by f is given by
the formula pTtq ÞÑ pfTtq. Moreover, this multiplier descends to a well-defined
multiplier of L˚QpHXq by Corollary 1.7.4, which implies in particular that the
quotient map L˚pHXq Ñ L˚QpHXq induces a map on multipliers MpL˚pHXqq Ñ

MpL˚QpHXqq in a natural way.
If our bounded Borel function also happens to be continuous, then we can

say more about the multiplier it defines.

Lemma 6.4.18. Let f be a continuous bounded function on X and HX a geo-
metric module. Then the multiplier of L˚QpHXq defined by f is central.

Proof. Let pTtq be an element of LpHXq. It will suffice to show that the com-
mutator rf, Tts is in L˚0 pHXq. Let K be a compact subset of X, and fix a metric

on X`. Let ε ą 0 be such that if NεpKq “
Ť

xPK Bpx; εq, then NεpKq is a
compact subset of X. Then the fact that proppTtq tends to zero implies that
for all suitably large t we have

χKrf, Tts “ χKrf, TtsχNεpKq

(compare Lemma 4.1.15). This tends to zero as t tends to infinity by the first
part of Proposition 6.1.1 applied to the compact space NεpKq and geometric
module χ

NεpKq
¨HX .
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Lemma 6.4.19. Let HX` be an ample X` module. Then L˚QpHX` ;8q is
quasi-stable, in the sense of Definition 2.7.11.

Proof. Let HX` be an ample X` module, and for each n let H‘n
X`

be its n-

fold direct sum with itself. Note that L˚QpH
‘n
X`

;8q identifies naturally with
MnpL

˚
QpHX` ;8qq. Remark 6.2.8 gives a family of unitary isomorphisms pVt :

H‘nX Ñ HXq covering the identity map on X. Identifying HX with the first
summand H‘nX , we can think of pVtq as an isometry in `8pr1,8q,BpHX`qq. As
it covers the identity map, it follows that that pVtq is actually a multiplier of
MnpL

˚
QpHX` ;8qq – L˚QpH

‘n
X`

;8q and is not difficult to check that it has the
properties required by quasi-stability.

Note that as in the proof of Proposition 6.4.7 that L˚QpHXq – L˚QpH
`
X ;8q,

we also get that such f defines a multiplier on the latter algebra.
We are now ready to discuss how K-homology behaves with respect to dis-

joint unions. Let pXnq
8
n“0 be a countable collection of (second countable, locally

compact, Hausdorff) spaces. Then their topological disjoint union is the set-
theoretic disjoint union X :“

Ů

Xn equipped with the topology where U Ď X
is open if and only if U XXn is open for all n. With this topology, X is itself a
locally compact, second countable, Hausdorff space.

In particular, each Xn identifies with an open and closed subset of X. The
inclusion maps in : Xn Ñ X then induce maps i˚n : K˚pXq Ñ K˚pXnq as in
Remark 6.4.13. These maps in turn induce

ź

i˚n : K˚pXq Ñ
ź

K˚pXnq.

Theorem 6.4.20. With notation as above, the map

ź

i˚n : K˚pXq Ñ
ź

K˚pXnq.

is an isomorphism.

Proof. Fix a countable dense subset Zn of each Xn, and set Z “
Ť

Zn, which
is a countable dense subset of X. Fix a separable, infinite dimensional Hilbert
space H, and use the ample modules HX :“ `2pZ,Hq and HXn :“ `2pZn, Hq
to define localisation algebras L˚pHXq and L˚pHXnq. Using that any compact
subset K of X can only intersect finitely many of the subspaces Xn, one checks
that the natural identification HX –

À

HXn gives rise to an inclusion

ι :
ź

n

L˚pHXnq Ñ L˚pHXq.

Using the same fact that compact subsets of X only see finitely many of the Xn,
we have that ι takes

ś

n L
˚
0 pXnq into L˚0 pXq, and so induces a ˚-homomorphism

ιQ :
ź

n

L˚QpHXnq Ñ L˚QpHXq.
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On the other hand, for each n, let χn : X Ñ C denote the characteristic function
of Xn, which is continuous. Define a contractive linear map

κ : L˚pHXq Ñ
ź

n

L˚pHXnq, pTtq ÞÑ
ź

n

χnpTtqχn,

which clearly descends to a well-defined contractive linear map

κQ : L˚QpHXq Ñ
ź

n

L˚QpHXnq.

Note that each χn is a continuous bounded function on X, so by Lemma 6.4.18
is a central multiplier of L˚QpHXq. It follows this that κQ as above is actually a
˚-homomorphism.

Now, it is clear that κ ˝ ι is the identity map, whence κQ ˝ ιQ is too. On the
other hand, let pTtq P L

˚pHXq and K be a compact subset of X. Say N is such
that K XXn “ ∅ for all n ě N . Then

χKpι ˝ κppTtqq ´ pTtqq “ χK

N
ÿ

n“0

χnpTtqχn ´ χKpTtq.

As the sum is finite, Lemma 6.4.18 implies that this is equal modulo L˚0 pHXq

to

χK

N
ÿ

n“0

pTtqχ
2
n ´ χKpTtq “ χKpTtq

N
ÿ

n“0

χ2
n ´ χKpTtq “ 0.

Hence ιQ ˝ κQ is the identity as well.
Hence in particular, κQ induces an isomorphism

κQ˚ : K˚pL
˚
QpHXqq Ñ K˚p

ź

n

L˚QpHXnqq.

Using Lemma 6.4.19 and Proposition 2.7.12, the right hand side is isomorphic
to

ś

nK˚pL
˚
QpHXnqq, and further making the identifications in Lemma 6.4.11

gives an isomorphism

κQ˚ : K˚pXq Ñ
ź

n

K˚pXnq.

To complete the proof, we need to show that for each fixed m the composition

K˚pXq
κQ˚ // ś

nK˚pXnq // K˚pXmq

of κQ˚ as above and the canonical quotient map
ś

nK˚pXnq Ñ K˚pXmq is the
map i˚m from the statement. As the map i˚m is an instance of our more general
functoriality, we convert our modules HX and HXm to X` and X`m modules H`X
and H`Xm by adding the point at infinity to Z and Zm, getting sets Z` and Z`m
respectively. Define a unitary isomorphism V : `2pZ`, Hq Ñ `2pZ`m, Hq to be
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the identity on `2pZm, Hq and an arbitrary unitary equivalence of the orthogonal
complements `2ppZzZmq Y t8u, Hq and `2pt8u, Hq. Then the constant family
pVtq with Vt “ V for all t is a continuous cover of the ‘collapsing’ map c :
X` Ñ X`m (compare Remark 6.4.13) that induces i˚m, and therefore pointwise
conjugation adV by V induces i˚m. The proof is completed by noting that the
diagram

L˚pHX`q
adpV q //

��

L˚pHX`m
q

��
L˚QpHX` ;8q

pTtqÞÑχmpTtqχm // L˚QpHX`m
;8q ,

with vertical arrows given by the canonical quotients, commutes

Note that Proposition 6.3.3 and Theorems 6.3.4, 6.4.6, 6.4.16, 6.4.20 now
combine6 to show that K-homology is a homology theory in the sense of Defi-
nition B.2.2.

6.5 Equivariant K-homology

In this section, we will define equivariant K-homology for spaces equipped
with proper actions, and prove its basic functoriality properties. We will then
prove some ‘induction’ theorems relating the equivariant K-homology of a space
equipped with a group action to the usual K-homology of associated quotient
space.

Throughout this section, X and Y denote locally compact second countable
Hausdorff spaces equipped with a proper action of a fixed countable discrete
group G. Throughout, we will use the machinery of equivariant geometric
modules from Section 4.5: see that section for notation and terminology. In
particular, we will denote the unitary operators implementing the G action on
such a module by Ug, g P G.

Definition 6.5.1. Let HX be an X-G module. Let LrHX s
G be the invariant

part of the algebraic localisation algebra under the action defined by

pTtq ÞÑ pU˚g TtUgq;

we call this the equivariant localisation ˚-algebra of HX .
The equivariant localisation C˚-algebra or just equivariant localisation alge-

bra, denoted L˚pHXq
G, is defined to be the completion of LrHX s

G for the norm
}pTtq} :“ supt }Tt}BpHXq.

Remark 6.5.2. Let us say that a subset K of X is G-compact if it is G-invariant,
and if the associated quotient space K{G is compact. When defining LrHX s

G,

6Almost: there is a slight gap, in that we did not prove that the naturality statement in
Theorem 6.3.4 holds for all functions in the category LC: the reader is asked to bridge this
gap this in Exercise 6.8.9.
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we could replace the condition ‘for any compact subset K of X, there exists
tK ě 0 such that for all t ě tK , the functions

t ÞÑ χKTt and t ÞÑ TtχK

are uniformly norm continuous’ in part (i) from Definition 6.2.1 with the con-
dition ‘for any G-compact subset K of X, there exists tK ě 0 such that for all
t ě tK , the functions

t ÞÑ χKTt and t ÞÑ TtχK

are uniformly norm continuous’. Moreover, we may replace the condition ‘for
any compact subset K of X, there exists tK ě 0 such that for all t ě tK , the
operators χKTt and TtχK are compact’ in part (i) from Definition 6.2.1 with
the condition ‘for any G-compact subset K of X, there exists tK ě 0 such that
for all t ě tK , the operators χKTt and TtχK are locally compact’ (see Definition
5.1.1 for local compactness). Thanks to equivariance, it is not too difficult to
check that these changes make no difference.

Functoriality works analogously to the non-equivariant case, using Section
4.5 rather than Section 4.4 for the underlying ingredients (compare also Section
5.2 where we discuss this for the equivariant Roe algebra). As a result we just
give the definitions and results here, leaving the details to the reader.

The following is Definition 4.5.11, repeated for the reader’s convenience.

Definition 6.5.3. Let HX , HY be equivariant geometric modules, and f : X Ñ

Y a function. A family of isometries pVt : HX Ñ HY qtPr1,8q is an equivariant
continuous cover of f if:

(i) the function t ÞÑ Vt from r1,8q to BpHX , HY q is uniformly norm contin-
uous;

(ii) for any open subset U Ď Y `ˆY ` that contains the diagonal, there exists
tU ě 1 such that for all t ě tU

supppVtq Ď tpy, xq P Y ˆX | py, fpxqq P Uu;

(iii) each Vt is G equivariant (in symbols, UgV “ V Ug for all g P G).

The following is a direct consequence of Proposition 4.5.12.

Lemma 6.5.4. Let HX , HY be equivariant geometric modules with HY ample,
and f : X Ñ Y an equivariant proper continuous map. Then an equivariant
continuous cover for f exists.

Moreover, if f is an equivariant homeomorphism and HX is also ample,
then there exists an equivariant continuous cover pVtq for f where each Vt is a
unitary isomorphism.

The next lemma follows from the same argument as given for Lemma 6.2.7:
one just needs to check the additional G invariance condition on operators, and
this is automatic from equivariance of pVtq.
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Lemma 6.5.5. Let HX , HY be ample equivariant geometric modules, and let
f : X Ñ Y be an equivariant, proper, continuous map. Let pVtq be an equivariant
continuous cover for f . Then taking adjoints by pVtq pointwise in t

pTtq ÞÑ pVtTtV
˚
t q

defines a ˚-homomorphism

adpVtq : LrHX s
G Ñ LrHY s

G

that extends to a ˚-homomorphism from L˚pHXq
G to L˚pHY q

G.
Moreover, the map induced by adpVtq on K-theory depends only on f and not

on the choice of pVtq.

Definition 6.5.6. Let f : X Ñ Y be an equivariant, proper, continuous func-
tion and let L˚pHXq

G and L˚pHY q
G be localisation algebras associated to ample

geometric modules. Define

f˚ : K˚pL
˚pHXq

Gq Ñ K˚pL
˚pHY q

Gq

to be the map on K-theory induced by the ˚-homomorphism

adpVtq : L˚pHXq
G Ñ L˚pHY q

Gq

associated to some equivariant continuous cover for f as in Lemma 6.5.5 above.

Theorem 6.5.7. For each X, choose an ample X-G module HX . Then the
assignments

X ÞÑ K˚pL
˚pHXq

Gq, f ÞÑ f˚

give a well-defined functor from the category of second countable, locally com-
pact, Hausdorff spaces equipped with proper G actions, and equivariant proper
continuous maps to the category GA of graded abelian groups.

Moreover, the functor that one gets in this way does not depend on the
modules chosen up to canonical equivalence.

Definition 6.5.8. The equivariant K-homology of X is defined by

KG
n pXq :“ K´npL

˚pHXq
Gq

for any choice of equivariant ample X-G module HX .

Remark 6.5.9. Analogously to Section 6.4, one can extend this functor to the
category with the same objects, but with morphisms given by continuous equiv-
ariant maps f : X` Ñ Y ` that take infinity to infinity (here the G actions
are extended to the one point compactifications by stipulating that they fix the
point at infinity). There is a slight additional subtlety: the extended actions of
G are no longer proper. One can get around this by using equivariant modules
where the characteristic function of infinity χt8u acts as the projection onto
a subspace that identifies as a G representation with `2pG,Hq. We have no
applications of this in this book, so leave the details to interested readers: see
Exercise 6.8.13.
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In the remainder of this section, we give some applications that relate G
equivariant K-homology to F equivariant K-homology, where F is a finite, or
even trivial, subgroup of G.

We start with analogues of Definition 6.4.8 and Lemma 6.4.11 that will give
useful technical tools.

Definition 6.5.10. Let HX be an ample equivariant geometric module. Let
L0rHX s

G be the collection of all pTtq P LrHX s
G such that for any G-compact

subset K of X there exists tK ě 1 such that for all t ě tK ,

χKTt “ TtχK “ 0,

This is a ˚-ideal in LrHX s
G. We write L˚0 pHXq

G for its closure in L˚pHXq
G

and
L˚QpHXq

G :“ L˚pHXq
G{L˚0 pHXq

G

for the associated quotient.

Remark 6.5.11. Analogously to Remark 6.4.9, we could replace the condition
‘for any G-compact subset K of X there exists tK ě 1 such that for all t ě tK ,
we have χKTt “ TtχK “ 0’ appearing above with ‘for any G-compact subset
K of X we have lim

tÑ8
χKTt “ lim

tÑ8
TtχK “ 0’. This would make no difference on

the level of the C˚-algebraic closure.

The proof of the next result is the same as that of Lemma 6.4.11, so omitted.

Lemma 6.5.12. Let HX be an ample geometric module. Then the quotient
map L˚pHXq

G Ñ L˚QpHXq
G induces an isomorphism on K-theory.

For the next result, recall from Example A.2.6 that if F is a subgroup of G,
Y is an F space, then the balanced product is the quotient space of Y ˆ G for
the F action defined by

f ¨ py, gq :“ pfy, f´1gq.

It is equipped with the quotient topology. We write Y ˆF G for the balanced
product, and ry, gs for the point corresponding to py, gq.

Proposition 6.5.13. Let F be a finite subgroup of G, let Y be an F space,
and let X be the balanced product Y ˆF G. Then there is a canonical induction
isomorphism

ΨY : KF
˚ pY q Ñ KG

˚ pXq.

Moreover, this construction is natural in the following sense: if f : Y1 Ñ Y2

is an F equivariant continuous proper map, Xj “ Yj ˆF G for j P t1, 2u, and
rf : X1 Ñ X2 is defined by rfpry, gsq “ rfpyq, gs, then the diagram

KF
˚ pY1q

f˚

��

ΨY1 // KG
˚ pX1q

rf˚
��

KF
˚ pY2q

ΨY2 // KG
˚ pX2q

.

commutes.
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Proof. Let HY be any ample F -Y module. Define

HX :“ tu P `2pG,HY q | upghq “ U˚h upgq for all g P G, h P F u,

which is a closed subspace of `2pG,HY q and thus a Hilbert space. Equip HX

with the G-action defined by

pVguqpkq :“ upg´1kq, g, k P G.

Identify Y with the image of the subset tpy, hq P Y ˆG | h P F, y P Y u of GˆY
under the quotient map Y ˆGÑ Y ˆF G, and identify HY with the collection

HY “ tu P HX | upgq “ 0 for all g R F u (6.8)

(this makes sense as an element of HX that vanishes off F is uniquely determined
by its image at the identity element of G).

Let now α denote the G-action on C0pXq, and define a C0pXq-action ρ on
HX by the formula

pρpfquqpgq :“ αg´1pf |gY qupgq ;

this makes sense, as αg´1pf |gY q is supported in Y , so acts on upgq P HY . Com-
puting, for g, k P G, f P C0pXq and u P HX , we get

pVgρpfqV
˚
g uqpkq “ pρpfqV

˚
g uqpg

´1kq “ αk´1gpf |g´1kY qpV
˚
g uqpg

´1kq

“ αk´1ppαgfq|kY qqupkq “ pρpαgfquqpkq.

Hence ρ is compatible with the G action on HX , which is thus an X-G-module.
To see that HX is ample as an X-module, assume that f P C0pXq is non-zero.
Then f |gY is non-zero for some fixed g P G. Then up to our identification of
HY with a subspace of HX as in line (6.8) above, we see that V ˚g χgY ρpfqχgY Vg
is non-compact by ampleness of HY , and thus ρpfq is non-compact. We leave
the algebraic check that HX is locally free, and thus that it is ample as an X-G
module, to the reader.

Now, provisionally define

Φ : L˚pHXq
G Ñ L˚pHY q

F , pTtq ÞÑ pχY TtχY q

and
Ψ : L˚pHY q

F Ñ L˚pHXq
G, pTtq ÞÑ

´

ÿ

gFPG{F

VgTtV
˚
g

¯

,

where we identify HY with a subspace of HX as in line (6.8) above. We claim
that these are well-defined linear maps, and that they descend to well-defined
mutually inverse ˚-isomorphisms LQpHXq

G – LQpHY q
F . It is straightforward

that Φ is a well-defined linear map, using that Y is H-invariant. To see that Ψ is
well-defined, note first that F -invariance of pTtq P L

˚pHY q
F implies that VgTtV

˚
g

only depends on the coset gF , so the formula makes sense. The operator ΨpTtq
is clearly G-invariant, and the properties from Definition 6.2.1 that it needs to
satisfy to be in L˚pHXq can be directly checked once we have observed that
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any compact subset of Y ˆF G can only intersect finitely many subsets of the
G-translates of Y (where Y as before is identified with the image of the subset
tpy, hq P YˆG | h P F, y P Y u of YˆG under the quotient map YˆGÑ YˆFG).

Now, it is clear that Φ sends L˚0 pHXq
G to L˚0 pHY q

F , and thus descends to
a well-defined map on the quotient. Moreover, the multiplier χY of L˚QpHXq is
central by Lemma 6.4.18 from which it follows that Φ defines a ˚-homomorphism
on the quotients. That Ψ also induces a well-defined map on the quotients
follows from our earlier observation that any compact subset of Y ˆF G can
only intersect finitely many G-translates of Y . To complete the proof that Φ
and Ψ induce mutually inverse ˚-isomorphisms on the quotients, it remains to
prove that ΨpΦpTtqq and ΦpΨpStqq differ from pTtq and pStq by elements of
L˚0 pHXq

G and L˚0 pHY q
G respectively. In fact ΦpΨpStqq “ pStq on the nose, as

one checks directly. Computing in the other case,

ΨpΦpTtqq “
´

ÿ

gFPG{F

VgχY TtχY V
˚
g

¯

“

´

ÿ

gFPG{F

χgY TtχgY

¯

,

where the second equality uses G-invariance of pTtq P L
˚pHXq

G. Passing to the
quotient L˚QpHXq

G, we may commute χgY past pTtq to get that this is equal

modulo L˚0 pHXq
G to

´

ÿ

gFPG{F

χgY Tt

¯

.

However, using that
X ˆF Y “

ğ

gFPG{F

gY,

this equals pTtq, and we have completed the proof that Φ and Ψ are mutually in-
verse ˚-isomorphisms on the level of the quotients. Combining this with Lemma
6.5.12 shows that the induced map

Ψ : L˚QpHY q
F Ñ L˚QpHXq

G

induces the required isomorphism ΨY : KF
˚ pY q Ñ KG

˚ pXq on K-theory.
Finally, naturality follows as all the constructions in the proof are canonical,

and the construction of the module HX from HY can be used to build a covering
isometry for rf from one for f : we leave the remaining details to the reader.

We now turn to the case of a free action of a discrete group on X. In this
case, we want to show that KG

˚ pXq – K˚pX{Gq. The following construction,
which we isolate for later use, is the key idea of the proof.

Construction 6.5.14. Say G acts freely (properly, by homeomorphisms) on
X. Let π : X Ñ X{G be the quotient map. Let U be any open cover of X{G
such that any compact subset of X{G intersects at most finitely many of the

open sets in U , and such that for each U P U there is an open set rU Ď X (which
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we fix from now on) such that π restricts to a homeomorphism from rU to U ,
and such that the map

Gˆ rU Ñ π´1pUq, pg, xq ÞÑ gx

is a homeomorphism. Let pφU qUPU be an ‘`2’ partition of unity subordinate to

U , where the qualifier ‘`2’ means that
ÿ

UPU
φU pxq

2 “ 1 for all x P X{G.

Now, let HX be an ample X-G module (with associated unitaries pUgqgPG
implementing the G action), and HX{G be an ample X{G-module. For each U ,
choose a continuous cover

pVU,t : χUHX{G Ñ χ
rUHXqtPr1,8q

of the homeomorphism pπ|
rU q
´1 : U Ñ rU ; using Remark 4.4.5 we may assume

that each operator VU,t is unitary. Provisionally define maps

Φ : L˚pHX{Gq Ñ L˚pHXq
G, pTtq ÞÑ

´

ÿ

gPG,UPU
UgVU,tφUTtφUV

˚
U,tU

˚
g

¯

and
Ψ : L˚pHXq

G Ñ L˚pHX{Gq, pTtq ÞÑ
´

ÿ

UPU
φUV

˚
U,tTtVU,tφU

¯

.

The next theorem is our final goal in this section. To avoid the computations
in the proof going on too long, we leave some more details to the reader this
time.

Theorem 6.5.15. Say G acts freely on X. Then the maps Φ : L˚pHXq
G Ñ

L˚pHX{Gq and Ψ : L˚pHX{Gq Ñ L˚pHXq
G are well-defined and induce mutually

inverse ˚-isomorphisms L˚QpHXq
G – L˚QpHX{Gq on the quotients. In particular

there is an isomorphism
KG
˚ pXq – K˚pX{Gq.

Proof. We leave it to the reader to check that Φ and Ψ descend to well-defined
maps on the quotients L˚QpHXq

G and L˚QpHX{Gq, and just check that they are
˚-homomorphic, and mutual inverses. To see that Ψ is a ˚-homomorphism, note
that it is clearly linear and ˚-preserving. To see multiplicativity, let pTtq and
pStq be elements of L˚pHXq

G. Then

ΨpTtqΨpStq “
´

ÿ

U,V PU
φUV

˚
U,tTtVU,tφUφV V

˚
V,tStVV,tφV

¯

.

Using that we are working in the quotient L˚QpHX{Gq and Lemma 6.4.18, we
may commute each term VU,tφUφV V

˚
V,t past pStq to get that this equals

´

ÿ

U,V PU
φUV

˚
U,tTtStVU,tφUφV V

˚
V,tVV,tφV

¯

.
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On the other hand, φV V
˚
V,tVV,t “ φV , and

ř

V φ
2
V is the identity, so this equals

´

ÿ

U

φUV
˚
U,tTtStVU,tφU

¯

“ ΨpTtStq

and we have multiplicativity. To complete the proof, it thus suffices to prove
that both compositions Φ ˝Ψ and Ψ ˝Φ are the identity maps on the respective
algebras.

Computing, for pTtq P L
˚pHXq

G

ΦpΨpTtqq “
´

ÿ

U,V PU,gPG
UgVU,tφUφV V

˚
V,tTtVV,tφV φUV

˚
U,tU

˚
g

¯

.

As we are working in the quotient L˚QpHXq
G, we may commute the terms

VU,tφUφV V
˚
V,t past pTtq to get that this equals

´

ÿ

U,V,g

UgTtVU,tφ
2
Uφ

2
V VU,tU

˚
g

¯

.

Using that
ř

V φ
2
V is the identity, and that pTtq is G-invariant, this equals

´

ÿ

U,g

TtUgVU,tφ
2
UV

˚
U,tU

˚
g

¯

.

Finally, we have that
ř

U,g UgVU,tφ
2
UV

˚
U,tU

˚
g is the identity on HX{G by the

properties of the original cover U , completing this computation.
On the other hand, for pTtq P L

˚pHX{Gq,

ΨpΦpTtqq “
´

ÿ

U,V PU,gPG
φV V

˚
V,tUgVU,tφUTtφUV

˚
U,tU

˚
g VV,tφV

¯

.

Using that we are in the quotient L˚QpHX{Gq, we may commute φV V
˚
V,tUgVU,tφU

with pTtq to get that this equals

´

ÿ

U,V,g

TtφV V
˚
V,tUgVU,tφ

2
UV

˚
U,tU

˚
g VV,tφV

¯

.

The properties of the original cover U and of the partition of unity tφUu imply
that

ř

U,g UgVU,tφ
2
UV

˚
U,tU

˚
g is the identity on HX , and thus the above equals

ÿ

U,V,g

TtφV V
˚
V,tVV,tφV .

As φV V
˚
V,tVV,tφV “ φ2

V , and as
ř

V φ
2
V is the identity on HX{G we are done.
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6.6 The localised Roe algebra

In this section, we introduce the localised Roe algebra C˚LpXq. This is a variant
of the localisation algebra whose K-theory is also a model for K-homology.
This will be important for the next chapter when we discuss assembly maps.
The localised Roe algebra C˚LpXq is more concrete than the localisation algebra
L˚pXq, and more closely connected to Roe algebras. The reason we do not
use C˚LpXq to define K-homology is that it is only defined for proper metric
spaces, it has less good functoriality properties than L˚pXq, and it is less closely
connected to elliptic differential operators.

Throughout this section, X and Y are proper metric spaces equipped with
proper isometric actions of a countable discrete group G as in Section A.3. To
avoid too much repetition, all maps, geometric modules, Roe algebras, and K-
homology groups in this section are considered equivariant; we will not state
this explicitly. We allow the case that G is trivial, in which case equivariant
modules are the same as usual modules. It might be easier for the reader to
simply assume that G is trivial on a first reading, although this does not make
a substantial difference.

Definition 6.6.1. Let HX be a geometric module, and CrHX s
G the associated

Roe ˚-algebra (see Definition 5.2.1, or Definition 5.1.4 when G is trivial). Define
CLrHX s

G to be the ˚-algebra of all uniformly continuous, bounded functions
pTtq from r1,8q to CrHX s

G such that for any open neighbourhood U of the
diagonal in X` ˆX`, there exists tU ě 1 such that for all t ą tU

supppTtq Ď U.

We let C˚LpHXq
G denote the completion of CLrHX s

G for the supremum norm

}pTtq} :“ sup
t
}Tt}BpHXq.

We will call CLrHX s
G the localised Roe ˚-algebra associated to HX and

C˚LpHXq
G the localised Roe C˚-algebra, or just localised Roe algebra, associated

to HX .

With LrHX s
G as in Definition 6.5.1 (or Definition 6.2.1 when G is trivial),

there are inclusions

CLrHX s
G Ñ LrHX s

G, C˚LpHXq
G Ñ L˚pHXq

G

of ˚-subalgebras of `8pr1,8q,BpHXqq.

Proposition 6.6.2. Let HX be an ample geometric module. Then the natural
inclusion map

C˚LpHXq
G Ñ L˚pHXq

G

above induces an isomorphism on K-theory.
In particular, K˚pC

˚
LpHXq

Gq is canonically isomorphic to the K-homology
of X.
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Proof. Let L0rHX s
G denote the ˚-ideal of elements pTtq in LrHX s

G such that
for any G-compact subset K of X there is a tK ě 0 such that for all t ě tK ,

χKTt “ TtχK “ 0

as in Definition 6.5.10, and L˚0 pHXq
G denote its closure. Let C˚L,0pHXq

G denote
the intersection

C˚L,0pHXq
G :“ L˚0 pHXq

G X C˚LpHXq
G. (6.9)

Lemma 6.5.12 gives that K˚pL
˚
0 pHXq

Gq “ 0, and the same proof as Lemma
6.4.11 shows that K˚pC

˚
L,0pHXq

Gq “ 0. It will thus suffice to show that the
induced inclusion

C˚LpHXq
G

C˚L,0pHXq
G
Ñ

L˚pHXq
G

L˚0 pHXq
G

(6.10)

induces an isomorphism on the level of K-theory. In fact, we will show that it
is an isomorphism of C˚-algebras.

Now, thanks to the definition in line (6.9), the map in line (6.10) above is
injective, so it suffices to show that it is surjective, that is, that any element pTtq
in L˚pHXq

G is equivalent to an element of C˚LpHXq
G modulo L˚0 pHXq

G. We will
do this in two steps: first we will show that an arbitrary pTtq in L˚pHXq

G is equal
modulo L˚0 pHXq

G to an element pStq with supt proppStq ă 8. Second we will
show that such an pStq is equal modulo L˚0 pHXq

G to an element pRtq P L
˚pHXq

G

such that supt proppRtq ă 8, such that the function

r1,8q Ñ BpHXq, t ÞÑ Rt

is uniformly continuous, and such that each Rt is locally compact in the sense
of Definition 5.1.1.

First then we look at replacing pTtq by a finite propagation family. Fix
r P p0,8q. The open cover tBpx; rq | x P Xu of X is equivariant, and thus by
Corollary A.2.8 there exists a partition of unity pφiqiPI on X such that each φi
is supported in some Bpx; rq, such that any compact subset of X only intersects
the support of finitely many of the φi, and such that for each i P I and g P G
there is j P I with φipgxq “ φjpxq for all x P X. Provisionally define a map

Φ : BpHXq Ñ BpHXq, T ÞÑ
ÿ

iPI

a

φiT
a

φi.

To see that this makes sense, note that the formula

V : HX Ñ
à

iPI

HX , u ÞÑ
`

a

φiu
˘

iPI

is an isometry and one can compute that ΦpT q “ V TV ˚ (with convergence of
the sum above in the strong operator topology). Hence Φ is a well-defined unital
contraction. If we set St :“ ΦpTtq, it is not too difficult to see that the family
pStq has uniformly finite propagation. Moreover, for any G-compact subset K
of X and any t

χKpSt ´ Ttq “
ÿ

iPI

χK
a

φipr
a

φi, Ttsq.
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This tends to zero in norm as as t tends to infinity: indeed, all the terms are
translates under the G action of only finitely many non-zero terms (by local
finiteness of the partition of unity), and each of the commutators tends to zero
by Lemma 6.1.2. Hence pSt ´ Ttq is an element of L˚0 pHXq

G by Remark 6.5.11
and we are done with the first part.

For the second part, recall from Lemma A.2.5 that the quotient space Y :“
X{G is a locally compact and Hausdorff space. Let Y ` be the one-point com-
pactification of Y , and choose a metric on d on Y `. Let π : X Ñ Y be the
quotient map, and consider the function on X defined by

δ : X Ñ r0,8q, x ÞÑ
1

dpπpxq,8q
.

For each n, let Kn :“ δ´1pr0, nsq, so each Kn is G-invariant and G-compact,
Kn Ď Kn`1 for each n, and X “

Ť8

n“1Kn. For each n, let tn be such that for
all t ě tn we have that χKnTt and TtχKn are locally compact (see Definition
5.1.1), and such that the functions t ÞÑ χKnTt and t ÞÑ TtχKn are uniformly
continuous; such a tn exists by Remark 6.5.2. Increasing the tn if necessary, we
may assume that the sequence ptnq is strictly increasing, and that |tn`1´tn| ą 1
for all n. Define ft1 to be the zero function from r0,8q to r0, 1s, and for each
n ą 1, define ftn : r0,8q Ñ r0, 1s by setting the function to be 1 on r0, n ´ 1s,
to be 0 on rn,8q, and to linearly interpolate between 0 and 1 on rn ´ 1, ns.
Define ft : r0,8q Ñ r0, 1s by linearly interpolating between ftn and ftn`1

on the
interval rtn, tn`1s, and set ft “ 0 for t ď t1. Define finally for each t P r1,8q,

ψt : X Ñ r0,8q, x ÞÑ ftpδpxqq,

which gives a uniformly continuous function from r1,8q to BpHXq. Define now
Rt :“ ψtStψt. Using the properties of pψtq and of pStq, it is not too difficult to
see that pRtq is in C˚LpHXq

G: the key points here is that modifying St to Rt
can only decrease propagation, and that χKnRt “ 0 “ RtχKn whenever t ď tn.
Moreover, one checks that pSt ´ Rtq is in L˚0 pHXq

G: the key point for this is
that ψt is constantly equal to one on any G-compact set for all suitably large t.
This completes the proof.

Unfortunately, the constructions of Sections 6.2 and 6.5 do not translate
directly to show that K˚pC

˚
LpHXq

Gq is functorial under pointed maps f : X Ñ

Y (or even proper continuous maps f : X Ñ Y ); indeed, this is one of the
reasons we used L˚pHXq

G instead of C˚LpHXq
G to define K-homology7.

However, if f : X Ñ Y is a continuous and coarse map and HX , HY

are ample geometric modules, then (a slight elaboration on) Proposition 4.5.12
shows that there exists a continuous cover pVt : HX Ñ HY q of f such that each
Vt itself covers f . The proofs of Lemmas 5.1.12 and 6.2.7 translate directly to
show that conjugation by pVtq defines a ˚-homomorphism

adpVtq : C˚LpHXq
G Ñ C˚LpHY q

G.
7As we mentioned at the start of the chapter, the other reasons are that C˚LpHXq

G does
not behave very well for spaces that are locally compact but not necessarily proper, and that
L˚pHXq

G is easier to deal with when analysing differential operators.
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Theorem 6.6.3. Let ProG denote the category of proper metric spaces equipped
with proper isometric G actions, with morphisms given by continuous equivari-
ant coarse maps. Then choosing an ample module HX for each object X, and
continuous cover pVtq for each morphism f defines a functor

X ÞÑ K˚pC
˚
LpHXq

Gq, f ÞÑ padpVtqq˚

from ProG to GA that does not depend on any of the choices involved up to
canonical equivalence. Moreover, this functor agrees (up to canonical equiva-
lence) with the restriction of ‘the’ K-homology functor from LCG to ProG.

Proof. The fact that we have a well-defined functor follows from the same ar-
guments as given for Theorems 5.2.6 and 6.5.7. The fact that it agrees with
K-homology follows directly from Proposition 6.6.2.

6.7 Other pictures of K-homology

This section will not be used in the rest of the text: we include it to help orient
readers who are interested in how our picture of K-homology relates to two of
the other standard analytic models for K-homology: one based on KK-theory,
and one based on E-theory.

Throughout this section, X is a locally compact, second countable, Hausdorff
topological space. We will write C0pXq for the continuous functions on X
vanishing at infinity whether or not X is compact (so if X is compact, C0pXq
identifies canonically with CpXq: see Example 1.3.1).

We start with the KK-theoretic picture. The basic building blocks are
Fredholm modules as in the following definition. We will slightly deviate from
standard conventions by using an ungraded picture of picture of KK-theory as
this is more convenient for our purposes.

Definition 6.7.1. An even Fredholm module consists of a pair pHX , F q where

(i) HX is an X module;

(ii) F is a bounded operator on HX such that

fp1´ FF˚q, fp1´ F˚F q, rF, f s

are compact operators for all f P C0pXq.

An odd Fredholm module over X consists of a pair pHX , F q where:

(i) HX is an X module;

(ii) F is a bounded operator on HX such that

fpF ´ F˚q, fpF 2 ´ 1q, rF, f s

are compact operators for all f P C0pXq.
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Write E0pXq, respectively E1pXq, for the collections of all even, respectively
odd, Fredholm modules over X.

Kasparov’s K-homology groups can then be defined as follows.

Definition 6.7.2. Let „ be the equivalence relation on E ipXq generated by the
following two relations.

(i) pH0
X , F0q is unitarily equivalent to pH1

X , F1q if there is a unitary isomor-
phism V : H0

X Ñ H1
X that respects the X module structure and conjugates

F0 to F1.

(ii) pHX , F0q is operator homotopic to pHX , F1q if there is a family of Fredholm
modules of the form pHX , FtqtPr0,1s that agrees with the given modules on
the endpoints, and is such that the function t ÞÑ Ft is norm continuous.

As a set, the Kasparov K-homology group is defined to be

KKipXq :“ E ipXq{ „

for i “ 0, 1. There is a binary operation defined in both even and odd cases by

rHX,0, F0s ` rHX,1, F1s :“ rHX,0 ‘HX,1, F0 ‘ F1s

(and similarly in the odd case by just removing the grading operators) that
makes KKipXq into an abelian group for i “ 0, 1.

We now construct a homomorphism KKipXq Ñ KipXq from Kasparov’s
K-homology groups to ours.

Construction 6.7.3. We first deal with the even case. Let pHX , F q be a
Kasparov module. Fix a metric on X and fix n for now. Let pφiqiPI be a locally
finite8 compactly supported partition of unity on X subordinate to the cover
by balls of radius 2´n. Let V : HX Ñ `2pI,HXq be defined by

pV uqpiq :“
a

φiu.

Then one checks that V is an isometry with adjoint given by V ˚u “
ř

iPI

?
φiu,

and that for any T P BpHXq we have

V TV ˚ “
ÿ

iPI

a

φiT
a

φi,

with convergence in the strong operator topology. Hence in particular,

Fn :“
ÿ

iPI

a

φiF
a

φi

8This means that any compact subset of X only intersects the support of finitely many of
the φi.
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converges in the strong operator topology to an operator of norm at most }F }.
Moreover, using the condition that rF,

?
φis is compact for each i and local

finiteness of the partition of unity, one checks directly that fp1 ´ F˚nFnq and
fp1´ FnF

˚
n q are compact for all f P CcpXq, (whence also for all f P C0pXq).

Unfix n, and for t P rn, n` 1q define

Ft :“ pt´ nqFn`1 ` pn` 1´ tqFn.

Then the family pFtqtPr1,8q defines a multiplier of the localisation algebra L˚pHXq

that is moreover unitary in the quotient MpL˚pHXqq{L
˚pHXq. Hence pFtq de-

fines a class rpFtqs P K1pMpL
˚pHXqq{L

˚pHXq, and taking its image under the
boundary (or index) map

B : K1pMpL
˚pHXqq{L

˚pHXqq Ñ K0pL
˚pHXqq

appearing in Theorem 2.6.5 gives a class BrpFtqs in K0pL
˚pHXqq. Finally, fixing

any ample X module H 1X and a continuous cover pVt : HX Ñ H 1Xq gives a map

padpVtqq˚ : K0pL
˚pHXqq Ñ K0pL

˚pH 1Xqq

(compare Remark 6.3.2). Our natural transformation is then defined by

KK0pXq Q rHX , F s ÞÑ padpVtqq˚BrpFtqs P K0pXq.

The case of KK1 is similar. This time, one starts with pHX , F q, and sets
P “ 1

2 pF ` 1q. Then P satisfies that fpP 2 ´ P q and fpP ´ P˚q are compact
for all f P C0pXq. Applying the same construction as above compressing by
partitions of unity gives rise to a multiplier pPtqtPr1,8q of L˚pHXq whose image
in the quotient MpL˚pHXq{L

˚pHXq is a projection, and that thus defines a
class rpPtqs P K0pMpL

˚pHxq{L
˚pHXqq. Applying the K-theory boundary map

B : K0pMpL
˚pHXqq{L

˚pHXqq Ñ K1pL
˚pHXqq

defined in Theorem 2.6.5 and using a continuous cover pVtq to transfer to the
localisation algebra over an ample module completes the construction, giving a
natural transformation

KK0pXq Q rHX , F s ÞÑ padpVtqq˚BrpPtqs P K1pXq.

We will not justify this here, but this construction gives the required natu-
ral transformation from the KK-theoretic picture of K-homology to ours, and
indeed induces an isomorphism

KKipC0pXq,Cq Ñ KipL
˚pXqq

for all X and i P t0, 1u. Once one has shown that it is a natural transformation,
proving that it is an isomorphism can be done following a standard pattern for
comparing homological functors:
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(i) first show that it is an isomorphism for a point (see Exercise 6.8.16);

(ii) then deduce from this that it is an isomorphism for a finite simplicial
complex using homotopy invariance, Mayer-Vietoris sequences and the five
lemma;

(iii) then use a limiting argument and the fact that every compact metric space
is an inverse limit of a sequence of finite simplicial complexes using nerves
of increasingly fine finite covers of X;

(iv) finally, deduce the case of general locally compact spaces by considering
one point compactifications.

The reader is led through this argument in Exercises B.3.2 and B.3.3.
We now look at E-theory in the sense of Connes and Higson. This time

we will construct a natural transformation going from our K-homology groups
KipXq to the corresponding E-theory group EipXq.

Definition 6.7.4. Let A and B be (separable) C˚-algebras.
An asymptotic morphism from A to B is a ˚-homomorphism

α : AÑ
Cbpr1,8q, Bq

C0pr1,8q, Bq
.

Two asymptotic morphisms α0 and α1 are homotopic if there is an asymptotic
morphism α from A to Cpr0, 1s, Bq that evaluates to α0 and α1 at the endpoints9.
Write rrA,Bss for the collection of homotopy classes of asymptotic morphisms
from A to B.

The E-theory groups EpA,Bq can then be defined by

EipA,Bq :“ rrC0pR1`iq bA,C0pRq bB bKss,

for i P t0, 1u. The E-homology groups of a space X are the special case EipXq :“
EpC0pXq,Cq.

The basic idea of the natural transformation KipL
˚pXqq Ñ EipXq that we

want to construct goes as follows. Let pPtq be a projection in L˚pXq representing
an element of K0pXq. Consider the map,

CcpXq Ñ
Cbpr1,8q,Kq
C0pr1,8q,Kq

, f ÞÑ pt ÞÑ Ptfq

which makes sense using Lemma 6.1.2. This is norm continuous, so extends to
an asymptotic morphism

C0pXq Ñ
Cbpr1,8q,Kq
C0pr1,8q,Kq

.

9Warning: this is strictly weaker than α0 and α1 being homotopic as ˚-homomorphisms
from A to Cbpr1,8q, Bq{C0pr1,8q, Bq.
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Thus our projection gives rise to an asymptotic morphism from A to K, and
after suspension an element of E0pXq. Unfortunately, it need not be true that
KipL

˚pXqq is generated by the classes of projections in (matrices over) L˚pXq:
one needs to work with formal differences in the unitisation. As such, we give
a more sophisticated picture that works in general. For this we need to work
with general bivariant E-theory groups; we refer the reader to the notes and
references at the end of the section for more information.

Construction 6.7.5. There is a ˚-homomorphism

α : C0pXq b L
˚pXq Ñ

Cbpr1,8q,Kq
C0pr1,8q,Kq

.

defined on elementary tensors fbpTtq with f P CcpXq by fbpTtq ÞÑ pt ÞÑ fTtq.
For a separable C˚-algebra A and possibly non-separable C˚-algebra B (such
as C0pXq b L

˚pXq), define

Esep
i pB,Aq :“ lim

Ð
EipB0, Aq, Esep

i pA,Bq :“ lim
Ñ
EipA,B0q

where the inverse and direct limit are taken over all separable C˚-subalgebras
B0 of B, using the natural functoriality of E-theory (contravariant in the first
variable, and covariant in the second). Then there is a well-defined product

Esep
i pC, L˚pXqq b Esep

j pC0pXq b L
˚pXq,Cq Ñ Ei`jpC0pXq,Cq.

The group Esep
i pC, L˚pXqq identifies canonically with KipL

˚pXqq, while α nat-
urally defines an element of Esep

0 pC0pXq b L
˚pXq,Cq. The map

KipL
˚pXqq Ñ EipXq

we want is then defined by taking the product with α P Esep
0 pC0pXqbL

˚pXq,Cq
in the sense above.

Again, these homomorphisms define a natural transformation from our model
of K-homology to E-theory that gives an isomorphism

KipL
˚pXqq Ñ EipXq

for all X. Once one has seen that this map is a natural transformation, the
argument that it is an isomorphism follows the same pattern sketched above for
Kasparov theory (and exposited in general in Exercises B.3.2 and B.3.3).

6.8 Exercises

6.8.1. Let X be a second countable, locally compact, Hausdorff topological
space, and HX a geometric module. Let pTtqtPr1,8q be a norm continuous family
of operators on HX . Show that the following are equivalent:
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(i) for any open neighbourhood U of the diagonal in X` ˆX`, there exists
tU ě 1 such that for all t ą tU

supppTtq Ď U ;

(ii) for any open neighbourhood U of the diagonal in X ˆX and any x P X
there is an open neighbourhood V of x and tU,V ě 1 such that such that
for all t ą tU,V

supppχV Ttq Ď U and supppTtχV q Ď U ;

(iii) for any open neighbourhood U of the diagonal in X ˆ X and compact
subset K of X there is tU,K ě 1 such that such that for all t ą tU,K

supppχKTtq Ď U and supppTtχKq Ď U.

Say X` is equipped with a metric inducing the topology. Show that (i) above
is equivalent to the analogous condition where ‘for any open neighbourhood of U
of the diagonal in X`ˆX`’ is replaced with ‘for any ε ą 0’, and ‘supppTtq Ď U ’
is replaced by ‘proppT q ă ε’. Say X is equipped with a metric inducing the
topology. Show that (ii) and (iii) are equivalent to the analogous conditions
where ‘for any open neighbourhood of U of the diagonal in X ˆX’ is replaced
with ‘for any ε ą 0’, and the conditions of the form ‘suppp¨q Ď U ’ are replaced
by ‘propp¨q ă ε’.

6.8.2. Fill in the details in Remark 6.4.9: that is, show that the closures of the
sets

tpTtq P LrHX s | lim
tÑ8

χKTt “ lim
tÑ8

TtχK “ 0 for all compact K Ď Xu

and
"

pTtq P LrHX s for all compact K Ď X there is tK ě 1
such that χKTt “ TtχK “ 0 for all t ě tK

*

inside L˚pHXq are the same.

6.8.3. (i) Show that any element of L˚pHXq as in Definition 6.2.1 can be
represented uniquely as a function pTtq from r1,8q to BpHXq (in principal,
this is only true for the dense subset LrHX s).

(ii) Show that a function as in part (i) is in L˚0 pXq (see Definition 6.4.8) if and
only if for any compact subset K of X.

lim
tÑ8

χKTt “ lim
tÑ8

TtχK “ 0.

(iii) Show that L˚QpHXq (Definition 6.4.8 again) is the separated completion of
L˚pHXq for the seminorm

}pTtq} “ sup
KĎX compact

lim sup
tÑ8

maxt}χKTt}, }TtχK}u.

241



6.8.4. Extend the proof of Proposition 6.1.1 to show that the following are
equivalent for a continuous family pTtqtPr1,8q of uniformly bounded operators
on an X module HX :

(i) for all f P C0pXq, lim
tÑ8

}rf, Tts} “ 0;

(ii) there exists a continuous family pStqtPr1,8q such that limtÑ8 }St´Tt} “ 0
and such that for any open subset U of X`ˆX` containing the diagonal
there exists tU ě 1 such that for all t ą tU , supppStq Ď U .

6.8.5. In Definition 6.4.3, we are careful in condition (i) to say that K is a
subset of X, not of X`. What would we get if we just took K to be a compact
subset of X`, and defined the localisation algebra accordingly (and took its K-
theory)? What about if we looked at the compactness and continuity conditions
separately? Similarly, what would happen if we replaced X`ˆX` with XˆX
in part (ii)?

6.8.6. Using the Mayer-Vietoris sequence, homotopy invariance, and the com-
putation of the K-homology groups of a point, compute the K-homology groups
of spheres, tori, and orientable surfaces.

6.8.7. Prove Bott periodicity in K-homology in the form

KipRn ˆXq – Ki´npXq

Hint: Mayer-Vietoris, homotopy invariance, and induction on n.

6.8.8. Let Y be a closed subspace of a second countable, locally compact, Haus-
dorff space X. Prove that for any ample X module HX there is a projection
PY in the multiplier algebra of L˚pHXq such that the corner PY L

˚pHXqPY is
isomorphic to L˚pY q, and such that the ideal generated by

L˚pHXqPY L
˚pHXq

equals L˚Y pHXq as in Definition 6.3.5.
Hint: you can do this directly, or using covering isometries and (the proof of)
Lemma 6.3.6.

6.8.9. Prove that the naturality statement of Theorem 6.3.4 extends to an anal-
ogous version for general morphisms in the category LC.
6.8.10. (i) Let X be a single point space, and let G be a finite group acting

(trivially!) on X. Compute the equivariant K-homology KG
˚ pXq in terms

of the unitary dual Ĝ of G as in Exercise 5.4.14: you should get KG
0 pXq “

ZĜ and KG
1 pXq “ 0.

Hint: mimic the argument of Proposition 6.3.3.

(ii) Show that KG
0 pGq – Z and KG

1 pGq “ 0, where G acts on itself by trans-
lations.
Hint: this can be done from Proposition 6.5.13, but can also be done more
directly by mimicking the argument of Proposition 6.3.3.
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(iii) Show that the map KG
0 pGq Ñ KGpXq induced by the (equivariant) col-

lapse map GÑ X is given on K-theory by

ZÑ ZĜ, a ÞÑ pa, a, ..., aq

(compare exercise 5.4.14).
Hint: one way to do this is to use the argument of Proposition 6.3.3 to
show that the map KG

0 pGq Ñ KG
0 pXq is induced by the canonical inclusion

`

CpGq bKp`2pGq bHq
˘G
Ñ

`

Kp`2pGqq bKp`2pGq bHq
˘G
,

where H is an infinite dimensional Hilbert space with trivial G action, and
compute the map induced on K-theory by this.

6.8.11. Let X be a metric space, and let HX be an ample X module. Show
that if X is non-compact, then HX is also an ample X` module. Show that
if X is compact, then we may ‘extend’ HX to an ample X` module by taking
HX` “ HX‘H for any separable infinite dimensional H, and having f P CpX`q
act on pv, wq P HX ‘X by

f ¨ pv, wq “ pf |Xv, fp8qwq.

6.8.12. Generalize the Mayer-Vietoris and homotopy invariance results for non-
equivariant K-homology to the equivariant case.

6.8.13. Fill in the details in Remark 6.5.9.

6.8.14. Show that the technical issue raised in Exercise 5.4.13 is a non-issue on
the level of K-theory for localisation algebras in the following sense: the inclu-
sion of the G-invariant part of L˚pXq into L˚pXqG induces an isomorphism on
K-theory.
Hint: one way to do this is to show that the assignment of X to the K-theory
of the G-invariant part of L˚pXq is a homology theory on G-spaces in an ap-
propriate sense.

6.8.15. The original definition of the localisation algebra for a proper metric
space is as follows. Let X be a proper metric space, HX be an ample X module
and let CL,ogpHXq consist of all bounded uniformly continuous functions from
r1,8q to the Roe algebra C˚pHXq (see Definition 5.1.4) such that proppTtq Ñ 0
as t Ñ 8. Show that with C˚LpHXq as in Definition 6.6.1 there is a natural
inclusion

C˚L,ogpHXq Ñ C˚LpHXq

that induces an isomorphism on K-theory.

6.8.16. Let X be a single point space. One can show that a generator of the
Kasparov group KK0pCpXq,Cq – Z is represented by the pair pC, 0q, where C
is made into a CpXq module via the unique unital representation. Show that
construction 6.7.3 takes this generator to a generator of K0pL

˚pXqq – Z (see
Proposition 6.3.3)
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6.9 Notes and references

The first construction of K-homology comes from homotopy theory, as an appli-
cation of a general machine using Spanier-Whitehead duality and the K-theory
spectrum. See for example [1], particularly III.5 and III.6. This model for K-
homology is theoretically very useful, but not so directly connected to index
theory. A different topological model for K-homology was given by Baum and
Douglas [23], [27]. Cycles for K˚pXq in the Baum-Douglas theory are given by
continuous maps from manifolds (with some extra structure) to X, and sub-
ject to an equivalence relation that incorporates both bordism and a form of
Bott periodicity. The Baum-Douglas theory was directly motivated by, and has
interesting applications to, index theory.

The idea of describing K-homology in analytic terms using operators on
what we call X modules is due to Atiyah [7], and was also inspired by index
theory. Atiyah was able to get a good description of cycles, but not the right
equivalence relation. A self-contained analytic model of K-homology was subse-
quently provided by Kasparov [148], who found the right equivalence relation to
impose on Atiyah’s cycles. Around the same time, and coming at the issue mo-
tivated by single operator theory, Brown-Douglas-Fillmore [42] independently
gave an analytic description of K-homology based on extensions of C˚-algebras
by the compact operators. Subsequent analytic models for K-homology have
been based on Paschke duality [203], [124] and on the asymptotic morphisms
of Connes-Higson [61], [112]. All of these models have found applications in
various fields, such as index theory, manifold topology, C˚-algebras, and single
operator theory.

All of these analytic models generalise to give models for K-homology for
separable noncommutative C˚-algebras, and (to some extent at least) to equiv-
ariant and bivariant groups. The different models for K-homology all turn out
to be the same for spaces, but there are subtle differences in the noncommutative
case. The book [135] gives a general introduction to analytic K-homology, in-
cluding aspects of the Brown-Douglas-Fillmore, Paschke duality, and Kasparov
theories, and their applications. The book [82] and paper [149] are recom-
mended for further background and breadth: the first for an overview of the
Brown-Douglas-Fillmore theory, its applications to single operator theory, and
a discussion of its relationship to other early models of K-homology and their
applications in manifold topology; the second is a much more challenging read
that gives an idea of the breadth, depth, and power of Kasparov’s bivariant,
equivariant theory.

The idea to use localisation algebras to describe K-homology comes from
Yu’s work in [270], inspired by the heat kernel approach to the Atiyah-Singer
index theorem (see for example [217]). The original definition of the localisation
algebra is the same as the one in Exercise 6.8.15. The arguments for the Mayer-
Vietoris sequence and homotopy invariance in Section 6.3 are adapted from that
paper. The K-theory of the version of the localisation algebra in [270] was shown
to agree with K-homology for simplicial complexes. This was extended to all
proper metric spaces by Qiao and Roe [208]. Our changes to the localisation
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algebra in this text were motivated by the desire to get a homology theory on
the ‘right’ category LC, and by the needs of the analysis of differential operators
carried out in later chapters.

The paper [75] studies a model for bivariant theories (for possibly noncom-
mutative C˚-algebras) based on a form of localisation algebra. It also proves
(disguised versions of) the results discussed in Section 6.7.

The issue raised in Exercise 6.8.14 is intriguing. If one could show that the
corresponding inclusion in Exercise 5.4.13 fails to induce an isomorphism on
K-theory for some example, the discrepancy could lead to problems with the
Baum-Connes type conjectures considered in Chapter 7.

245



Chapter 7

Assembly maps and the
Baum-Connes conjecture

In this chapter we will introduce assembly maps. The basic version of the
assembly map is a homomorphism

µ : K˚pXq Ñ K˚pC
˚pXqq (7.1)

from the K-homology of a space X to the K-theory of its Roe algebra: one can
think if it as ‘assembling’ local topological data into global geometric data.

There are several equivalent ways of constructing the assembly map. One
important construction represents cycles for K˚pXq as operators that are in-
vertible modulo C˚pXq, and the assembly map takes such an operator to its
index class in the sense of Section 2.8. For this reason, the assembly map is also
sometimes called the ‘(higher) index map’.

Our treatment will construct the assembly map as the map induced on K-
theory by a directly defined ˚-homomorphism. This approach is quite elemen-
tary and intuitive, and is well-suited to many applications. However, it has the
unfortunate side-affect of obscuring the assembly map’s index-theoretic connec-
tions.

One should not expect the map in line (7.1) to give much information in
general: the left hand side depends only on the small scale topology of the
space, and the right hand side only on the large scale geometry. However, one
can get more information by allowing the space to vary in an appropriate way.
Indeed, if Y is any other space equipped with a coarse equivalence from X, then
one also has an assembly map

K˚pY q Ñ K˚pC
˚pXqq

defined by postcomposing the assembly map K˚pY q Ñ K˚pC
˚pY qq for Y with

the isomorphismK˚pC
˚pY qq – K˚pC

˚pXqq coming from the coarse equivalence.
Taking an appropriate limit over all such coarse equivalences Y Ñ X gives a sort
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of ‘universal assembly map’; this is the so-called coarse Baum-Connes assembly
map

µ : KX˚pXq Ñ K˚pC
˚pXqq.

The coarse Baum-Connes conjecture for the space X predicts that this map is
an isomorphism; informally, it says that all elements of K˚pC

˚pXqq, and also
all relations between such elements, have a topological origin. There are also
equivariant versions of this conjecture that allow for a group action, and we will
discuss both in this chapter.

The chapter is structured as follows. We will start the chapter in Section
7.1 by giving our direct construction of the assembly map. We then introduce
the Baum-Connes assembly maps as ‘universal’ assembly maps. The next three
sections aim to give more concrete descriptions of this universal assembly map
(at least in special cases): Section 7.2 gives a concrete model for the Baum-
Connes assembly map in terms of Rips complexes; Section 7.3 discusses uniform
contractibility and the particularly nice geometric models one gets in that case;
and Section 7.4 discusses connections with the classifying spaces of algebraic
topology.

Finally, we conclude the chapter with a proof of the coarse Baum-Connes
conjecture for Euclidean spaces Rd in Section 7.5. This provides some of the
missing details for the discussion in Section 3.3 that proves tori do not admit
metrics of positive scalar curvature.

7.1 Assembly and the Baum-Connes conjecture

In this section, we introduce assembly maps, prove a basic functoriality result,
and then use that to show the existence of a universal assembly map, the so-
called Baum-Connes assembly map.

Throughout this section, X, Y are proper metric spaces equipped with
proper isometric actions of a countable discrete group G as in Section A.3.
To avoid too much repetition, all maps, geometric modules, (localised) Roe
algebras, and K-homology groups in this section are equivariant; we will not
generally state the equivariance assumption. It might be easier for the reader
to assume that G is trivial on a first reading. Given how we have set up the
theory in the book so far, this does not make a really substantial difference, and
still contains all the basic ideas.

Let HX be an X-G module and let C˚pHXq
G and C˚LpHXq

G be respectively
the Roe algebra (Definition 5.1.4) and localised Roe algebra (Definition 6.6.1) of
HX . As C˚LpHXq

G consists of functions pTtq from r1,8q to C˚pHXq
G (satisfying

some other properties), there is an evaluation-at-one ˚-homomorphism

ev : C˚LpHXq
G Ñ C˚pHXq

G, pTtq ÞÑ T1.

Assuming HX is ample and using Proposition 6.6.2 to identify the K-theory of
C˚LpHXq

G with the K-homology KG
˚ pXq, passage to K-theory gives rise to a

homomorphism
ev˚ : KG

˚ pXq Ñ K˚pC
˚pXqGq
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from the K-homology group of X to the K-theory of ‘the’ Roe algebra of X.
We will see shortly that the map ev˚ does not depend on the choice of module
HX : this follows from Lemma 7.1.3 below as applied to the identity map.

Definition 7.1.1. The assembly map, or higher index map, for X is the map

µX : KG
˚ pXq Ñ K˚pC

˚pXqGq

induced by the evaluation-at-one ˚-homomorphism ev : C˚LpXq
G Ñ C˚pXqG.

Remark 7.1.2. The terminology ‘higher index map’ comes about as it is more
common to define the left hand side of the conjecture in terms of some variant
of Kasparov’s K-homology as in Section 6.7. In that picture, the assembly map
can naturally be described using the index constructions of Section 2.8. Our
picture loses this direct index-theoretic flavour, but has the advantage that the
assembly map is given by a concrete ˚-homomorphism. It also gives a nice
intuitive picture of the assembly map as a map that ‘forgets local control’, or
that ‘assembles’ local data into global data.

The following lemma is key to setting up the universal assembly maps. There
are many different models for the assembly map as in Definition 7.1.1 above: an
important virtue of our model is that one can treat both sides of assembly maps
on a similar footing, and thus lemmas like the one below are straightforward (at
least, now we have set up all the machinery).

Lemma 7.1.3. Let f : X Ñ Y be a continuous, equivariant, coarse map. Then
the diagram

KG
˚ pXq

µX //

f˚

��

K˚pC
˚pXqGq

f˚

��
KG
˚ pY q

µY // K˚pC˚pY qGq

commutes.

Proof. Recall from Theorem 6.6.3 that the f˚ on the left is induced by conju-
gation by a continuous cover pVtq for f that has the additional property that Vt
is a cover for f for all t. Looking at Definition 5.2.5, we may define the map f˚
on the right to be the map induced by conjugation by V1. With this choice, the
diagram commutes on the level of ˚-homomorphisms, so certainly also on the
level of K-theory.

Now, the assembly map

µX : KG
˚ pXq Ñ K˚pC

˚pXqGq

will not be an isomorphism in general: the group KG
˚ pXq sees only the small-

scale topological structure of X, and the group K˚pC
˚pXqGq sees only the

large-scale geometric structure. For example, if X is a closed manifold and G
is trivial, then KG

˚ pXq is the K-homology of X and can be quite complicated;
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however, C˚pXqG is just a copy of the compact operators, and so K˚pC
˚pXqGq

will be a single copy of Z in dimension zero.
On the other hand, we can also produce elements ofK˚pC

˚pXqGq by allowing
ourselves more general spaces that are (equivariantly) coarsely equivalent to X.
Indeed, say Y is equipped with an equivariant coarse equivalence p : X Ñ Y .
Then Theorem 5.2.6 implies that p functorially induces an isomorphism

p˚ : K˚pC
˚pXqGq Ñ K˚pC

˚pY qGq.

Combining this with the assembly map for Y from Definition 7.1.1 gives a
homomorphism

µY,X : KG
˚ pY q

µY // K˚pC˚pY qGq
pp˚q

´1

// K˚pC˚pXqGq . (7.2)

Informally, the so-called Baum-Connes conjecture for X predicts that every el-
ement of K˚pC

˚pXqGq, and every relation between such elements, arises from
such generalised assembly maps as Y varies over all spaces that are (equivari-
antly) coarsely equivalent to X.

We now start work on making this precise. It is convenient to introduce the
following category which collects together the spaces Y appearing in the above
discussion.

Definition 7.1.4. The equivariant bounded category over X, denoted CGpXq,
has as objects pairs pY, pq, where Y is a proper metric space and p : X Ñ Y is
an equivariant coarse equivalence. A morphism in CGpXq between pY, pY q and
pZ, pZq is a continuous equivariant coarse map f : Y Ñ Z such that the diagram

Y
f // Z

X

pY

OO

X

pZ

OO

commutes ‘up to closeness’: f ˝pY is close to pZ in the sense of Definition A.3.9
as functions X Ñ Z.

We will often abuse notation and omit the map pY when discussing objects and
morphisms in CGpXq.

Our goal is to find a group KXG
˚ pXq that packages all the information

contained in the groups KG
˚ pY q as Y ranges over CGpXq. The Baum-Connes

conjecture for the action of G on X will then say that an associated ‘universal
assembly map’

µ : KXG
˚ pXq Ñ K˚pC

˚pXqGq

is an isomorphism. Morally, KXG
˚ pXq is the ‘limit’ over the all the groups

KG
˚ pY q as Y ranges over the category CGpXq. To make this precise, we introduce

a little category-theoretic terminology.

249



Definition 7.1.5. Let C be a category, and F : C Ñ GA a functor from C to
the category of graded abelian groups.

An F -group is a graded abelian group A and a collection of homomorphisms
pcY : F pY q Ñ Aq parametrised by the objects of C such that for every morphism
f : Y Ñ Z in C, the diagram

F pY q
cY //

F pfq

��

A

F pZq
cZ // A

commutes.
An F -group A with family of homomorphisms pcY : F pY q Ñ Aq is universal

if for any F -group B with family of homomorphisms pdY : F pY q Ñ Bq there
exists a unique homomorphism µ : AÑ B such that for each object Y of C, the
diagram

F pY q
cY // A

µ

��
F pY q

dY // B

commutes.

The only example we will apply this to is the assignment

F : CGpXq Ñ GA, F pY q “ KG
˚ pY q. (7.3)

This is a functor by Theorem 6.6.3.
For the next lemma, recall the following terminology from category theory.

A category is small if the collections of objects and morphisms form a set. A
subcategory C1 of a category C is full if whenever A,B are objects of C1, then
all morphisms between A and B in C are actually in C1. A subcategory C1 of a
category C is skeletal if every object of C is isomorphic to a unique object of C1.

Lemma 7.1.6. With notation as in Definition 7.1.5, assume that C has a small
skeletal subcategory C1 Then a universal F -group exists and is unique up to
canonical isomorphism.

Proof. Consider
A0 :“

à

Y PC1
F pY q

and identify each F pY q with the its image under the natural map to A0. Let
N be the (normal) subgroup of A0 generated by all elements of the form x ´
F pfqpxq, where x is in some F pY q, and f : Y Ñ Z is a morphism between
elements of C1. Define A to be the quotient A0{N . For each object Z of C,
choose an isomorphism f : Z Ñ Z 1 to an object of C1, and define cZ to be the
composition

F pZq
F pfq // F pZ 1q // A

250



where the second map is induced by the canonical inclusion of F pZ 1q into A0;
the choice of N implies that cZ : F pZq Ñ A does not depend on the choice of
Z 1 or the choice of isomorphism f : Z Ñ Z 1. Moreover, it is straightforward to
check that the collection of morphisms pcZq makes A into an F -group.

To see that this A has the right universal property, say B is any other F -
group with family of morphisms pdY : F pY q Ñ Bq. Define a map µ0 : A0 Ñ B
by setting the restriction of µ0 to F pY q to be equal to dY : F pY q Ñ B. The
compatibility properties of the family pdY q guarantee that µ0 contains N in its
kernel, and so descends to µ : AÑ B. It is straightforward to check that µ has
the right properties.

Uniqueness of universal F -groups follows directly from the universal prop-
erty.

Having established this abstract machinery, we now apply it to the case of
interest. Note that CGpXq has a small skeletal category: we leave this to the
reader to verify.

Definition 7.1.7. Let F be the functor on CGpXq defined by F pY q “ KG
˚ pY q

as in line (7.3) above. The (equivariant) coarse K-homology of X, denoted
KXG

˚ pXq, is the universal F -group for the category CGpXq from Definition
7.1.4 and functor F pY q “ KG

˚ pY q from line (7.3).

Definition 7.1.8. Given an object pY, pq in CGpXq, the X-assembly map for
pY, pq is the homomorphism µY,X : KG

˚ pY q Ñ K˚pC
˚pXqGq defined as the

composition

KG
˚ pY q

µY // K˚pC˚pY qGq
pp˚q

´1

// K˚pC˚pXqGq

as in line (7.2); here µY is as Definition 7.1.1 and p˚ is as in Theorem 5.2.6.

Lemma 7.1.9. Equipped with the family of maps cY :“ µY,X from Definition
7.1.8, the group K˚pC

˚pXqGq is an F -group, where F is as in line (7.3) above.

Proof. We must show that for any morphism f : Y Ñ Z in CGpXq, the outer
rectangle in the diagram

KG
˚ pY q

f˚ //

µY

��

KG
˚ pZq

µZ

��
K˚pC

˚pY qGq

ppY˚ q
´1

��

f˚ // K˚pC˚pZqGq

ppZ˚q
´1

��
K˚pC

˚pXqGq K˚pC
˚pXqGq

commutes. The top square commutes by Lemma 7.1.3, and the bottom square
by Theorem 5.2.6.
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Definition 7.1.10. The Baum-Connes assembly map is the homomorphism of
graded abelian groups

µ : KXG
˚ pXq Ñ K˚pC

˚pXqGq.

coming from the universal property of KXG
˚ pXq. The Baum-Connes conjecture

for X asserts that µ is an isomorphism.

There are two special cases of this that are by far the most studied, and
that are particularly important for applications (although the general case still
seems very interesting). We spell these out separately.

Definition 7.1.11. Say G is the trivial group. Then we usually omit G from
the notation and write

µ : KX˚pXq Ñ K˚pC
˚pXqq

for the Baum-Connes assembly map. In this case, µ is called the coarse Baum-
Connes assembly map for X, and the coarse Baum-Connes conjecture for X is
the statement that it is an isomorphism.

Say now X “ G. Then Theorem 5.3.2 canonically identifies K˚pC
˚pXqGq

with the K-theory group K˚pC
˚
ρ pGqq of the reduced group C˚-algebra of G.

Thus the Baum-Connes assembly map identifies with a homomorphism

µ : KXG
˚ pGq Ñ K˚pC

˚
ρ pGqq,

which is usually just called the Baum-Connes assembly map for G. The Baum-
Connes conjecture for G asserts that this assembly map is an isomorphism.

Remark 7.1.12. It is a remarkable fact that the group KXG
˚ pGq can be defined as

an F -functor in the same way, but where CGpGq is replaced by the subcategory
where objects are (G-equivariant) spinc manifolds1, and morphisms are assumed
smooth. Unfortunately, a proof of this would take us a little fair afield (see the
notes at the end of the chapter for a reference). However, we thought it worth
mentioning both as this fact is sometimes useful, and as this picture of KXG

˚ pGq
is rather closer to the original approach taken by Baum and Connes.

The descriptions of the (coarse) Baum-Connes assembly map in Definition
7.1.10 are theoretically useful, and we hope that they are also quite conceptual.
As one might expect, they are not the best descriptions if we actually want to
compute the group KXG

˚ pXq, or prove that the assembly map µ is an isomor-
phism! In the next three sections we will do some work to make the definitions
more concrete.

To finish this section, however, we give an example where we can say some-
thing using only the abstract nonsense above. This is the case of the Baum-
Connes conjecture for a finite group acting on a compact bounded metric space.
Having unpacked the definitions, this is not difficult; nonetheless, it is perhaps
instructive to see what happens.

1A spinc manifold is one that is ‘oriented’ in some sense appropriate to K-theory.
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Example 7.1.13. Say X is a compact bounded metric space, equipped with a
(proper) isometric action of a finite group G. Let pt be a single point space
equipped with the trivial action and p : X Ñ pt the collapsing map, so the pair
ppt, pq is an object of CGpXq

The universal F -group for F pY q “ KG
˚ pY q as in line (7.3) is just the group

KG
˚ pptq together with the family of maps cY : KG

˚ pY q Ñ KG
˚ pptq defined by

collapsing Y to a single point. To see that this data defines an F -group note
that the diagram

F pY q
cY //

F pfq

��

KG
˚ pptq

F pZq
cZ // KG

˚ pptq

commutes for any morphism f : Y Ñ Z in CGpXq as any space in CGpXq admits
only one (equivariant, coarse) map to a point. Universality follows as if A is
any other F -group with family of morphisms pdY q we have a diagram

F pY q
cY // F pptq

dpt

��
F pY q

dY // A

that commutes by definition of A being an F -group; hence we can just take the
map µ required by universality to be dpt.

In particular, applying this to the F -group K˚pC
˚pXqGq gives that the

Baum-Connes assembly map identifies with the X-assembly map for pt

µpt,X : KG
˚ pptq Ñ K˚pC

˚pXqGq.

Moreover, as the collapsing map p : X Ñ pt is an equivariant coarse equivalence,
the map p˚ : K˚pC

˚pptqGq Ñ K˚pC
˚pXqGq is an isomorphism, so to prove the

Baum-Connes conjecture for X, it suffices to show that the assembly map

µpt : KG
˚ pptq Ñ K˚pC

˚pptqGq

of Definition 7.1.1 is an isomorphism, i.e. that the evaluation-at-zero map

ev : C˚Lpptq
G Ñ C˚pptqG

induces an isomorphism on K-theory. This follows from an Eilenberg swindle
argument just like (but a little simpler than) the one we used in Proposition 6.3.3
to compute the K-homology of a point: see Exercise 7.6.8. In conclusion, the
Baum-Connes conjecture holds for actions of finite groups on compact, bounded
spaces.
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7.2 Rips complexes

In this section, we introduce a concrete model for the coarse K-homology groups
that works in full generality. In later sections, we will use this model as a
stepping-stone to other, more specialised, situations.

The key tool for doing this are Rips complexes. For technical reasons (essen-
tially those outlined in Exercise 7.6.5 below), the basic building blocks for our
Rips complexes will be spherical simplices as in the next definition. To state
it, let arccos : r´1, 1s Ñ r0, πs be the usual inverse cosine function. Let SpRdq
be the sphere of radius one in a finite dimensional Euclidean space, and let the
intrinsic distance on SpRdq be defined by

dinpx, yq “ arccospxx, yyq.

In words, dinpx, yq is the angle between the rays through x and y. Equivalently,
it is the length of the shorter arc of a great circle connecting x and y, or is the
distance defined by the usual Riemannian metric on SpRdq.

Definition 7.2.1. Let F be a finite set, and consider the set σpF q of formal
sums

ÿ

zPF

tzz

where tz P r0, 1s for each z P F , and
ř

zPF tz “ 1. Let SpRF q be the sphere in
the finite dimensional Euclidean space RF spanned by F , and define a bijection

f : σpF q Ñ SpRF q,
ÿ

zPF

tzz ÞÑ
´

ÿ

zPF

t2z

¯´1{2 ÿ

zPF

tzz.

The spherical metric on σpF q is the metric defined by

dpx, yq :“
2

π
dinpfpxq, fpyqq,

and σpF q equipped with this metric is called the spherical simplex on F .

The factor 2{π is chosen so that σpF q has diameter one, as follows from
the fact that the maximal angle between any two rays defined by points in the
image of f is π{2.

For the next definition, recall that a metric space Z is locally finite if any
ball contains finitely many points. In particular, a locally finite metric space is
proper.

Definition 7.2.2. Let Z be a locally finite metric space and let r ě 0. The
spherical Rips complex of Z at scale r, denoted SrpZq, consists as a set of all
formal sums

x “
ÿ

zPZ

tzz

such that each tz is in r0, 1s, such that
ř

zPZ tz “ 1, and such that the support
of x defined by supppxq :“ tz P Z | tz ‰ 0u has diameter at most r.
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Let F be a (finite) subset of Z of diameter at most r. The simplex spanned
by F is the set σpF q of formal sums

ř

zPZ tzz that are supported in F . We
equip each simplex with the spherical metric.

For points x, y P SrpZq, a simplicial path γ between them is a finite sequence
x “ x0, ..., xn “ y of points in SrpZq together with a choice of simplices σ1, ..., σn
such that each σi contains pxi´1, xiq. The length of such a path is defined to be

`pγq :“
n
ÿ

i“1

dσipxi´1, xiq.

Finally, we define the spherical distance between two arbitrary points x, y P
SrpZq to be

dSr px, yq :“ inft`pγq | γ a simplicial path between x and yu

(and dSr px, yq “ 8 if no simplicial path exists).

We leave it as an exercise for the reader to show that dSr is a well-defined
(possibly infinite-valued) metric on SrpZq.

Lemma 7.2.3. With notation as in Definition 7.2.2:

(i) the inclusion σpF q Ñ SrpZq of any simplex is an isometry;

(ii) if x, y P SrpZq are elements of SrpZq with disjoint support, then dSr px, yq ě
1.

Proof. Let x, y be two points in SrpZq that are a finite distance apart, let ε ą 0
and let x “ x0, ..., xn “ y be a simplicial path from x to y with associated
simplices σ1, ..., σn, and with the property that

n
ÿ

i“1

dσipxi´1, xiq ď dSr px, yq ` ε.

Let F Ď Z be the union of the supports of all of the xi, and let σpF q be the
spherical simplex on F (which may not be a simplex in SrpZq, but still makes
sense as an abstract spherical simplex). As each σi is isometrically included in
σpF q, the triangle inequality gives that

dσpF qpx, yq ď
n
ÿ

i“1

dσipxi´1, xiq,

and so by choice of x0, ..., xn,

dσpF qpx, yq ď dSr px, yq ` ε. (7.4)

We claim that this inequality proves both parts (i) and (ii).
Indeed, for part (i) note that if x, y are contained in the same simplex σ of

SrpZq, then σ is isometrically included in σpF q, and so the inequality in line
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(7.4) implies that dσpx, yq ď dSr px, yq`ε. As the inequality dSr px, yq ď dσpx, yq
is clear from the definitions, and as ε was arbitrary, this completes the proof of
part (i).

For part (ii), note that if x, y have disjoint support, then they are distance
one apart in σpF q, as the corresponding vectors in RF are orthogonal. Hence
(ii) follows directly from line (7.4) (and the fact that ε was arbitrary).

As a consequence of part (i) of Lemma 7.2.3, note that if x0, ..., xn is a
simplicial path (with some choice of associated simplices σ1, ..., σn), then the
length of the path equals

n
ÿ

i“1

dSr pxi´1, xiq.

We will just use this form for the length of a simplicial path from now on and
suppress mention of the simplices involved.

For the next lemma, let us introduce some convenient terminology.

Definition 7.2.4. Let z, w be two points in Z. The combinatorial distance
between z and w in SrpZq, denoted dcpz, wq, is the length of a shortest edge
path between them, i.e. the smallest n such that there exists a sequence z “
z0, ..., zn “ w with each zi in Z, and such that each consecutive pair zi´1, zi are
in the same simplex in SrpZq (and infinity if no such n exists).

Lemma 7.2.5. Say Z is a locally finite metric space, z is a point of Z, and σ
is a simplex of SrpZq. Then for all y P σ,

dSr pz, yq ě mintdcpz, wq | w P Z a vertex of σu.

Proof. We prove this by induction on the number n “ mintdcpz, wq | w P

Z a vertex of σu (the case n “ 8 is clear, so we can ignore this). For n “ 0,
there is nothing to prove. Say then we have the result for all values at most n´1
for some n ě 1. Let σ be such that n “ mintdcpz, wq | w P Z a vertex of σu,
and let y be a point of σ.

Let ε ą 0, and let z “ x0, ..., xn “ y be a simplicial path from z to y such
that

n
ÿ

i“1

dSr pxi´1, xiq ď dSr pz, yq ` ε. (7.5)

Let k P t0, ..., n ´ 1u be the largest number such that for all w in the support
of xk, we have that dcpz, wq ď n ´ 1; certainly x0 has this property, so k with
this property exists. We claim that in fact that for all w in the support of xk
we have dcpz, wq “ n ´ 1. Indeed, if not there is some w P supportpxkq with
dcpz, wq “ m ă n´ 1. Let τ be a simplex that contains both xk and xk`1 (such
a τ exists by definition of a simplicial path). Then w is a vertex of τ , and so all
vertices v of τ satisfy dcpz, vq ď m` 1 ă n. On the other hand, by choice of k,
the fact that xk`1 is in τ implies that τ also has a vertex v with dcpz, vq “ n,
so we have a contradiction.
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Now, the claim and the inductive hypothesis imply that dSr pz, xkq ě n´ 1.
On the other hand, all vertices w in the support of y satisfy dcpz, wq ě n by
assumption, whence xk and y have disjoint supports, and so dSr pxk, yq ě 1 by
Lemma 7.2.3, part (ii). We now have from these inequalities, line (7.5) and the
triangle inequality that

dSr pz, yq ě
n
ÿ

i“1

dSr pxi´1, xiq ´ ε ě dSr pz, xkq ` dSr pxk, yq ´ ε ě n´ ε.

As ε was arbitrary, this completes the proof.

The following corollary is the crucial fact we need about the spherical metric.
It is the key reason we are using the spherical metric, as it can fail for the more
standard Euclidean metric: see Exercise 7.6.5.

Corollary 7.2.6. Let Z be a locally finite metric space, r ě 0, and z, w be
points of Z. Then dcpz, wq “ dSr pz, wq.

Proof. The inequality dcpz, wq ě dSr pz, wq is clear, and the opposite inequality
follows from Lemma 7.2.5 applied to z and the simplex σ “ twu.

Remark 7.2.7. At this point, we could use the metric spaces SrpZq to produce
a concrete model for the coarse Baum-Connes conjecture for Z directly; this
is what is usually done in the literature. Indeed, as the canonical inclusions
SrpZq Ñ SspZq for r ď s are proper and contractive, we have directed systems

K˚pS1pZqq Ñ K˚pS2pZqq Ñ ¨ ¨ ¨

and
K˚pC

˚pS1pZqq Ñ K˚pC
˚pS2pZqqq Ñ ¨ ¨ ¨ .

These directed systems are moreover compatible with the evaluation-at-one
maps and therefore we get a direct limit map

ev˚ : lim
rÑ8

K˚pSrpZqq Ñ lim
rÑ8

K˚pC
˚pSrpZqqq, (7.6)

which one can show identifies with the Baum-Connes assembly map for Z (the
reader is asked to do this in Exercise 7.6.6). This also works in the presence
of a group action on Z. Moreover, one can treat a general proper metric space
X (with G-action) along these lines by identifying the Baum-Connes assembly
map for X with the Baum-Connes assembly map for a (G-invariant) net Z in
X.

Having said this, it is slightly tricky to identify the map in line (7.6) with the
Baum-Connes assembly map in our set up, primarily as the canonical inclusions
Z Ñ SrpZq will not in general be coarse equivalences (or even coarse maps at
all): compare Exercise 7.6.3. For this reason, we now change the metric on
SrpZq to remedy this defect. Another way around this issue using abstract
coarse structures (see Definition A.3.7) is given in Exercise 7.6.4: that method
may be more conceptual for readers familiar with that language.
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Definition 7.2.8. Let Z be a locally finite metric space, and let SrpZq be the
associated spherical Rips complex at scale r. A semi-simplicial path δ between
points x and y in SrpZq consists of a sequence of the form

x “ x0, y0, x1, y1, x2, y2, ..., xn, yn “ y

where each of x1, ..., xn and each of y0, ..., yn´1 are in Z. The length of such a
path is

`pδq :“
n
ÿ

i“0

dSr pxi, yiq `
n´1
ÿ

i“0

dZpyi, xi`1q.

We define the semi-spherical distance on SrpZq by

dPr px, yq :“ inft`pγq | γ a semi-simplicial path between x and yu.

(note that a semi-simplicial path between two points always exists).
The Rips complex of Z is defined to be the space PrpZq equipped with the

metric dPr above.

Again, we leave it to the reader to check that dPr is indeed a metric. Note
that the Rips complex P0pZq identifies isometrically with Z.

The following technical lemma is the key tool to understanding the structure
of PrpZq as a metric space. To state it, if F is a subset of Z, write PrpF q for
the subset of PrpZq consisting of all formal sums

ř

zPZ tzz supported in F .

Lemma 7.2.9. For any z P Z and s ě 0, we have the inclusion

BPr pz; sq Ď PrpBZpz; ps` 2qpr ` 1qqq.

Proof. Let y “
ř

wPZ tww be an element of BPr pz; sq, and let w P Z be such
that tw ‰ 0. We must show that dZpz, wq ď ps`2qpr`1q. By definition of dPr ,
there exists a semi-simplicial path

z “ x0, y0, ..., xn, yn “ w

with all xi, yi in Z, and with

n
ÿ

i“0

dSr pxi, yiq `
n´1
ÿ

i“0

dZpyi, xi`1q ď s` 2.

Write dSr pxi, yiq “ mi, and note in particular that

n
ÿ

i“0

mi ď s` 2. (7.7)

Then by Corollary 7.2.6, each mi is an integer, and for each i there is a sequence

xi “ z
piq
0 , ..., z

piq
mi “ yi in Z with each z

piq
j an element of Z and each consecutive
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pair pz
piq
j , z

piq
j`1q in the same simplex. By definition of the spherical Rips complex

we then have that
dZpxi, yiq ď mir. (7.8)

At this point we have from the triangle inequality in Z and lines (7.7) and (7.8)
that

dZpz, wq ď
n
ÿ

i“0

dZpxi, yiq `
n´1
ÿ

i“0

dZpyi, xi`1q ď

n
ÿ

i“0

mir ` ps` 2q

ď ps` 2qpr ` 1q

as claimed.

The next lemma gives a simple description of the topology on PrpZq.

Lemma 7.2.10. Let F be a finite subset of Z. Then a sequence
´

ÿ

zPZ

tpnqz z
¯

nPN

in PrpF q converges to a point
ř

zPZ tzz in PrpF q if and only if the sequence

pt
pnq
z qnPN converges to tz in r0, 1s for all z P F .

Proof. Note first that we may assume dPr is finite on PrpF q (otherwise just
work one component at a time for the equivalence relation defined by x „ y if
dPr px, yq ă 8).

Let σpF q be the spherical simplex on F , and consider PrpF q as a subset of
σpF q. We claim that there is c ą 0 such that for all x, y P PrpF q,

c´1dσpF qpx, yq ď dPr px, yq ď cdσpF qpx, yq. (7.9)

As the conclusion of the lemma clearly holds inside σpF q, this will suffice to
complete the proof.

First, let ε ą 0 and let x “ x0, y0, ..., xn, yn “ y be a semi-simplicial path
between x and y with

dPr px, yq ` ε ě
n
ÿ

i“0

dSr pxi, yiq `
n´1
ÿ

i“0

dZpyi, xi`1q. (7.10)

Note that dSr pxi, yiq “ dσpF qpxi, yiq as xi and yi are in the same simplex (see
Lemma 7.2.3). On the other hand, if a :“ mintdZpz, wq | z, w P F, z ‰ wu
(which is positive as F is finite), then dZpyi, xi`1q ě a “ adσpF qpyi, xi`1q, as
each of y0, ..., yn´1 and x1, ..., xn are in F , whence dσpF qpyi, xi`1q “ 1. Putting
this discussion together with line (7.10) gives that

dPr px, yq ` ε ě
n
ÿ

i“0

dσpF qpxi, yiq `
n´1
ÿ

i“0

adσpF qpyi, xi`1q

ě min 1, a
´

dσpF qpxi, yiq ` dσpF qpyi, xi`1q

¯

ě mint1, audσpF qpx, yq,
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where the last inequality is the triangle inequality. As ε was arbitrary, this gives
one of the inequalities in line (7.9).

For the other inequality in line (7.9), say x “
ř

zPF t
x
zz and y “

ř

zPF t
y
zz.

Let Fx, Fy Ď F be the supports of x and y respectively. We split the proof into
the cases where Fx X Fy is empty or non-empty. If this intersection is empty,
then dσpF qpx, yq “ 1, and so dPr px, yq ď diamPr pPrpF qqdσpF qpx, yq. On the
other hand, if the intersection is non-empty, then define

wx :“
ÿ

zPFxXFy

txzz and wy :“
ÿ

zPFxXFy

tyzz.

Then

dPr px, yq ď dSr px, yq ďdSr px,wxq ` dSr pwx, wyq ` dSr pwy, yq

“dσpF qpx,wxq ` dσpF qpwx, wyq ` dσpF qpwy, yq

where the last equality uses that each of the pairs appearing is in the same
simplex of SrpF q, and Lemma 7.2.3. On the other hand, it is straightforward to
check that from the definition of dσpF q that each of dσpF qpx,wxq, dσpF qpwx, wyq,
and dσpF qpwy, yq is bounded above by dσpF qpx, yq, whence dPr px, yq ď 3dσpF qpx, yq.
Combining the two cases, we get

dPrpx,yq ď maxt3,diampPrpF qqudσpF qpx, yq

and are done.

Proposition 7.2.11. Let Z be a countable, locally finite metric space.

(i) The Rips complex PrpZq is a proper, second countable metric space.

(ii) For each s ě r ě 0 the canonical inclusion isr : PrpZq Ñ PspZq is a
homeomorphism onto its image, and a coarse equivalence.

Proof. Using Lemma 7.2.9, each finite radius ball in PrpZq is contained in PrpF q
for some finite subset F of Z. It follows directly from this and Lemma 7.2.10
that any bounded sequence in PrpZq has a convergent subsequence, whence
PrpZq is proper. It is moreover separable as Lemma 7.2.10 implies that the
countable set

!

ÿ

zPZ

tzz P PrpZq | tz P Q for all z P Z
)

is dense, and a separable metric space is always second countable. The fact
that the canonical inclusions isr : PrpZq Ñ PspZq are all homeomorphisms onto
their images also follows directly from Lemma 7.2.10 and Lemma 7.2.9.

To see that these inclusions isr are all coarse equivalences, it suffices by
Exercise A.4.3 to show that for any points x, y in PrpZq then: (a) for all t there
exists t1 such that if dPr px, yq ď t then dPspx, yq ď t1; and (b) for all t there
exists t1 such that if dPspx, yq ď t then dPr px, yq ď t1. Part (a) is clear as the
map isr is contractive by definition, so it remains to prove part (b).
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Assume then that dPspx, yq ď t for some t. Let zx, zy P Z be vertices in the
same simplices in PrpZq as x and y respectively. Then dPspzx, xyq ď t`2. Using
Lemma 7.2.9, we have that dZpzx, zyq ď pt` 4qps` 1q, and so as the canonical
map Z Ñ PrpZq is clearly contractive, dPr pzx, zyq ď pt` 4qps` 1q. Finally this
implies that dPr px, yq ď pt` 4qpr ` 1q ` 2, which completes the proof.

In the presence of a group action, we also get corresponding structure on the
Rips complex.

Lemma 7.2.12. Let G be a countable discrete group acting properly by isome-
tries on a locally finite metric space Z, and let r ě 0. Then for g P G, the
formula

g :
ÿ

zPZ

tzz ÞÑ
ÿ

zPZ

tzpgzq

defines a proper isometric action on PrpZq. Moreover, the canonical inclusions
PrpZq Ñ PspZq for 0 ď r ď s are equivariant for this action.

Proof. That the action is isometric follows as the action on Z is isometric, and it
is clear that the inclusions PrpZq Ñ PspZq are equivariant. Properness follows
from properness of the action on Z and Lemma 7.2.9.

For the next lemma, recall that two maps f0, f1 : X Ñ Y with codomain a
metric space are close if there is c ą 0 such that for all x P X, dY pf0pxq, f1pxqq ď
c.

Lemma 7.2.13. Say Y is a proper metric space, equipped with a proper iso-
metric action of a countable group G. Let f0, f1 : Y Ñ PrpZq are continuous,
proper, equivariant maps, that are also close. Then there is s ě r such that the
compositions

Y
f0
ÝÑ PrpZq

irs
ÝÑ PspZq and Y

f1
ÝÑ PrpZq

irs
ÝÑ PspZq

are equivariantly properly homotopic.

Proof. Let f0, f1 : Y Ñ PrpZq be close, continuous and equivariant, so in partic-
ular there is c ě 0 such that dPr pf0pyq, f1pyqq ď c for all y P Y . Let z0 and z1 be
any points of Z that are in the same simplex as f0pyq and f1pyq respectively. In
particular, dPr pz0, z1q ď c`2, and so by Lemma 7.2.9, dZpz0, z1q ď pc`4qpr`1q.
Let s :“ pc` 4qpr ` 1q. Then the above shows that for any y P Y , all points in
the supports of f0pyq and f1pyq are in the same simplex of PspZq. Thinking of
points of PspZq as formal sums of the form

ř

zPZ tzz in the usual way, it follows
that

h : Y ˆ r0, 1s Ñ p1´ tqf0pyq ` tf1pyq

is a well-defined equivariant map from Y to PspZq, which is moreover continuous
by Lemma 7.2.10. Properness of h follows straightforwardly from properness of
f0 and f1 and the fact that any compact subset of PspZq is contained in a set
of the form PspF q for some finite F Ď Z by Lemma 7.2.9.
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Lemma 7.2.14. Let Z be a countable, locally finite metric space equipped with a
proper isometric action of a countable group G. Let Y be a proper metric space,
and p : Z Ñ Y a coarse equivalence. Then there are r ě 0 and a continuous
equivariant coarse equivalence f : Y Ñ PrpZq such that the diagram

Y
f

""
Z

p

OO

// PrpZq

commutes ‘up to closeness’, i.e. f ˝ p : Z Ñ PrpZq is close to the canonical
inclusion Z Ñ PrpZq.

Proof. Write W “ ppZq Ď Y . We first note that as p is a coarse equivalence,
there is some absolute bound r0 on the diameter of all the sets p´1pwq as w
ranges over W . For each w P W , let |p´1pwq| denote the cardinality of this
finite set, and define a function f0 : W Ñ Pr0pZq by

f0pwq “
1

|p´1pwq|

ÿ

zPp´1pwq

z.

Note that f is equivariant. It is moreover continuous asW is discrete set: indeed,
W is locally finite as Z is locally finite, and p is a coarse equivalence. Further,
for any z P Z, f0pppzqq is in the same simplex as z, whence dPr pz, f0pppzqqq ď 1,
and so in particular f0 ˝ p : Z Ñ Pr0pZq is close to the canonical inclusion
Z Ñ Pr0pZq. It thus suffices to show that there is r ě r0 and a continuous
equivariant function f : Y Ñ PrpZq whose restriction to W is close to the
composition of f0 and the canonical inclusion Pr0pZq Ñ PrpZq.

As p is a coarse equivalence, there exists r1 ě 0 such that
ď

wPW

BY pw; r1q

covers Y . As the action on Y is proper Corollary A.2.8 implies that there is an
equivariant subordinate partition of unity, say pφwqwPw. Let r be such that if
z, z1 P W satisfy dY pfpzq, fpz

1qq ď 2r1, then dpz, z1q ď r. Provisionally define
now

f : Y Ñ PrpZq, fpyq “
ÿ

wPW

φwpyqf0pwq.

To see that f does indeed take image in PrpZq, it suffices to check that for any
y P Y , and any z, z1 P Z with φfpzqpyq ‰ 0 and φfpz1qpyq ‰ 0, we have that
dZpz, z

1q ď r. Indeed, note that if φfpzqpyq and φfpz1qpyq are both non-zero,
then y is in both Bpfpzq; r1q and Bpfpz1q; r1q, whence dY pfpzq, fpz

1qq ď 2r1.
Hence dZpz, z

1q ď r by choice of r.
To check the claimed properties of f , note that f is continuous as f0 is, as all

the functions in the partition of unity are continuous, and using Lemma 7.2.10.
Equivariance of f follows from equivariance of f0, and of the partition of unity.
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Finally, to complete the proof, it suffices to check that the diagram

W
f |W

$$
f0

��
Pr0pZq // PrpZq

commutes up to closeness. We leave the remaining details to the reader: we
think it’s the sort of proof that it’s better to think through than to read.

Now, let X be a proper metric space equipped with an isometric action of G.
Choose a G-invariant, coarsely dense, locally finite subset Z of X: such exists
by a slight variation on Lemma A.3.11 that we leave to the reader. Applying
Lemma 7.2.14 to the inclusion Z Ñ X gives r ě 0 and a continuous, equivariant
map pr : X Ñ PrpZq whose restriction to Z is close to the inclusion Z Ñ PrpZq.
Hence pr is a coarse equivalence. Moreover, for each s ě r, the composition

ps :“ isr ˝ pr : X Ñ PrpZq Ñ PspZq (7.11)

is also a coarse equivalence. Fix these maps from now on and use them to think
of the pairs pPspZq, psq as elements of CGpXq for all suitably large s.

Consider the group
lim
rÑ8

KG
˚ pPrpZqq,

where the limit is defined with respect to the inclusion maps isr : PrpZq Ñ PspZq
from part (ii) of Lemma 7.2.11 above. For each object Y of CGpXq, choose
r ě 0 and a continuous equivariant coarse equivalence f : Y Ñ PrpZq with the
properties given in Lemma 7.2.14. Define

cY : KG
˚ pY q Ñ lim

rÑ8
KG
˚ pPrpZqq (7.12)

to be the homomorphism induced by f˚ : KG
˚ pY q Ñ KG

˚ pPrpZqq, and note that
Lemma 7.2.13 implies that cY does not depend on the choices of f and r.

Lemma 7.2.15. The maps in line (7.12) above make lim
rÑ8

KG
˚ pPrpZqq into a

universal F -group for the functor F pY q “ KG
˚ pY q.

Proof. To see that the maps in line (7.12) make lim
rÑ8

KG
˚ pPrpZqq into an F -

group, we must check that any diagram of the form

KG
˚ pY1q

cY1 //

f˚

��

lim
rÑ8

KG
˚ pPrpZqq

KG
˚ pY2q

cY2 // lim
rÑ8

KG
˚ pPrpZqq

commutes. This is clear from Lemma 7.2.13, and invariance of K-homology
under (equivariant) proper homotopies. To see universality, let A be another
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F -group with associated morphisms pdY : KG
˚ pY q Ñ Aq. Note first that for any

s ě r ě 0 we have a commutative diagram

KG
˚ pPrpZqq

pisrq˚

��

dPrpZq // A

KG
˚ pPspZqq

dPspZq // A

,

which commutes by definition of A being an F -group. Hence taking the direct
limit of the maps pdPrpZqqrě0 gives a well-defined homomorphism

d8 : lim
rÑ8

KG
˚ pPrpZqq Ñ A.

On the other hand, for any Y and all suitably large r there is a diagram

KG
˚ pY q

f˚ // KG
˚ pPrpZqq

dPrpZq

��
KG
˚ pY q

dY // A

(where f : Y Ñ PrpZq is our fixed choice defining cY coming from Lemma
7.2.14), which commutes by definition of A being an F -group. Taking the limit
over r then gives

KG
˚ pY q

cY // lim
rÑ8

KG
˚ pPrpZqq

d8

��
KG
˚ pY q

dY // A ,

which is the diagram whose existence is required by universality.

Finally, putting everything together, we get the main result of this section,
which is immediate from our work above.

Theorem 7.2.16. Let X be a proper metric space equipped with an isometric
action of a countable group G, and let Z be a locally finite G-invariant net in X.
Then the coarse K-homology group of X identifies with lim

rÑ8
KG
˚ pPrpZqq, and

the Baum-Connes assembly map with the direct limit of the X-assembly maps

lim
rÑ8

µPrpZq,X : lim
rÑ8

KG
˚ pPrpZqq Ñ K˚pC

˚pXqGq.

7.3 Uniformly contractible spaces

In this section we give a particularly concrete formulation of the coarse Baum-
Connes conjecture that holds in many cases of interest. Roughly, this says that
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if a metric space X is uniformly contractible in the sense of the next definition,
then the coarse Baum-Connes conjecture for X identifies with the assembly map
for X itself.

Definition 7.3.1. A proper metric space X is uniformly contractible if for all
r ě 0 there exists s ě r such that for all x P X the inclusion Bpx; rq Ñ Bpx; sq
is homotopic to a constant map.

Example 7.3.2. Euclidean space Rd with its usual metric is uniformly con-
tractible: indeed, one can just take r “ s in the definition. From Exercise
7.6.12, it follows that any metic on Rd which is coarsely equivalent to the orig-
inal metric is also uniformly contractible. Much more generally, any space of
‘non-positive curvature’ in a suitable sense has a similar property: we will dis-
cuss such spaces in Chapter 11. It is, however, certainly possible to put metrics
on Rd that are not uniformly contractible: see Exercise 7.6.13.

Example 7.3.3. Say X is a contractible metric space that admits a cocompact
isometric group action. Then (Exercise 7.6.11) X is uniformly contractible. A
particularly nice class of examples, that is also very important for applications,
comes when M is a closed Riemannian manifold with contractible universal
cover. Then the universal cover of M equipped with the lifted Riemannian
metric is uniformly contractible, as the action of the covering group is isometric
and cocompact.

We will also need a technical condition on simplicial complexes.

Definition 7.3.4. Let X be a proper metric space. A simplicial complex struc-
ture on X is good if it is finite dimensional, if the vertex set has bounded ge-
ometry (see Definition A.3.19), and if the inclusion of the vertex set is a coarse
equivalence.

Examples 7.3.5. The Rips complex of a discrete bounded geometry metric space
is a good simplicial complex.

Say M is a closed Riemannian manifold, and assume that M has also been
given a finite simplicial complex structure. If the universal cover of M is given
the lifted simplicial complex structure and lifted Riemannian metric, then it is
a good simplicial complex.

Here is the main result of this section.

Theorem 7.3.6. Let X be a uniformly contractible, good simplicial complex.
Then the coarse Baum-Connes conjecture for X identifies with the assembly
map

µX : K˚pXq Ñ K˚pC
˚pXqq

for X itself.

The key step in the proof is the following lemma.

Lemma 7.3.7. Let Y be a uniformly contractible metric space. Let X be a
good simplicial complex, and let f : X Ñ Y be a coarse map. Then there is a
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continuous coarse map g : X Ñ Y that is close to f . Moreover, if f is already
continuous on a subcomplex X 1 of X, then we may assume that f and g are the
same on X 1.

Proof. Let X 1 be either as in the statement, or empty if no X 1 is given. Define
g “ f on the union of X 1 and the vertex set, which is continuous. We will
extend g one dimension at a time. Indeed, let Xk be the k-skeleton of X, and
assume that we have already defined a continuous map g : X 1 YXk Ñ Y that
is close to f . Consider any k ` 1 simplex ∆. As g is a coarse map on X 1 YXk,
there is r ě 0 (independent of the particular ∆) such that g takes the boundary
B∆ into some ball Bpy; rq of radius r. As Y is uniformly contractible, there
is s ě r (depending only on r) such that the inclusion Bpy; rq Ñ Bpy; sq is
nullhomotopic. Hence we may extend g to a continuous map on X 1YXkY∆ in
such a way that the image gp∆q in in Bpy; sq: precisely, if x0 P ∆ is the center of
this simplex, and pht : Bpy; rq Ñ Bpy; sqqtPr0,1s is a null-homotopy with h1 the
identity and h0 a constant map, then every point in ∆ can be written uniquely
as tz`p1´ tqx0 for some z in the boundary B∆ and t P r0, 1s and we can define
g on ∆ by

gptz ` p1´ tqx0q :“ htpzq.

The result will still be close to f , and in particular will be a coarse map. Doing
this for every k` 1-simplex and using uniformity of the constants r and s gives
our extension of g to X 1 Y Xk`1. Finite dimensionality of X shows that the
process terminates, so we are done.

Proof of Theorem 7.3.6. Let Z be the vertex set of X. According to Lemma
7.2.14 there is r ě 0 and a continuous coarse equivalence f : X Ñ PrpZq that
restricts to the identity on Z. We may use the coarse equivalence f to define
the X assembly map of line (7.2) for PrpZq, and so get a commutative diagram

K˚pXq

f˚

��

µX // K˚pC˚pXqq

K˚pPrpZqq
µPrpZq,X // K˚pC˚pXqq

.

Let now its : PspZq Ñ PtpZq be the canonical inclusion of Lemma 7.2.11, part
(ii), and for each s ě r, let fs : X Ñ PspZq be the composition isr ˝ f . Taking
the direct limit as the Rips parameter tends to infinity, we get a commutative
diagram

K˚pXq

f8

��

µX // K˚pC˚pXqq

lim
sÑ8

K˚pPspZqq
µ // K˚pC˚pXqq

,

where f8 is the direct limit of the maps pfsq˚ : K˚pXq Ñ K˚pPspZqq. Theo-
rem 7.2.16 identifies the bottom horizontal arrow with the coarse Baum-Connes
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assembly map for X, so to complete the proof, it suffices to show that f8 is an
isomorphism.

To see this, note that if we start with the inclusion map Z Ñ X, then
Lemma 7.3.7 allows us to inductively construct continuous coarse equivalences
gs : PspZq Ñ X for each s P N such that for t ě s, gt ˝ its “ gs, and that all
restrict to the identity on Z. We thus get a map

g8 : lim
sÑ8

K˚pPspZqq Ñ K˚pXq

defined as the direct limit of the maps

pgsq˚ : K˚pPspZqq Ñ K˚pXq.

We claim g8 is the inverse to f8. Note first that for any s ě r, gs and fs are
mutually inverse coarse equivalences, as both restrict to the identity on Z.

Consider first the composition gs ˝ fs : X Ñ X. Equip r0, 1s ˆ X with a
reasonable product metric and simplicial structure so that is a good simplicial
complex, and such that the natural maps X Ñ r0, 1s ˆ X, x ÞÑ pt, xq are all
coarse equivalences (we leave it as an exercise to find such structures). Let
h : t0, 1u ˆ X Ñ X be the map that is the identity on t0u ˆ X and equal to
gs ˝ fs on t1u ˆ X. Lemma 7.3.7 then implies that h extends to a continuous

coarse equivalence rh : r0, 1s ˆ X Ñ X, and this map is necessarily a proper
homotopy between gs ˝ fs and the identity, so the two induce the same map on
K˚pXq.

On the other hand, consider the composition fs ˝ gs : PspZq Ñ PspZq.
This is again close to the identity, so Lemma 7.2.13 gives t ě s such that the
composition its ˝ fs ˝ gs : PspZq Ñ PtpZq is properly homotopic to the identity.
This is enough to complete the proof.

7.4 Classifying spaces

In this section we use classifying spaces to give concrete models for the Baum-
Connes conjecture for a group G. We give two variations: one in terms of the
classical classifying space BG which is perhaps the most concrete, but does not
always work, and one in terms of the classifying space for proper actions EG,
which does always work. This section assumes a little more topology that we
normally would: this is all to do with covering space theory and fundamental
groups which we hope is still quite accessible.

Definition 7.4.1. Let G be a countable discrete group. A classifying space2 for
G is a connected CW complex BG with fundamental group G, and contractible
universal cover.

Examples 7.4.2. The following are basic examples of classifying spaces.

2Also called a KpG, 1q space.
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(i) If G “ Z, then a classifying space for G is the circle S1 with universal
cover is R.

(ii) Generalizing (i), if G “ Fn is a free group on n generators, then a classi-
fying space for G is the wedge product

Žn
S1 of n circles, with universal

cover the tree in which every vertex has 2n edges coming out of it.

(iii) Generalizing (i) in another direction, if G “ Zd is the free abelian group
on d generators, then a classifying space for G is the d-torus pS1qd with
universal cover Rd.

(iv) Say G is the fundamental group of a closed orientable surface Σg of genus
g ą 1. Then a classifying space for G is Σg itself, with universal cover the
hyperbolic plane.

(v) Say G is the integral Heisenberg group

G :“

#

¨

˝

1 x z
0 1 y
0 0 1

˛

‚PM3pRq

ˇ

ˇ

ˇ

ˇ

ˇ

x, y, z P Z

+

.

Let H be the real Heienberg group, which is defined in the same way
but with x, y, and z allowed to be any real numbers. Then the closed
3-manifold H{G is a classifying space for G, with universal cover H.

The free group and free abelian group examples can be built from the ex-
ample for G “ Z using general facts about free products and direct products:
see Exercise 7.6.10.

The following theorem from topology summarises the key properties of clas-
sifying spaces. We will not prove it here: see the notes and references at the
end of the chapter.

Theorem 7.4.3. Let G be a countable discrete group. Then a classifying space
for G exists.

Moreover, if BG is a classifying space with basepoint y0 and X is a CW
complex with basepoint x0 then for any map π1pX,x0q Ñ π1pBG, y0q there is
a continuous map f : X Ñ BG taking x0 and y0, and that is unique up to
homotopy (through maps taking x0 to y0).

Our first goal in this section is the following theorem.

Theorem 7.4.4. Assume G is finitely generated and torsion free, and admits
a classifying space BG which is a finite CW complex3. Then the Baum-Connes
assembly map for G (acting on itself) identifies with the composition,

K˚pBGq – KG
˚ pEGq

µEG
ÝÑ K˚pC

˚pEGqGq – K˚pC
˚
ρ pGqq

where the first isomorphism is that of Theorem 6.5.15, the middle map is the
assembly map for EG of Definition 7.1.1, and the last isomorphism comes from
Theorem 5.3.2.

3This actually implies that G is finitely generated and torsion free, so these assumptions
are redundant.
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Proof. Lemma 7.2.14 implies that there is r ě 0 and a continuous, equivariant
map f : EGÑ PrpGq that restricts to the identity on G (considered as included
in EG by an orbit map g ÞÑ gx for some fixed x P EG). Note that as the action
of G on EG is cocompact, f is also a coarse equivalence by the Svarc-Milnor
lemma (Lemma A.3.14). This gives rise to a commutative diagram

KG
˚ pEGq

f˚

��

µEG,G // K˚pC˚pGqGq

KG
˚ pPrpGqq

µPrpGq,G // K˚pC˚pGqGq

.

Let its : PspGq Ñ PtpGq be the canonical inclusion, and for each s ě r, let
fs : EGÑ PspGq be the composition isr ˝f . Taking the direct limit as the Rips
parameter tends to infinity, we get a commutative diagram

KG
˚ pEGq

f8

��

µX // K˚pC˚pGqGq

lim
sÑ8

KG
˚ pPspGqq

µ // K˚pC˚pGqGq

,

where f8 is the direct limit of the maps pfsq˚ : KG
˚ pEGq Ñ KG

˚ pPspGqq. To
complete the proof, it suffices to show that f8 is an isomorphism.

To see this, we will construct an inverse. Note now that by increasing r as
above if necessary, finite generation of G implies that PrpGq is connected. Fix
for now s ě r, and consider the space Xs :“ PspGq{G defined as the quotient
of PspGq by the canonical G action. Equip Xs with the CW complex structure
arising from the simplicial structure of PspGq. AsG is torsion free the action ofG
on PspGq is free (see Exercise 7.6.1), and it is always proper (see Lemma 7.2.12).
Hence PspGq is a covering space of Xs with deck transformation group G. It
follows that there is an associated map of fundamental groups π1pXsq Ñ π1pBGq
(here we use the image of e P G as the basepoint of Xs, and fix any basepoint of
BG to make sense of this). Theorem 7.4.4 gives a continuous map gs,0 : Xs Ñ

BG that is unique up to homotopy equivalence. This map moreover lifts to a
continuous equivariant map gs : PspGq Ñ EG on covers. If we perform the same
construction for some t ě s, then Xs Ď Xt and the maps gs,0, gt,0|Xs : Xs Ñ BG
that we get are homotopic. This homotopy lifts to a proper (by compactness
of BG) homotopy of the maps gs, gt|PspGq : PspGq Ñ EG on covers. It follows
that for any t ě s the following diagram

KG
˚ pPspGqq

pitsq˚

��

pgsq˚ // KG
˚ pEGq

KG
˚ pPtpGqq

pgtq˚ // KG
˚ pEGq
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commutes. Hence we get a map on the direct limit

g8 : lim
sÑ8

KG
˚ pPspGqq Ñ KG

˚ pEGq

defined as the direct limit of the maps pgsq˚ : KG
˚ pPspGqq Ñ KG

˚ pEGq. We
claim g8 is the inverse to f8. Note first that for any s ě r, gs and fs are
(equivariant, continuous) coarse equivalences that are mutually inverse up to
closeness, as both restrict to the identity on G.

To show that g8 is the inverse to f8, consider first the composition gs ˝ fs :
EGÑ EG. This is an equivariant, continuous map. As gs ˝ fs is equivariant, it
induces a map BGÑ BG on quotients, which is homotopic to the identity using
Theorem 7.4.3. Lifting this homotopy shows that gs˝fs is itself homotopic to the
identity. On the other hand, consider the composition fs ˝ gs : PspGq Ñ PspGq.
This is close to the identity, from which it follows that for some suitable large
t ě s, the composition its ˝ fs ˝ gs : PspGq Ñ PtpGq is equivariantly properly
homotopic to the identity via a straight line homotopy: see Lemma 7.2.13.

Examples 7.4.5. In the following examples, the left hand side of the Baum-
Connes conjecture for the given group G can be computed directly using stan-
dard Mayer-Vietoris arguments (see Exercise 7.6.9). Many other naturally oc-
curring examples can be handled similarly, assuming a little more topology,
manifold theory, or geometric group theory.

(i) Say G “ Zn. Then the torus Tn has fundamental group G, and its uni-
versal cover is Rn which is contractible. Hence we may take BG “ Tn. It
follows that

KXG
˚ pGq – K˚pTnq – Z2n´1

loomoon

K0

‘Z2n´1
loomoon

K1

.

(ii) Say G is a free group on n generators, and let Xn :“
Žn

S1 be a wedge
product of n circles. Then π1pXnq “ G, and the universal cover of Xn is
a tree where every vertex has degree 2n, which is contractible. Hence

KXG
˚ pGq – K˚pXnq – Z

loomoon

K0

‘ Zn
loomoon

K1

.

(iii) Say G is the fundamental group of an oriented closed surface Σg of genus
g. Then by the uniformisation theorem, the universal cover of Σg identifies
with the hyperbolic plane, which is contractible. Hence

KXG
˚ pGq – K˚pΣgq – Z2

loomoon

K0

‘ Z2g
loomoon

K1

.

As the examples above illustrate, the left hand side of the Baum-Connes
conjecture can be computed very explicitly when there is a good model for the
classifying space BG, say one that is a finite simplicial complex. However, the
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existence of such a good model is a fairly restrictive condition. We now move
on to a classifying space construction that works in general.

For the statement of the next definition, if X is a simplicial complex with
vertex set X0, then an action of G on X is simplicial if the restricted action
permutes X0, and if the G action takes the simplex with vertices x0, ..., xd to the
simplex with vertices gx0, ..., gxd by affine extension of the map on the vertices.
The most important example for us will occur when G acts isometrically on a
locally finite metric space Z, and X “ PrpXq is the Rips complex.

Definition 7.4.6. Let G be a countable group. A classifying space for proper
actions for G is a topological space EG equipped with a proper action of G that
has the following universal property: for any proper G simplicial complex4 X
there is a continuous, proper equivariant map f : X Ñ EG that is unique up to
proper homotopy equivariant.

Theorem 7.4.7. Let G be a countable group. Then there exists a locally com-
pact, second countable classifying space for proper actions for G.

Proof. Define

Z :“ tµ P `1pGq | µ ě 0 and 1{2 ă }µ} ď 1u,

equipped with the weak-˚ topology inherited from the natural identification
C0pGq

˚ – `1pGq. We claim Z works as a model for EG. First, note that

Z “ tµ P `1pGq | µ ě 0 and }µ} ď 1u z tµ P `1pGq | µ ě 0 and 1{2 ă }µ}u;

as the first set on the right is compact (by Banach-Alaoglu) and the second
is open, Z is locally compact. Second countability follows from separability of
C0pGq.

To see that the action of G on Z is proper, let K Ď Z be compact. For
each non-negative-valued, compactly supported function f on G with supremum
norm 1, let

Uf :“ tµ P Z | µpfq ą 1{2u.

These sets are weak-˚ open and it is straightforward to check that they cover
Z. Hence our compact set K is covered by finitely many of these sets, say
Uf1

, ..., Ufn . Let F be the union of the supports of the fi, a finite subset of G,
and note that for any g P G outside the finite set tg P G | gF X F ‰ ∅u, we
have that

g ¨
´

n
ď

i“1

Ufi

¯

č

´

n
ď

i“1

Ufi

¯

“ ∅

(the bounds on the mass of our measures are crucial here) and therefore that
gK XK “ ∅.

4One can alter the definition by altering the class of proper G spaces X the universal applies
to; our definition with proper G simplicial complexes is fairly restrictive. The literature is
not completely consistent on this issue; however, from a practical point of view, it does not
usually matter exactly what choice one makes here.
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Finally, let us check the universal property. Let X be as in the statement.
Let X0 be the vertex set of X. Then each G orbit in X0 identifies as a G-
space with G{F for a finite subgroup F of G by properness. Consider the point
µ :“ 1

|F |

ř

gPF δg in Z. This is fixed by F , and hence the orbit inclusion

GÑ Z, g ÞÑ gµ

descends to a well-defined map G{F Ñ Z. Working on each orbit separately in
this way, we get a (continuous equivariant) map f0 : X0 Ñ Z. Now extend f0

to all of X by taking convex combinations. It is not too difficult to see that this
has the right properties.

The following theorem can now be proved in much the same way as Theorem
7.4.4 above.

Theorem 7.4.8. Let G be a countable discrete group, and EG be a classifying
space for proper actions for G. Then the Baum-Connes assembly map for G
(acting on itself) identifies with the map

lim
YĎEG

KG
˚ pEGq

µEG
ÝÑ K˚pC

˚pGqGq.

which is the direct limit over all assembly maps KG
˚ pY q

µY,G
ÝÑ K˚pC

˚pGqGq, where
Y Ď EG is a proper cocompact subset.

Proof. As EG is second countable and locally compact, there exists a countable
nested collection Y1 Ď Y2 Ď ¨ ¨ ¨ of cocompact, equivariant subsets of EG such
that for any cocompact subset of EG is eventually contained in one of the Yn.
Fix an orbit inclusion G Q g ÞÑ gy P Y . Using Lemma 7.2.14, there is r1 ě 0
and a continuous equivariant map f1 : Y1 Ñ Pr1pGq that extends our fixed orbit
inclusion. Similarly, there is r2,0 ě 0 such that there is a continuous equivariant
map f2,0 : Y2 Ñ Pr2,0pGq that extends the same orbit inclusion. As f1 and f2,0

both extend the orbit inclusion, there is r2 ě maxtr1, r2,0u such that these two
maps become close, and therefore properly equivariantly homotopic when seen
as maps into Pr2pGq. Continuing in this way, we get a sequence r1 ď r2 ď ¨ ¨ ¨

of nonnegative real numbers and for each n a continuous equivariant coarse
equivalence fn : Yn Ñ PrnpGq such that the diagram

KG
˚ pY1q

pf1q˚

��

// KG
˚ pY2q //

pf2q˚

��

KG
˚ pY3q //

pf3q˚

��

¨ ¨ ¨

KG
˚ pPr1pGqq // KG

˚ pPr2pGqq // KG
˚ pPr2pGqq // ¨ ¨ ¨

commutes. Taking the limits along both lines gives a map

f8 : lim
YĎEG

KG
˚ pEGq Ñ lim

rÑ8
KG
˚ pPrpGqq.
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Noting that the diagram

lim
YĎEG

KG
˚ pEGq

µEG //

f8

��

K˚pC
˚pGqGq

lim
rÑ8

KG
˚ pPrpGqq

µ // K˚pC˚pGqGq

commutes, it is enough to show that f8 is an isomorphism.
On the other hand, using the universal property of EG, for each there is a

continuous equivariant map g1 : Pr1pGq Ñ EG. As the action of G on PrkpGq
is cocompact, there is some Yn1

such that the image of g1 is actually contained
in Yn1

. Similarly, let n2,0 be such that there is a continuous equivariant map
g2 : Pr2pGq Ñ Yn2,0

, and let n2 be such that g1 and the restriction of g2,0

to Pr1pGq are equivariantly properly homotopic (such exists by the universal
property of EG), and consider g2 as having image in Yn2 . Continuing in this
way gives a commutative diagram

KG
˚ pYn1

q // KG
˚ pYn2

q // KG
˚ pYn3

q // ¨ ¨ ¨

KG
˚ pPr1pGqq

pg1q˚

OO

// KG
˚ pPr2pGqq //

pg2q˚

OO

KG
˚ pPr2pGqq

pg3q˚

OO

// ¨ ¨ ¨

.

Taking limits gives then a map

g8 : lim
rÑ8

KG
˚ pPrpGqq Ñ lim

YĎEG
KG
˚ pY q.

Now, note that any composition gk ˝fn : Yn Ñ Ynk (where defined) becomes
properly equivariantly homotopic to the identity on increasing nk by the uni-
versal property of EG, and that any (defined) composition fn ˝ gk : PrkpGq Ñ
PrnpGq is again is close to the identity, and therefore becomes equivariantly
properly homotopic to the identity (by a straight line homotopy) on increasing
the Rips parameter. This shows that f8 and g8 are mutually inverse, and is
enough to complete the proof.

Although Theorem 7.4.7 gives a reasonably explicit model for a space EG
that works in general, it is often possible to give much more geometrically nat-
ural examples that even allow lim

YĎEG
KG
˚ pY q to be computed. We give some

below: we will not justify this here, but it can be done in each case below by
some argument based on non-positive curvature.

Examples 7.4.9. (i) Let D8 be the infinite dihedral group: this is the group
of isometries of R generated by integer translations and reflection about
the origin. Then R is an EG for this action.
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(ii) Let G “ PSLp2,Zq be the group of 2ˆ2 integer matrices with determinant
one, modulo the central subgroup t˘1u, where 1 is the identity matrix.
This group acts on the upper half plane H :“ tz P C | Impzq ą 0u via
Möbius transformations:

ˆ

a b
c d

˙

: z ÞÑ
az ` b

cz ` d
.

Moreover, this action is by isometries if one gives H the standard hyper-
bolic metric. Then H is an example of an EG.

(iii) Let G “ PSLp2,Zq again. Using Bass-Serre theory and the free product
decomposition PSLp2,Zq “ pZ{2Zq ˚ pZ{3Zq, one can build an action of
PSLp2,Zq on a tree T . This tree is also an example of an EG. It is
cocompact, which makes it a little simpler than H to work with in some
ways: in particular, one has that lim

YĎT
KG
˚ pY q – KG

˚ pT q.

Note that
lim
YĎH

KG
˚ pY q – KG

˚ pT q

as both groups identify with KXG
˚ pGq.

Example 7.4.10. To see how such computations are at least sometimes possible,
let G “ D8 and let us compute KG

˚ pRq. This computes the domain of the
assembly map (‘the left hand side of the Baum-Connes conjecture’) in this case.

Let τ be the element of G which translates to the left by one, and σ be the
element that reflects around the origin, so G is generated by σ and τ , subject to
the relations σ1 “ e (where e is the identity) and στσ “ τ´1. Write R “ EYF ,
where

E “
ğ

nPZ
rn` 1{3, n` 2{3s and F “

ğ

nPZ
rn´ 1{3, n` 1{3s.

There is then a Mayer-Vietoris sequence in equivariant K-homology (see Exer-
cise 6.8.12), which looks like

KG
0 pE X F q // KG

0 pEq ‘K
G
0 pF q // KG

0 pRq

��
KG

1 pRq

OO

KG
1 pEq ‘K

G
1 pF qoo KG

1 pE X F q .oo

(7.13)

Note first that E X F is the set tn ` 1{3, 1{3 ´ n | n P Zu, and that this space
is isomorphic to G as a G-space. Hence by Proposition 6.5.13,

KG
i pE X F q – KG

i pGq – Kippointq –

"

Z , i “ 0
0 , i “ 1

.

To compute KG
i pEq, note first that the linear homotopy contracting each in-

terval rn ` 1{3, n ` 2{3s to the singleton n ` 1{2 is equivariant. Write E0 “
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tn ` 1{2 | n P Zu. Note that the point 1{2 is fixed by τσ, which generates a
subgroup H of G of order two. One computes from this that E0 is isomorphic
to the balanced product GˆH t1{2u as a G-space (with the trivial action of H
on t1{2u: see the discussion before Proposition 6.5.13 for notation). Hence

KG
i pEq – KG

i pE0q – KH
i ppointq –

"

Z‘ Z , i “ 0
0 , i “ 1

,

where the second isomorphism is Proposition 6.5.13, and the third comes from
Exercise 6.8.10 (or if you prefer, from Example 7.1.13). Similarly, we have that
F is equivariantly homotopy equivalent to F0 :“ Z. Using that the point 0 is
stabilised by the order two subgroup K of G generated by σ, one checks that
F0 is isomorphic to GˆK t0u as a G-space. We thus have

KG
i pF q – KG

i pF0q – KK
i ppointq –

"

Z‘ Z , i “ 0
0 , i “ 1

,

completely analogously to the case of E.
Now, putting all this information into diagram (7.13) gives an exact sequence

Z α // Z4 // KG
0 pRq

��
KG

1 pRq

OO

0oo 0oo

.

It remains to compute the map labeled α above, which is induced by the in-
clusions E X F Ñ E and E X F Ñ F . Consider first the map KG

0 pE X F q Ñ
KG

0 pF q. We may identify E X F with G ˆK t˘1{2u and F with G ˆK t0u;
the map E X F Ñ F is then induced by the (K-equivariant) collapse map
˘1{2 ÞÑ 0. Using naturality of the isomorphism of Proposition 6.5.13, the map
KG

0 pE X F q Ñ KG
0 pF q that we are interested in is equivalent to the map

KK
0 pt´1{2, 1{2uq Ñ KK

0 pt0uq.

Using Exercise 6.8.10, we see that this is the map Z Ñ Z ‘ Z, a ÞÑ pa, aq on
K-theory. Completely analogously, the map KG

0 pE X F q Ñ KG
0 pEq is again

a ÞÑ pa, aq. Putting this together, the map α is injective, and the map

Z4 Ñ Z3, pa, b, c, dq ÞÑ pa´ b, b´ c, c´ dq

is surjective with kernel exactly the image of α. We conclude that the left hand
side of Baum-Connes is

KG
i pRq –

"

Z3 i “ 0
0 i “ 1

.

The computation for PSLp2,Zq acting on T can be handled quite similarly.
Indeed, the above computation for D8 acting on R can be thought of as an
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action of the free product D8 – pZ{2q ˚ pZ{2q acting on its Bass-Serre tree, and
the case of PSLp2,Zq – pZ{2q ˚ pZ{3q can be handled very similarly: the result
of the computation is

K
PSLp2,Zq
i pT q –

"

Z4 i “ 0
0 i “ 1

.

These computations generalize to any free product of finite groups (assuming
one knows their representation theory). We leave the computations for the
interested reader who knows enough about Bass-Serre theory. It is also an
interesting exercise to compare what happens for the action of PSLp2,Zq on
the hyperbolic plane H for readers who know enough about that action.

We conclude this section by mentioning the descent principle. We will not
prove it here as it is well-covered elsewhere in the literature and the methods
we are using here would not lead to any substantial difference with previous
treatments.

Theorem 7.4.11. Say G is a discrete group such which admits a finite CW-
complex as a model for BG. Then if the coarse assembly map

K˚pEGq Ñ K˚pC
˚p|G|qq

is an isomorphism, the Baum-Connes assembly map

K˚pBGq Ñ K˚pC
˚
r pGqq

is injective.

This is important for applications, partly as the injectivity statement is more
closely connected to Novikov type statements (see Section 10.3).

7.5 The coarse Baum-Connes conjecture for Eu-
clidean space

In this section, we move back from generalities, and prove the coarse Baum-
Connes conjecture for the metric space Rd. This case already has quite non-
trivial consequences: for example, as discussed in Section 3.3 it implies that the
d-torus does not admit a metric of positive scalar curvature.

Theorem 7.5.1. The coarse Baum-Connes conjecture holds for Rd.

The proof uses ideas that in the main we have already developed, as we
explain in the rest of this section.

Using Theorem 7.3.6 and the fact that Rd is uniformly contractible (see
Example 7.3.2), it suffices to prove that if X “ Rd then the evaluation-at-one
map

ev : C˚LpXq Ñ C˚pXq
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induces an isomorphism on K-theory. We will do this by induction on d using
a Mayer-Vietoris argument.

The base case d “ 0 is the coarse Baum-Connes conjecture for a point, which
is true by Example 7.1.13. The inductive step will follow from a Mayer-Vietoris
argument applied to the decomposition

Rd “
`

Rd´1 ˆ p´8, 0s
˘

Y
`

Rd´1 ˆ r0,8q
˘

, (7.14)

and the fact that the assembly map is an isomorphism for any metric space of
the form X ˆ r0,8q where X is a proper metric space, and X ˆ r0,8q has the
metric

dXˆr0,8qppx1, t1q, px2, t2qq :“
a

dXpx1, x2q
2 ` |t1 ´ t2|2.

Proposition 7.5.2. Let X be a proper metric space, and equip Xˆr0,8q with
the metric above, we have

K˚pC
˚
LpX ˆ r0,8qqq “ K˚pC

˚pX ˆ r0,8qqq “ 0.

In particular, the assembly map

µ : K˚pX ˆ r0,8qq Ñ K˚pC
˚pX ˆ r0,8qq

is an isomorphism for any metric space of this form.

Proof. The group K˚pC
˚
LpX ˆ r0,8qqq is the same as the K-homology group

K˚pX ˆ r0,8qq and is thus zero by Proposition 6.4.14. We will show that
C˚pX ˆ r0,8qq has zero K-theory by an Eilenberg swindle.

Assume that C˚pX ˆ r0,8qq is defined using an ample geometric module
HXˆr0,8q of the form HX b L2r0,8q for some ample X module HX . Let
H8Xˆr0,8q be the infinite direct sum

H8Xˆr0,8q :“
8
à

n“1

HXˆr0,8q,

which is also an ample X module with the structure inherited from HXˆr0,8q.
For each n, let Vn : L2r0,8q Ñ L2r0,8q be the isometry defined for u P L2r0,8q
by

pVnuqptq “

"

upt´ 1q t ě 1
0 t ă 1

.

Let Wn : HXˆr0,8q Ñ H8Xˆr0,8q be the isometry including HXˆr0,8q as the nth

summand. Define a ˚-homomorphism φ : C˚pHXˆr0,8qq Ñ C˚pH8Xˆr0,8qq by

the formula

T ÞÑ
8
à

n“1

Wnp1b VnqT p1b V
˚
n qW

˚
n ;

the image of this lies in C˚pH8Xˆr0,8qq as for any compact K Ď X ˆ r0,8q

only finitely many summands of χKφpT q and φpT qχK are non-zero. Let ψ :
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C˚pHXˆr0,8qq Ñ C˚pH8Xˆr0,8qq be the ˚-homomorphism induced by the inclu-

sion of HXˆr0,8q onto the first summand of H8Xˆr0,8q.

Now, for any T P C˚pHXˆr0,8qq the elements
ˆ

φpT q 0
0 ψpT q

˙

,

ˆ

φpT q 0
0 0

˙

ofM2pC
˚pH8Xˆr0,8qq are conjugate to each other by an isometry in the multiplier

algebra of M2pC
˚pH8Xˆr0,8qqq, whence

φ˚ ` ψ˚ “ φ˚

as maps on K-theory by Proposition 2.7.5, and so ψ˚ “ 0. However, ψ˚ covers
the identity map, so is an isomorphism by Theorem 5.1.15; the only way this is
possible is if K˚pC

˚pX ˆ r0,8qqq is zero, so we are done.

To complete the proof we will use a Mayer-Vietoris sequence for the K-
theory of the Roe algebra. One needs an excision condition appropriate to
coarse geometry to make this work.

Definition 7.5.3. Let X “ EYF be a cover of X by closed subsets. The cover
is said to be coarsely excisive if for all r ą 0 there exists s ą 0 such that

NrpEq XNrpF q Ď NspE X F q.

Example 7.5.4. The cover R “ p´8, 0s Y r0,8q is coarsely excisive, as is the
decomposition in line (7.14) above. Any decomposition with empty intersection
is not coarsely excisive. For a less trivial example, let X be the pictured subset
of R2 with the restricted metric, and let E and F be the closed top and bottom
halves respectively (so they intersect at the midpoint of the vertical segment).

p p p
p p p

The resulting decomposition is not coarsely excisive.

Here then is the Mayer-Vietoris sequence we want. The proof is closely
related to, but more straightforward than, that of Theorem 6.3.4, so we will not
be as detailed here.

Theorem 7.5.5. Let X “ E Y F be a coarsely excisive decomposition of a
proper metric space. Then there is a six-term exact sequence

K0pC
˚pF X F qq // K0pC

˚pEqq ‘K0pC
˚pF qq // K0pC

˚pXqq

��
K1pC

˚pEqq

OO

K1pC
˚pEqq ‘K1pC

˚pF qqoo K1pC
˚pE X F qqoo
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and similarly for the localised Roe algebras.
Moreover, the evaluation-at-one maps naturally map one of these exact se-

quences to the other in the sense that the diagram

// KipC
˚
LpE X F qq

ev˚

��

// KipC
˚
LpEqq ‘KipC

˚
LpF qq

//

ev˚‘ev˚

��

KipC
˚
LpXqq

//

ev˚

��
// KipC

˚pE X F qq // KipC
˚pEqq ‘KipC

˚pF qq // KipC
˚pXqq //

commutes.

Proof. It will suffice to prove the theorem for a given choice of ample modules.
Let then ZE , ZF be countable dense subsets of E, F respectively such that
ZEXZF is a countable dense subset of EXF , and let Z “ ZEYZF , a countable
dense subset of X. Let H be a separable infinite dimensional Hilbert space, and
let HEXF , HE , HF , HX denote the highly ample modules `2pZE X ZF , Hq,
`2pZE , Hq, `

2pZF , Hq, `
2pZ,Hq over E X F , E, F , X respectively; we will use

these modules to define all the Roe algebras and localised Roe algebras involved
in the statement.

Let χE denote the characteristic function of E, which is a multiplier of
all the C˚-algebras involved, and let C˚XpEq, C

˚
L,XpEq denote denote the C˚-

subalgebras of C˚pXq and C˚LpXq generated by products of the form

SχET, pStqχEpTtq

(where S, T are in C˚pXq and pStq, pTtq are in C˚LpXq) respectively; note that
C˚XpEq and C˚L,XpEq are ideals in C˚pXq and C˚LpXq respectively. We define

C˚XpF q, C
˚
L,XpF q, C

˚
XpE X F q and CL,XpE X F q similarly. Then there is a

commutative diagram of pushout diagrams

C˚
L,X

pEq X C˚
L,X

pF q

��

//

ev

((

C˚
L,X

pEq

��

ev

((
C˚
X
pEq X C˚

X
pF q

��

// C˚
X
pEq

��

C˚
L,X

pF q //

ev

((

C˚
L,X

pEq ` C˚
L,X

pF q

ev

((
C˚
X
pF q // C˚

X
pEq ` C˚

X
pF q .

(7.15)

We claim that: (i) C˚XpEq X C˚XpF q “ C˚XpE X F q; (ii) C˚XpEq ` C˚XpF q “
C˚pXq, and similarly for the localised Roe algebras. For point (i), the inclusion

C˚XpE X F q Ď C˚XpEq X C
˚
XpF q
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is clear, while the converse inclusion follows from the definition of coarsely ex-
cisive pair: up to passing to dense subalgebras, the left hand side consists of
operators supported in some neighbourhood of E X F , while the right hand
side consists of operators supported in the intersection of a neighbourhood of E
and one of F . The corresponding statement for the localised versions is similar,
but simpler, using only the closedness assumption. Point (ii) follows from the
decomposition

T “ χET ` p1´ χEqT

for any T P C˚pXq and similarly for the localised case.
The commutative cube in line (7.15) above thus simplifies to

C˚L,XpE X F q

��

//

ev

''

C˚L,XpEq

��

ev

%%
C˚XpE X F q

��

// C˚XpEq

��

C˚L,XpF q
//

ev

''

C˚LpXq

ev

%%
C˚XpF q

// C˚pXq

.

and we may apply Proposition 2.7.15 to get a commutative diagram

// KipC
˚
L,XpE X F qq

ev˚

��

// KipC
˚
L,XpEqq ‘KipC

˚
L,XpF qq

//

ev˚‘ev˚

��

KipC
˚
LpXqq

//

ev˚

��
// KipC

˚
XpE X F qq

// KipC
˚
XpEqq ‘KipC

˚
XpF qq

// KipC
˚pXqq //

(7.16)
of Mayer-Vietoris sequences. To complete the proof, note that C˚pEq includes
as the full corner χEC

˚
XpEqχE , and thus the inclusion

C˚pEq Ñ C˚XpEq

induces an isomorphism on K-theory by Proposition 2.7.19, and similarly for
F , E X F and the localised versions. The commutative diagram in line (7.16)
above thus reduces to the one in the statement, and we are done.

The proof of the inductive step is now follows from Proposition 7.5.2, Exam-
ple 7.5.4, Theorem 7.5.5, and the five lemma; thus the proof of Theorem 7.5.1 is
complete. As discussed in Section 3.3, this proofs in particular than the d-torus
does not admit a Riemannian metric with positive scalar curvature.
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7.6 Exercises

7.6.1. Let G be a countable discrete group, equipped with a bounded geometry
left invariant metric. Show that the action of G on all of its Rips complexes
PrpGq is free if and only if G is torsion free.

7.6.2. Prove that if X and Y are coarsely equivalent metric spaces, then the
coarse Baum-Connes assembly map is an isomorphism for X if and only if it is
for Y .

7.6.3. Let Z be a locally finite metric space. With notation as in Definition
7.2.2, characterise when the inclusion Z Ñ SrpZq of the vertex set is a coarse
equivalence for some r.

7.6.4. With notation as in Definition 7.2.2, show that the topology on SrpZq
is the same as the one it inherits by considering the collections of formal sums
ř

zPZ tzz defining its points as a subset of the unit ball of `1pZq (equipped with
its usual norm topology).

7.6.5. Let Z be a locally finite metric space, and let ErpZq be defined anal-
ogously to SrpZq as in Definition 7.2.2, but using the metric on each simplex
σpF q that it inherits from the natural identification with the usual simplex

!

ÿ

zPF

tzz P RF | tz P r0, 1s,
ÿ

tz “ 1
)

in the Euclidean space RF (equipped with its usual Euclidean metric). Note
that the set-theoretic identity map defines a natural map between SrpZq and
ErpZq.

(i) Show that Corollary 7.2.6 fails in general ErpZq.

(ii) Show that the set theoretic identity map defines a coarse equivalence be-
tween ErpZq and SrpZq when Z has bounded geometry (see Definition
A.3.19), but not in general.

(iii) Relatedly to the previous part, show that if we defined PrpZq analogously
to Definition 7.2.8, but starting with ErpZq rather than SrpZq, then the
natural inclusion Z “ P0pZq Ñ PrpZq need not be a coarse equivalence
(contra part (ii) of Proposition 7.2.11 for the usual definition of PrpZq).

7.6.6. As in Remark 7.2.7, show that the direct limit of assembly maps

lim
rÑ8

K˚pSrpZqq Ñ lim
rÑ8

K˚pC
˚pSrpZqqq

identifies with the coarse Baum-Connes assembly map.
Hint: the topologies on SrpZq and PrpZq are the same, so the left hand side
equals lim

rÑ8
K˚pSrpZqq, which is the left hand side of the coarse Baum-Connes

assembly map as in Theorem 7.2.16. For the right hand side, show that one can
choose appropriate geometric modules so that lim

rÑ8
C˚pSrpZqq identifies canon-

ically with C˚pXq.
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7.6.7. Let SrpZq be as in Definition 7.2.2, equipped with the topology defined
by its metric (or equivalently, with the topology from Exercise 7.6.4). Say a
subset E of SrpZq ˆ SrpZq is controlled if the collection of numbers

tdZpz, wq | there is px, yq P SrpZq ˆ SrpZq with z P supppxq and w P supppyqu

is bounded. Show that this collection defines an abstract coarse structure in the
sense of Definition A.3.7. Show moreover that this coarse structure is such that
the canonical inclusion i : Z Ñ SrpZq is a coarse equivalence: this means that
a subset E of Z ˆ Z is controlled for the metric on Z if any only if pi ˆ iqpEq
is controlled for the coarse structure on SrpZq ˆ SrpZq, and that there exists a
controlled set F such that for every y P SrpZq there is z P Z with py, ipzqq P F .

7.6.8. Show that if X is a single point space and G a finite group then the
assembly map

µ : KG
˚ pXq Ñ K˚pC

˚pXqGq

of Definition 7.1.1 is an isomorphism.
Hint: use an Eilenberg swindle as in the proof of Proposition 6.3.3 to show that
the kernel of the evaulation-at-one map

ev : C˚LpXq
G Ñ C˚pXqG

has trivial K-theory.

7.6.9. Use Mayer-Vietoris sequences (compare Theorem 6.3.4) to compute the
K-homology groups in Examples 7.4.5.

7.6.10. Let G, H be countable discrete groups.

(i) Show that a CW complex BG is a classifying space for G in the sense of
Definition 7.4.1 if and only if it has fundamental group G, and all of its
higher homotopy groups vanish.
Hint: you will need to know how higher homotopy groups behave on taking
covering spaces, and also Whitehead’s theorem on weak homotopy equiva-
lences between CW complexes being homotopy equivalences.

(ii) Show that if G, H have classifying spaces BG, BH respectively, then a
classifying space for the free product G˚H is given by the wedge BG_BH.
Hint: part (i) might also help, as well as knowing how homotopy groups
interact with wedge products.

(iii) Show that if G, H have classifying spaces BG, BH respectively, then a
classifying space for the direct product is given by the product BGˆBH.
Hint: again, part (i) might help, as well as knowing how higher homotopy
groups interact with products.

7.6.11. Prove that a contractible proper metric space that admits a cocompact
isometric action of some group is uniformly contractible.
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7.6.12. Let X be a uniformly contractible proper metric space. Show that if
f : X Ñ Y is simultaneously a homeomorphism and a coarse equivalence, then
Y is also uniformly contractible. Deduce that if d1 is a new metric on X inducing
the same topology, and coarsely equivalent to the original metric, then pX, d1q
is uniformly contractible.

7.6.13. Find a metric on R that induces the usual topology, and is not uniformly
contractible. Is this possible if the metric is a Riemannian metric? Find a
Riemannian metric on R2 that is not uniformly contractible (or at least draw
some pictures to convince yourself that one exists).

7.6.14. Elaborate on the argument in Theorem 7.5.5 to prove that if X “ Y YZ
is a coarsely excisive decomposition, then there is a commutative diagram of
Mayer-Vietoris sequences

// KXipY X Zq //

��

KXipY q ‘KXipZq //

��

KXipXq //

��
// KipC

˚pY X Zqq // KipC
˚pY qq ‘KipC

˚pZqq // KipC
˚pXqq //

,

where the vertical maps are coarse Baum-Connes assembly maps.

7.7 Notes and references

Variations on the assembly map appear in the work of several authors starting
in the mid seventies and early eighties: perhaps the earliest places are work
of Miscenko [185], Kasparov [150], and Baum and Connes [21] (although all of
these look quite different to the route we have taken). The name ‘assembly
map’ is by analogy with the assembly map of surgery theory [246], a part of
manifold topology. The connection to surgery was originally, and continues to
be, a major motivation for the development of the study of assembly maps.

Our model of the assembly map has the virtue of simplicity, being induced
by a ˚-homomorphism. There are several other models of the (Baum-Connes)
assembly map, and all have technical benefits in various situations: the most
widely used are probably those based on Paschke duality [135, Chapter 12], on
descent in KK-theory [22], and on descent in E-theory [112]. There are still
quite a few others: based on noncommutative simplicial complexes [70], on local-
isation of triangulated categories [177], on Toeplitz-type algebras [71, Chapter
5], and also an approach that subsumes both the Baum-Connes assembly map
and its cousins in algebraic topology as special cases [77].

The Baum-Connes conjecture for groups was developed by Baum and Connes
[21], with the definitive version due to Baum, Connes and Higson [22]. The
description of the left hand side in Remark 7.1.12 is closer to the approach of
[21], and its identification with our version can be justified using the results of
Baum, Higson, and Schick from [28].

An early version of the coarse Baum-Connes conjecture appears in [214,
Section 6], while the modern version was developed by Higson and Roe [133],
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and Yu [269]. Our approach to both conjectures via localised Roe algebras is
based on the approach of Yu [270]. We will have more to say about situations
where the coarse Baum-Connes conjectures do and do not hold, and applications
of the conjectures, in later chapters.

Rips complexes are an import to higher index theory from geometric group
theory: the first major applications are perhaps in the theory of hyperbolic
groups as discussed for example in [105, Chapter 4]. Our treatment of the spher-
ical metric is partially inspired by the corresponding material from Wright’s
thesis [262, Section 5.1]. The treatment of the coarse Baum-Connes conjecture
using the spherical metric directly as in Remark 7.2.7 and Exercise 7.6.6 is the
more standard one in the literature; we differ from this as it is technically con-
venient to alter the spherical metric on the Rips complex in order to guarantee
that the canonical inclusions Z Ñ PrpZq are coarse equivalences. Another re-
lated closely related construction is in terms of so-called anti-Čech sequences:
see [133, Sections 3 and 6] or [262, Section 5.2].

The definition of uniform contractibility is due to Weinberger. Most of the
related material in Section 7.3 comes from the paper [133, Section 3] of Higson
and Roe. The bounded geometry assumption in Theorem 7.3.6 is necessary: see
[83], which gives a particularly exotic metric on (high-dimensional) Euclidean
space for which the theorem fails. The Cartan-Hadamard theorem mentioned
in Example 7.3.7 can be found in many texts on Riemannian geometry, for
example [182, Section 19] (see also [38, Section II.4] for a generalization outside
the world of smooth manifolds).

Classifying spaces for groups are a classical part of algebraic and geometric
topology, and are intimately tied up with group (co)homology: see for example
[39] for background on this. An elementary treatment of the classifying space
BG (there called KpG, 1q) can be found for example in Hatcher’s [123, Section
1.B]; in particular the results we stated without proof as Theorem 7.4.3 follow
from [123, Example 1B.7 and Proposition 1B.9]. The same book [123, Section
1.3] contains an exposition of the material we used in the proof of Theorem
7.4.4 about covering spaces, such as results about lifting maps and homotopies
to covering spaces.

On the other hand, the classifying space EG for proper actions was intro-
duced by Baum and Connes [20]; the particularly nice model in Theorem 7.4.7
is due to Kasparov and Skandalis [152, Section 4]. In algebraic topology, what
we have called ‘EG’ is often written ‘EFING’ and called ‘the classifying space
for actions with finite stabilisers’: both it and EG are part of a family of classi-
fying spaces for different families of subgroups as explained for example in [173,
Section 2].

The descent principle of Theorem 7.4.11 appears in several guises in the
literature: see [216, Chapter 8] or [135, Section 12.6] for expositions and proofs
of the version we stated. A more powerful (but less widely applicable) version
due to Higson works well in some analytic contexts, and can be found in [127].

The argument of Section 7.5 is adapted from work of Higson, Roe, and Yu
[139].
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Part III

Differential operators

285



Chapter 8

Elliptic operators and
K-homology

Our goal in this chapter is to show that elliptic differential operators on a man-
ifold M give rise to K-homology classes. This is one of the main motivations
for the development of analytic models for K-homology: the groups K˚pMq
organise elliptic operators in a way particularly well-suited to studying the in-
teractions of these operators with the topology of the manifold.

The chapter is structured as follows. In Section 8.1 we discuss self-adjointness
for differential operators. This is crucial: our main tool will be the functional
calculus of Theorem D.1.7 and self-adjointness is needed to get this off the
ground. In Section 8.2 we then move on to discussing propagation estimates.
The main tool here is the wave equation associated to the differential operators
we are studying. Using this, we are able to construct a multiplier pFtq of the
localisation algebra L˚pMq out of a differential operator.

In order to make further progress, we discuss ellipticity in Section 8.3. This
is the key additional assumption needed to be build classes in K˚pMq out of
the multipliers pFtq. The idea is to do a concrete analysis in the case of tori
using Fourier theory, and then to transplant these results from tori to general
manifolds. At this point, we have achieved our main goals.

Finally, in Section 8.4, we perform a more careful analysis to relate the
index classes we have constructed to Schatten ideals. This more delicate theory
is important mainly for applications that go beyond the scope of this text,
although we do have one concrete application: we need the Schatten class theory
for our study of the Kadison-Kaplansky conjecture in Section 10.1.

Throughout this chapter, M will denote a smooth (i.e. infinitely differen-
tiable) manifold, and S a (finite dimensional) smooth complex vector bundle
over M . If U is an open subset of M , SU denotes the restriction of S to U , and
for x P M we write Sx for the fibre of S over x. The endomorphism bundle of
S, with fibre over x P M that is equal to the algebra EndpSxq of linear maps
from Sx to itself, is denoted EndpSq. Throughout, C8c pM ;Sq (respectively,
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C8c pU ;Sq) denotes the vector space of smooth, compactly supported sections of
S (respectively, of SU ), and C8c pMq will denote the space of smooth, compactly
supported complex valued functions on M .

8.1 Differential operators and self-adjointness

Our main objects of study in this chapter are differential operators as in the
following definition. Throughout, notation and conventions are as in the intro-
duction to this chapter, so in particular M is a smooth manifold, and S is a
smooth complex vector bundle over M .

Definition 8.1.1. A (first order, linear) differential operator on S is a linear
operator D : C8c pM ;Sq Ñ C8c pM ;Sq with the following properties:

(i) if f P C8c pM ;Sq is supported in some open subset U of M , then Df is
also supported in U ;

(ii) if U Ď M is a coordinate patch with local coordinates px1, ..., xdq, then
there exist smooth sections a1, ..., ad, b of EndpSU q such that for all u P
C8c pM ;Sq supported in U and all x P U we have

pDuqpxq “
d
ÿ

i“1

aipxq
Bu

Bxi
pxq ` bpxqupxq. (8.1)

The support of D is the smallest closed subset F of M such that for all u P
C8c pMzF ;Sq we have that Du “ 0. A (first order, linear) differential operator
as above is zeroth order if all the ai terms in any local representation as in line
(8.1) above are zero.

Examples 8.1.2. (i) Perhaps the most basic (but also very important) exam-
ple occurs when M “ R is the real line, S the trivial line bundle (so
C8c pM ;Sq “ C8c pRq), and D is the usual differentiation operator D “ d

dx .

(ii) Let M to be any manifold, and Ω to be the bundle of differential forms on
M . Set S “ Ω b C to be the associated complexified bundle, so the fibre
Sx of S at x P M is the complexified exterior algebra Λ˚T˚xM b C of the
cotangent bundle to M at x. Set D “ d b 1C to be the complexificiation
of the usual de Rham exterior derivative operator on differential forms.
Then D has the locality property (i) from Definition 8.1.1: this follows for
example from the Leibniz rule

dpfωq “ df ^ ω ` fdω

for f P C8c pMq and ω a section of S. Moreover, in local coordinates
px1, ..., xdq, D is given by

D “
d
ÿ

i“1

pdxi ^ ¨q
B

Bxi
,
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where ‘pdxi ^ ¨q’ is the element of EndpΩ b Cq given (locally) by ‘take
exterior product with dxi’, and so D has the right form.

We will only work with linear, first order operators in what follows. As such,
‘differential operator’ will always be shorthand for ‘first order linear differential
operator’ unless explicitly stated otherwise.

A key tool in our analysis will be the symbol of a differential operator,
which we now introduce. Let D be a differential operator, given in some local
coordinate patch U by the formula

pDuqpxq “
d
ÿ

i“1

aipxq
Bu

Bxi
pxq ` bpxqupxq.

Let g P C8c pUq, and consider g as a multiplication operator on C8c pM ;Sq. Then
the commutator rD, gs acts on u P C8c pU ;Sq by the formula

prD, gsuqpxq “
d
ÿ

i“1

aipxq
Bg

Bxi
pxqupxq,

i.e. rD, gs is acting via the element

x ÞÑ
d
ÿ

i“1

aipxq
Bg

Bxi
pxq (8.2)

of C8c pU ; EndpSqq. Moreover, this section depends only on the exterior deriva-
tive dg, not on g itself (as follows from the formula).

Let now π : T˚M Ñ M be the cotangent bundle of M , and π˚EndpSq be
the pullback of EndpSq to T˚M .

Definition 8.1.3. Let D be a differential operator on S. Let px, ξq be a point
of T˚M , and write ξ “ dg|x for some g P C8c pMq. Let v be an element of
Sx and write v “ upxq for some u P C8c pM ;Sq. Then the symbol of D is the
smooth section

σD P C
8pT˚M ;π˚EndpSqq

of the bundle π˚EndpSq defined by

σDpx, ξqv “ prD, gsuqpxq.

To see that this is well-defined, let px1, ..., xdq be local coordinates near x
and write ξ “ ξ1dx1` ¨ ¨ ¨ ` ξddxd. The computation leading to line (8.2) shows
that

σDpx, ξq “
d
ÿ

i“1

ξiaipxq,

and thus that σDpx, ξq does not depend on the choices of g or u.

Examples 8.1.4. Looking back at the examples from 8.1.2, we have the following.

288



(i) For M “ R and S the trivial bundle,C8pT˚M ;π˚EndpSqq identifies with
C8pTMq – C8pR2q. If D “ d

dx , then σDpx, ξq “ ξ.

(ii) For any M , if S “ Ωb C is the complexified bundle of differential forms,
we have that the fibre of π˚EndpΩbCq over a point px, ξq is the space of
endomorphisms of Λ˚T˚xM b C, the complexified exterior algebra of the
cotangent space to M at x. If D is the (complexified) de Rham operator
on S, then the symbol σDpx, ξq is the operator of exterior multiplication
by ξ.

We now introduce Hilbert space techniques. For this, we need to assume
some extra structure on M and S. From now on, then, assume that M is
Riemannian, and that that S is equipped with a smooth Hermitian structure,
i.e. each fibre Sx is equipped with a Hermitian inner product x, yx such that if
s1, s2 are smooth sections of S, then the function

M Ñ C, x ÞÑ xs1pxq, s2pxqyx

is a smooth function.
We will need to do integration of sections of S. For this purpose, write

ş

M
fpxqdx for the integral of a suitable function f : M Ñ C with respect to the

measure induced by the Riemannian structure. Define a positive definite inner
product on C8c pM ;Sq by

xf, gy :“

ż

M

xfpxq, gpxqyxdx.

The Hilbert space L2pM ;Sq of L2-sections of S is defined to be the completion
of C8c pM ;Sq for this inner product. Note that L2pM ;Sq is a geometric module
over M in the sense of Definition 4.1.1. A differential operator D on S defines
a potentially unbounded operator on L2pM ;Sq with domain C8c pM ;Sq in the
sense of Definition D.1.2. We also denote this unbounded operator by D.

Now, we will want to apply the spectral theorem (Theorem D.1.7) to D, and
in order to do this we need some sort of self-adjointness assumption. Recall the
following definition from the general theory of unbounded operators (compare
Definition D.1.3).

Definition 8.1.5. A differential operator D on S is formally self-adjoint if for
all u, v P C8c pM ;Sq,

xDu, vy “ xu,Dvy.

Formally self-adjoint operators arise naturally from geometric constructions,
as we will see in Chapters 9 and 10. In order to apply the spectral theorem for
unbounded operators, formal self-adjointness is not enough: we need essential
self-adjointness as in the next definition.

Definition 8.1.6. A formally self-adjoint differential operator D on S is essen-
tially self-adjoint if whenever v, w P L2pM ;Sq are such that

xDu, vy “ xu,wy for all u P C8c pM ;Sq, (8.3)
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then there is a sequence pvnq in C8c pM ;Sq such that vn Ñ v and Dvn Ñ w in
L2-norm.

To explain this definition a little, note that if v were in C8c pM ;Sq then
formal self-adjointness implies that the condition in line (8.3) is equivalent to
saying that

xu,Dvy “ xu,wy

and thus that Dv “ w by density of C8c pM ;Sq. Thus the condition in line
(8.3) says that the pair pv, wq ‘weakly satisfies the equation w “ Dv’ in some
sense; essential self-adjointness says that any such pair is a norm limit of pairs
pvn, Dvnq that honestly satisfy this equation.

Unfortunately, it is not automatic that a formally self-adjoint differential
operator will be essentially self-adjoint: see Exercise 8.5.2. Our goal for the rest
of this section will be to develop a sufficient condition for a formally self-adjoint
operator to be essentially self-adjoint.

The key tool, which will also be useful later when analysing the connection
of differential operators to localisation algebras, is as follows.

Definition 8.1.7. Let D be a differential operator on S, and σD its symbol.
The propagation speed of D at a point x is defined to be

cDpxq :“ sup
ξPT˚x M, }ξ}“1

}σDpx, ξq}.

The propagation speed of D is

cD “ sup
xPM

cpxq

(possibly infinite).

Here is our main result on essential self-adjointness.

Proposition 8.1.8. Let D be a formally self-adjoint differential operator. As-
sume moreover that either the support of D is compact, or that M is complete
and the propagation speed is finite. Then D is essentially self-adjoint.

In order to prove this, we need the existence of Friedrich’s mollifiers.

Definition 8.1.9. Let K be a compact subset of M . A family of Friedrich’s
mollifiers is a sequence of bounded operators pFn : L2pK;Sq Ñ L2pM ;Sqq8n“1

with the following properties:

(i) each Fn is a contraction;

(ii) the image of each Fn is contained in C8c pM ;Sq;

(iii) for all v P L2pM ;Sq, Fnv Ñ v and F˚n v Ñ v in norm as nÑ8;

(iv) for any differential operator D, the sequences rD,Fns and rD,F˚n s of op-
erators on C8c pK;Sq is uniformly bounded in operator norm.
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Lemma 8.1.10. Let K be a compact subset of M . Then a family of Friedrich’s
mollifiers exists.

Proof. Let us first assume that M is Rd, and that S is a trivial bundle. Let
K be a compact subset of Rd. Let h : Rd Ñ R be any smooth, non-negative
compactly supported function that satisfies

ş

Rd hpxqdx “ 1. For each n ě 1,

define hnpxq “ ndhpnxq, and let Fn : L2pK;Sq Ñ L2pM ;Sq be the associated
convolution operator, i.e. Fn is defined by

pFnuqpxq “

ż

Rd
hnpx´ yqupyqdy.

Here we use that S is trivial to make sense of this. Looking at the properties in
the statement, (i) now follows as the norm of a convolution operator is bounded
by the L1-norm of the corresponding function, which is one in this case; property
(ii) follows as h is smooth and compactly supported; property (iii) follows from
standard estimates. To see property (iv), note that if D is given in coordinates
by

D “
d
ÿ

i“1

ai
B

Bxi
` b,

then the derivatives actually commute with Fn and one computes using inte-
gration by parts that rD,Fns is the operator given by

prD,Fnsuqpxq “

ż

Rd

d
ÿ

i“1

B

Byi

`

hnpx´ yqpaipyq ´ aipxq
˘

upyqdy

`

ż

Rd
hnpx´ yqpbpxq ´ bpyqqupyqdy.

It is not too difficult to see that this is bounded independently of n (using that
we are working on a compact set).

To complete the proof for general n, one can cover K Ď M by finitely
many coordinate charts over which S can be trivialised, and use a finite smooth
partition of unity consisting of compactly supported functions to patch together
mollifiers constructed as above. Note that the compactness assumptions guaran-
tees that the process of transferring from Rd to the manifold in each coordinate
patch only distorts norms a bounded amount.

Proof of Proposition 8.1.8. Assume that v, w P L2pM ;Sq are such that for all
u P C8c pM ;Sq,

xDu, vy “ xu,wy.

We must show that there exists a sequence pvnq in C8c pM ;Sq converging to v
in L2pM ;Sq, and such that pDvnq converges to w in L2pM ;Sq. As in Definition
D.1.3, we will say that v is in the maximal domain of D if there is a w satisfying
the first condition, and that it is in the minimal domain if there is a w satisfying
the second condition.
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Assume first that v is supported in some compact subset K of M . Let pFnq
be a family of Friedrich’s mollifiers for K as in Definition 8.1.9 and consider the
sequence pFnvq, which is in C8c pM ;Sq and converges in norm to v. For any
u P C8c pM ;Sq,

xDFnv, uy “ xv, F
˚
nDuy “ xv, rF

˚
n , Dsuy ` xv,DF

˚
n uy

“ xv, rF˚n , Dsuy ` xw,F
˚
n uy.

Hence in particular, }DFnv} ď }rF˚n , Ds} ` }w} for all n, so the sequence
pDFnvq is uniformly bounded. Replacing it with a subsequence, we may as-
sume that pDFnvq is weakly convergent. The limit must be w: indeed, for any
u P C8c pM ;Sq,

xu,DFnvy “ xDu,Fnvy Ñ xDu, vy “ xu,wy.

The Hahn-Banach theorem then implies that there is a sequence pvnq in C8c pM ;Sq
consisting of convex combinations of the sequence pFnvq, and such that vn Ñ v
and Dvn Ñ w in norm as nÑ8. We are done in the case that v is compactly
supported.

Assume next that D is supported in some compact set K, and let v be an
arbitrary element of the maximal domain ofD. Let U be an open neighbourhood
of K with compact closure. Using a smooth partition of unity, write v “ v0`v1,
where v0 is supported in U and v1 in MzK. Writing v1 as a norm limit of
elements of C8c pMzKq shows that v1 is in the minimal domain of D, while v0

is in the minimal domain of D by the argument above; this completes the proof
when D has compact support.

Assume now that M is complete, and D has finite propagation speed cD.
Working one connected component at a time if necessary, we may assume that
M is connected, so in particular the distance function is valued in r0,8q. Let
v be an arbitrary element in the maximal domain of D. Let pfn : R Ñ r0, 1sq
be a sequence of smooth, compactly supported functions such that fptq “ 1 for
all t ď n, and such that the sequence psuptPR |f

1
nptq|q of real numbers tends to

zero as n tends to infinity. Fix x0 PM , and define gn : M Ñ r0,8q by gnpxq “
fnpdpx, x0qq. As M is complete, it is proper by the Hopf-Rinow theorem (see
Theorem A.3.6). Hence the assumptions on pfnq imply that each gn is smooth
and compactly supported, that the sequence psupxPM }dgnpxq}q

8
n“0 tends to zero

as n tends to infinity, and that pgnq tends to one uniformly on compact subsets
of M .

For each n, let vn :“ gnv. Then vn is in the maximal domain of D for all n
as

xDu, vny “ xrgn, Dsu, vy ` xgnDu,wy “ xu, σDpdgnqv ` gnwy

for all u P C8c pM ;Sq. Moreover, vn is compactly supported by compact support
of gn, and thus vn is in the minimal domain of D by the first part of the proof.
Note also that the sequence pvnq converges to v in L2pM ;Sq, as gn converges to
1 uniformly on compact sets. Replacing D by its closure (see Definition D.1.2)
so that Dvn makes sense, for any u P C8c pM ;Sq we have

xDvn, uy “ xv, gnDuy “ xv, rgn, Dsuy ` xv,Dgnuy “ xv, rgn, Dsuy ` xw, gnuy,
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and
|xv, rgn, Dsuy| ď }v}cD}dgn}}u} Ñ 0

as nÑ8, whence

lim
nÑ8

xDvn, uy “ lim
nÑ8

xw, gnuy “ xw, uy.

Hence pDvnq converges to w, showing that v is in the minimal domain of D as
required.

8.2 Wave operators and multipliers of L˚pMq

Our goal in this section is to show that a formally self-adjoint differential oper-
ator D on a smooth Hermitian bundle S over a Riemannian manifold M defines
a family of multipliers of the localisation algebra L˚pL2pM ;Sqq.

The key point is to control the propagation of associated operators that we
build out of D. To do this, we will consider solutions of the wave equation on
M associated to D. Say u : RˆM Ñ C is a function upt, xq of ‘time’ t P R and
‘space’ x PM . The wave equation associated to D is

B2u

Bt2
`D2u “ 0.

This equation governs the development of waves on M : if initial conditions upxq
are given, then the resulting wave u is given by

upt, xq “ peitDuqpxq,

as long as the wave operators eitD makes sense. For example, this will be the
case if D is essentially self-adjoint. The speed at which the wave u propagates
turns out to be governed by the propagation speed of D (hence the name!).
Establishing this is the key technical tool: more general functions fpDq of D
can then be treated using Fourier theory.

There are additional technicalities if D is not essentially self-adjoint: the
same basic idea works, but we can only make sense of eitD ‘locally’ and the
construction gets more technical.

Here is the fundamental result about wave operators. For the statement,
recall that if K is a subset of a metric space X and r ą 0, the NrpKq denotes
the r-neighbourhood tx P X | dpx,Kq ă ru of K.

Proposition 8.2.1. Let D be an essentially self-adjoint differential operator
on the bundle S over M . Let u P C8c pM ;Sq, and let c ą 0 be such that the
propagation speed of D satisfies cDpxq ď c for all x P supppuq. Then for any
t P R we have

supppeitDuq Ď Nc|t|psupppuqq.

Proof. Replacing D with ´D if necessary, we may assume that t is positive. Let
ε ą 0 and write K “ supppuq. Let δ ą 0 and let g P C8c pMq have the following
properties:
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(i) gpxq “ 0 if dpx,Kq ě δ and gpxq “ 1 for x P K;

(ii) suptxPM |dpx,Kqďδu |gpxq ´ p1´
1
δdpx,Kqq| ă ε;

(iii) }dg} ď 1
δ ` ε.

It is not too difficult to see that such a function exists. Let f : RÑ r0, 1s be any
smooth non-decreasing function such that fptq “ 1 if and only if t ě 1. Define
γ :“ sup

xPNδpKq

cDpxqp1` δεq and define a function

M ˆ p0,8q Ñ r0, 1s, px, tq ÞÑ htpxq

by

htpxq “ fpgpxq `
γ

δ
tq.

Note that h is smooth in both x and t, and that the conditions that fptq ě 1
only when t ě 1, and that gpxq is within ε of 1´ 1

δdpx,Kq on the relevant regions
imply that

tx PM | htpxq “ 1u Ď Nγt`εpKq. (8.4)

Now, write 9ht as shorthand for Bh{Bt. Computing, we see that

9htpxq “
γ

δ
f 1pgpxq `

γ

δ
tq (8.5)

and if d denotes the exterior derivative in the M direction, then

dhtpxq “ f 1pgpxq `
γ

δ
tqdgpxq “

δ

γ
9htpxqdgpxq.

Hence the section rD,hts of EndpSq is given by

rD,htspxq “ σDpdhtqpxq “
δ

γ
9htpxqσDpdgqpxq.

It follows that for each s, the self-adjoint operator 9ht ´ irD,hts on L2pM ;Sq
acts as an EndpSq-valued function, whose value at x PM is given by

p 9ht ´ irD,htsqpxq “ 9htpxq
´

1´
δ

γ
iσDpdgqpxq

¯

. (8.6)

On the other hand, the fact that cDpxq ď γ{p1` εq for all x in the support of g
implies that

}σDpdgqpxq} ď
γ

1` δε
}dg} ď

γ

1` δε
p1{δ ` εq “

γ

δ
,

where we have used assumption (iii) above on g for the second inequality. Hence

line (8.6) and non-negativity of 9ht (which follows from line (8.5), and the fact

that f is non-decreasing) implies that the operator 9ht ´ irD,hts is positive.
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To complete the argument write ut “ eitDu (so 9ut “ iDut by Theorem
D.2.2) and consider

B

Bt
xhtut, uty “ x 9htut, uty ` xhtiDut, uty ` xhtut, iDuty

“ xp 9ht ´ irD,htsqut, uty ě 0.

It follows that
xhtut, uty ě xh0u0, u0y

for all t. Moreover, the facts that h0pxq “ 1 for all x P supppuq and that eitD is
unitary then imply that

xhtut, uty ě xh0u0, u0y “ xu0, u0y “ xut, uty

for all t. The equality case of Cauchy-Schwarz combined with the fact that ht
is a norm one operator now forces htut “ ut, and thus (using line (8.4) for the
second inclusion)

suppputq Ď tx PM | htpxq “ 1u Ď Nγt`εpKq.

Let cδ :“ supxPNδpKq cDpxq. Then letting ε tend to zero gives that suppputq Ď
NcδtpKq. Letting δ tend to zero then completes the proof.

Using Fourier analysis, we can generalise the previous result (which is the
case fpxq “ eitx, with Fourier transform the point mass at t) to the following.
For the statement, recall that if f : RÑ C is a bounded Borel function, then its
distributional Fourier transform is the distribution (i.e. functional on C8c pRq)
defined by

pf : u ÞÑ

ż

R
fpxqpupxqdx.

The support of this distribution is the complement of the largest open set U
such that pfpuq “ 0 for all u supported in U .

Corollary 8.2.2. Let D be an essentially self-adjoint differential operator on
S. Let f : R Ñ C be any bounded Borel function such that the (distributional)

Fourier transform pf of f is supported in r´r, rs for some r ě 0. Let u P
C8c pM ;Sq, and let c ą 0 be such that cDpxq ď c for all x P supppuq. Then

supppfpDquq Ď Ncrpsupppuqq.

Proof. Let u, v P C8c pM ;Sq be such that dpsupppuq, supppvqq ą cr. It will
suffice to show that

xfpDqu, vy “ 0.

Lemma D.2.3 implies that the inner product on the left is equal to the pairing
of the distribution pf with the function

g : RÑ R, t ÞÑ
1

2π
xeitDu, vy.

However, Proposition 8.2.1 implies that gptq “ 0 for all t with |t| ď cr, whence

it pairs with f̂ to zero.
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The following corollary is a direct consequence of the above in the special
case that the global propagation speed cD is finite.

Corollary 8.2.3. Let D be an essentially self-adjoint differential operator on
S. Assume moreover that cD is finite. Then if f : R Ñ C is a bounded Borel
function such that the distributional Fourier transform is supported in r´r, rs,
we have that proppfpDqq ď rcD.

We now want to work towards building multipliers of the localisation algebra
L˚pMq. This requires study of families of operators pFtq parametrised by t P
r1,8q, for which the following definition gives a useful technical tool.

Definition 8.2.4. A differentiable function f : R Ñ C has slow oscillation at
infinity if

sup
xPR

|xf 1pxq| ă 8

Write CsopRq for the C˚-subalgebra of CbpRq generated by bounded functions
with slow oscillation at infinity.

The proof of the following lemma is the reason for considering this class of
functions.

Lemma 8.2.5. Assume that D is an essentially self-adjoint differential operator
on S. Assume moreover that cD is finite and that M is complete. Let f : RÑ C
be a bounded Borel function and consider the function

r1,8q Ñ BpL2pM ;Sqq, t ÞÑ Ft :“ fpt´1Dq.

If f has slow oscillation at infinity, then the function t ÞÑ Ft is Lipschitz.
Moreover, if f is in CsopRq, then the function t ÞÑ Ft is uniformly continuous.

Proof. The spectral theorem implies that for any s, t in r1,8q with s ď t we
have

}Ft ´ Fs} “ }fpt
´1Dq ´ fps´1Dq} ď sup

xPR
|fpt´1xq ´ fps´1xq|. (8.7)

The mean value theorem implies that

|fpt´1xq ´ fps´1xq| ď sup
cPrt´1x,s´1xs

|f 1pcq||t´1x´ s´1x|

ď sup
cPrt´1x,s´1xs

|f 1pcqt´1x|
|t´ s|

s

ď sup
cPrt´1x,s´1xs

|f 1pcqc||t´ s|.

The slow oscillation condition implies that supcPR |f
1pcqc| ď C for some C ą 0,

so combining this with line (8.7) gives that

}Ft ´ Fs} ď C|t´ s|,

and thus pFtq is Lipschitz. The case of general f in CsopRq follows as a uniform
limit of Lipschitz functions is uniformly continuous.
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Theorem 8.2.6. Assume that D is a formally self-adjoint differential operator
on S with cD finite, and that M is complete. Let f : R Ñ C be an element of
CsopRq. Define a function

r1,8q Ñ BpL2pM ;Sqq, t ÞÑ Ft :“ fpt´1Dq.

Then the family pFtq defines a multiplier of L˚pL2pM ;Sqqq.

Proof. To show that pFtq is a multiplier of L˚pL2pM ;Sqq it will suffice to show
that the family pFtq is uniformly bounded, uniformly continuous in t, and that
the propagation of pFtq tends to zero as t tends to infinity (note that the prop-
agation condition and Lemma 6.1.2 imply that rFt, hs converges to zero for any
h P CcpMq).

Proposition 8.1.8 implies that D is essentially self-adjoint, whence the family
pFtq is well-defined and uniformly bounded. Up to an approximation, we may
assume that f has slow oscillation at infinity. Moreover, it is not difficult to see
that the convolution of f and a Schwartz class function still has slow oscillation
at infinity; up to another approximation, then, we may replace f with a convo-
lution by a function with smooth and compactly supported Fourier transform,
and thus assume that (the distribution) pf is supported in r´r, rs for some r.

Lemma 8.2.5 then implies that the function t ÞÑ Ft is uniformly continuous.
Note that the Fourier transform of the function x ÞÑ fpt´1xq is supported in
rt´1r, t´1rs for all t P r1,8q. It follows from Corollary 8.2.2 that

xFtu, vy “ 0

whenever u, v P C8c pM ;Sq are such that dpsupppuq, supppvqq ą cDt
´1r, and

thus that proppFtq ď cDt
´1r. It follows from Lemma 6.1.2.

In the remainder of this section, we consider the general case when D is not
necessarily essentially self-adjoint: we aim to build multipliers of L˚pMq from
formally self-adjoint differential operators. We need two technical lemmas.

Lemma 8.2.7. Let D1 and D2 be essentially self-adjoint operators on S, and let
K be a compact subset of M such that D1 “ D2 on some open set U containing
K. Then there exists R ą 0 such that for all bounded Borel functions f : RÑ C
such that the (distributional) Fourier transform pf of f is contained in r´R,Rs
we have equalities of operators

fpD1qg “ fpD2qg and gfpD1q “ gfpD2q

for all bounded functions g : M Ñ C supported in K.

Proof. We first look at the special case fpxq “ eitx. Up to an approximation in
the strong operator topology, we may assume that g is smooth. Choose r ą 0
and a compact subset K 1 of M such that NrpKq Ď K 1 Ď U (this is possible
by local compactness of M). Let c be a bound for the propagation speed of
D1 “ D2 on K. Let u be any element of C8c pMq and write

u1,t “ eitD1gu, u2,t “ eitD2gu,
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which are smooth families of elements of L2pM ;Sq such that u1,0 “ u2,0 “ gu.
For |t| ă r{c, Proposition 8.2.1 implies that u1,t and u2,t are supported in K 1,
whence

9u1,t “ iD1u1,t, and 9u2,t “ iD2u2,t “ iD1u2,t.

Hence

d

dt
}u1,t ´ u2,t}

2 “ xiD1pu1,t ´ u2,tq, u1,t ´ u2,ty ` xu1,t ´ u2,t, iD1pu1,t ´ u2,tqy,

which is zero as iD1 is ‘formally skew-adjoint’ in the natural sense. Hence we
have u1,t “ u2,t for all suitably small t, and as u was arbitrary, this gives the
desired result. The case ‘geitD1 “ geitD2 ’ follows on taking adjoints.

The general case now follows from the formula

fpD1qg “
1

2π

ż

R
pfptqeitD1gdt

from Lemma D.2.3 (see also the statement of that lemma for the exact inter-
pretation of the right hand side).

Lemma 8.2.8. Let D be a formally self-adjoint differential operator on S. Then
there exists a family pgtqtPr1,8q of functions on M with the following properties:

(i) each gt is a smooth function from M to r0, 1s;

(ii) the function
r1,8q Ñ CbpMq, t ÞÑ gt

is norm continuous;

(iii) for any compact subset K of M there exists tK such that gt is identically
equal to 1 on K for all t ě tK ;

(iv) each operator gtDgt (with domain C8c pM ;Sq) is essentially self-adjoint.

Note that if M is complete and D has finite propagation speed, then we may
take gt to be the constant function with value 1 for all t.

Proof. Let M` be the one-point compactification of M , and write 8 for the
point at infinity. Fix any (non-Riemannian!) metric d on M` that induces the
original topology on M , and consider the continuous function

h0 : M Ñ r0,8q, x ÞÑ
1

dpx,8q
.

Let h : M Ñ r0,8q be any smooth function such that the supremum norm
}h´ h0} is at most 1, and note that h is proper as h0 is. Now, let pftqtPr1,8q be
any norm-continuous family of smooth functions in C0r0,8q such that each ft is
supported in r0, t`1s, and identically one on r0, ts. Set gt “ ft˝h. Properties (i),
(ii), and (iii) follow directly from the construction, while property (iv) follows
from Proposition 8.1.8 and the fact that each gtDgt has compact support.
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Definition 8.2.9. Let f be an element of CsopRq as in Definition 8.2.4, and let
pgtq be as in the statement of Lemma 8.2.8. We call the pair pf, pgtqq multiplier
data for D.

Here, then, is our general construction of multipliers of L˚pL2pM ;Sqq.

Theorem 8.2.10. Assume that D is a formally self-adjoint differential operator
on M and that pf, pgtqq is multiplier data for D. Define a function

r1,8q Ñ BpL2pM ;Sqq, t ÞÑ Ft :“ fpt´1gtDgtq.

Then the family pFtq defines a multiplier of L˚pL2pM ;Sqq.

Proof. First note that as gtDgt is essentially self-adjoint for all t, so the func-
tional calculus may be applied, and the operator fpt´1gtDgtq makes sense, and
is uniformly bounded in t. Just as in the proof of Theorem 8.2.6, up to an
approximation, we may assume that the distributional Fourier transform pf has
support in some interval r´r, rs and that f has slow oscillation at infinity. It
will suffice to prove the following two properties of pFtq.

(i) for any h P CcpMq, the functions t ÞÑ Fth, t ÞÑ hFt are uniformly contin-
uous for all t suitably large;

(ii) for any h P CcpMq, the commutator rFt, hs tends to zero in norm as t
tends to infinity (compare Exercise 6.8.4).

For point (i), let K be a compact subset of M containing some neighbour-
hood of suppphq. Let T be so large that gtpxq “ 1 for all x P K, and all t ě T .
It follows from Corollary 8.2.7 that by increasing T if necessary (whence de-
creasing the support of the Fourier transform of x ÞÑ fpt´1xq), we may assume
that

hfpt´1gtDgtq “ hfpt´1gsDgsq, fpt´1gtDgtqh “ fpt´1gsDgsqh

for all s, t ě T . From the spectral theorem, we then have that for any t ě s ě T

}hFt ´ hFs} “ }hfpt
´1gtDgtq ´ hfps

´1gsDgsq}

“ }hfpt´1gtDgtq ´ hfps
´1gtDgtq}

ď sup
xPR

|fpt´1xq ´ fps´1xq|.

The rest of the argument for point (i) can be completed just as in the proof of
Theorem 8.2.6.

For point (ii), we may again appeal to Corollary 8.2.7 to conclude that there
exists a T such that

hfpt´1gtDgtq “ hfpt´1gTDgT q, fpt´1gtDgtqh “ fpt´1gTDgT qh

for all t ě T . Let c be a bound for cDpxq on supppgT q. Assume moreover that
T is so large that

K :“ NcrT´1psuppphqq
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is compact. It follows then from Proposition 8.2.2 that for all t ě T ,

rh, Fts “ rh, χKfpt
´1gTDgT qχKs,

and that proppχKfpt
´1gTDgT qχKq ď ct´1r. The result follows from Lemma

6.1.2.

8.3 Ellipticity and K-homology

In the previous section, we showed how to use a formally self-adjoint differential
operator D together with a choice of multiplier data pf, pgtqq (see Definition
8.2.9) to construct a multiplier pFtq of L˚pMq. Our main goal in this section is
to adapt this construction to produce K-theory elements of L˚pMq under the
additional assumption that D is elliptic as in the following definition.

Definition 8.3.1. Let D be a differential operator with symbol σD, and U be
an open subset of M . We say that D is elliptic over U if for all px, ξq P T˚U
with ξ ‰ 0 we have that σDpx, ξq P EndpSxq is invertible.

Example 8.3.2. Looking back at Examples 8.1.4, the operator d
dx on the trivial

bundle over R is elliptic. The exterior differentiation operator is not elliptic,
however: for example, σDpx, ξq will contain any top-dimensional exterior form
in its kernel, whatever ξ is.

The key technical result, which will take most of the section to prove, is the
next theorem.

Theorem 8.3.3. Assume that D is a formally self-adjoint elliptic differential
operator on M , let pf, pgtqq be a collection of multiplier data for D and let pFtq
be the multiplier of L˚pL2pM ;Sqq constructed in Theorem 8.2.10. Then if f is
in C0pRq, the family pFtq is an element of L˚pMq.

The first step in the proof of this theorem is to consider the case of the d-
torus Td; tori are particularly amenable to analysis, as one can use the Fourier
transform to change questions about constant coefficient differential operators
on Td to questions about multiplication operators on Zd. We will then ‘transfer’
local results on the d-torus to local results on other d-manifolds, and patch these
together to get global results.

In order to carry out the details for this, identify the d-torus Td with Rd{Zd.
Write px1, ..., xdq for the local coordinates on Td induced from those on Rd, and
B
Bxi

for the associated partial derivatives (which are globally well-defined, even

though x1, ..., xd are not). Let S be a trivial rank r Hermitian bundle on Td; we
identify sections of S with functions u : Td Ñ Cr. Define a norm on C8pTd;Sq
by

}u}21,2 :“

ż

Td
}upxq}2Crdx`

d
ÿ

j“1

ż

Td

›

›

›

Bupxq

Bxi

›

›

›

2

Cr
dx.
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Definition 8.3.4. With notation as above, the Sobolev space of Td, denoted
H1pTd;Sq, is the completion of CpTd;Sq for the norm above.

Clearly H1pTd;Sq identifies with a dense subspace of L2pTd;Sq, and we can
thus think of elements of this space as functions from Td to Cr and speak of
notions like support in the usual way. In some arguments below, we will need
to use both the L2pTd;Sq and H1pTd;Sq norms of some function u : Td Ñ Cr;
to avoid confusion, we will write }u}L2 for the former, and }u}H1 for the latter.

It will also be convenient to work in the Fourier transform of this picture.
For m “ pm1, ...,mdq P Zd and x “ px1, ..., xdq P Rd, let

m ¨ x :“
d
ÿ

j“1

mjxj

denote the standard inner product. For x P Td, we also write e´2πim¨x where we
use any lift of x P Td to Rd to define the inner product (thanks to periodicity
of the exponential, the choice of lift does not matter). We define the Fourier
transform of u P C8c pTd;Sq to be the function pu : Zd Ñ Cr defined by

pupmq “

ż

Td
upxqe´2πim¨xdx.

The Fourier transform extends to a unitary isomorphism

F : L2pTd;Sq Ñ `2pZd,Crq, u ÞÑ pu.

Write |m| :“
a

m2
1 ` ¨ ¨ ¨ `m

2
d for the usual Euclidean norm on Rd restricted

to Zd. Then under the Fourier isomorphism above, the subspace C8pTd;Sq is
taken to the space C8pZd,Crq of all rapidly decaying functions pu : Zd Ñ Cr,
i.e. those functions such that for each k P N there is a constant c “ cpkq ą 0
such that

}pupmq}Cr ď p1` |m|q
´k.

Moreover, for j P t1, ..., du, let Mj denote the multiplication operator

pMjpuqpmq “ mjpupmq, m “ pm1, ...,mdq, (8.8)

considered as an unbounded operator on `2pZd,Crq with domain C8pZd,Crq.
Then the Fourier transform conjugates the partial derivative B

Bxj
(considered as

an unbounded operator on L2pTd;Sq with domain C8pTd;Sq) to the operator
2πiMj .

It follows from this discussion that H1pTd;Sq corresponds under the Fourier
transform to the collection h1pZd,Crq of all functions pu : Zd Ñ S such that the
associated norm

}pu}2h1 :“ p2πq2
ÿ

mPZd
p1` |m|2q}pupmq}2Cr

is finite. We will use the notation } ¨ }`2 and } ¨ }h1 for the norms on `2pZd,Crq
and h1pZd,Crq when we need to use both at once.

We start with a simple version of the Rellich lemma.
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Lemma 8.3.5. The inclusion I : H1pTd;Sq Ñ L2pTd;Sq is a compact operator.

Proof. We apply the Fourier transform, and consider instead the corresponding
inclusion

h1pZd,Crq Ñ `2pZd,Crq.

Let
IN : h1pZd,Crq Ñ `2pZd,Crq, pu ÞÑ pu|tmPZd||m|ďNu

be the operator sending an element of h1pZd,Crq to its restriction to the ball of
radius N , but now considered as an element of `2pZd,Crq. Then we have

}INpu´ Ipu}2`2 “
ÿ

mPZd,|m|ěN

|pupmq|2 ď p1`Nq´2}u}2h1 , (8.9)

which tends to zero as N tends to infinity. As IN has finite rank, this implies
that I is compact.

In fact, we get something a little more precise, which will be useful in the
next section.

Remark 8.3.6. Let T : H1 Ñ H2 be an operator between two Hilbert spaces
and n P N. Then the nth singular value of T , is the number

snpT q :“ inft}T ´ S} | rankpSq ă nu.

For p P r1,8q, a bounded operator T : H1 Ñ H2 between Hilbert spaces is
Schatten p-class if the associated Schatten p-norm defined by

}T } :“
´

8
ÿ

n“1

snpT q
p
¯1{p

is finite. Looking at the proof of Lemma 8.3.5, we see that the rank of the
operator IN is roughly Nd: more precisely, there is a constant c ą 0 (depending
on the geometry of balls in Zd and on the rank of S) such that

c´1Nd ď rankpIN q ď cNd. (8.10)

The estimate in line (8.9) shows that

}IN ´ I}Bph1pZd;Crq,`2pZd;Crqq ď p1`Nq
´1.

It follows from this and line (8.10) that I is a Schatten p-class operator for any
p ą d. We will come back to this later.

The next lemma we need is a version of G̊arding’s inequality . In order to
state it, we first note that if D is a first order formally self-adjoint operator on
the trivial bundle S over Tn, then the closure (see Definition D.1.2) of D clearly
restricts to a bounded operator from H1pTn;Sq to L2pTn;Sq. As usual, we will
elide the distinction between D and its closure in what follows.
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Lemma 8.3.7. Say D is a formally self-adjoint operator on a trivial rank r
Hermitian bundle S over Td. Assume that D is elliptic over some open subset
U of Td, and that K is a compact subset of U . Then there is a constant c ą 0
such that for all u P H1pTd;Sq with support in K we have

}u}H1 ď cp}u}L2 ` }Du}L2q.

Proof. We first consider the case that D has constant coefficients: more specif-
ically, D is of the form

D “
d
ÿ

j“1

aj
B

Bxj
` b

where the aj and b are constant rˆ r matrices, and U is all of Td. In this case,
ellipticity means that the symbol

d
ÿ

j“1

ξjaj

is invertible in MrpCq for all non-zero pξ1, ..., ξdq P Rd. In particular there is a
constant c0 ą 0 such that

›

›

›

d
ÿ

j“1

ξjajv
›

›

›

Cr
ě c0}v}Cr ,

for all ξ “ pξ1, ..., ξdq P Rd of norm one, and all v P Cr. Now, under Fourier
transform D corresponds to the operator

M :“ 2πi
d
ÿ

j“1

ajMj ` b,

where Mj is the multiplication operator from line (8.8) above. It follows that
for u P H1pTd;Sq

}Du}2L2 “ }Mpu}2`2

ě p2πq2
ÿ

mPZd
}ajmjpupmq}

2
Cr ´ }bpu}`2

ě p2πq2c20
ÿ

mPZd
|m|2}pupmq}2Cr ´ }b}}pu}

2
`2

“ c20}pu}
2
h1 ´ p}b} ` 1q}pu}2`2 .

Rearranging this and reversing the Fourier transforms, we have

}u}2H1 ď
1

c20
p}Du}2L2 ` p1` }b}q}u}2L2q ď

1` }b}

c20
p}Du}2L2 ` }u}2L2q

G̊arding’s inequality in the constant coefficient case follows from this and the
inequality

a

x2 ` y2 ď x` y for x, y non-negative real numbers.
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We now look at the general case, so D is of the form

D “
d
ÿ

j“1

aj
B

Bxj
` b

where aj and b are smooth functions from Td to rˆ r matrices. For x P Td, let
Dx be the constant coefficient operator obtained by ‘freezing coefficients’ at the
point x, i.e. Dx is the constant coefficient operator

Dx :“
d
ÿ

j“1

ajpxq
B

Bxj
` bpxq.

Then it is not too difficult to see that for a fixed ε ą 0 and any x P Td there is
a neighbourhood Vx,ε of x such that

}Du´Dxu}L2 ď ε}u}H1

for all u P H1pTd;Sq. Hence applying the first part of the proof and choosing ε
suitably small, for each x P U we may find a constant cx ą 0 and an open set
Vx Q x such that for all u P H1pTd;Sq with support in Vx we have that

}u}H1 ď cxp}u}L2 ` }Du}L2q. (8.11)

Now, cover the compact set K by finitely many of these sets Vx, say V1, ..., VN ,
and let c0 be the largest of the associated constants. Let φ1, ..., φN be a smooth
partition of unity on K, with each φi supported in Vi. Let u P H1pTd;Sq with
support in K be given, and define ui :“ φiu. As each φi is smooth one sees
that multiplication by φi defines a bounded operator on H1pTnq (see Exercise
8.5.4), whence there is a constant c1 ą 0 such that

}u}H1 ď c1

N
ÿ

i“1

}ui}H1 .

On the other hand, we can bound this using our ‘local G̊arding’s inequalities’
as in line (8.11) for the sets Vi to get

}u}H1 ď c0c1

N
ÿ

i“1

p}ui}L2 ` }Dui}L2q

ď c0c1

N
ÿ

i“1

p}φiu}L2 ` }σDpdφiqu}L2 ` }φiDu}L2q.

Using that each φi has norm at most one as a multiplication operator on
L2pTd;Sq, and that each σDpdφiq is bounded by some constant c2, this implies
that

}u}H1 ď c0c1

N
ÿ

i“1

pp1` c2q}u}L2 ` }Du}L2q ď c0c1p1` c2qNp}u}L2 ` }Du}L2q,

completing the proof.
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Proposition 8.3.8. Let D be an essentially self-adjoint differential operator on
a trivial bundle over Td, and assume that D is elliptic over some open subset
U of Td. Let φ be a smooth function on Td which is supported in U . Then the
operators

pD ˘ iq´1φ and φpD ˘ iq´1

are compact.

Proof. We will look only at the case of pD ` iq´1φ; the case of pD ´ iq´1φ
is similar to this, and the other cases follow on taking adjoints. We claim
that pD ` iq´1φ defines a bounded operator from L2pTd;Sq to the Sobolev
space H1pTd;Sq. The result follows from this and the Rellich Lemma (Lemma
8.3.5), as then as an operator from L2pTd;Sq to L2pTd;Sq, pD ` iq´1φ is equal
to a composition of a bounded operator and the compact inclusion operator
I : H1pTd;Sq Ñ L2pTd;Sq from that lemma.

To see the claim, note that G̊arding’s inequality (Lemma 8.3.7) gives us a
constant c such that for any u P L2pTd;Sq

}pD ` iq´1φu}2H1 ď cp}pD ` iq´1φu}2L2 ` }DpD ` iq´1φu}2L2q

“ c}pD ` iqpD ` iq´1φu}2L2

ď c1}u}2L2 ,

where the equality uses that D is essentially self-adjoint.

Having thus analysed the case of a trivial bundle on Td in detail, we can
now deduce Theorem 8.3.3 by patching together results on coordinate patches.

Corollary 8.3.9. Let D be an essentially self-adjoint differential operator on
a Hermitian bundle S over a Riemannian manifold M . Assume that D is sup-
ported on some closed set K which is diffeomorphic to a closed Euclidean ball,
and elliptic over some open set U Ď K. Then for any φ P C8c pMq with support
in U , we have that

pD ˘ iq´1φ and φpD ˘ iq´1

are compact operators on L2pM ;Sq.

Proof. For notational convenience, focus on the case of pD ` iq´1; the case of
pD´iq´1 is similar. We also focus on the case of pD`iq´1φ; the case of φpD´iq´1

follows on taking adjoints. Let d be the dimension of M . The assumptions on
K imply that there exists an open subset V of Td, diffeomorphic to a ball in
Rd, and a diffeomorphism F : K Ñ V . Note that both F and F´1 having
bounded derivatives by compactness. Let W “ F´1pV q. As W is contractible,
we may assume that the restriction SW of S to W is a trivial bundle, i.e. that
SW “ W ˆ Cr for some r, in a way compatible with the Hermitian structure.
The function F then defines a linear operator

TF : C8c pV ;Crq Ñ C8c pU ;Crq, u ÞÑ u ˝ F

305



that extends to a bounded invertible linear operator

TF : L2pU ;Sq Ñ L2pV ;Sq.

Now, the differential operator

TFDT
´1
F : C8c pV ;Crq Ñ C8c pV ;Crq

is elliptic on F pUq. We may consider this as an operator on all of Td by extending
by zero outside of V ; the result is still a differential operator, as we are assuming
that D is supported in K. Hence by Proposition 8.3.8, the operators

pT´1
F DTF ` iq

´1T´1
F φTF

are compact for any φ with support in U . However, these operators are equal
to

T´1
F pD ` iq´1φTF

and the result follows from boundedness of TF and Proposition 8.3.8.

Theorem 8.3.10. Let D be an essentially self-adjoint elliptic operator on S,
and let U be an open subset of M over which D is elliptic. Let g be an element
of CcpUq. Then the operators

gpD ˘ iq´1, pD ˘ iq´1g

on L2pM ;Sq are compact.

Proof. Let K be the support of g. Let U1, ..., UN be a finite cover of K by open
subsets of U such that the closure of each Ui is diffeomorphic to a Euclidean
ball. Let V1, ..., VN be a cover of K by open sets Vi such that Vi Ď Ui. Let
pφi : M Ñ r0, 1sqNi“1 be smooth functions such that each φi is supported in Vi,
and such that

N
ÿ

i“1

φipxq
2 “ 1

for all x P K. For each i, let ψi : M Ñ r0, 1s be a smooth function, supported
in Ui, and equal to one on Vi. Note that Corollary 8.3.9 implies that each of
the operators

φipψiDψi ˘ iq
´1φi : L2pM ;Sq Ñ L2pM ;Sq

is compact. We will show that the operator pD ` iq´1g is compact; the other
cases are similar.

Note then that

pD ` iq´1g´
N
ÿ

i“1

φipψiDψi ` iq
´1φig

“

´

N
ÿ

i“1

pD ` iq´1φ2
i ´ φipψiDψi ` iq

´1φi

¯

g;
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it suffices to prove that each of the summands is compact. Looking at one
summand, then, and removing subscripts to simplify notation, we have that

pD ` iq´1φ2 ´ φpψDψ ` iq´1φ

“ pD ` iq´1
´

φpψDψ ` iq ´ pD ` iqφ
¯

pψDψ ` 1q´1ψ. (8.12)

Using that ψ is equal to one on the support of φ, the central term in the larger
parentheses is equal to

φψDψ ´Dφ “ φψDψ ´ ψDψφ,

whence equal to
”

φ, ψDψ
ı

“ ´σψDψpdφq;

as everything is compactly supported, this is a bounded section of EndpSq with
support contained in the support of φ. Going back to line (8.12), the right-
hand-side is equal to

pD ` iq´1σψDψpdφqpψDψ ` 1q´1φ.

The term pD ` iq´1 is bounded as the function x ÞÑ px ` iq´1 is bounded,
and the term σψDψpdφqpψDψ ` 1q´1φ is compact by Corollary 8.3.9, so we are
done.

Theorem 8.3.3 now follows.

Proof of Theorem 8.3.3. Given the results of Theorem 8.2.10, we must only
show that for any g P C8c pMq and all t suitably large, the operators

Ftg, gFt

are compact. Note that as g is compactly supported, for all suitably large t, the
operators gtDgt are (essentially self-adjoint and) elliptic over a neighbourhood
of the support of g, whence Theorem 8.3.10 implies that

gpgtDgt ˘ iq
´1 and pgtDgt ˘ iq

´1g

are compact. The case of a general f follows as the functions x ÞÑ px ˘ iq´1

generate C0pRq as a C˚-algebra.

Here then is the construction of K-theory classes. The odd case is slightly
simpler, so we address this first. We will use the spectral picture of K-theory
from Section 2.9 as this is technically a very clean approach.

Construction 8.3.11. Let D be a differential operator on a manifold M , and
let pgtqtPr1,8q be a family of functions as in the definition of multiplier data
for M (Definition 8.2.9). Theorem 8.3.3 (together with the functional calculus)
implies that the assignment

C0pRq ÞÑ pfpgtDgtqqtPr1,8q

307



defines a ˚-homomorphism C0pRq Ñ L˚pL2pM ;Sqq. Tensoring with a rank one
projection in an abstract copy K of the compact operators on a separable infinite
dimensional Hilbert space gives a ˚-homomorphism

C0pRq Ñ L˚pL2pM ;Sqq bK,

and thus an element of K1pL
˚pL2pM ;Sqqq by Remark 2.9.13. We define rDs P

K1pL
˚pL2pM ;Sqqq to be this class. Note that as long as M has positive1 dimen-

sion, L2pM ;Sq is an ample M module (cf. Example 4.1.5), so K˚pL
˚pL2pM ;Sqqq

identifies canonically with K˚pMq, and so we have defined a class rDs P K1pMq.

Construction 8.3.12. Let D be a differential operator on a manifold M acting
on some bundle S, and assume moreover that S is equipped with a splitting
S “ S´‘S` such that D interchanges C8c pM ;S`q and C8c pM ;S´q. Note that
the decomposition S “ S´ ‘ S` gives rise to a decomposition

L2pM ;Sq “ L2pM ;S´q ‘ L
2pM ;S`q;

we let U be the grading operator (see Definition E.1.4) on this Hilbert space
defined by multiplication by ˘1 on L2pM ;S˘q. Conjugation by this unitary
preserves L˚pL2pM ;Sqq making this into a graded C˚-algebra; as U is a mut-
liplier of L˚pL2pM ;Sqq, this grading is inner. Note also that U preserves the
domain of D, and that UDU “ ´D, so D is odd for U .

Let pgtq be as in the definition of multiplier data for M (Definition 8.2.9),
and note that each gt acts as an even operator on L2pM ;Sq. As in Construction
8.3.11, Theorem 8.3.3 gives a ˚-homomorphism

C0pRq Ñ L˚pL2pM ;Sqq, f ÞÑ pfpgtDftqqtPr1,8q;

in this case, the homomorphism is also graded where the domain is taken to be
S as in Example E.1.10. Let K be a standard graded copy of the compact
operators as in Example E.1.9, and choose an even rank one projection p P K .
Tensoring by p, we get a graded ˚-homomorphism

S Ñ L˚pL2pM ;SqqpbK

and so an element of spK0pL
˚pL2pM ;Sqqq, where the latter is considered as a

graded group. However, the grading on L˚pL2pM ;Sqq is inner, so this is the
same as the usual K-theory group K0pL

˚pL2pM ;Sqqq by Proposition 2.9.12.
Finally, as L2pM ;Sq is ample (cf. Example 4.1.5 – we leave the trivial case
where M is zero-dimensional to the reader), K0pL

˚pM ;Sqq is the same as the
K-homology group K0pMq of M , so we have defined a class rDs P K0pMq.

To conclude this section, we have the following result saying that the class
rDs is well-defined.

1One can slightly modify the construction so that it also works when M is zero-dimensional:
this is an exercise for the reader.
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Proposition 8.3.13. The classes rDs P KipMq defined in Constructions 8.3.11
and 8.3.12 above do not depend on any of the choices involved.

Proof. The two cases are essentially the same, so we treat both at once. If pg1
t q

and pg2
t q are different families of functions satisfying the relevant conditions in

Definition 8.2.9, then for any compact subset K of M we have

χKfpt
´1g1

tDg
1
t q “ χKfpt

´1g2
tDg

2
t q

as soon as g1
t and g2

t are equal to one on K, essentially by Lemma 8.2.7 (compare
the proof of Theorem 8.2.10). Hence the ˚-homomorphisms built above differ
by something with values in the ideal L˚0 pMq of Definition 6.4.8, and thus define
the same K-theory class by Lemma 6.4.11 (consider them as taking values in
the quotient L˚QpMq, where they are the same).

The only other thing to check is that the class rDs does not depend on the
choice of rank one (even) projection in K (in K ). Any two such projections are
homotopic through projections of the same type, however, so we are done.

Remark 8.3.14. In the presence of a grading, we may construct a class rDs either
in K0pMq, or in K1pMq by forgetting the grading. It is a fact, however, that
the class in K1pMq is zero: see Exercise 8.5.5.

Remark 8.3.15. We can also define the class rDs in the following more tra-
ditionally ‘index theoretic’ way. For the K0 case, choose an odd function
f : R Ñ r´1, 1s in the class CsopRq of Definition 8.2.4, and with the property
that lim

tÑ˘8
fptq “ ˘1. Then we can use Theorem 8.2.10 applied to multiplier

data pf, pgtqq for some choice of pgtq to build a multiplier pFtq of L2pM ;Sq as-
sociated to an odd elliptic operator D. Moreover, each pFtq is odd as f and D
are, and the choice of f implies that f2 ´ 1 P C0pRq, whence by Theorem 8.3.3,
F 2 ´ 1 P L˚pL2pM ;Sqq. Hence Definition 2.8.5 gives us an index class

IndrF s P K0pL
˚pL2pM ;Sqqq.

Thank to Theorem 2.9.16, this is the same class rDs as we defined earlier using
the spectral picture of K-theory. The case of K1 can be handled very much
analogously: just forget the grading (and use a not-necessarily odd function
f : RÑ r´1, 1s with the property that lim

tÑ˘8
fptq “ ˘1).

8.4 Schatten classes

In this section, we look at some more refined theory coming from the theory of
trace class operators. We need this for an application to the so-called covering
index theorem in Section 10.1 below. First, we recall some definitions already
more-or-less given in Remark 8.3.6.

Definition 8.4.1. Let T : H1 Ñ H2 be a bounded operator between Hilbert
spaces. The nth singular value of T is the number

snpT q :“ inft}T ´ S} | rankpSq ă nu.

309



For a number p P r1,8q, define the Schatten p-norm of T to be

}T }p :“
´

8
ÿ

n“1

snpT q
p
¯1{p

.

Let SppH1, H2q denote the collection of all bounded operators T : H1 Ñ H2 for
which the above norm is finite, which are called Schatten p-class operators; we
shorten this to SppHq when H “ H1 “ H2, or just Sp when the Hilbert spaces
are clear from context. Operators in S1 are also called trace class.

We will need the following basic facts about Schatten class operators. We
will not prove these here: see the notes at the end of the chapter for references.

Theorem 8.4.2. (i) If T is a Schatten p-class operator and S is any bounded
operator then ST and TS are Schatten p-class whenever the compositions
make sense.

(ii) If p, q, r P r1,8q, r´1 “ p´1 ` q´1, T is Schatten p-class, S is Schatten
q-class, and ST makes sense, then ST is Schatten r-class.

The following key result connects differential operators to Schatten class
operators.

Proposition 8.4.3. Let M be a d-dimensional Riemannian manifold. Let D
be an essentially self-adjoint differential operator on a Hermitian bundle S over
M , considered as an unbounded operator on the Hilbert space L2pM ;Sq. Let U
be an open subset of M on which D is elliptic. Let f P C0pRq be a continuous
function such that for some s ą d` 1, the function

x ÞÑ p1` x2qsfpxq

is bounded. Let g be an element of CcpUq. Then the operators

gfpDq, fpDqg

on L2pM ;Sq are trace class.

The estimate on s in the theorem is not optimal, but all we need for our
applications is that there is some s that works.

Proof. Write fpxq “ p1` x2q´shpxq, where h : RÑ R is a bounded continuous
function. It follows from the functional calculus that

fpDq “ p1`D2q´shpDq.

Using that hpDq is bounded, and that p1`D2q´s and hpDq commute, it suffices
to show that p1`D2q´sg is trace class (that gp1`D2q´s is trace class follows on
taking adjoints). For this, it suffices to show that p1`D2q´pd`1qg is trace class;
we will in fact show by induction on k that for k P t1, ..., n` 1u, p1`D2q´kg is
Schatten n`1

k class.
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To see this, first note that Remark 8.3.6 tells us that the canonical Sobolev
space inclusion

I : H1pTn;Sq Ñ L2pTn;Sq

studied there is Schatten pd ` 1q-class. Tracing the proofs from there of the
various ingredients leading up to Theorem 8.3.10 and using the ‘ideal property’
(i) from Theorem 8.4.2 above, we see that

pD ˘ iq´1θ P Sd`1pL
2pM ;Sqq for any θ P C8c pU ;Sq (8.13)

The base case k “ 1 of the induction follows from this and the ‘ideal property’
(i) from Theorem 8.4.2 as

p1`D2q´1g “ pD ` iq´1pD ´ iq´1θg,

where θ P C8c pU ;Sq is constantly one on the support of g, and using that
pD ` iq´1 is bounded.

For the inductive step, fix k P t1, ..., nu and let φ P C8c pU ;Sq be constantly
equal to one on the support of g. Then

p1`D2q´pk`1qg “ pD ` iq´1p1`D2q´kpD ´ iq´1φg

“ pD ` iq´1p1`D2q´krpD ´ iq´1, φsg ` pD ` iq´1p1`D2q´kφpD ´ iq´1g.
(8.14)

We have that

rpD ´ iq´1, φs “ pD ´ iq´1rD ´ i, φspD ´ iq´1

“ ´pD ´ iq´1σDpdφqpD ´ iq
´1

“ ´pD ´ iq´1ψσDpdφqpD ´ iq
´1,

where ψ P C8c pU ;Sq is constantly equal to one on the support of φ. Substituting
this into line (8.14) above gives

p1`D2q´pk`1qg “ ´pD ` iq´1pD ´ iq´1p1`D2q´kψσDpdφqpD ´ iq
´1φg

` pD ` iq´1p1`D2q´kφpD ´ iq´1φg. (8.15)

Combining this with the inductive hypothesis, the ‘multiplicative property’ (ii)
from Theorem 8.4.2, and line (8.13) above completes the proof.

The following corollary, which says that K-homology classes associated to
differential operators can be represented by cycles with particularly nice prop-
erties, will be useful later.

Corollary 8.4.4. Let M be a complete Riemannian manifold and D be an odd
elliptic operator on a graded Hermitian bundle S over M with finite propaga-
tion speed. Then there is an odd, self-adjoint, contractive element pFtq of the
multiplier algebra of the localisation algebra L˚pL2pM ;Sqq whose index class in
K0pL

˚pMqq represents rDs and with the following properties:

311



(i) proppFtq Ñ 0 as tÑ8;

(ii) for any g P CcpMq and all suitably large t the operators gp1 ´ F 2
t q and

gp1´ F 2
t q are trace class.

Proof. Using Remark 8.3.15, it suffices to show that we can find an odd function
f : RÑ r´1, 1s in the class CsopRq such that lim

tÑ˘8
fptq “ ˘1, so that for some

s ě dimpMq ` 1 we have that p1 ` t2qspfptq2 ´ 1q is bounded, and so that

the distributional Fourier transform pf is compactly supported. Indeed, in that
case Proposition 8.4.3 combined with (the proof of) Theorem 8.2.6 will give the
desired result. To build such an f , take

f0ptq :“

$

&

%

´1 t ď ´1
t ´1 ă t ă 1
1 t ě 1

and define f to be the convolution g ˚ f0 where g : R Ñ r0,8q is an even
Schwartz class function with compactly supported Fourier transform and total
integral one. We leave it to the reader to check that this works.

8.5 Exercises

8.5.1. In the text, we look only at formally self-adjoint operators. In practice
this is not that much of a restriction as a general operator is the ‘same thing
as a formally self-adjoint operator, plus a grading’. Indeed, if D is an arbitrary
differential operator on S, show using a computation in local coordinates that
there is a ‘formal adjoint’ D: such that

xDu, vy “ xu,D:vy

for all u, v P C8c pM ;Sq. Show that the operator

ˆ

0 D:

D 0

˙

on the naturally graded bundle C8c pM ;S ‘ Sq is then formally self-adjoint and
odd.

8.5.2. Show that the operator i ddx acting on L2p0, 1q with domain C8c p0, 1q is
formally self-adjoint, but not essentially self-adjoint.
Hint: show that the constant function with value one is in the maximal domain,
but note the minimal one.

8.5.3. (For readers who know the terminology). Assume that S “ C is the
trivial bundle on the d-torus Td, and let H1pTdq be the associated Sobolev
space as in Definition 8.3.4. Show that H1pTdq can be described as the space
of all functions in L2pTdq whose distributional derivatives with respect to each
of the coordinates x1, ..., xd are also in L2pTdq (equipped with the same norm).
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8.5.4. Show that multiplication by a smooth function defines a bounded operator
on the Sobolev space H1pTd;Sq of Definition 8.3.4.

8.5.5. Show that if D is acting on a graded bundle, and we use the method of
Construction 8.3.11 to construct rDs P K1pMq, then rDs “ 0.

8.5.6. Show that any paracompact Riemannian d-manifold M can can be cov-
ered by d open sets U1, ..., Ud such that each Ui is a disjoint union of disjoint
sets of uniformly bounded diameter, and all diffeomorphic to the standard ball
in Euclidean space.

8.5.7. Show that it T : H1 Ñ H2 is a compact operator between Hilbert spaces,
then the singular values psnpT qq

8
n“1 of Definition 8.4.1 are the same thing as

the eigenvalues of pT˚T q1{2 (or of pTT˚q1{2).

8.5.8. Prove part (i) of Theorem 8.4.2 by showing first that snpST q ď }S}snpT q
(and similarly for TS).

8.5.9. Prove part (ii) of Theorem 8.4.2 in the special case that S and T commute
(you can also try the general case of course, but this is harder).

8.6 Notes and references

The analysis in this section is based heavily on that of Higson and Roe in [135,
Chapter 10]: most of our arguments are adapted from theirs. We thought it
was worth the duplication as we need somewhat different results, and in order
to keep this text self-contained. The exception is the material in Section 8.4,
which is inspired by [214, Section 4].

The idea of using propagation speed in this context is due to Roe [212]. For
an introduction to unbounded operators (and the many possible pitfalls that
can arise), [211, Chapter VIII] is a nice reference. The background we need
about Schatten class operators in Section 8.4 (and much more) can be found in
the first two chapters of [236].
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Chapter 9

Products and Poincaré
duality

Our goal in this chapter is to define products and pairings between K-theory
and K-homology groups, and use these to prove the K-theory Poincaré duality
theorem. A basic version of K-theory Poincaré duality says that if M is a
smooth closed manifold that is ‘oriented’ in an appropriate sense, then there is
a canonical isomorphism

K˚pMq Ñ K˚pMq

between the K-theory and K-homology of M .
The mere existence of such an isomorphism is interesting in itself, but for

our applications the specific form of this isomorphism is also important. In-
deed, it turns out that orientability in K-theory is closely tied up with a special
class of differential operators called Dirac operators, and the Poincaré duality
isomorphism is induced by a product with a Dirac operator. This has quite
strong structural consequences tying K-homology to analysis and geometry, for
example implying the existence of particularly nice representatives for classes in
K˚pMq. The consequences of the specific form of the Poincaré duality isomor-
phism are crucial for the applications of the assembly map that we will discuss
in Chapter 10.

To carry out the details of the above discussion, we need to construct various
pairings between K-theory and K-homology. The basic point underlying all of
these pairings is that the localisation algebra L˚QpMq commutes with C0pMq
(see Lemma 6.4.18). Combined with the particularly nice description of the
external product on K-theory available in the spectral picture (Section 2.9) we
can give fairly concrete and specific forms of these pairings.

This chapter is structured as follows. First in Section 9.1 we give a concrete
form of the basic pairing

K0pXq bK
0pXq Ñ Z.

This will be used to study the assembly map in Chapter 11. However, it is not
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so well-suited to generalisations – even the pairing K1pXq b K1pXq Ñ Z is a
little fiddly to describe in an analogous way – so we move on to another picture.

In Section 9.2 we use the external product

KipAq bKjpBq Ñ Ki`jpApbmaxBq

of Section 2.10 to construct the duality pairing between K-theory and K-
homology, a partial pairing (a sort of slant product), and an external product
on K-homology. We also prove some compatibilities between these. Having set
up this basic machinery, we are prepared to prove a version of the Bott period-
icity theorem in Section 9.3. In our current context, Bott periodicity should be
regarded as the special case of the Poincaré duality theorem when the manifold
is a Euclidean space Rd; as such it is a stepping stone to the general Poincaré
duality theorem rather than a goal in its own right.

In order to define the pairings underlying Poincaré duality for general1 non-
compact manifolds, our work in Section 9.2 is not enough. We need a variant of
K-homology called representable K-homology, which is introduced in Section
9.4. For readers who know the terminology, we remark that representable K-
homology is a compactly supported theory analogous to classical homology,
while our usual K-homology groups are a locally finite theory, analogous to
locally finite homology in the classical case.

Having introduced representable K-homology, we are ready to introduce
the last pairing, the cap product, in Section 9.5; this uses both K-homology
and representable K-homology in its definition. It also admits a nice geometric
interpretation in the case of differential operators on manifolds, which we explain
in this section. Finally, in section 9.6 we use the cap product to set up and
prove the Poincaré duality theorem in a fairly general form for non-compact
manifolds, and deduce some consequences. These consequences will be needed
for the applications studied in Chapter 10.

9.1 A concrete pairing between K-homology and
K-theory

In this section, we give a relatively concrete picture of the pairing between the
zeroth K-theory and K-homology groups that uses the usual description of K0

in terms of projections. Later in the chapter, we will switch to the spectral
picture of K-theory from Section 2.9.

Throughout this section, X is a proper metric space and HX is a fixed
ample X module (see Definition 4.1.1). We will use the K-theory of C˚LpHXq

as in Definition 6.6.1 as a model for the K-homology of X; this is legitimate by
Proposition 6.6.2. We will write C˚LpXq for C˚LpHXq.

For each n, represent MnpCq on `2pNq by having it act in the usual way on
`2pt1, ..., nuq and by zero on `2ptm P N | m ą nuq. Represent MnpC0pXqq “

1We can get away with a more naive argument for Rd in Section 9.3 because Rd is con-
tractible.
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C0pXqbMnpCq on HXb`
2pNq via the tensor product representation. Represent

C˚LpXq on HX b `2pNq via the amplification (see Remark 1.8.7) of its defining
representation on HX .

Let now K :“ Kp`2pNqq and B :“ Bp`2pNqq, and consider the C˚-algebra
double D :“ DBpKq, which we recall from Definition 2.7.8 is defined by

DBpKq :“ tpS, T q P B ‘ B | S ´ T P Ku.

Let Cubpr1,8q, Dq denote the C˚-algebra of uniformly continuous, bounded
functions from r1,8q to D, and let D8 denote the quotient C˚-algebra

D8 :“
Cubpr1,8q, Dq

C0pr1,8q, Dq
.

Lemma 9.1.1. With notation as above, let p, q P MnpC0pXq
`q be projections

for some n such that p ´ q P MnpC0pXqq. Then there is a well-defined ˚-
homomorphism

φp,q : C˚LpXq Ñ D8, pTtq ÞÑ ppTt, qTtq.

Moreover, the map induced on K-theory by this ˚-homomorphism depends only
on the class rps ´ rqs P K0pXq.

Proof. It follows from the definition of C˚LpXq that the map φp,q takes image in
D8. A slight variant on Lemma 6.1.2 shows that rp, Tts and rq, Tts tend to zero
in norm as t tends to infinity. It follows from this and the fact that p and q are
projections that φrp,qs is a ˚-homomorphism.

To see that the map φp,q˚ induced on K-theory only depends on rps ´ rqs it
suffices to show that it takes homotopies of pairs satisfying p´ q PMnpC0pXqq
to homotopies of ˚-homomorphisms, and that if r is a third projection, then
φp,q˚ “ φp‘r,q‘r˚ . The fact that homotopies go to homotopies is clear. For the
remaining fact, it follows from Lemma 2.7.6 that φp‘r,q‘r˚ “ φp,q˚ ` φr,r˚ , so it
suffices to show that φr,r˚ “ 0.

Include B in DBpKq via the diagonal inclusion b ÞÑ pb, bq, and use this to
define an inclusion

Cubpr1,8q,Bq
C0pr1,8q,Bq

Ñ D8.

Then φr,r factors through this inclusion. However, the left hand side has zero
K-theory by the same Eilenberg swindle showing that B has zero K-theory (see
Lemma 2.7.7), so φr,r˚ is zero as required.

Lemma 9.1.2. There is a natural isomorphism

ψ : K0pD8q
–
Ñ Z.

Proof. As C0pr1,8q, Dq is contractible, the quotient map Cubpr1,8q, Dq Ñ
D8 is an isomorphism on K0-groups, so it suffices to prove the result for
Cubpr1,8q, Dq. Let ev : Cubpr1,8q, Dq Ñ D be the evaulation-at-one map.
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Then an Eilenberg swindle very similar to that used in the proof of Proposi-
tion 6.3.3 shows that the kernel of this has trivial K-theory, and thus that ev
induces an isomorphism on K-theory. Lemma 2.7.9 gives a canonical isomor-
phism K0pDq – K0pKq‘K0pBq, and finally we use the canonical identifications
K0pBq “ 0 and K0pKq “ Z.

Definition 9.1.3. Let α be a class in K0pXq “ K0pC
˚
LpXqq, and β “ rps ´ rqs

be a class in K0pXq “ K0pC0pXqq. Then the pairing of α and β is defined by

xα, βy :“ ψpφp,q˚ pαqq.

Remark 9.1.4. If α “ rpPtqs P K0pXq is represented by a single projection
pPtq P C˚LpXq, and β “ rps P K0pXq is represented by a single projection
in MnpC0pXqq, then tracing through the various identifications involved, we
see that the pairing of α and β can be defined as follows. As p2 “ p and
as rp, Pts Ñ 0, for all suitably large t, q :“ pPtp will be a compact operator
such that }q2 ´ q} ă 1{4. It follows that the characteristic function χp1{2,8q
of p1{2,8q is continuous on the spectrum of q, and so χp1{2,8qpqq is a compact
projection for all suitably large t. We then have that for all suitably large t

xα, βy “ rank
`

χp1{2,8qppPtpqq.

This formula can be adapted to give something that works well in general, and
that is more concrete that the version in Definition 9.1.3. However, it is easier
to prove that the version in Definition 9.1.3 is well-defined and has good formal
properties.

9.2 General pairings and products

Our goal in this section is to use the external product on K-theory that we
introduced in Section 2.10 to construct the duality pairing

KipXq bK
ipXq Ñ Z,

partial duality pairing

KipX ˆ Y q bK
jpY q Ñ Ki`jpXq,

and external product

KipXq bKjpY q Ñ Ki`jpX ˆ Y q.

We will need notation from Appendix E: in particular, S will denote C0pRq
with the grading given by the usual notions of even and odd functions as in
Example E.1.10, pb will denote the graded spatial tensor product of Definition
E.2.9, and pbmax will denote the maximal graded tensor product of Definition
E.2.14.
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Throughout this section, X, Y denote locally compact, second countable,
Hausdorff topological spaces. We will use notation for localisation algebras as
in Chapter 6: in particular the algebras L˚pXq of Convention 6.2.11 (see also
Definition 6.2.3) and L˚QpXq of Remark 6.4.10 (see also Definition 6.4.8). For
our purposes, it will be convenient to represent elements of the K-homology of a
space X as elements of spK˚pL

˚
QpXqq, i.e. as ˚-homomorphisms S Ñ L˚QpXq.

It is legitimate to use L˚QpXq rather than L˚pXq in this context by Lemma
6.4.11.

We will also allow L˚pXq, and therefore also L˚QpXq to be graded by an inner
automorphism coming from a grading operator on HX for which the action of
C0pXq is even; a good example to bear in mind is that used in Construction
8.3.12 to build K-homology classes out of odd operators. The reader can safely
ignore this for now, but it will be useful to have the extra generality when
discussing differential operators as in Construction 8.3.12.

The key point in the construction of duality and partial duality is the fol-
lowing lemma.

Lemma 9.2.1. The formula

pTtq b f ÞÑ pTtfq

on elementary tensors induces a well-defined ˚-homomorphism

πX,Y : L˚QpX ˆ Y q b C0pY q Ñ L˚QpXq.

Proof. Let HX and HY be ample X and Y modules respectively, and use HX b

HY to define L˚QpX ˆ Y q. We can also think of HX b HY as an ample X
module via the amplification of the C0pXq representation on HX , and use it to
define L˚QpXq. Let now f P C0pY q and pTtq P L

˚
QpX ˆ Y q. Using Lemma 6.4.18

we have that pTtfq “ pfTtq in L˚QpX ˆ Y q. Hence Lemma 1.8.13 gives us a
˚-homomorphism

L˚QpX ˆ Y q b C0pY q Ñ L˚QpX ˆ Y q

defined on elementary tensors by pTtq b f ÞÑ pTtfq. If f is moreover in CcpY q,
one checks directly that the product pTtfq is actually in L˚QpXq: this boils down
to the fact that if K is a compact subset of X, then K ˆ supppfq is a compact
subset of X ˆ Y . Hence by an approximation argument the image of the above
˚-homomorphism is always in L˚QpXq, which gives the result.

Note that the external product defines a map

spKipL
˚
QpX ˆ Y qq b spKjpC0pY qq Ñ spKi`jpL

˚
QpX ˆ Y qpbmaxC0pY qq.

However, Corollary E.2.19 lets us replace pbmax with pb on the left hand side,
and Exercise E.3.3 plus the fact that C0pY q is trivially graded lets us replace pb

with b.
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Definition 9.2.2. The partial pairing between K-theory and K-homology

KipX ˆ Y q bK
jpY q Ñ Ki`jpXq, αb β ÞÑ α{β

is defined to be the composition

spKipL
˚
QpX ˆ Y qq b spKjpC0pY qq

ˆ // spKi`jpL
˚
QpX ˆ Y q b C0pY qq

πX,Y˚

��
spKi`jpL

˚
QpXqq

of the external product from Definition 2.10.7, and the map onK-theory induced
by the ˚-homomorphism from Lemma 9.2.1.

The notation above is inspired by the slant product from classical (co)homology
theory, of which the partial pairing above is a natural analogue.

Definition 9.2.3. The pairing between K-theory and K-homology

KipY q bK
jpY q Ñ Ki`jpptq, αb β ÞÑ xα, βy

is the specialization of the partial pairing to the case that X is a point (and
thus that Ki`jpXq “ Z when i` j “ 0 mod 2, and is zero otherwise).

Remark 9.2.4. In the case i “ j “ 0, this agrees with the pairing of Section 9.1:
see Exercise 9.7.1 below.

We next construct the external product, which starts with an analogue of
Lemma 9.2.1. To state it, let UX be the unitary multiplier inducing the grading
on L˚QpXq (possibly just the identity).

Lemma 9.2.5. The formula

pStqpbpTtq ÞÑ pStUX b Ttq

on elementary tensors of homogeneous elements induces a well-defined ˚-homomorphism

σX,Y : L˚QpXqpbmaxL
˚
QpY q Ñ L˚QpX ˆ Y q.

Proof. Choose ample modules HX and HY for X and Y respectively, so HX b

HY is an ample module for X ˆ Y ; if gradings are present, we may assume
that these are also spatially induced here. Use HX , HY , and HX pbHY to build
L˚pXq, L˚pY q, and L˚pX ˆ Y q respectively. Then direct checks show that the
map defined on elementary tensors by

pStq b pTtq ÞÑ pStUX b Ttq

gives rise to a ˚-homomorphism L˚QpXqpdL
˚
QpY q Ñ L˚QpX ˆ Y q on the level of

the algebraic tensor product. Using the universal property of pbmax (Remark
E.2.17), this extends to L˚QpXqpbmaxL

˚
QpY q, so we are done.
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Definition 9.2.6. The external product on K-homology

KipXq bKjpY q Ñ Ki`jpX ˆ Y q, αb β ÞÑ αˆ β

is defined to be the composition

spKipL
˚
QpXqq b spKjpL

˚
QpY qq

ˆ // spKi`jpL
˚
QpXqpbmaxL

˚
QpY qq

σX,Y˚

��
spKi`jpL

˚
QpX ˆ Y qq

of the external product from Definition 2.10.7, and the map onK-theory induced
by the ˚-homomorphism from Lemma 9.2.5.

We will need the following technical lemma about compatibility of these
products.

Lemma 9.2.7. Let α P KipXq, β P KjpY q, γ P K
ipXq, and δ P KjpY q. Then

pαˆ βq{δ “ αˆ pxβ, δyq P KipXq

and
xαˆ βyxγ ˆ δy “ xα, γyxβ, δy P Z.

Proof. We will just prove the first identity in detail; the second is similar. For
notational simplicity, let us ignore the copies of K and the Clifford algebras
in the definitions of the spectral K-theory groups. Let us also abuse notation
by eliding the difference between a homomorphism and the class it defines in
K-theory. So, we assume we are working with graded ˚-homomorphisms

α : S Ñ L˚QpXq, β : S Ñ L˚QpY q, and δ : S Ñ C0pY q.

Then αˆ β is represented by the graded ˚-homomorphism

S
∆ // S pbS

αpbβ // L˚QpXqpbmaxL
˚
QpY q

σX,Y // L˚QpX ˆ Y q ;

we will abuse notation slightly, and also write αˆ β for this ˚-homomorphism.
Hence the left hand side pαˆ βq{δ of the equation we are trying to establish is
represented by the graded ˚-homomorphism

S
∆ // S pbS

pαˆβqpbδ // L˚QpX ˆ Y qpbC0pY q
πX,Y // L˚QpXq .

On the other hand, xβ, δy is represented by the composition

S
∆ // S pbS

β pbδ // L˚QpY qpbC0pY q
πpt,Y // L˚Qpptq ;
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we will again abuse notation, and also write xβ, δy for this homomorphism.
Hence the right hand side α ˆ xβ, δy of the equation we are trying to establish
is given by the graded ˚-homomorphism

S
∆ // S pbS

αpbxβ,δy // L˚QpXqpbL
˚
Qpptq

σX,pt // L˚QpX ˆ ptq “ L˚QpXq .

Putting these descriptions together (and using the fact from Corollary E.2.19
that pbmax and pb when one of the arguments is commutative), we get the dia-
gram

L˚
Q
pX ˆ Y qxbC0pY q

πX,Y

((
S

∆ // SxbS

∆xb1 --

1xb∆

22SxbSxbS
αxbβxbγ // L˚

Q
pXqxbmaxL

˚
Q
pY qxbmaxC0pY q

1xbπpt,Y

��

σX,Y xb1

OO

L˚
Q
pXq

L˚
Q
pXqxbmaxL

˚
Q
pptq

σX,pt

66

with the upper composition corresponding to pαˆ βq{δ and the lower compo-
sition corresponding to αˆ xβ, δy. The upper and lower paths in the first part
of the diagram

S
∆ // S pbS

∆pb1 ..

1pb∆

00 S pbS pbS

are the same by coassociativity of ∆ (Lemma 2.10.6). The part

L˚QpX ˆ Y qpbC0pY q

πX,Y

))
L˚QpXqpbmaxL

˚
QpY qpbmaxC0pY q

1pbπpt,Y

��

σX,Y pb1

OO

L˚QpXq

L˚QpXqpbmaxL
˚
Qpptq

σX,pt

55

commutes by direct checks that we leave to the reader. These two commutativity
statements complete the proof.

We conclude this section with a statement of the universal coefficient theo-
rem. We will not prove it here as it would take us a little too far afield and there
are good expositions available. However, it is often a useful tool for computa-
tions (indeed, we will use it a little below), so worth mentioning. To state it,
for an abelian group G let ExtpG,Zq denote the ext functor from homological
algebra: one way to describe this is to say that if

0 // K // F // G // 0
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is an extension of abelian groups with F free abelian, then there is an induced
exact sequence

0 // HompG,Zq // HompF,Zq // HompK,Zq ,

which need not be exact at the right hand point, i.e. the map HompF,Zq Ñ
HompK,Zq need not be surjective2. The group ExtpG,Zq has the property that
it fits into an exact sequence

0 // HompG,Zq // HompF,Zq // HompK,Zq // ExtpG,Zq // 0

and thus in some sense measures the failure of the functor G ÞÑ HompG,Zq to
be exact. As the notation suggests, ExtpG,Zq does not depend on the choice
of quotient map F Ñ G up to canonical isomorphism, as long as F is free
abelian. We leave this as an exercise for the reader: the point is to use freeness
to construct appropriate commutative diagrams.

Theorem 9.2.8. For each i there is a natural short exact sequence

0 Ñ ExtpKipXq,Zq Ñ Ki`1pXq Ñ HompKi`1pXq,Zq Ñ 0,

where the map Ki`1pXq Ñ HompKi`1pXq,Zq is induced by the pairing.

Corollary 9.2.9. If KipXq is free, then Ki`1pXq – HompKi`1pXq,Zq (canon-
ically) and if in addition Ki`1pXq is free and finitely generated, then Ki`1pXq –
Ki`1pXq (non-canonically).

Proof. From the description given above of ExtpG,Zq, it clearly vanishes if G is
free, as we may take F “ G. The result follows from this and the short exact
sequence from Theorem 9.2.8.

9.3 The Dirac operator on Rd and Bott period-
icity

In this section, we prove a version of Bott periodicity. More-or-less equivalently,
this is the Poincaré duality theorem for Rd. Our eventual goal in this chapter is
to bootstrap this to prove a version of Poincaré duality for general (appropriately
oriented) manifolds.

Definition 9.3.1. Let d P N. Let CliffCpRdq denote the Clifford algebra over Rd
as in Example E.1.11. Fix an orthonormal basis for te1, ..., edu for Rd, and let
x1, ..., xd be the corresponding coordinates. For v P Rd write pv for the operator
on CliffCpRdq defined on a homogeneous element w by the formula

pv : w ÞÑ p´1qBwwv.

2This happens, for example, for G “ Z{2Z, F “ Z, and F Ñ G is the canonical quotient
map, as the reader can check.
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Thus pv is the operator of right multiplication by v, twisted by the grading. Let
Hd be the same underlying vector space as CliffCpRdq, but equipped with the
Hilbert space structure discussed in Example E.2.12. Let L2pRd;Hdq denote the
Hilbert space of square-summable functions from Rd to Hd, and let SpRd;Hdq be
the dense subspace of L2pRd;Hdq consisting of Schwartz class functions from Rd
to Hd. Define the Bott and Dirac operators on L2pRd;Hdq to be the unbounded
operators with domain SpRd;Hdq satisfying

pCuqpxq :“
n
ÿ

i“1

eixiupxq, pDuqpxq :“
n
ÿ

i“1

pei
Bu

Bxi
pxq

for all u P L2pRd;Hdq, and all x P Rd.

Remark 9.3.2. From the discussion in Example E.2.12, one has an identification

L2pRd;Hdq – L2pR;H1qpb ¨ ¨ ¨ pbL
2pR;H1q

looooooooooooooooomooooooooooooooooon

d times

of graded Hilbert spaces (see Definition E.2.5 for the graded tensor product of
Hilbert spaces, and also for the definitions of graded tensor products of un-
bounded operators). With respect to this decomposition we have

C “
d
ÿ

i“1

1pb ¨ ¨ ¨ pb1pb C1
loomoon

ith place

pb1pb ¨ ¨ ¨ pb1

where C1 is the one-dimensional version of C, and where both operators in the
line above are considered as unbounded operators with domain

SpR;H1q d ¨ ¨ ¨ d SpR;H1q
loooooooooooooooomoooooooooooooooon

d times

(note that C is still essentially self-adjoint for this domain). An analogous
formula holds for D.

Analogously (and more or less equivalently), thinking of the decomposition
Rd “ Rd´1 ˆ R, we have decompositions of the form

C “ Cd´1pb1` 1pbC1 and D “ Dd´1pb1` 1pbD1. (9.1)

The Bott operator can be seen to be essentially self-adjoint by direct checks.
On the other hand, the Dirac operator can be seen to be essentially self-adjoint
by considering its Fourier transform. Thus we may apply the functional calculus
for unbounded operators (Theorem D.1.7). In the case of the Bott operator, if
f P C0pRq it is not difficult to check that fpCq is in C0pRd,CliffCpRdqq, so we
get a functional calculus graded ˚-homomorphism

S Ñ C0pRd,CliffCpRdqq, f ÞÑ fpCq.
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On the other hand, the symbol of the Dirac operator satisfies σpx, ξq2 “ }ξ}2,
whence it is elliptic, and thus we get a ˚-homomorphism

S Ñ L˚pL2pRd, Hdqq, f ÞÑ fpt´1Dq

by Theorem 8.3.3, where the expression ‘fpt´1Dq’ is slightly sloppy shorthand
for the function t ÞÑ fpt´1Dq. Note further that

C0pRd,CliffCpRdqq – C0pRdqpbCliffCpRdq

and using that BpHdq – CliffCpRdqqpbCliffCpRdq (where we consider the first
copy of CliffCpRdq as acting on Hd on the left and the second on the right) we
get

L˚pL2pRd;Hdqq – L˚pL2pRd,CliffCpRdqqqpbCliffCpRdq.

Tensoring by a rank one even projection in K , these ˚-homomorphisms give
rise to Bott and Dirac classes

rCs P spKdpC0pRdqq and rDs P spKdpL
˚pRdqq.

The next general lemma takes a while to state, but less time to prove.

Lemma 9.3.3. Let A and B be graded C˚-algebras represented faithfully in a
grading preserving way on graded Hilbert spaces HA and HB respectively as in
Remark E.1.3. Let pSA, DAq and pSB , DBq be odd, possibly unbounded, essen-
tially self-adjoint operators on HA and HB (see Example E.1.8). Assume that
fpDAq is in A and fpDBq is in B for all f P S . Hence we have a graded
˚-homomorphism

φA : S Ñ A, f ÞÑ fpDAq

and similarly for B, giving K-theory classes rφAs P K0pAq and rφBs P K0pBq.
Assume moreover that D :“ DApb1 ` 1pbDB (see Definition E.1.4) makes

sense as an odd self-adjoint operator on some dense domain in HApbHB that
contains SA d SB. Assume finally that there is a graded C˚-algebra C Ď

BpHApbHBq such that the natural tensor product representation

ψ : ApbmaxB Ñ BpHApbHBq

defined analogously to Definition E.2.7 takes image in C, and such that fpDq
is in C for all f P S .

Then the associated functional calculus ˚-homomorphism

φ : S Ñ C, f ÞÑ fpDq

satisfies
rφs “ ψ˚prφAs ˆ rφBsq

in K0pCq.
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Proof. The class ψ˚prφAs ˆ rφBsq is represented by the ˚-homomorphism

S
∆ // S pbS

φA pbφB// ApbmaxB
ψ // C . (9.2)

We claim that this homomorphism agrees with φ, which will certainly suffice to
complete the proof. It suffices to check on the generators e´x

2

and xe´x
2

of S .
As in the proof of Lemma 2.10.3, we have the formulas ∆pe´x

2

q “ e´x
2
pbe´x

2

and ∆pxe´x
2

q “ xe´x
2
pbe´x

2

` e´x
2
pbxe´x

2

. Hence the composition in line
(9.2) acts as follows on the generators

e´x
2

ÞÑ e´D
2
A
pbe´D

2
B , xe´x

2

ÞÑ DAe
´D2

A
pbe´D

2
B `DBe

´D2
A
pbe´D

2
B .

We leave it to the reader to check that φ is represented by the same homomor-
phism: compare the proof of Lemma 2.10.3.

The following lemma follows directly from the above lemma, induction on d,
and the formulas in line (9.1).

Lemma 9.3.4. Letting rCds P spKdpC0pRdqq and rDds P KdpL
˚pRdqq denote

the Bott and Dirac classes respectively, we have that

rCds “ rC1s ˆ ¨ ¨ ¨ ˆ rC1s
looooooooomooooooooon

d times

and rDds “ rD1s ˆ ¨ ¨ ¨ ˆ rD1s
loooooooooomoooooooooon

d times

,

where the products are the exterior products in K-theory (Definition 2.10.7) and
K-homology respectively (Definition 9.2.6).

The following theorem is a version of the fundamental Bott periodicity the-
orem.

Theorem 9.3.5. The image of rDsbrCs under the pairing KdpRdqbKdpRdq Ñ
Z of Definition 9.2.3 is one.

Proof. Using Lemma 9.3.4 and Lemma 9.2.7 repeatedly, it suffices to prove this
when d “ 1, which we now do. Choose a norm one vector e P R, so t1, eu
is an orthonormal basis for H1 (considered as a Hilbert space). Let B be the
unbounded operator on L2pR;H1q with domain the Schwartz class functions
defined by B “ D ` C. As our choice of (ordered) basis identifies CliffCpRq
with C‘C (as a Hilbert space), we may write B as a 2ˆ 2 matrix with entries
unbounded operators on R. One checks that

B “

ˆ

0 x´ d
dx

x` d
dx 0

˙

,

with respect to this basis. Hence

B2 “

˜

x2 ´ d2

dx2 ´ 1 0

0 x2 ´ d2

dx2 ` 1

¸

“

ˆ

H 0
0 H ` 2

˙

, (9.3)

325



where H :“ x2 ´ d2

dx2 ´ 1 is the harmonic oscillator of Definition D.3.1, an
unbounded operator on L2pRq with domain the Schwartz class functions.

Now, ignoring the copy of K in the definition of spK0pCpptqq for notational
simplicity, by definition the image of rDsbrCs under the pairing in the statement
is given by the ˚-homomorphism

φ : S Ñ L˚Qpptq

where we use the ample pt module L2pR;H1q to define the localisation algebra

L˚Qpptq. Let us compute the image of the element e´x
2

of S under this ˚-

homomorphism. We have ∆pe´x
2

q “ e´x
2
pbe´x

2

, whence

φpe´x
2

q “ e´t
´1C2

e´t
´1D2

.

Using Lemma 6.4.18 on commutativity of elements of L˚Q with multiplication
operators, we have that as elements of L˚Qpptq,

e´t
´1C2

e´t
´1D2

“ e´
1
2 t
´1C2

e´t
´1D2

e´
1
2 t
´1C2

.

Moreover, if

α “ αptq :“
coshp2tq ´ 1

2 sinhp2tq
and β “ βptq “

sinhp2tq

2
.

are as in Lemma D.3.7, then we have the power series expansions

α “
t

2
`Opt3q and β “ t`Opt3q

from which it follows that if we set α “ αpt´1q and β “ βpt´1q then

e´
1
2 t
´1C2

e´t
´1D2

e´
1
2 t
´1C2

“ e´αC
2

e´βD
2

e´αC
2

as elements of L˚Qpptq. Using the formulas

D2 “

ˆ

´ d
dx2 0
0 ´ d

dx2

˙

and C2 “

ˆ

x2 0
0 x2

˙

we have that

e´αC
2

e´βD
2

e´αC
2

“

˜

e´αx
2

e´β
d2

dx2 e´αx
2

0

0 e´αx
2

e´β
d2

dx2 e´αx
2

¸

.

Using Mehler’s formula as in Corollary D.3.7, this equals

˜

e´αx
2

e´β
d2

dx2 e´αx
2

0

0 e´αx
2

e´β
d2

dx2 e´αx
2

¸

“

˜

e´t
´1

e´t
´1H 0

0 e´t
´1

e´t
´1H

¸

,
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and moreover by line (9.3) we get that
˜

e´t
´1

e´t
´1H 0

0 e´t
´1

e´t
´1H

¸

“

˜

e´t
´1

0

0 et
´1

¸

e´t
´1B2

.

As an element of L˚Qpptq, this just equals e´t
´1B2

, so we conclude that

φpe´x
2

q “ e´t
´1B2

.

An analogous computation starting with the formula

∆pxe´x
2

q “ xe´x
2
pbe´x

2

` e´x
2
pbxe´x

2

gives that

φpxe´x
2

q “ t´1Be´t
´1B2

.

As e´x
2

and xe´x
2

generate S as a C˚-algebra, we thus have that

φpfq “ fpt´1Bq

for all f P S , where as usual the expression ‘fpt´1Bq’ is shorthand for the
image of the function t ÞÑ fpt´1Bq in L˚Qpptq.

Now, it suffices to show that this function represents the generator ofK0pLQpptqq.
For s P p0, 1s consider the functions

ψs : S Ñ L˚Qpptq, f ÞÑ fps´1t´1Bq.

Moreover, let p be the projection onto the one-dimensional kernel of the har-
monic oscillator (see Proposition D.3.3) and define

ψ0 : S Ñ L˚Qpptq, f ÞÑ fp0q

ˆ

p 0
0 0

˙

.

Using the eigenvector decomposition of the harmonic oscillator (Proposition
D.3.3), we see that pψsqsPr0,1s is a continuous path of ˚-homomorphisms con-
necting ψ “ ψ1 to the ˚-homomorphism ψ0. Combining Lemma 2.9.14 with
Proposition 6.3.3 and Lemma 6.4.11), one sees that the map ψ0 indeed repre-
sents a generator of K0pL

˚
Qpptqq – Z, so we are done.

9.4 Representable K-homology

Our goal in this section is to introduce representable K-homology: as well as
being interesting in its own right, representable K-homology will be used in the
construction of the cap product and thus plays an important role in our eventual
statement and proof of the Poincaré duality theorem.

Throughout this section, X, Y denote locally compact, second countable,
Hausdorff topological spaces. We use notation for localisation algebras as in
Chapter 6.
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To explain the basic idea of representable K-homology, we review some clas-
sical algebraic topology. The singular homology groups H˚pXq have a natural

locally finite3 analogue H lf
˚ pXq. The difference between these two versions of

homology can be described as follows. The groups HnpXq and H lf
n pXq are

both constructed from formal linear combinations of continuous maps ∆n Ñ X
from the standard n-dimensional simplex to X. The linear combinations used
to build HnpXq are finite, while those used for H lf

n pXq are ‘locally finite’: this
means that for any compact K Ď X, there can only be finitely many maps
∆n Ñ X appearing in the linear combination with image intersecting K. The
two theories agree for compact spaces, but not in general: for example H1pRq
is zero, but H lf

1 pRq – Z. Moreover, they have different functoriality proper-
ties: HnpXq is functorial for all continuous maps, but H lf

n pXq only for those
continuous maps which are also proper.

In terms of their functoriality properties (amongst other things), the K-
homology groups K˚p¨q defined in Chapter 6 are analogues of the locally finite

homology groups H lf
˚ p¨q discussed above. There is also, however, an analogue

RK˚p¨q of the classical homology groups H˚p¨q, and our goal in this section is to
define and study these groups. Our main purpose is to get to the results on cap
products and Poincaré duality discussed later in the chapter: if we are using
non-compact manifolds, then the statements of these require the RK˚ groups.

Definition 9.4.1. Let HX be an X module. Define RLrHX s to be the collection
of all elements pTtq of LrHX s such that there exists a compact subset K of X
and tK ě 1 such that

Tt “ χKTtχK

for all t ě tK . Define RL˚pHXq to be the completion of RLrHX s for the norm

}pTtq} :“ sup
t
}Tt}BpHXq.

Functoriality of RL˚pHXq works much as it does for the localisation algebras,
although for a different class of maps. The basic point is the following analogue
of Lemma 6.2.7. See Definition 4.4.1 for the definition of continuous cover. The
proof is essentially the same as that of Lemma 6.2.7, so left to the reader.

Lemma 9.4.2. Let HX , HY be geometric modules. Let f : X Ñ Y be a
continuous map, and assume there exists a continuous cover pVtq for f . Then

pTtq ÞÑ pVtTtV
˚
t q

defines a ˚-homomorphism

adpVtq : RLrHX s Ñ RLrHY s

that extends to a ˚-homomorphism from RL˚pHXq to RL˚pHY q. Moreover, the
map on K-theory induced by adpVtq depends only on f and not on the choice of
pVtq.

3Also called Borel-Moore homology.
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Now, given a continuous map f : X Ñ Y and geometric modules HX , HY

with HY ample, Corollary 4.4.7 implies that there exists a continuous cover pVtq
for f . The following analogue of Definition 6.2.9 therefore makes sense.

Definition 9.4.3. Let f : X Ñ Y be a continuous function and let RL˚pHXq

and RL˚pHY q be associated to ample geometric modules. Define

f˚ : K˚pRL
˚pHXqq Ñ K˚pRL

˚pHY qq

to be the map on K-theory induced by the ˚-homomorphism

adpVtq : RL˚pHXq Ñ RL˚pHY q

associated to some continuous cover for f as in Lemma 9.4.2 above.

Collecting the above together, we get the following analogue of Theorem
6.2.10. To state it, let Cont be the category of locally compact second countable
Hausdorff spaces and continuous maps, and GA the category of Z{2Z-graded
abelian groups, and graded group homomorphisms.

Theorem 9.4.4. For each X in Cont choose an ample X module HX . Then
the assignments

X ÞÑ K˚pRL
˚pHXqq, f ÞÑ f˚

give a well-defined functor from Cont to GA.
Moreover, the functor that one gets in this way does not depend on the choice

of modules up to canonical equivalence.

Definition 9.4.5. The representable4 K-homology of X is defined to be the
K-theory group

RK˚pXq :“ K˚pRL
˚pHXqq

for any choice of ample X module HX .

Just as in Convention 6.2.11, if HX is ample we will often write RL˚pXq for
RL˚pHXq.

Remark 9.4.6. With notation as in Definition 6.4.8, define

RL0rHX s :“ L0rHX s XRLrHX s.

More concretely, RL0rHX s consists of elements pTtq of RLrHX s such that there
exists t0 ě 1 such that for all t ě t0, Tt “ 0. Let RL˚0 pHXq to be the closure
of this collection inside RL˚pHXq, a C˚-ideal of RL˚pHXq. If HX is ample,
essentially the same proof as in Lemma 6.4.11 shows that RL˚0 pHXq has zero K-
theory, and thus the K-theory of RL˚QpHXq :“ RL˚pHXq{RL

˚
0 pHXq is another

model for representable K-homology. Analogously to Lemma 6.4.18, elements
of the C˚-algebra CbpXq of bounded continuous functions on X act as central
multipliers on RL˚QpHXq.

These facts can be established in much the same way as the corresponding
facts for localisation algebras: we leave the details to the reader.

4The name is based on the fact that RK˚p¨q is a representable functor on an appropriate
category, but this will not be important for us.

329



Our next goal is to discuss the relationship of RK˚ to K˚. The key fact is
that the representable K-homology of a space X is determined by the compact
subsets of X in the sense of the next result.

Proposition 9.4.7. For any X, let pKiqiPI be the net of compact subsets of X,
ordered by inclusion. Then the maps RK˚pKiq Ñ RK˚pXq functorially induced
by the inclusions Ki Ñ X induce a natural isomorphism

lim
iPI

RK˚pKiq – RK˚pXq.

Proof. As X is second countable and locally compact, there exists a sequence
pKnq

8
n“1 of compact subsets of X such that each Kn is the closure of its interior,

such that Kn Ď Kn`1, and such that any compact subset of X is contained in
all the Kn for n suitably large: indeed, we may take a countable basis pUmq

8
m“1

of X such that each Um has compact closure, and then set Kn “
Ťn
m“1 Um. It

suffices to show that the inclusions Kn Ñ X induce an isomorphism

lim
n
RK˚pKnq – RK˚pXq.

To see that this is true, let HX be any ample X module, and χn be the
characteristic function of Kn. As Kn is the closure of its interior, HKn :“
χKnHX is an ample Kn module. The inclusion isometry Vn : HKn Ñ HX

defines a constant family pVnqtPr1,8q of isometries covering the identity inclusion
Kn Ñ X, and thus the associated map RK˚pKnq Ñ RK˚pXq is induced by the
map

adpVnq : RL˚pHKnq Ñ RL˚pHXq.

This descends to a map on the quotients adpVnq : RL˚QpHKnq Ñ RL˚QpHXq as
in Remark 9.4.6, which also induces the required map on K-theory.

Now, recall the fact that if an element pTtq of LrHY s is in RLrHY s for some
space Y , then there exists a compact subset K of X and tK ě 1 such that

Tt “ χKTtχK

for all t ě tK . From this it follows that
A straightforward check of the definitions shows that

8
ď

n“1

adpVnq
`

RQL
˚pHKnqq

is dense in RQL
˚pHXq. The result now follows from continuity of K-theory

(Proposition 2.7.1).

Recall that K-homology K˚ is a functor on the category LC with locally
compact, second countable, Hausdorff spaces as objects, and where a morphism
from X to Y is given by a choice of an open subset U of X and a continuous,
proper map from U to Y . Seen in this way, both LC and Cont naturally identify
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with sub-categories of the category with objects second countable, locally com-
pact, Hausdorff spaces, and where the morphisms from X to Y are given by a
choice of an open subset U of X and a continuous map from U to Y . Thinking
like this, it makes sense to talk about the intersection LCXCont: this again has
second countable, locally compact, Hausdorff spaces as objects, and morphisms
are continuous proper maps.

After this discussion, the following result is just a check of the definitions.

Proposition 9.4.8. For each locally compact, second countable, Hausdorff space
X, choose an ample module HX . Then RL˚pHXq is a C˚-subalgebra of L˚pHXq.
The collection of maps on K-theory induced by the inclusions

RL˚pHXq Ñ L˚pHXq, X P LC X Cont

define a natural transformation between the restrictions of the functors RK˚
and K˚ to LC X Cont.

Moreover, if X is a compact space, then the associated map RK˚pXq Ñ
K˚pXq as above is an isomorphism.

On the other hand, K-homology and representable K-homology differ even
for the simplest non-compact spaces, as the following example shows.

Example 9.4.9. The (graded) groupRK˚pr0,8qq identifies with the limit limnK˚pr0, nsq;
homotopy invariance and the computation of the K-homology of a point in The-
orem 6.4.16 and Proposition 6.3.3 show that this limit is Z in dimension zero,
and zero in dimension 1. On the other hand, the K-homology of r0,8q is zero
in both degrees by Proposition 6.4.14.

The following technical corollary is almost immediate: we again leave the
details to the reader. We will use it to deduce homological properties of RK˚
from those of K˚.

Corollary 9.4.10. For any locally compact, second countable, Hausdorff space
X, let pKiqiPI be the net of compact subsets of X, ordered by inclusion. This de-
fines a directed system pK˚pKiqqiPI of K-homology groups, and RK˚pXq canon-
ically identifies with the direct limit lim

iPI
K˚pKiq.

Moreover, this identification is functorial in the following sense. If f : X Ñ

Y is continuous and pKiqiPI , pKjqjPJ are the nets of compact subsets of X and
Y respectively, then for each compact K Ď X we have a map

pf |Kiq˚ : K˚pKiq Ñ K˚pfpKqq Ñ lim
jPJ

K˚pKjq,

where the map on the right exists by definition of the direct limit. These maps
are compatible with the inclusions defining the nets pKiq and pKjq, and the
associated diagram

lim
iPI

K˚pKiq

–

��

lim
iPI
pf |Kiq˚

// lim
jPJ

K˚pKjq

–

��
RK˚pXq

f˚ // RK˚pY q
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commutes.

We conclude this section with some homological properties of representable
K-homology.

Corollary 9.4.11. If h : X ˆ r0, 1s Ñ Y is a continuous homotopy between
f, g : X Ñ Y , then f˚ “ g˚ as maps RK˚pXq Ñ RK˚pY q.

Proof. Let pKnq be an increasing sequence of compact subsets of X whose union
is all of X. Let pK 1nq be an increasing sequence of compact subsets of Y whose
union is all of Y and such that hpr0, 1sˆKnq Ď K 1n for each n. Using homotopy
invariance of K-homology (Theorem 6.4.16) the restrictions of f and g to each
Kn induce the same map

K˚pKnq Ñ K˚pK
1
nq.

The result follows on passing to a direct limit.

Corollary 9.4.12. Let X be a disjoint union of countably many closed and
open subsets X “

Ů

nPNXn. Then the maps RK˚pXnq Ñ RK˚pXq induced by
the inclusions Xn Ñ X induce an isomorphism

à

nPN
RK˚pXnq Ñ RK˚pXq.

Proof. Let K be a compact subset of X, and write Kn “ K XXn, so each Kn

is a compact subset of Xn, and only finitely many Kn are non-empty. A special
case of Theorem 6.4.20 using that all but finitely many of the groups K˚pKnq

are zero then gives that

à

nPN
K˚pKnq – K˚pKq.

Taking the direct limit over all compact subsets of X gives the result.

Finally, we finish with a Mayer-Vietoris sequence. This can be derived from
the Mayer-Vietoris sequence for K-homology (Proposition 6.3.4) and Corollary
9.4.10, but it will convenient for later results to give a direct proof.

Proposition 9.4.13. Let X “ U Y V be a union of two open sets. Then there
is a six-term Mayer-Vietoris sequence

RK0pU X V q // RK0pUq ‘RK0pV q // RK0pXq

��
RK1pXq

OO

RK1pUq ‘RK1pV qoo RK1pU X V qoo

where the horizontal arrows are induced by the inclusions, and which is natural
for such decompositions.
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Proof. Fix an ample X-module. For Y P tU, V, U XV u, set RLY rHX s to be the
collection of pTtq in RLrHX s such that there is a compact subset K of Y and
tK ě 1 such that

Tt “ χKTtχK

for all t ě tK . Let RL˚Y pHXq denote the closure of RLY rHX s inside RL˚pHXq.
Note that if K is a compact subset of an open set Y in a locally compact space
Z then there is an open set W such that K ĎW and W Ď Y , and also so that
W is compact; using this and Lemma 4.1.15 one checks that RL˚Y pHXq is an
ideal in RL˚pHXq.

Let now pφU , φV q be a partition of unity on X subordinate to the cover
pU, V q. Then for any pTtq P RLrHX s one can check using Lemma 4.1.15 again
that pφUTtq P RLU rHX s, and pφV Ttq P RLV rHX s. As Tt “ φUTt ` φV Tt for
each t, this implies that RL˚pHXq “ RL˚U pHXq ` RL˚V pHXq. On the other
hand, it is immediate from the definitions that

RLU rHX s XRLV rHX s “ RLUXV rHX s.

This implies that RL˚U pHXq X RL˚V pHXq Ě RL˚UXV pHXq. For the opposite
inclusion, let pTtq be an element of RL˚U pHXq X RL˚V pHXq. Let ε ą 0 and let
pTUt q and pTVt q be in RLU rHX s and RLV rHX s respectively, and such that both
are within ε of pTtq. Let K Ď U be a compact set and tK ě 1 be such that
TUt “ χKT

U
t χK for all t ě tK . Let φ : X Ñ r0, 1s be a compactly supported

function that is equal to one on K, and supported in U , and define

φt :“

$

&

%

1 t ď tK
pt` 1´ tKq ` pt´ tKqφ t P ptK , tK ` 1s
φ t ě tK ` 1.

Then φtT
U
t “ TUt for all t, whence pφtT

V
t q is within 2ε of pTUt q. However, pφtT

V
t q

is in RLU rHX s XRLV rHX s whence pTtq is within 2ε of RLU rHX s XRLV rHX s

and so pTtq is in RL˚U pHXq XRL
˚
V pHXq.

Putting all this together, we have a pushout diagram

RL˚UXV pHXq //

��

RL˚U pHXq

��
RL˚V pHXq // RL˚pHXq .

(9.4)

Now, for Y P tU, V, U X V u write HY “ χYHX , which by openness of Y is
an ample Y module. Passing to the quotient by RL˚0 pHXq, we have that the
natural inclusions RL˚pHY q Ñ RL˚Y pHXq give rise to identifications

RL˚QpHY q –
RL˚Y pHXq

RL˚Y pHXq XRL
˚
0 pHXq

;

the point, which is immediate from the definitions, is that for any element pTtq
of RLY rHX s there is an element pStq of RLrHY s and t0 ě 1 such that St “ Tt
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for all t ě t0. The pushout diagram in line (9.4) above above thus gives rise to
a pushout diagram

RL˚QpHUXV q //

��

RL˚QpHU q

��
RL˚QpHV q // RL˚QpHXq .

From the construction, one checks that this diagram is natural for maps between
decompositions of X into open sets. It gives rise to the desired six-term exact
Mayer-Vietoris sequence by Proposition 2.7.15.

9.5 The cap product

Our goal in this section is to construct and study a general form of the cap
product pairing: this will be a map

K˚pXq bK
˚pUq Ñ RK˚pUq

defined for an open subset U Ď X.
Throughout this section X and Y will denote second countable locally com-

pact spaces. We start with the following analogue of Lemma 9.2.1; the proof is
essentially the same, so omitted.

Lemma 9.5.1. For any open subset U of X, there is a ˚-homomorphism

πU : L˚QpXq b C0pUq Ñ RL˚QpUq

that satisfies pTtq b f ÞÑ pTtfq on elementary tensors.

Definition 9.5.2. For an open subset U of X, the cap product is defined to be
the map

KipXq bK
jpUq Ñ RKi`jpUq, αb β ÞÑ αX β

induced by the composition

spKipL
˚
QpXqq b spKjpC0pUqq

ˆ // spKi`jpL
˚
QpXq b C0pUqq

πU˚
��

spKi`jpRL
˚
QpUqq

of the external product from Definition 2.10.7, and the map onK-theory induced
by the ˚-homomorphism from Lemma 9.5.1 (we also use that pbmax and pb agree
on commutative algebras by Corollary E.2.19, and that C0pUq is trivially graded
to replace pb with b).
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Remark 9.5.3. If U “ X, the cap product becomes a map

KipXq bK
jpXq Ñ RKi`jpXq.

Composing this with the map p˚ : RKi`jpXq Ñ RKi`jpptq functorially induced
from the collapse map p : X Ñ pt from X to a single point, we recover the
pairing

KipXq bK
jpXq Ñ Ki`jpptq

of Definition 9.2.3. We leave the check of this as an exercise for the reader: see
Exercise 9.7.4 below.

We now discuss how these products behave with respect to some of the
functoriality and homological properties of K-theory and K-homology. To get
a suitably general version of this, we have to be a little careful, and proceed
as follows. Let f : X Ñ Y be a morphism in the category LC, so we may
think of f as a continuous proper map f : U Ñ Y , for some open subset U of
X (compare Proposition A.1.8). In this way, f induces a map f˚ : K˚pXq Ñ
K˚pY q on K-homology, a map f˚ : K˚pY q Ñ K˚pXq on K-theory, another
map f˚ : K˚pY q Ñ K˚pUq on K-theory (through which the first factors), and
a map f˚ : RK˚pUq Ñ RK˚pY q on representable K-homology.

Proposition 9.5.4. Let f : X Ñ Y be a morphism in the category LC, and let
α, β be classes in K˚pXq and K˚pY q respectively. Then with notation as above

f˚pαq X β “ f˚pαX f
˚pβqq and xf˚pαq, βy “ xα, f

˚pβqy.

Proof. The first of these identities implies the second on applying p˚, where
p : Y Ñ pt is the collapse function to a single point space (compare Remark
9.5.3). Hence it suffices to prove the first identity.

For this, it will be technically convenient to choose specific modules. Let
ZX be a countable dense subset of X` that contains the point at infinity. Let
H be a separable infinite dimensional Hilbert space. Let HX` “ `2pZX , Hq,
HX :“ `2pZX X X,Hq and HU :“ `2pZX X U,Hq, which are ample modules
for X`, X, and U respectively. Let ZY be a countable dense subset of Y `

that contains 8 and fpZX X Uq, and define HY ` :“ `2pZY , Hq. Choose a
decomposition H “

À

zPZX
Hz, where each Hz is infinite dimensional, and

isometries Wz : H Ñ Hz. Define

V : HX Ñ HY , pV uqpzq “
à

xPf´1pzq

WxupxqW
˚
x .

Setting Vt “ V for each t defines a continuous cover pVtq of f considered as a
map from X` to Y `. On noting that the same formula for the pairing works
if we start with an element of L˚pHX` ;8q as in Definition 6.4.3, the desired
identity f˚pαq X β “ f˚pα X f˚pβqq now follows from direct checks, which we
leave to the reader.
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We isolate below a particularly important instance of functoriality; it is
essentially a special case of the results in Proposition 9.5.4. To state it, recall
that if i : U Ñ X is an inclusion of an open set, then we get a map c : X` Ñ U`

from the one point compactification of X to that of U that takes infinity to
infinity, and collapses XzU to the point at infinity in U`. Taking the maps on
K-theory and K-homology induced by c gives us maps

i˚ : K˚pUq Ñ K˚pXq and i˚ : K˚pXq Ñ K˚pUq

(compare Example 6.4.13).

Corollary 9.5.5. Let i : U Ñ X be an inclusion of an open set, and let
α P K˚pXq be a K-homology class. Then the following diagram commutes.

K˚pUq
i˚ //

i˚pαqX ¨

��

K˚pXq

αX ¨

��
RK˚pUq

i˚ // RK˚pXq .

Proof. The corollary says that for any β P K˚pUq we have

i˚pαX c
˚pβqq “ c˚pαq X β,

where c : X` Ñ U` is the collapse map discussed just before the statement
of the lemma. Checking our notational conventions, this is a special case of
Lemma 9.5.4.

For the next lemma, recall that if X “ U Y V is a decomposition into
open sets, then there are Mayer-Vietoris sequences in both K-theory and rep-
resentable K-homology as Example 2.7.16 and Proposition 9.4.13.

Lemma 9.5.6. Let X be a union of two open sets X “ U Y V , and let α be
class in KjpXq. For each Y P tU, V, U X V u, let iY : Y Ñ X be the inclusion,
and let αY :“ i˚Y pαq, where i˚Y is as in Example 6.4.13. Then the diagram of
Mayer-Vietoris sequences and cap products

// KipU X V q //

αpUXV qX ¨

��

KipUq ‘KipV q

pαUX ¨q‘pαV X ¨q

��

// KipXq

αX ¨

��

//

// RKi`jpU X V q // RKi`jpUq ‘RKi`jpV q // RKi`jpXq //

commutes.

Proof. We have that C0pXq is a sum of ideals C0pUq and C0pV q with intersection
C0pU X V q. On the other hand, the proof of Proposition 9.4.13 writes RL˚QpXq
as a direct sum of ideals that naturally identify with RL˚QpUq and RL˚QpV q,
and with intersection RL˚QpU X V q. The Mayer-Vietoris sequences above both
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arise from these decompositions into ideals and Proposition 2.7.15. Checking
the definitions involved (for this it is convenient to work with modules of the
form `2pZ,Hq as in the proof of Proposition 9.5.4), one sees that the various
maps induced between these algebras by the ˚-homomorphisms appearing in
Lemma 9.5.1 are compatible; we leave the details to the reader.

Our last goal in this section is to give a geometric interpretation of the
cap product in the special case that we are working with differential operators
and smooth vector bundles on a closed manifold. It says essentially that if
rps P K0pMq and rDs P KipMq are classes represented by a smooth projection
and an elliptic operator respectively, then the class rDs X rps is represented by
a new operator which is essentially ‘D with coefficients in the vector bundle
underlying p’.

Lemma 9.5.7. Let M be a closed smooth manifold. Let D be an elliptic operator
acting on a smooth vector bundle S over M , and let p PMnpCpMqq be a smooth
projection with corresponding smooth vector bundle E over M . Let S b Cn be
the tensor product of S and the trivial rank n vector bundle, and let D b idCn

and idS b p both act on L2pM ;S b Cnq in the natural way. Then the operator

pDp :“ pidS b pqpD b 1nqpidS b pq (9.5)

thought of as acting on L2pM ;SbEq with domain the smooth sections of SbE
is an elliptic differential operator (see Definition 8.3.1), so defines a class rpDps
in K˚pMq (which equals RK˚pMq as M is closed). Moreover, we have that

rDs X rps “ rpDps

The notation is line (9.5) is potentially a little misleading: this operator
is not the same thing as D b p acting on L2pM ;Sq b L2pM ;Cnq! Indeed,
L2pM ;S b Cnq is not the same thing as L2pM ;Sq b L2pM ;Cnq.

Proof. If D is given in local coordinates on a section u of S by

pDuqpxq “
d
ÿ

i“1

aipxq
Bu

Bxi
pxq ` bpxqupxq

as in Definition 8.1.1, then one computes that pDp is given in local coordinates
on a section u of S b Cn by

pppDpquqpxq “
d
ÿ

i“1

aipxqbppxq
´

Bu

Bxi
pxq` idSb

Bp

Bxi
pxqupxq

¯

`pbpxqbppxqqupxq.

It follows from this that the symbol of pDp in the sense of Definition 8.1.3 is
given in local coordinates by

σpDppx, ξq “
d
ÿ

i“1

ξiaipxq b ppxq,
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or in other words
σpDppx, ξq “ σDpx, ξq b idE

as an endomorphism of S b E. It follows from this that ellipticity of D in
the sense of Definition 8.3.1 implies ellipticity of pDp. We thus get a class
rpDps P K˚pMq by one of Construction 8.3.11 or 8.3.12 depending on whether
or not D is assumed odd for some grading (note that if D is odd for some
grading on S, then pDp is also odd for the induced grading on S b E).

Now, the class rpDps is by definition the class associated to the ˚-homomorphism

S Ñ L˚pL2pM ;S b Eqq, f ÞÑ fpt´1pDpq

(either graded or ignoring gradings, depending on whether D was odd for some
grading to begin with). Let H “ H0 ‘H1 be an auxiliary graded Hilbert space
with H0 and H1 separable and infinite dimensional. Include E in M ˆ Cn as
the image of p, and include Cn into H0. We thus get an inclusion

L2pM ;S b Eq Ď L2pM ;Sq bH.

This inclusion is an isometry covering the identity map, so the constant family
consisting of just this isometry gives rise to an inclusion

L˚pL2pM ;S b Eqq Ñ L˚pL2pM ;Sq bHq

which induces an isomorphism on K-theory by Lemma 6.2.7. In summary, of
we write L˚pMq :“ L˚pL2pM ;Sq b Hq, then we have that the class rpDps is
represented by the ˚-homomorphism

S Ñ L˚pMq, f ÞÑ fpt´1pDpq.

Moreover, Lemma 6.4.11 says that the canonical quotient map L˚pMq Ñ L˚QpMq
induces an isomorphism on K-theory, so we equally well replace the codomain
above with L˚QpMq.

Let us now compute a representative for the class of rDs X rps. Write K
for the compact operators on H0, and grade M2pCpMq b Kq by the unitary

multiplier

ˆ

1 0
0 ´1

˙

. Include Cn into H, and use this to identify MnpCpXqq

with a subalgebra of CpMq bK. Using Lemma 2.9.14, the class rps P K0pMq is
represented as an element of spectral K-theory by the graded ˚-homomorphism

S ÑM2pCpMq bKq, f ÞÑ

ˆ

fp0qp 0
0 0

˙

.

From now on, we will just write fp0qp for the element

ˆ

fp0qp 0
0 0

˙

ofM2pCpMqb

Kq; this should not cause any confusion. We claim that the cap product rDsXrps
is represented by the class of the ˚-homomorphism

S Ñ L˚pL2pM ;Sq bHq, f ÞÑ pfpt´1Dqp.
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Write L˚pMq :“ L˚pL2pM ;SqbHq. Computing on generators e´x
2

and xe´x
2

,
one checks that the product map

S Ñ S pbS Ñ L˚QpMq bM2pCpMq bKq

takes a function f to
fpt´1Dq b p. (9.6)

Indeed, checking for xe´x
2

, we see that

xe´x
2 ∆
ÞÑ xe´x

2
pbe´x

2

` e´x
2
pbxe´x

2

ÞÑ t´1De´t
´2D2

b e´02

p` e´t
´2D2

b 0

“ t´1De´t
´2D2

b p,

and the case of e´x
2

is similar (and simpler). As p2 “ p, and as we have

pfpt´1Dq “ fpt´1Dqp

in L˚QpMq by Lemma 6.4.18, we may conclude that the class rDs X rps is repre-
sented by the ˚-homomorphism

S Ñ L˚QpMq, f ÞÑ pfpt´1Dqp

as claimed.
Now, summarising the discussions in the last two paragraphs, we have that

rpDps and rDs X rps are represented by the ˚-homomorphisms

S Ñ L˚QpMq, f ÞÑ fpt´1pDpq and f ÞÑ pfpt´1Dqp

respectively. We want to show that these represent the same class in K-theory;
we will actually show that they are the same ˚-homomorphism. As the functions
x ÞÑ px ˘ iq´1 generate S as a C˚-algebra, it will suffice to show that the
elements

pt´1pDp˘ ipq´1 and ppt´1D ˘ iq´1p

of L˚QpMq are the same (here and throughout we will be identify D and p with
the operators DbidCn and idSbp from the statement; moreover to make sense of
pt´1pDp˘ ipq´1 we are taking the inverse as an operator on L2pM ;SbEq, then
including this as a subspace of L2pM ;SqbH). We will just do this computation
for the case of px` iq´1; the case of px´ iq´1 is similar.

Let us then look at the difference

pt´1pDp` ipq´1 ´ ppt´1D ` iq´1p;

we claim that this is zero in L˚QpMq. Now, using the so-called resolvent identity

a´1 ´ b´1 “ a´1pb´ aqb´1, the above equals

pt´1pDp` ipq´1
`

pt´1D ` iq ´ pt´1pDp` ipq
˘

pt´1D ` iq´1p.
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As pt´1pDp` ipq´1 “ pt´1pDp` ipq´1p, this equals

pt´1pDp` ipq´1p
`

t´1D ` i´ t´1pDp´ ip
˘

pt´1D ` iq´1p

“ pt´1pDp` ipq´1prp, t´1Dspt´1D ` iq´1p.

Using Lemma 6.4.18 (and the fact that the commutator rp, t´1Ds is a bounded
operator) we have that pt´1D ` iq´1p “ ppt´1D ` iq´1p in L˚QpMq, and so the
above equals

pt´1pDp` ipq´1
`

prp, t´1Dsp
˘

pt´1D ` iq´1p.

However, prp, t´1Dsp “ pt´1Dp´ pt´1Dp is zero, so we are done.

9.6 The Dirac operator on a spinc manifold and
Poincaré duality

Our goal in this section is to formulate and prove a version of Poincaré duality
for K-theory and deduce some consequences. This is the main theorem of this
chapter.

Recall that the usual version of Poincaré duality for a (boundaryless, but not
necessarily compact) oriented d-manifold M states that there is a fundamental

class rM s in the locally finite5 homology H lf
d pMq such that taking the cap

product with rM s induces an isomorphism

H˚pMq Ñ H˚pMq, α ÞÑ rM s X α.

Our goal is to get a similar isomorphism K˚pMq Ñ RK˚pMq using the cap
product with an appropriate fundamental class. Following a standard classical
proof, our goal will to prove this first for Rd, and then deduce the general case
by a Mayer-Vietoris argument.

Now, the Bott periodicity theorem (Theorem 9.3.5) suggests that the Dirac
operator on Rd is the right thing to use for a a fundamental class in that case, so
we need some sort of global analogue of this on a general manifold. However, a
general manifold will not admit an appropriate globally defined Dirac operator.
Indeed, by analogy with the classical case one should expect the need for some
sort of orientation condition. The correct orientation condition to use is the
spinc condition, and we start by describing this.

First we give an auxiliary definition that makes sense for any Riemannian
manifold.

Definition 9.6.1. Let M be a Riemannian manifold with tangent bundle TM .
As the Clifford algebra construction is a continuous6 functor, there is an as-
sociated (smooth) Clifford bundle CliffCpTMq of Clifford algebras over TM ,
where each fibre CliffCpTMqx for x P M identifies with the Clifford algebra
CliffCpTxMq of the tangent space TxM at x.

5also called Borel-Moore
6i.e. takes continuous morphisms of finite-dimensional vector spaces to continuous mor-

phisms of finite-dimensional algebras; see the notes and references at the end of the chapter.
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For the next definition, let S be a (smooth) Hermitian bundle over M , and
assume S is also equipped with a grading i.e. a bundle isomorphism (so in
particular, a homeomorphism) U : S Ñ S such that the induced map Ux : Sx Ñ
Sx on each fibre is a self-adjoint unitary (compare Definition E.1.4). Say A is
a bundle of ˚-algebras over M , graded by a bundle isomorphism ε : A Ñ A,
meaning that the restriction εx : Ax Ñ Ax of ε to eacch fibre is an order
two ˚-isomorphism. Then a left action of A on S consists of a bundle map
m : Aˆ S Ñ S such that the induced map

mx : Ax ˆ Sx Ñ Sx, pa, sq ÞÑ ax

on each fibre satisfies the usual associativity and bilinearity rules for module
multiplication fibrewise as well as compatibility with the adjoint, meaning

xas1, s2yx “ xs1, a
˚s2yx,

and compatibility with the grading, meaning that

εxpaqs “ UxaU
˚
x .

A right action of A on S is defined similarly.

Definition 9.6.2. Let M be a Riemannian manifold of dimension d with as-
sociated Clifford bundle CliffCpTMq as above. Then a spinc structure on M
consists of a graded, complex, Hermitian bundle S over M equipped with:

(i) a right action of CliffCpTMq, and

(ii) a left action of the trivial bundle of graded ˚-algebras M ˆ CliffCpRdq

such that for each x P X there is an open set and a section s : U Ñ S|U such
that for each y P U the left action

CliffCpRdq Ñ Sy, c ÞÑ cspyq

defines an isomorphism of graded Hermitian spaces.

Remark 9.6.3. If we required that both the left and right actions on S were by
CliffCpTMq, then the existence of S satisfying these conditions would be trivial:
just take S “ CliffCpTMq, acting on itself by left and right multiplication.
Similarly, the existence of a bundle as above with both left and right actions of
the trivial bundle M ˆCliffCpRdq is trivial: take S “M ˆCliffCpRdq. However,
we need to require different actions; this is to do with the need for the Bott
element to be globally defined, while the Dirac operator will be local.

The existence of such an S turns out to be a non-trivial condition. Indeed,
it is governed by the first two Steifel-Whitney classes w1pMq P H

1pM ;Z{2Zq
and w2pMq P H

2pM ;Z{2Zq. Existence of such an S is equivalent to both of the
following holding:

(i) w1pMq must vanish;
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(ii) w2pMq must be in the image of the canonical map

H2pM ;Zq Ñ H2pM ;Z{2Zq

induced by the canonical quotient ZÑ Z{2Z.

Now, vanishing of w1pMq is equivalent to orientability of M . The condition
on w2pMq can be seen as ‘just a little more than orientability’. It is satisfied,
for example, by all orientable surfaces, all symplectic manifolds, all orientable
manifolds with H2pM ;Z{2Zq “ 0 and many others; indeed, it is quite difficult
to find an example of an orientable manifold that does not also admit a spinc

structure (such do exist, however: see the notes and references at the end).

Remark 9.6.4. Associated to a real vector space V there is also a real Clifford
algebra CliffpV q defined precisely analogously to CliffCpV q but as a real, rather
than complex algebra. One can then ask for a real bundle S satisfying the ‘real
analogues’ of the conditions in Definition 9.6.2; we will call such a bundle a
spin structure on M . If M has a spin structure, then there is a canonically
associated spinc structure: just tensor everything by C. There is no way to go
from a spinc structure to a spin structure in general: in fact, a manifold admits a
spin structure if and only if w1pMq “ w2pMq “ 0, and this is a strictly stronger
condition that M being spinc. For example, the complex projective plane CP 2

is a spinc, but not spin, four-manifold.

Definition 9.6.5. Let S be a spinc structure over M , let C8pM ;Sq denote
the smooth sections of S, and C8pM ;TMq denote the smooth sections of the
tangent bundle. A Dirac connection on M is a linear map

∇ : C8pM ;TMq d C8pM ;Sq Ñ C8pM ;Sq, pX, sq ÞÑ ∇Xs

that is a connection in the usual sense7 satisfying in addition:

(i) for all vector fields X on M and all sections s, t of S

Xxs, ty “ x∇Xs, typxq ` xs,∇Xty;

(ii) for all vector fields X,Y and sections s of S,

∇Xps ¨ Y q “ p∇Xsq ¨ Y ` x ¨ p∇LCX Y q,

where ‘¨’ denotes multiplication in the Clifford algebra and ∇LC is the
Levi-Civita connection associated to the Riemannian metric.

If ∇ is a Dirac connection on S, then the associated Dirac operator is the
composition

C8pM ;Sq
∇ // C8pM ;Sq b C8pM ; Λ1Mq

x,y // C8pM ;Sq b C8pM ;TMq

c

��
C8pM ;Sq

7This means that for all f, g P C8pMq, s P C8pM ;Sq and X,Y P C8pM ;TMq, we have
the rules ∇pfX`gY qs “ f∇Xs` g∇Xs and ∇Xpfuq “ f∇Xu`Xpfqu.
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where: the first map is the connection considered (via the duality between
vectors and covectors) as a map from sections of S to sections of S tensored
by 1-forms; the second map is the identity on sections of S tensored by the
isomorphism between vector fields and 1-forms induced by the metric; and the
third map is Clifford multiplication.

Example 9.6.6. Let M “ Rd with its usual metric. As Rd has trivial(isable)
tangent bundle,we may identify the Clifford bundle CliffCpTRdq with Rd ˆ
CliffCpRdq. We may thus take a spinc structure to be equal as a graded bundle
to the trivial bundle RdˆCliffCpRdq, with the left action of RdˆCliffCpRdq de-
fined by left multiplication, and the right action of CliffCpTRdq – RdˆCliffCpRdq
defined by right multiplication, but ‘twisted’ by the grading: precisely, for ho-
mogeneous elements s P S and v P Rd ˆ CliffCpRdq we define

s ¨ v :“ p´1qBsBvsv.

A vector field on Rd is then given by an expression

X “

d
ÿ

i“1

fi
B

Bxi

for some smooth functions fi : Rd Ñ R, and we define a connection by

∇Xs :“
d
ÿ

i“1

fi
Bs

Bxi
.

One can then (and the reader should!) check that this defines a Dirac con-
nection, and that the associated Dirac operator is the same as the one defined
directly in Definition 9.3.1.

Several aspects of the following definitions should be viewed as exercises:
the reader should check everything can be made sense of. As a preliminary
remark that will be helpful in making sense of some of what follows, note that
for finite dimensional real vector spaces V and W , CliffCpV ‘W q is canonically
isomorphic to CliffCpV qpbCliffCpW q: see Exercise E.3.4. Moreover for manifolds
M and N , using that T pM ˆNq canonically identifies with the exterior direct
sum bundle TM‘TN whose fibre at px, yq PMˆN is TxM‘TyN , this induces
a canonical isomorphism of Clifford bundles

CliffCpTMqpbCliffCpTNq – CliffCpT pM ˆNqq;

the tensor product is here the exterior graded tensor product of graded algebra
bundles, so the fibre at a point px, yq PM ˆN of CliffCpTMqpbCliffCpTNq is by
definition equal to the graded tensor product of fibers

CliffCpTMqxpbCliffCpTNqy.
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Definition 9.6.7. Let M and N be Riemannian manifolds of dimensions m
and n, and with spinc structures SM and SN respectively. Then the product
spinc structure is given by the exterior tensor product bundle SM b SN over
M ˆ N with the tensor product grading, and tensor product left and right
actions of CliffCpRm`nq – CliffCpRmqpbCliffCpRnq and CliffCpT pM ˆ Nqq –
CliffCpTMq b CliffCpTNq respectively.

Let DM and DN be spinc Dirac operators on M and N respectively, built
using the connections ∇M and ∇N respectively. Then we set ∇ :“ ∇M pb1 `
1pb∇N , which is a Dirac connection on the product spinc bundle. The associated
Dirac operator with respect to the connection ∇M then satisfies

DMˆN “ DM pb1` 1pbDN .

Lemma 9.6.8. Let M and N be spinc Riemannian manifolds with associated
Dirac classes rDM s P K˚pMq and rDN s P K˚pNq, and also rDNˆM s P K˚pN ˆ
Mq for the associated product spinc structure. Then

rDNˆM s “ rDN s ˆ rDM s,

where the right hand side uses the external product in K-homology of Definition
9.2.6.

Proof. This is a direct check using Definition 9.6.7 and Lemma 9.3.3.

Lemma 9.6.9. Let M be a spinc Riemannian manifold, let i : U Ñ M be the
inclusion of an open set, and let D be the spinc Dirac operator on M . Then
i˚rDM s “ rDU s.

Proof. The map i˚ is induced functorially by the ‘collapse’ map c : M` Ñ U`

that is the identity on U , and sends M`zU to the point at infinity in U`. Let
S be the spinc bundle over M , and let H be an auxiliary separable infinite
dimensional Hilbert space. Let HM` :“ L2pM ;Sq ‘ H, equipped with the
CpM`q action defined on pu, vq P L2pM ;Sq ‘H by

f ¨ pu, vq :“ pf |Mu, fp8qvq.

Then HM` is an ample M` module (other than in the trivial case where M is
zero-dimensional, which we can safely leave to the reader to treat in an ad-hoc
way of her choosing). Let HU` be the same Hilbert space as HM` , but equipped
with the action of CpU`q defined by

f ¨ u :“ fu` χM`zUfp8qu;

this gives a well-defined representation of CpU`q, which is ample (other than
in the trivial case U “M , which again we can safely leave to the reader). The
identity map on HM` considered as a unitary isomorphism V :“ HM` Ñ HU`

is then such that the constant family pVtq with Vt “ V for all t P r1,8q is a
continuous cover (see Definition 6.2.5) for c : M` Ñ U`.
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Now, we can realize the classes rDM s and rDU s in natural ways on these
modules. Let pgMt q and pgUt q be as in the definition of multiplier data (Definition
8.2.9) for DM and DU . Let f P S and let FMt :“ fM pt´1gtDgtq and FUt :“
fU pt´1gtDgtq define the associated multipliers pFMt q and pFUt q of L˚pL2pM ;Sqq
and L˚pL2pU ;Sqq respectively (compare Theorem 8.2.6). As in Proposition
6.4.7, the inclusions

L˚pL2pM ;Sqq Ñ L˚pH`M ;8q and L˚pL2pU ;Sqq Ñ L˚pH`U ;8q

induce isomorphisms on K-theory. Thanks to the definition of functoriality
of K-homology (Definition 6.4.5) and the construction of the classes rDM s

and rDU s (Constructions 8.3.11 and 8.3.12), it will thus suffice to show that
pV FMt V ˚q and pFUt q differ by an element of L˚0 pH

`
U ;8q.

This now follows from essentially the same arguments used to show that the
classes involved do not depend on the choice of the associated multiplier data
as in Proposition 8.3.13; we leave the details to the reader.

Lemma 9.6.10. Let M be a spinc manifold, let g0 and g1 be two Riemannian
metrics on M , and let D0 and D1 be the associated spinc Dirac operators. Then
the classes rD0s and rD1s in K˚pMq are the same.

Proof. Consider the product manifold MˆR equipped with a metric that agrees
with g0`dt

2 on p´8, 0qˆM and with g1`dt
2 on p1,8q (and interpolates, say

linearly, between these metrics on the remaining part). Let rDMˆRs P KipMˆRq
be the class of the Dirac operator for the product of the spin structures. Let
U0 “M ˆ p´1, 0q and U1 “M ˆ p1, 2q. Using the lemma above, the images of
rDs under the restriction maps K˚pM ˆRq Ñ K˚pUiq agree with the classes in
K˚pUiq of the associated Dirac operators, or in other words, thanks to Lemma
9.6.8, with rD0s ˆ rDp´1,0qs and rD1s ˆ rDp1,2qs where the Dirac operators on
the open intervals are defined using the spinc structure on R from Example
9.6.6. Using Lemmas 9.6.9 again, however, these classes are the restrictions of
the Dirac operators rDisˆrDRs on M ˆR, where these classes are defined using
the product metrics g0 ` dt

2 and g1 ˆ dt
2 respectively. As the restriction maps

are all proper homotopy equivalences, at this point we have that

rDMˆRs “ rD1s ˆ rDRs “ rD0s ˆ rDRs.

Hence to complete the proof, it suffices to prove that the map

K˚pMq Ñ K˚pM ˆ Rq, α ÞÑ αˆ rDRs

is injective. This follows as the partial pairing (Definition 9.2.2) with the Bott
class rCs P K1pRq defines an inverse using Bott periodicity (Theorem 9.3.5),
and Lemma 9.2.7.

Here is the Poincaré duality theorem.

Theorem 9.6.11. Let D be the Dirac operator on a spinc manifold M . Then
cap product with D induces an isomorphism

K˚pMq Ñ RK˚pMq, α ÞÑ rDs X α.
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Proof. We will proceed in stages. First assume that M is a single open ball,
diffeomorphic to Euclidean space. Thanks to Lemma 9.6.10, we may assume
that the metric on this ball is just the usual Euclidean metric. Thanks to
Remark 9.5.3, the result in this case is Bott periodicity as in Theorem 9.3.5.

Now assume M is a countable disjoint union of open balls M “
Ů

nPN Un,
where each Un is diffeomorphic to Euclidean space. Note that both K-theory
and representable K-homology are covariantly functorial under inclusions of
open sets, and that this is compatible with the cap products: see Corollary
9.5.5. Hence if

in : Un ÑM

denotes the inclusion, then using Lemma 9.6.9 for each n we have a commutative
diagram

K˚pMq
rDM sX // RK˚pMq

K˚pUnq

pinq˚

OO

rDUn sX // RK˚pUnq

pinq˚

OO

Moreover, both K-theory and representable K-homology are additive for dis-
joint unions (see Corollary 9.4.12 for representable K-homology), so we get a
commutative diagram

K˚pMq
rDM sX // RK˚pMq

‘nK
˚pUnq

–‘pinq˚

OO

‘rDUn sX // ‘nRK˚pUnq

–‘pinq˚

OO
.

Each map rDUnsX is an isomorphism as already noted by Bott periodicity, so
we are done in this case too.

Finally, we consider the general case. Note that if M can be written as a
union M “ U YV of two open subsets, then there are Mayer-Vietoris sequences
in both K-theory and representable K-homology that are compatible with cap
products: see Lemma 9.5.6. Combining this with Lemma 9.6.9 then gives a
commutative diagram

// K˚pU X V q

rDUXV sX ¨

��

// K˚pUq ‘K˚pV q

prDU sX ¨q‘prDV sX ¨q

��

// K˚pMq

rDM sX ¨

��

//

// RK˚pU X V q // RK˚pUq ‘K˚pV q // RK˚pMq // .

On the other hand using finite covering dimension of M , M can be covered
by finitely many open sets U1, ..., UN such that each U i is a disjoint union
U i “

Ů

n U
i
n, where each U in is an open set diffeomorphic to a Euclidean ball,

and moreover so that any finite intersection Uk1X¨ ¨ ¨XUkn also has this form: see
Exercise 9.7.7. The result follows from the previous special case and induction.
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The following corollaries are needed for some of the applications in Chapter
10.

Corollary 9.6.12. Let M be a contractible manifold. Then

RK˚pMq – K˚pMq – K˚pMq – Z.

Moreover, K˚pMq is generated by the class of the Dirac operator associated to
any spinc structure8 and Riemannian metric on M .

Proof. That RK˚pMq is isomorphic to Z follows from contractibility and the
fact that representable K-homology is homotopy invariant (Corollary 9.4.11).
The case of K˚pMq then follows from Poincaré Duality (Theorem 9.6.11). The
case of K˚pMq follows from this and the universal coefficient theorem (Theorem
9.2.8).

To see that the Dirac operator generates K˚pMq note that Theorem 9.6.11
implies that the cap product induces a homomorphism

K˚pMq Ñ HompK˚pMq, RK˚pMqq

sending the class of the Dirac operator to an isomorphism; as all the groups
involved are Z, this is impossible unless the Dirac operator generates K˚pMq.

Corollary 9.6.13. Let M be a closed even-dimensional spinc Riemannian man-
ifold. Then K0pMq is generated as an abelian group by the index classes of odd,
self-adjoint, contractive multipliers pFtq such that proppFtq Ñ 0 as tÑ 8, and
such that 1´ F 2

t is trace class for all t.

Proof. Note first that as M is compact, RK0pMq “ K0pMq, so we can just
work with K0 throughout. Theorem 9.6.11 gives that the cup product with the
Dirac class rDs is an isomorphism K˚pMq Ñ K˚pMq, so it suffices to show that
every class of the form rDs Xα, α P K˚pMq is represented in the claimed form.
As CpMq is unital, we may assume that α “ rps is the class of some single
projection p P MnpCpMqq for some n. Moreover, by Exercise 2.11.13, we may
assume that p PMnpCpMqq is smooth.

Lemma 9.5.7 gives that rDs X rps is the same as the class rpDps defined
there. The class rpDps can be represented by an index class with the claimed
properties by Corollary 8.4.4, so we are done.

9.7 Exercises

9.7.1. Show that the basic pairing from Definition (9.1.3) above defines a special
case of the general pairing K˚pXq bK

˚pXq Ñ Z from Definition 9.2.3.
Hint: the isomorphism between the usual and spectral pictures of K-theory given
in Lemma 2.9.14 should help.

8As M is contractible, it has trivialisable tangent bundle, so is spinc.
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9.7.2. Find an analogous formula to the one in Remark 9.1.4 that works for
general classes α P K0pXq and β P K0pXq represented by formal difference of
projections.

9.7.3. Instead of the proof given in the text, derive Proposition 9.4.13 from
Proposition 6.3.4 and Corollary 9.4.10. Use your proof to generalize the results
to the case where U and V are any locally compact subsets of X.

9.7.4. Check the details of the discussion in Remark 9.5.3.

9.7.5. Formulate and prove functoriality results for the partial pairing and ex-
ternal product (Definitions 9.2.2 and 9.2.6) as proved for the cap product and
pairing in Proposition 9.5.4.

9.7.6. Formulate and prove a version of Lemma 9.5.7 for non-compact manifolds.

9.7.7. For a Riemannian d-manifold M , recall that any point x P M there is
r ą 0 such that the ball around x of radius rx is geodesically convex : there is a
unique geodesic between any two points in the ball. Choose such an rx for each
x P M , and let U “ pBpx; rxqqxPM be the corresponding open cover. On the
other hand, as M has covering dimension equal to d, there is a subcover V of U
such that any intersection of d ` 2 distinct elements of V is empty. Use these
facts to show that a cover of M with the properties used at the end of the proof
of Theorem 9.6.11 exists.
Hint: recursively define U i to be the union of a maximal disjoint collection of
elements of V such that no element used already in U1, ..., U i´1 appears.

9.7.8. Define equivariant representable K-homology, and formulate and prove
analogues of the results of Section 6.5 for your theory.

9.8 Notes and references

The idea of combining localisation algebras with the spectral picture of K-
theory first appears in the PhD thesis of Rudolf Zeidler [275]. It is particularly
well-suited to the discussion of products between K-theory and K-homology
groups.

The approach to Bott periodicity that we give here is based on that of
Guentner and Higson [128, Section 1.13]; although our formalism is somewhat
different, the underlying details of the computation are more-or-less the same as
in this reference. A similar approach (again set in quite a different framework)
that makes the connections to quantum mechanics and the idea of passage to
the classical limit explicit, can be found in the paper [88] of Elliott, Natsume,
and Nest.

The general version of the universal coefficient theorem is due to Rosenberg
and Schochet [226]. The version we stated is due to Brown [41], where it first
appears in the context of Brown-Dougla-Fillmore theory; a textbook exposition
of the theorem that adapts directly to our setting can be found in [135, Section
7.6].

Representable K-homology was introduced by Kasparov: see [149] for the
definitive version. The various products we have discussed here are all special
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cases of the so-called Kasparov product in KK-theory from that paper. Another
exposition ofKK-theory (although not touching on representableK-theory) can
be found in the later sections of [33].

In Definition 9.6.1, we cited without proof the fact that a continuous functor
on vector spaces gives rise to an associated functor on vector bundles in order
to construct the Clifford bundle. A proof of this, and justification of the other
operations that we need to perform on vector bundles, can be found in Atiyah’s
book on topological K-theory [6], Section 1.2. A somewhat different approach to
the Clifford bundle in terms of principal bundles can be found in [164, Definition
II.3.4].

The realisation that the notion of a spinc structure provides the ‘right’ notion
of orientation for (complex topological) K-theory, and the particular presenta-
tion we have given is essentially due to Baum; see for example [24]. The original
connection of spin algebra to K-theory was made by Atiyah, Bott, and Shapiro
[9]. A discussion of spinc structures and of the characterization of spinc man-
ifolds in terms of Stiefel-Whitney classes from Remark 9.6.3 can be found in
the book of Lawson and Michelson [164, Appendix D]. This reference also gives
various examples, includingof orientable manifolds that are not spinc: the 5-
manifold SUp3q{SOp3q is perhaps the simplest example. Another treatment of
spinc structures, closer in spirit to ours but giving more information, can be
found in [135, Section 11.2].

The notion of a spin structure that we briefly mentioned in Remark 9.6.4 is
a huge topic. A wide-ranging discussion on spin structures and the associated
differential operators, and geometry and topology can be found in [164, Chapter
II].

For a classical treatment of Poincaré duality on manifolds, similar in spirit
to the one we give here, see [36, Section 5]. A very general version of K-theory
Poincaré duality expressed in terms of Kasparov’s bivariant K-theory can be
found in [149, Section 4]. There are interesting analogues of Poincaré duality for
general C˚-algebras: see [60, Section VI.4.β] for background, and (for example)
[89] for an attractive example.
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Chapter 10

Applications to algebra,
geometry, and topology

In this chapter, we look at some of the applications of the Baum-Connes con-
jectures: to the Kadison-Kaplansky conjecture in operator algebras; to the ex-
istence of positive scalar curvature metrics in differential geometry; and to the
Novikov conjecture manifold topology. These three topics are covered in Sec-
tions 10.1, 10.2, and 10.3 respectively. The section on the Kadison-Kaplansky
conjecture does not really use any material that we have not covered in this
book: while we do not get to the most general possible results, we are still able
to prove some interesting and non-trivial theorems, and give an idea of what
is involved in more general cases. The second on positive scalar curvature is
sketchier, as we have to use some facts from differential and spin geometry as
a black box. The third is sketchier still: the machinery needed to set up the
operator algebraic approach to the Novikov conjecture in detail requires more
manifold topology than we are prepared to assume in this text, so we just aim
to provide a brief introduction to some of the ideas involved.

We also give a fairly long notes and references section: as well as giving
background for the techniques explicitly discussed in this chapter, we attempt
to give a brief survey of the literature as related to assembly maps of the sort
we study in this book, and their purely algebraic cousins.

10.1 The Kadison-Kaplansky conjecture

In this section, we will look at an application of the Baum-Connes conjecture
to purely (C˚-)algebraic questions. Here is the motivating problem, which is
usually called the Kadison-Kaplansky conjecture.

Conjecture 10.1.1. Let G be a torsion free discrete group. The the reduced
group C˚-algebra C˚ρ pGq contains no idempotents other than zero and one.
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There is also a closely related purely algebraic conjecture, called Kaplansky’s
conjecture.

Conjecture 10.1.2. Say G is a torsion free group, and K is a field. Then the
group ring KrGs contains no idempotents other than zero or one.

Clearly the Kadison-Kaplansky conjecture for a group G implies that Ka-
plansky’s conjecture holds for KrGs where K is any subfield of C. Moreover,
this fact bootstraps up to show that the Kadison-Kaplansky conjecture implies
Kaplansky’s conjecture for KrGs where K is any characteristic zero field: in-
deed, if e P KrGs is a non-trivial idempotent, then e lives in the subring K 1rGs
where K 1 Ď K is the extension of Q generated by the finitely many non-zero
coefficients of e; however, any finitely generated extension of Q is isomorphic to
a subfield of C.

Remark 10.1.3. The assumption that G is torsion free is necessary for KrGs to
have no non-trivial (i.e. not zero or one) idempotents in the characteristic zero1

case, and therefore also necessary for C˚ρ pGq to have no non-trivial idempotents.
Indeed, if g P G has order n ą 1, then

p “
1

n

n
ÿ

k“1

gk

is a non-trivial idempotent in the group ring QrGs with rational coefficients.

In this section, our goal is to show that the Baum-Connes conjecture for a
torsion-free group G implies the Kadison-Kaplansky conjecture, at least in a
special case that suggests how the general argument should go. To begin, we
need some preliminaries about traces on group C˚-algebras and equivariant Roe
algebras.

Definition 10.1.4. Let G be a countable discrete group. The canonical trace
on the group C˚-algebra C˚ρ pGq is the positive linear functional

τ : C˚ρ pGq Ñ C, a ÞÑ xδe, aδey

corresponding to the Dirac mass at the identity in `2pGq.

For the next lemma, recall that a positive linear functional φ : AÑ C on a
C˚-algebra is faithful if whenever a P A is positive and non-zero we must have
φpaq ą 0, and tracial if φpabq “ φpbaq for all a, b P A.

Lemma 10.1.5. The canonical trace on C˚ρ pGq is faithful and tracial.

Proof. To see that τ is tracial, let a, b be elements of CrGs and write a “
ř

gPG agg, b “
ř

gPG bgg. Computing, we have

τpabq “ xδe, abδey “
ÿ

g,hPG

ahbgxδe, δh´1g´1y “
ÿ

gPG

agbg´1 .

1Not in general: for example, if K is the field with two elements and G the group with two
elements, then KrGs contains no non-trivial idempotents as one can directly check.
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This formula is symmetric in a and b, so τ restricts to a trace on CrGs, and is
thus a trace on C˚ρ pGq by continuity2.

To see that τ is faithful, let a P C˚ρ pGq be positive. Then with λ denoting
the left regular representation (Example C.1.3) we have that λg commutes with
a for any g P G and thus

τpaq “ xδe, aδey “ xλ
˚
gλgδe, aδey “ xδg, λgaδey “ xδg, aδgy.

Hence if τpaq “ 0, then xδg, aδgy “ 0 for all g P G. As a is positive, we may
take its square root, and the above gives that

0 “ xδg, aδgy “ xa
1{2δg, a

1{2δgy “ }a
1{2δg}

2

for all g P G. As pδgqgPG spans a dense subset of `2pGq, this forces a1{2 “ 0,
and thus a “ pa1{2q2 “ 0 as required.

As well as the trace appearing above, we will also need unbounded traces as
in Section 2.3: see that section for basic facts and background.

Definition 10.1.6. Let G be a countable torsion-free group, and let X be a
proper metric space equipped with a proper, co-compact isometric action of G.
Let D Ď X be a fundamental domain for the action as in Definition 5.3.3, i.e.
D is a Borel subset of X with compact closure such that X equals the disjoint
union X “

ğ

gPG

gD of the translates of D.

Let HX be an ample X-G module, which we use to define the equivariant
Roe algebra C˚pXqG (Definition 5.2.1). From Proposition 5.3.4, we have an
isomorphism

C˚pXqG Ñ C˚ρ pGq bKpχDHXq.

Let
τD : C˚pXqG` Ñ r0,8s

be the unbounded trace on C˚pXqG defined by taking the composition of the
˚-isomorphism above with the tensor product of the canonical traces on C˚ρ pGq
and KpχDHXq as in Example 2.3.4.

We will not need this, but it is worth noting that the trace above does not
depend on the choice of fundamental domain D: this is because for any two
choices of D, the resulting isomorphisms only differ by conjugation by unitary
multipliers of the algebras involved, and the traces we are using are insensitive
to such differences.

The key technical result we need is as follows.

2The same formal computation also works for a, b P C˚ρ pGq directly, as elements of this
C˚-algebra can be represented uniquely by infinite linear combinations of elements in G: we
leave it as an exercise to make this precise.
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Proposition 10.1.7. Let G be a countable torsion-free group, and let X be a
proper metric space equipped with a proper, co-compact, isometric action of G.
Assume moreover that the Hilbert space HX underlying C˚pXqG is graded by
a unitary operator in the multiplier algebra of C˚pXqG (see Definition E.1.4).
Then there is ε ą 0 with the following property. With notation as in Definition
10.1.6, let F be an odd, self-adjoint, contractive element of the multiplier algebra
of C˚pXqG considered as a subalgebra of BpHXq and such that:

(i) the propagation of F is at most ε;

(ii) for any g P CcpXq, the products gp1´ F 2q and p1´ F 2qg are trace class.

Then if α P K0pC
˚pXqGq is the index class of F (see Definition 2.8.5), we have

that τD˚ pαq is an integer.

Unfortunately, the algebra involved in the proof is easy to get lost in, but
the idea is not so complicated: we want to use the smallness of the propagation
of F to show that F also descends to X{G. Moreover, the usual trace of the
index class of F in C˚pX{Gq “ K agrees with the τD trace of the index class
of F in C˚pXqG; the former is integer-valued however, so this will complete the
proof.

Proof. With notation as in Definition 10.1.6, set HD :“ χDHX . Let us first
give a concrete formula for τDpT q when T P C˚pXqG` to get a sense of what we
are trying to prove. Using Proposition 5.3.4, the isomorphism φ : C˚pXqG Ñ
C˚ρ pGq bKpHDq determined by D is given by

φpT q “
ÿ

gPG

ρg b χDTUgχD,

and thus if Tr : KpHDq` Ñ r0,8s denotes the canonical densely defined trace
on the compact operators of Example 2.3.3 we see that

τDpT q “ TrpχDTχDq.

Now, the index class of F is represented by a formal difference rps ´ rqs of
idempotents in the unitisation of C˚pXqG as in the formula from Definition
2.8.5. Using Remark 2.3.19 (and abusing notation slightly, writing Tr for the
canonical trace on MnpKpHDqq – KpH‘nD q), we get that

τD˚ prps ´ rqsq “ TrpχDpχD ´ χDqχDq.

If χDpχD and χDqχD were idempotents, we would be done. To see this, note
that K0pKq – Z is generated by finite rank projections, whence Tr˚ : K0pKq Ñ
R takes image in the integers as it just takes a projection to its rank. On the
other hand, say e “ χDpχD and f “ χDqχD were idempotents. Then as in
Remark 2.3.19, the integer Tr˚pres ´ rf sq P Z satisfies the formula

Tr˚pres ´ rf sq “ Trpe´ fq,
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so Trpe´fq is an integer. Our goal for the rest of the proof is to find idempotents
rpDs, rqDs in the unitisation of M2pKpHDqq such that the difference is trace class,
and so that

TrpχDpχD ´ χDqχDq “ TrppD ´ qDq;

by the above discussion, this will complete the proof.
Let T be a finite propagation operator on HX , and define

TD :“
ÿ

gPG

χDTUgχD;

this makes sense as the facts that D has compact closure, T has finite propa-
gation, X is proper, and the action is proper and by isometries, together imply
that only finitely many of the terms are non-zero. Moreover, if T and S both
have finite propagation and are G-invariant then

TDSD “
ÿ

g,hPG

χDTUgχDχDSUhχD “
ÿ

g,hPG

χDTχgDSUghχD,

and making the change of variables k “ gh and using that X “
ğ

gPG

gD this

equals
ÿ

kPG

χDTSUkχD “ pTSqD.

In other words, the process T ÞÑ TD is multiplicative on the collection of finite
propagation, G-invariant operators.

Now, as the action is proper, free (this follows from properness, and as G
is torsion-free), cocompact, and by isometries there is r ą 0 such that the the
quotient map π : X Ñ X{G restricts to a homeomorphism on balls of radius
r. Note that this implies that if g P G is not the identity, then for any x P X,
dpgx, xq ě r. Set ε “ r{7, and let F have the properties in the statement. The
computation

p1´ F 2
Dq “ χDp1´ F

2q
ÿ

gPG

UgχD

shows that the operator 1´ F 2
D on HD is trace class, and similarly for 1´ F 2

D.
From the explicit formula for the index class in Remark 2.8.2, it thus follows
that the index class of FD is a represented by a formal difference of idempotents
rpDs´rqDs such that each of pD and qD has propagation at most 5ε. To complete
the proof, it will suffice to show that if rps´ rqs represents the index class of the
original F , then

TrpχDpχD ´ χDqχDq “ TrppD ´ qDq.

Using the multiplicative property of the process T ÞÑ TD, and the formula for
the index class from Definition 2.8.5, it will suffice to show that

TrpχDTχDq “ TrpTDq

whenever T is a G-invariant operator on HX such that hT and Th are trace
class for h P CcpXq, and with propagation at most 5ε.
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Choose an orthonormal basis pvnq for HD such that the diameter of the
support of each vn is at most ε (we leave it as an exercise for the reader that
choosing a ‘localized’ basis is always possible). Then

TrpTDq “
8
ÿ

n“1

A

vn, χDT
´

ÿ

gPG

Ug

¯

χDvn

E

(10.1)

and

TrpχDTχDq “
8
ÿ

n“1

xvnχDTχDvny.

It thus suffices to show that all the terms in the sum in line (10.1) where g
is not the identity element are zero. Indeed, say g is not the identity, and for
contradiction that xvn, TUgvny is non-zero for some n. Say x is in the support
of TUgvn. Then as the propagation of T is at most 5ε, there is y in the support
of vn such that dpx, gyq ď 5ε. On the other hand, dpy, gyq ě r by assumption
on r. Hence for any z in the support of vn we have

dpz, xq ě dpy, gyq ´ dpx, gyq ´ dpy, zq ě r ´ 5ε´ ε “ ε.

This implies that the supports of vn and TUgvn can have no points in common,
so the given inner product is zero and we are done.

Using this, we get the following result.

Theorem 10.1.8. Assume that G is the fundamental group of a closed, as-
pherical, smooth, spinc manifold M , and that G is countable and torsion-free3.
Assume moreover that the Baum-Connes conjecture holds for G. Then the
Kadison-Kaplansky conjecture holds for G.

Proof. Say for contradiction that e is a non-trivial idempotent in C˚ρ pGq. As
in Lemma 2.2.5, e is equivalent to some projection p, which must also be non-
trivial. As τ : C˚ρ pGq Ñ C is a faithful trace with τp1q “ 1, we must then have

that 0 ă τppq ă 1. Let ĂM be the universal cover of M . Fix a Riemannian metric

on M , and lift this to ĂM , so that the deck transformation action of G on ĂM is
by isometries. As M is aspherical, it is a model for BG. Hence using Theorem
7.4.4, the Baum-Connes assembly map for G identifies with the assembly map

µ : KG
˚ p

ĂMq Ñ K˚pC
˚pĂMqGq.

Using Proposition 10.1.7, to prove the theorem it will suffice to show that for
any ε ą 0, any element of K0pC

˚pĂMGqq can be represented as the index class

of some odd, self-adjoint, contractive F in the multiplier algebra of C˚pĂMqG

with propagation at most ε, and such that for any g P CcpMq, gp1 ´ F 2q and
p1´ F 2qg are trace class.

3These last two assumptions are redundant: the fundamental group of any closed aspherical
manifold will always satisfy them.
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To see this, note first that Corollary 9.6.13 implies that any element of
K0pMq can be represented by the index class of some multiplier pFtq such that
proppFtq Ñ 0 as t Ñ 8, and such that for any g P CcpMq, gp1 ´ F 2

t q and
p1´ F 2

t qg are trace class. With notation as in Construction 6.5.14, let

rFt :“ ΦpFtq,

and note that p rFtq defines a multiplier of L˚pĂMqG with propagation tending to

zero, and such that gp1 ´ rF 2
t q and p1 ´ rF 2

t qg are trace class for all t and all

g P CcpĂMq. Taking F “ rFt for some suitably large t gives an operator with the
properties we want.

Using the idea of the proof of Theorem 10.1.8 and the description of the
assembly map in Remark 7.1.12, one can deduce the following much more general
result. We cannot give a complete proof here as justifying Remark 7.1.12 would
require more topology than we have developed, but give the general statement
for reference.

Theorem 10.1.9. Say G is a countable, torsion free group, and that the Baum-
Connes conjecture holds for G. Then the Kadison-Kaplansky conjecture holds
for G.

As a final remark, the key point of the proof above is to use index theory to
show that for τ : C˚ρ pGq Ñ C the canonical trace, the induced map

τ˚ : K0pC
˚
ρ pGqq Ñ R

is integer-valued. Now, if G has elements of finite order n ą 1, then the range
of τ must at least contain 1{n by Example 10.1.3. One could speculate that
there should not be much other than such rational numbers in the range of τ .
It turns out that something like this is actually predicted by the Baum-Connes
conjecture, but it requires a more detailed analysis. Moreover, the situation
is more subtle than one might think: the first reasonable conjecture one could
make is that the range of τ is contained in the subgroup of Q generated by

t1{n | G has a subgroup of order nu

and this turns out to be wrong. See the notes and references at the end of this
chapter for more discussion on this.

10.2 Positive scalar curvature and secondary in-
variants

In this section, we briefly introduce the so-called analytic surgery sequence, and
an application to the theory of positive scalar curvature.

Let M be a smooth, closed manifold, which we assume equipped with a
Riemannian metric. Let G be the fundamental group of M , acting on the
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universal cover ĂM of M by deck transformations. Equip ĂM with the Riemannian
metric lifted from M , so the action of G is by isometries. Recall from Section 7.1
that the assembly map for M is the map on K-theory induced by the evaluation-
at-one map

ev : C˚Lp
ĂMqG Ñ C˚pĂMqG

from the equivariant localised Roe algebra of ĂM to the equivariant Roe algebra
of ĂM . This map fits into a short exact sequence

0 // C˚L,0p
ĂMqG // C˚Lp

ĂMqG
ev // C˚pĂMqG // 0 ,

where C˚L,0p
ĂMqG is the kernel of ev; more concretely, C˚L,0p

ĂMqG consists of those

pTtq in C˚Lp
ĂMqG with T1 “ 0. This short exact sequence gives rise to a long

exact sequence in K-theory in the usual way

¨ ¨ ¨ // KipC
˚
L,0p

ĂMqGq // KipC
˚
Lp

ĂMqGq
µ // KipC

˚pĂMqGq // ¨ ¨ ¨ ,

where µ is the assembly map. Moreover, we have canonical isomorphisms

K˚pC
˚pĂMqGq – K˚pC

˚
ρ pGqq and K˚pC

˚
Lp

ĂMqGq – K˚pMq,

using Proposition 5.3.4 for the first of these, and Proposition 6.6.2 and Theorem
6.5.15 for the second. Thus our long exact sequence becomes

¨ ¨ ¨ // KipC
˚
L,0p

ĂMqGq // KipMq
µ // KipC

˚
ρ pGqq // ¨ ¨ ¨ .

Note that although we used the Riemannian structure on M to make sense
of the various algebras above, none of the K-theory groups involved end up
depending on the choice: this follows as for any two Riemannian metrics on M ,
the identity map on ĂM is an equivariant bi-Lipschitz isomorphism between the
two metric spaces defined by the lifted metrics, as compactness of M forces its
gradient to be uniformly bounded.

Definition 10.2.1. Let M be a closed smooth manifold. The analytic structure
group, denoted San

i pMq, is defined to be KipC
˚
L,0p

ĂMqGq. The analytic surgery
exact sequence is the long exact sequence

¨ ¨ ¨ // Ki`1pC
˚
ρ pGqq // San

i pMq
// KipMq

µ // KipC
˚
ρ pGqq // ¨ ¨ ¨ .

arising from the above discussion.

The analytic structure group is closely connected to the Baum-Connes con-
jecture (see 7.1.11 above) thanks to the following lemma.

Lemma 10.2.2. Assume that M is a closed, smooth, aspherical manifold. Then
the Baum-Connes conjecture holds for the fundamental group of M if and only
if the analytic structure group Sani pMq is zero.
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Proof. If M is aspherical, then it is a model for the classifying space BG, and
Theorem 7.4.4 identifies the Baum-Connes assembly map with the assembly
map for G acting on ĂM .

The analytic structure exact sequence is also interesting when M is not
necessarily aspherical. We will spend the rest of this section discussing one way
in which elements of San

i pMq arise, and an application to the theory of positive
scalar curvature metrics. In the next section, we will briefly discuss another
such application, although to topology rather than to geometry.

We start with some differential geometry, which we will use as a black box.
We need to work with spin manifolds: this is a topological assumption that is
satisfied for a large class of examples that we introduced in Remark 9.6.4.

Theorem 10.2.3. Let M be a spin Riemannian d-manifold, and let κ : M Ñ R
be the scalar curvature function of M as discussed in Section 3.1. Then there
is a canonically4 associated spinor Dirac operator D on M with the following
properties:

(i) D is an elliptic first order differential operator on a canonically associated
bundle S over M .

(ii) D is odd with respect to a canonically associated grading operator if M is
even-dimensional.

(iii) D has globally finite propagation speed.

(iv) The class of D in KdpMq is non-zero.

(v) D2 “ ∆ ` κ
4 for some self-adjoint unbounded Laplacian-type operator ∆

with non-negative spectrum.

A spin structure on a Riemannian manifold induces a canonical spinc struc-
ture, and the Dirac operator is ‘the’ spinc Dirac operator associated to this
spinc structure. Hence most of the above follows from the work we did in Sec-
tion 9.6, with part (iv) in particular following from Poincaré duality (Theorem
9.6.11) and Corollary 9.6.12. The exception is part (v): this is special to the
spin, as opposed to spinc case, and requires some local computations with the
Riemannian curvature tensor that we will not get into here (see the notes and
references at the end of the chapter).

Now, let M be a closed spin manifold, and lift the Dirac operator D as above
to an operator rD on the universal cover ĂM of M . The universal cover is also a
spin Riemannian manifold with the lifted structures, and rD turns out to be its
Dirac operator, so satisfies the assumptions of Theorem 10.2.3. Theorem 8.2.6
then gives an element pFtq of the multiplier algebra of L˚pL2pĂM ;SqqG, where

Ft “ fpt´1
rDq for some appropriate function f : R Ñ r´1, 1s. Using the index

construction as in Remark 8.3.15, we get a class r rDs of K˚pC
˚
Lp

ĂMqGq.

4Unlike the Dirac operator associated to a spinc structure, one can build D with no choices
involved.
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Now, assume that M has strictly positive scalar curvature, so by compact-
ness, there is c ą 0 such that κpxq ě c for all x P M . This is also true on ĂM ,
as it has the lifted Riemannian metric. Part (v) of Theorem 10.2.3 then implies

that the spectrum of rD does not contain any points in r´d, ds for some d ą 0.
We may choose f so that it is constantly equal to ´1 on p´8,´ds, and to 1 on
rd,8q. Checking the details of Remark 8.3.15, we see that the index element

r rDs P K˚pC
˚
Lp

ĂMqGq is actually coming via the inclusion

C˚L,0p
ĂMqG Ñ C˚Lp

ĂMqG

from a canonically defined element of K˚pC
˚
L,0p

ĂMqGq: the point is that the

choice of f means that F1 satisfies F 2
1 “ 1 precisely, and therefore Lemma 2.8.7

implies that the corresponding index class is zero at t “ 1.

Definition 10.2.4. Let M be a spin Riemannian d-manifold with positive
scalar curvature metric g. The higher ρ-invariant , denoted ρpgq, is the class

in San
d pMq “ KdpC

˚
L,0p

ĂMqGq constructed above.

Lemma 10.2.5. Say M is a Riemannian spin d-manifold with a positive scalar
metric. Then if r rDs P KG

d p
ĂMq is the class of the Dirac operator, we have that

µr rDs “ 0 in KdpC
˚
ρ pGqq.

Proof. This follows from exactness of the analytic surgery exact sequence and
the fact that ρpgq maps to r rDs.

The following important theorem connects the Baum-Connes conjecture to
a conjecture of Gromov and Lawson.

Theorem 10.2.6. If M is a closed, spin, aspherical d-manifold, and if the
Baum-Connes assembly map for the fundamental group of M (see Conjecture
7.1.11) is injective, then M cannot admit a positive scalar curvature metric.

Proof. The class r rDs of the lifted Dirac operator in KdpĂMq is non-zero by

Theorem 10.2.3, part (iv). Hence if G “ π1pMq, the class r rDs of rD is also

non-zero in KG
i p

ĂMq as the two classes are compatible with the forgetful map

KG
i p

ĂMq Ñ KipĂMq induced by the inclusion L˚pĂMqG Ñ L˚pĂMq. As the

Baum-Connes assembly map is injective, the class µr rDs is therefore non-zero
in KipC

˚
ρ pGqq. This, however, is false in the presence of positive scalar curva-

ture by Lemma 10.2.5.

A similar result holds if we assume that the coarse assembly map for ĂM is
injective. This latter result does not require that M be spin: see Exercise 10.4.1.

We have just scratched the surface of the theory here: in particular, we did
not really make substantial use of the higher ρ-invariant from Definition 10.2.4
other than to deduce Lemma 10.2.5. This is losing a lot of information: the
higher ρ-invariant should be regarded as a ‘reason’ why rDs “ 0, and there may
be more than one such reason. Indeed, different positive scalar metrics g0 ‰ g1
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on M can give rise to different higher ρ-invariants ρpg0q ‰ ρpg1q in San
˚ pMq.

On the other hand, if the metrics g0, g1 were in the same path-component of
the space of positive scalar curvature metrics, then the associated higher ρ
invariants would be the same. In this way, information about San

˚ pMq can be
used to deduce information about the topology of the space of all positive scalar
metrics on M . This is currently a very active area of research: see the notes
and references at the end of this section.

10.3 The Novikov conjecture

The Novikov conjecture is a fundamental conjecture in the topology of high-
dimensional manifolds. For simplicity, let us assume that all manifolds appear-
ing in this section are smooth (much of what we say can be made to work more
generally). Let us start by motivating (a special case of) the Novikov conjec-
ture using the so-called Borel conjecture together with an important theorem
of Novikov.

For our discussion of the Borel conjecture, let us say that a manifold M
is rigid if whenever N is another manifold and f : M Ñ N is a homotopy
equivalence, we have that f is homotopic to a homeomorphism. For example,
the classical Poincaré conjecture says that the three sphere S3 is rigid.

For non-rigid examples, consider the following quotients of S3: let n be an
integer, let a, b be integers relatively prime to n, and let Z{nZ act on C2 by
stipulating that the usual generator 1 P Z{nZ acts as

pz, wq ÞÑ pe2πia{nz, e2πib{nwq.

This is isometric, so restricts to an action on the unit sphere S3 Ď C2. As
the action is free, the resulting quotient S3{pZ{nZq is a manifold, called a lens
space and denoted Lpn; a, bq. Now, it is known that Lpn; a, bq and Lpn; c, dq are
homotopy equivalent if and only if ab “ cd mod n; on the other hand, they
are known to be homeomorphic if and only if pa, bq is the same as pc, dq up to
change of order, and change of sign (in either, or both variable(s)). The proofs
of these facts go beyond the scope of this text, but let us at least note that
one method uses the algebraic K-theory of the group ring of Z{nZ. Thus, for
example, the lens spaces Lp5; 2, 2q and Lp5;´1, 1q are homotopy equivalent, but
not homeomorphic, and in particular the three-manifold Lp5; 1,´1q is not rigid.

Now, recall that a manifold (or more generally, a CW complex) M is said

to be aspherical if its universal cover ĂM is contractible. Examples include tori
and fundamental groups of surfaces of non-positive genus. On the other hand,
lens spaces as introduced above are not aspherical: their universal is S3. Here
is the Borel conjecture.

Conjecture 10.3.1. Closed aspherical manifolds5 are rigid.

5The conjecture is usually stated for topological manifolds, rather than smooth as in our
standing convention.
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The Borel conjecture is on the face of it about the global topology of M ;
the other half of our motivation for the Novikov conjecture comes from the
infinitesimal topology of M . To describe it, let us recall that associated to any
real vector bundle E over a manifold M and a natural number k ě 0, there is
an associated Pontrjagin class pkpEq P H

4kpM ;Zq. Losing some information,
one can also consider the rational Pontrjagin classes pkpE;Qq, which are the
images of the pkpEq under the natural change of coefficients map H4kpM ;Zq Ñ
H4kpM ;Qq induced by the inclusion ZÑ Q. The rational Pontrjagin classes of
M itself are then defined to be the classes pkpM ;Qq :“ pkpTM ;Qq P H4kpM ;Qq
associated to the tangent bundle of M . A priori, these depend on the smooth
structure of M , but in fact one has the following remarkable result, often called
Novikov’s theorem.

Theorem 10.3.2. Let f : M Ñ N be an orientation-preserving homeomor-
phism between closed oriented manifolds. Then f˚ppkpN ;Qqq “ pkpM ;Qq for
all k P N.

We should remark here that, starting in dimension four, there is a very rich
theory of pairs of manifolds M and N that are homeomorphic but not diffeo-
morphic. Milnor gave the first examples, showing that there are manifolds that
are homeomorphic, but not diffeomorphic, to the seven-sphere S7. Milnor and
Kervaire later showed that there are exactly 28 manifolds that are diffeomor-
phic, but not homeomorphic, to S7 (taking orientation into account). Moreover,
the invariants used to tell these exotic spheres apart come from the Pontrjagin
classes of a tangent bundle6. Thus Novikov’s theorem is quite surprising, as
these results on non-unique differentiable structures suggest that the rational
Pontrjagin classes should only be diffeomorphism, and not homeomorphism,
invariants. Note moreover that aspherical examples with these sort of prop-
erties show that one cannot replace ‘homeomorphic’ by ‘diffeomorphic’ in the
statement of the Borel conjecture.

Now, combining Conjecture 10.3.1 and Theorem 10.3.2, one is led to the
following conjecture, which is the special case of the Novikov conjecture when
the underlying manifold happens to be aspherical manifolds.

Conjecture 10.3.3. Let f : M Ñ N be an orientation-preserving homotopy
equivalence between closed aspherical oriented manifolds. Then f˚ppkpN ;Qqq “
pkpM ;Qq for all k P N.

Thanks to Theorem 10.3.2, Conjecture 10.3.3 is implied by the Borel conjec-
ture. Indeed, one can think of the (rational) Pontrjagin numbers pkpM ;Qq as
‘infinitessimal’ or ‘linearized’ invariants of the manifold, as they are invariants
of the tangent bundle, which is itself an infinitesimal or linearized version of the
manifold itself; the Novikov conjecture can thus in some sense be thought of as
an infinitesimal version of the Borel conjecture, which is a statement of a more
global nature.

6Crucially, the tangent bundle of a different manifold that is used in the construction!
– note that there are no interesting Pontrjagin classes for a 7-sphere as its 4k-dimensional
cohomology is trivial.
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To move towards explaining what this has to do with index theory, let us give
a more standard, and general, form of the Novikov conjecture. Let H˚pM ;Qq
be the usual rational cohomology ring of M , where the multiplication is given
by the cup product Y. Let LpMq P H˚pM ;Qq be the Hirzebruch L-class of
M , which is a cohomology class defined as a certain universal polynomial in the
Pontrjagin classes. The class LpMq is thus zero in dimensions not a multiple of
four, and one has explicit formulas for the component LkpMq P H

4kpM ;Qq in
terms of the rational Pontrjagin classes. For example

L1pMq “
1

3
p1pM ;Qq, L2pMq “

1

45
p7p2pM ;Qq´p1pM ;QqYp1pM ;Qqq, ¨ ¨ ¨ .

The L-class is thus a priori an invariant of the differentiable structure on M :
one expects that homeomorphic manifolds that are not diffeomorphic would have
different L-classes. However, at least some information contained in LpMq is
even a homotopy invariant. Indeed, define the signature of M , denoted signpMq.
is defined to be the signature in the usual sense of algebra of the nondegenerate
symmetric form defined by

H2kpM ;Rq ˆH2kpM ;Rq Ñ R, px, yq ÞÑ xxY y, rM sy.

This signature is defined purely in terms of the cohomology ring H˚pM ;Rq, the
pairing between homology and cohomology, and the fundamental class rM s, and
is thus invariant under orientation preserving homotopy equivalences. One has
the Hirzebruch signature theorem

Theorem 10.3.4. Let M be a closed oriented manifold of dimension 4k, and
let LkpMq P H

4kpM ;Qq be the top-dimensional component of the L-class. Then

xLkpMq, rM sy “ signpMq.

In particular, the component of LkpMq in H4kpM ;Qq is a homotopy invari-
ant. Now, it was shown by Browder and Novikov that LkpMq P H

4kpM ;Qq, with
M 4k-dimensional, is the only universal polynomial in the Pontrjagin classes
that is invariant under orientation-preserving homotopy equivalences within the
class of simply connected manifolds; thus in the simply connected case, the sig-
nature theorem is the only homotopy-invariant information one gets from the
Pontrjagin classes.

In the non-simply connected case, one can hope to get more homotopy in-
variant information from the Pontrjagin classes. Indeed, let G “ π1pMq, and
assume for simplicity that BG is a finite CW complex. Let c : M Ñ BG be a
continuous map that induces an isomorphism on fundamental groups; as BG is
aspherical, such a map exists (and is determined up to homotopy equivalence by
the map it induces between the fundamental groups). For each α P H˚pM ;Qq
define the higher signature to be the class

signpM,α, cq :“ xLpMq Y c˚pαq, rM sy.

Here is a more standard statement of the Novikov conjecture.
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Conjecture 10.3.5. Let M and N be closed oriented manifolds, and let f :
N Ñ M be an orientation-preserving homotopy equivalence. Then for any c :
M Ñ BG and α P H˚pBG;Qq as above, we have signpM,α, cq “ signpN,α, c ˝
fq.

This conjecture is often summarised by saying higher signatures are homo-
topy invariant. For aspherical manifolds, Conjecture 10.3.5 is equivalent to
Conjecture 10.3.3, as one can just take BG “ M , and it suffices to consider
c : M Ñ BG the identity map. In this case, one can recover all the Pontrjagin
classes of M from the higher signatures using non-degeneracy of the pairing
between (rational) homology and cohomology.

Finally, we are ready to explain what this has to do with index theory. On an
oriented smooth Riemannian manifold M , there is an elliptic differential opera-
tor DM called the signature operator , giving rise to a class rDM s P K˚pMq.
Given a map c : M Ñ BG as in the definition of higher signatures (and
continuing to assume that BG is a finite CW complex) we thus get a class
c˚rDM s P K˚pBGq.

The following result was perhaps first seen by Lusztig and Miscenko, and
has been reproved a number of times since.

Theorem 10.3.6. Let M and N be closed oriented manifolds, and let f : N Ñ

M be an orientation-preserving homotopy equivalence. Let G “ π1pMq. Then
for any c : M Ñ BG as above we have that

µpc ˝ fq˚rDN s “ µc˚rDM s

where µ : RK˚pBGq Ñ K˚pC
˚
ρ pGqq is the Baum-Connes assembly map.

The key C˚-algebraic input to the proof is that one can use the spectral
theorem to diagonalise quadratic forms over a C˚-algebra. This is not always
possible over a general ring, and it is not at all clear when it is possible over a
more general Banach algebra such as `1pGq.

To see how this relates to the Novikov conjecture, note that there is a ho-
mology Chern characterhomology Chern character

ch˚ : K˚pMq Ñ H˚pM ;Qq.

This is determined by the more usual K-theory Chern character ch˚ : K˚pMq Ñ
H˚pM ;Qq and the relationship

xch˚pxq, ch
˚
pyqy “ xx, yy

for all x P K˚pMq, y P K
˚pMq, where the pairings are the usual ones between

K-homology and K-theory, and between homology and cohomology; this is well-
defined by rational nondegeneracy of these pairings (which in turn follows from
the UCT in each case: see Theorem 9.2.8 above).

Applying this, we see that if µ is injective then from Theorem 10.3.6 we have
that pc ˝ fq˚rDN s “ c˚rDM s and so

ch˚pc ˝ fq˚rDN s “ ch˚c˚rDM s P H˚pBG;Qq.
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Equivalently, by rational nondegeneracy of the pairing between homology and
cohomology and naturality of the Chern character, we have that

xpc ˝ fq˚ch˚rDN s, αy “ xc˚ch˚rDM s, αy

for all α P H˚pBG;Qq. The Atiyah-Singer index theorem implies that the K-
homology Chern character takes rDM s to cdpLpMqXrM sq, where cd P Q is some
non-zero number depending only on the dimension d of M . Hence the above
implies that

xLpNq X rN s, pc ˝ fq˚αy “ xLpMq X rM s, c˚αy

for all α P H˚pM ;Qq. Using that cap product is the adjoint of cup product, we
may move the ‘LpMqX’ on the left to ‘LpMqY’ on the right, this is exactly the
statement of the Novikov conjecture.

Summarising, the outcome of the argument above, we get the following,

Proposition 10.3.7. Say that G is a group such that BG admits a finite CW
complex model, and such that µ : K˚pBGq Ñ K˚pC

˚
ρ pGqq is injective. Then

the Novikov conjecture holds for all closed oriented manifolds with fundamental
group G.

For this reason, injectivity of the Baum-Connes assembly map7 for Gis often
called the strong Novikov conjecture.

Now, in the spirit of the analytic surgery exact sequence, one can do some-
what better than the above classical argument. Indeed, consider the analytic
surgery exact sequence that we already discussed above in Section 10.2 (see
Definition 10.2.1) for the space BG

¨ ¨ ¨ // Ki`1pC
˚
ρ pGqq // San

i pBGq // KipBGq
µ // KipC

˚
ρ pGqq // ¨ ¨ ¨ ,

(for simplicity, we continue to assume that BG is finite). Given an orientation-
preserving homotopy equivalence f : N Ñ M between closed manifolds and a
map c : M Ñ BG inducing an isomorphism on fundamental groups, one can
construct a class

σpN,M, f, cq P San
˚ pBGq

that maps to
c˚rDM s ´ pc ˝ fq˚rDN s P K˚pBGq

under the map San
˚ pBGq Ñ K˚pBGq appearing in the surgery exact sequence.

The existence of such a class is non-trivial: indeed, its ‘mere existence’ imme-
diately implies Theorem 10.3.6, much as the mere existence of the higher rho
class of Definition 10.2.4 implies the vanishing result of Lemma 10.2.5.

Similarly to the positive scalar curvature higher rho invariant, however,
it does more than this: it provides an explicit ‘reason’ for the vanishing of
c˚rDM s ´ pc ˝ fq˚rDN s and different ‘reasons’ might exist. For example, if we

7Or injectivity of one of several variants: for example rational injectivity.
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fix M then up to homeomorphism there might be many different manifolds N
that is homotopy equivalent to M , and these different N could give rise to
different classes σpN,M, f, cq.

Looking more broadly, this construction lies at the heart of the mapping
surgery to analysis program. This aims to connect the surgery exact sequence
from algebraic topology and the analytic surgery exact sequence discussed briefly
above. We discuss this much more in the notes and references at the end for
more.

10.4 Exercises

10.4.1. Show that if M is a closed, manifold (spin or not) with positive scalar
curvature, and if the coarse Baum-Connes assembly map is injective for the
universal cover ĂM , then M does not have a positive scalar curvature metric.
Hint: ĂM is contractible, so spin, and has an associated Dirac operator satisfying
the condition of Theorem 10.2.3 part (v). Adapt the argument for Theorem
10.2.6.

10.5 Notes and references

This section will be rather longer than most of our usual notes and references
sections, as we will attempt to give brief summaries of some parts8 of the liter-
ature.

The covering index theorem

Atiyah’s covering index theorem comes from [8]; see also [247] for an in-
teresting recent generalisation. Connes generalized this to a ‘measured’ index
theorem for foliations (see [186] for a book-length exposition of these ideas), and
this in turn was a key motivation for the development of Connes’ index-theoretic
study of foliations [57] using C˚-algebraic and K-theoretic methods. The con-
nection between the Baum-Connes conjecture, the covering index theorem, and
the Kadison-Kaplansky conjecture was already observed in the original paper of
Baum and Connes on their conjecture [21, Section 7]. With a much more care-
ful study, one can get more information on the predictions of the Baum-Connes
conjecture for the range of the canonical trace: see [172] for the definitive results
in this direction.

Positive scalar curvature

8We make no claim to be definitive: the discussion omits a great deal, either due to igno-
rance or carelessness. Our apologies, and of course we would be very grateful for suggestions
for improvements.
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For detailed background on spin geometry and topology see [164]. Parts
of [217] also give a nice introduction. In particular, both of these references
contain proofs of the formula in part (v) of Theorem 10.2.3. The index-theoretic
approach to studying the existence of positive scalar curvature metrics on spin
manifolds was initiated by Lichnerowicz [168], based on the (re)discovery of the
spinor Dirac operator by Atiyah and Singer [13] in the lead-up to their proof
of the index theorem [12]. A particularly striking early application of these
ideas comes from work of Hitchin [141]: this shows in particular that there are
nine-dimensional manifolds homeomorphic to the nine-dimensional sphere, but
that do not admit a metric of positive scalar curvature. In the simply connected
setting, definitive results on the existence of positive scalar curvature metrics
have been obtained by Stolz [237]: these use Dirac operator techniques based
on those of Hitchin, and deep machinery from algebraic topology.

In the presence of a non-trivial fundamental group, one has many other tools
to attack the (non-) existence of positive scalar curvature metrics. Methods com-
bining Dirac operator techniques with coarse geometry and the fundamental
group were pioneered by Gromov and Lawson: their 1983 paper on the subject
[180] is still highly recommended reading. In particular, they first solved the
problem of the existence of a positive scalar curvature metric on the d-torus for
general d (Schoen and Yau [231, 232] solved this by different methods for d ď 7,
and seem to have recently pushed their techniques to work for general d). Soon
afterwards, Rosenberg [222] connected the techniques of Gromov and Lawson to
the assembly maps of Kasparov and Baum-Connes, leading to the introduction
of operator algebraic, and K-theoretic, methods. See [225] for a survey of of this
work (and some more recent material), and [230] for an interesting counterex-
ample to the so-called (unstable) Gromov-Lawson-Rosenberg conjecture about
the relationship of positive scalar curvature and index theoretic invariants.

More recently, there is continuing interest in index-theoretic approaches to
the problem of the existence of positive scalar curvature metrics: see for exam-
ple [121] and [51]. There has also been a lot of activity centered on higher rho
invariants and the moduli space of positive scalar curvature metrics: in partic-
ular, there is a ‘mapping surgery to analysis’ program (for example, [206, 265])
relating the positive scalar curvature exact sequence of Stolz (see for example
[227]) to the analytic surgery exact sequence discussed above. This theory can
be used, amongst other things, to detect the size of the space of positive scalar
curvature metric in some sense: see for example [266].

The Novikov conjecture

Noikov’s theorem on homeomorphism invariance of the rational Pontrjagin
numbers comes from [193, Section 11]. The original statement of Novikov’s
conjecture comes from [194]. For a survey of the history and ideas around the
Novikov conjecture (going up to the early 1990s), we recommend [99]. A sur-
vey more specifically on coarse geometric approaches to the Novikov conjecture
(covering the same period) can be found in [101]. For general ideas around
surgery theory, which we just hinted at above, we recommend Part I of [252] for
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an inspiring high-level overview, while [246] is the canonical classical reference.
See also the book draft [253] for an inspiring overview of many ideas around the
Borel conjecture.

The index-theoretic approach to the Novikov conjecture was pioneered by
Lusztig [174] and Miscenko [185] (although hints in that direction already appear
in the writings of Novikov himself). In particular, Theorem 10.3.6 comes from
their work; see also [146] for a more recent proof, and [140] for a more general
result related to foliations. This line of thinking was pushed forward a great deal
by Kasparov [150], with his powerful equivariant KK-theory machine reaching a
very sophisticated form by [149]. The index-theoretic approach to the Novikov
conjecture has now touched on many other interesting parts of mathematics
such as the cyclic homology [65], amenability [129], and Banach space geometry
[272, 154].

Recently, the mapping-surgery-to-analysis paradigm has also taken off. The
ideas perhaps first appear in Roe’s lectures [216], and were fully developed
in the series of papers [136, 137, 138] of Higson and Roe. A different model
for this based on Baum’s geometric model for K-homology was since give by
Deeley and Goffeng in [79], and another model based on tangent groupoids was
recently given by Zenobi in [276]; this latter also extends the maps to the setting
of topological (as opposed to smooth) manifolds.

These ideas have been used to get interesting information on several rigidity
type problems: for example, [255] studies the so-called finite part of the K-
theory of the group C˚-algebra, and uses this to get quantitative results on
the size of the structure set. Another recent result along these lines comes
from [254]: here the authors show that the map between structure sets is a
homomorphism (as opposed to just a set map in the original formulation) when
one uses the topological (as opposed to smooth) surgery exact sequence; this
allows one to prove some quantitative non-rigidity results.

Finally, we mention that more algebraic and differential-geometric approaches
to related material connecting surgery (theoretic ideas) to analysis can be found
for example in [170, 165, 187, 245, 267] and the references these papers contain.
There is a huge theory here, and this is a very active area right now; these
references are just to give a small sense or some directions, and are by no means
meant to be complete (or even completely representative).

A very brief guide to the literature on assembly maps

We give here a by-no-means exhaustive collection of references for other
methods for studying results on injectivity and surjectivity of assembly type
maps, both in the C˚-algebraic and algebraic settings.

In the C˚-algebraic setting, one of the most important ideas are the so-
called Dirac dual Dirac methods. This approach is due to Kasparov and relies
on bivariant K-theory for its precise formulation: the paper [150] is an early
survey, and the paper [149] gives the definitive version of Kasparov’s machinery;
these results rely on the geometry of non-positive curvature. These ideas were
pushed further by Kasparov and Skandalis [151, 152] to a remarkably general
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class of spaces called bolic spaces that exhibit some of the characteristics of
non-positive curvature. In another, related, direction, Higson and Kasparov
used the Dirac dual Dirac method to get results using infinite-dimensional flat
geometry [129]; this proves the Baum-Connes conjecture for the large class
of a-T-menable groups. Yu [272] subsequently used these infinite-dimensional
techniques to prove the coarse Baum-Connes conjecture for the class of spaces
that coarsely embed into Hilbert space; we give a new proof of this last result
in Chapter 12 below.

The approach of Higson and Kasparov to the Baum-Connes conjecture is
obstructed, however, much beyond the case of a-T-menable groups, thanks to a
rigidity property of groups called property (T). The attendant difficulties were
circumvented in many cases by Lafforgue [159] using a version of (bivariant) K-
theory for Banach algebras rather than just C˚-algebras. Lafforgue’s work was
used by Mineyev-Yu [184] to prove the Baum-Connes conjecture for the large
and interesting class of hyperbolic groups; Lafforgue [161] subsequently gave a
different proof of this that also covers the case with coefficients. Unfortunately,
Lafforgue [160] was also able to show that many important groups (for example,
lattices in higher rank Lie groups such as SLp3,Zq) enjoy very strong forms of
property (T) that obstruct both the traditional Dirac dual Dirac method, and
also his methods; the Baum-Connes conjecture remains open in all these cases.

There has also been a great deal of work on permanence properties of the
Baum-Connes conjecture: see for example [48] and [177] (the former is relatively
concrete; the latter works in a general abstract setting based on the machinery
of triangulated categories). These techniques are very much tied up with the
version of the Baum-Connes conjecture with coefficients, and as such have not
been touched on at all in this text. These (and other) permanence properties
combine with some of the above work using the Dirac dual Dirac method and the
structure theory of almost connected groups to give a proof of the Baum-Connes
conjecture for almost connected groups [49].

Going back to the coarse Baum-Connes conjecture, a separate proof paradigm
comes from the work of Yu in the case of spaces of finite asymptotic dimension
[271]. Here the idea is to use an approximate version of K-theory as exposited
[198] and concrete (approximate) Mayer-Vietoris sequences to prove the coarse
Baum-Connes conjecture. These ideas have recently been pushed into the set-
ting of group actions [118, 117]. This sort of approach to computing K-theory
has also recently been used by Oyono-Oyono and Yu to get results of purely
C˚-algebraic interest on the so-called Künneth formula [199]; we expect much
more remains to be said here. See also [50] for a completely different take on
connections between the world of the Baum-Connes conjecture and the Künneth
formula.

In the C˚-algebraic setting, a final broad theme that we will mention builds
around ideas based on the so-called Higson corona [214, Sections 6 and 7]. This
is an interesting compactification of a space that was observed to be close to
K-homology by Higson; if one can show that the Higson corona is topologically
trivial enough, then results on injectivity of the assembly map follow. These
ideas were studied in [155] and [85] from the point of view of general topology,
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while related ideas in algebraic K-theory were studied by Carlsson and Pedersen
[46]. Subsequently, Emerson and Meyer [90, 91] realized that a ‘stable’ version of
the Higson corona has better formal properties, and is quite intrinsically bound
up with the Dirac dual Dirac method. Recent work of Wulff [264] proves some
conjectures of Roe [215] relating the (stable) Higson corona and the assembly
map in a foliated setting; much seems to remain to be understood here.

There is a parallel theory in algebraic topology centered around the Farrell-
Jones conjecture that is more powerful in some ways, less so in others: see for
example [77] for the general machinery setting up the Farrell-Jones and related
conjectures. One great advantage is that it is more closely connected to topology
so allows for progress on (for example) the Borel conjecture, while the analytic
theory does not; on the other hand, the analytic theory allows for applications to
problems in the existence of positive scalar curvature metrics, and the algebraic
theory seems to have no direct connections to this. The papers [251, 223, 132]
survey some interactions between the analytical and topological theories.

Loday’s 1976 paper [169] seems to be the first appearance of the algebraic K-
theory assembly map (the L-theory assembly map appears earlier in the surgery
exact sequence [246]). Work in the 1980s (and before) towards applications to
algebraic topology was pioneered by Farrell, Hsiang, and Jones: this approach
maybe starts with work of Farrell and Hsiang [93] on non-positively curved
manifolds. See also the ICM talk of Hsiang for an interesting survey from
around this time [143]. See for example [94, 95, 97, 98] for some of the work
of Farrell and Jones, and [96] for a survey of some of the ideas and history.
The paper [100] of Ferry and Weinberger could also be seen as fitting into the
broad scheme discussed here. Some of this work predates what is now called
the Farrell-Jones conjecture, and in some sense aims more directly at the Borel
conjecture itself; however, from a modern point of view much of it can be seen
as proving special cases of that conjecture.

Finite asymptotic dimension, and its weaker relative finite decomposition
complexity, have also been used in the purely algebraic setting to great effect
using a variety of more-or-less directly techniques: see for example [14, 84, 116,
210].

More recently, the Farrell-Jones conjecture has been fit into an abstract and
more algebraic machinery: see for example the work of Davis and Lück [77]
on general assembly maps, and the paper of Bartels, Farrell, Jones, and Reich
[17]. A recent sequence of papers ([19, 18, 16, 15], amongst others) use this
more algebraic approach (although still with significant geometric machinery)
to make very impressive progress on the Farrell-Jones conjecture. This includes
a proof of the Borel conjecture for groups that act properly cocompactly and
isometrically on CAT(0) spaces [18]; a proof of the Baum-Connes conjecture
under similar hypotheses seems completely out of reach with current ideas,
so the fact that the Borel conjecture is known in that setting is particularly
intriguing. We should also remark that this spectacular recent progress proves
the Borel conjecture for all known examples of aspherical manifolds.

We should also remark that in the purely algebraic theory there are some
results that are true in a really striking degree of generality: [35] proves in-
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jectivity of the algebraic K-theory assembly map under very general finiteness
conditions, while [273] proves injectivity of the algebraic K-theory map for com-
pletely general groups (!), although with analytically flavored coefficients (see
also the later, more algebraic approach to this result in [68]). Unfortunately,
these results seem to have no direct applications to manifold topology; nonethe-
less, they provide some very interesting inspiration as to what one might hope
for in the case of those assembly maps that are more directly connected to
geometric topology.

We finally remark that one important and mysterious distinction between
the algebraic and C˚-algebraic settings concerns various functoriality properties:
for example, the right hand side of the Baum-Connes assembly map is not known
to be a functor of the input group (the left hand side is). Other problems in the
analytic theory arise as certain functors can fail to be exact [131]; the analogous
exactness properties are a non-issue in the algebraic case. Recent attempts to
get around some such functoriality problems in the C˚-algebraic case can be
found in [25, 45, 2], but much remains to be understood here.
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Part IV

Higher index theory and
assembly
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Chapter 11

Almost constant bundles

In this chapter we study what we call almost constant bundles. This is one of
the simplest cases where one can get non-trivial information about the assem-
bly map: indeed, our machinery is set up partly to make arguments like this
relatively straightforward.

11.1 Pairings

Throughout this section, X is a proper metric space.

Definition 11.1.1. Let K “ Kp`2pNqq, and for each k, let 1k : X` Ñ K denote
the constant map with image the projection onto the first k basis elements. An
almost constant sequence for X is a sequence of pairs ppn, 1knq of functions from
X` to K with the following properties:

(i) for each n, pn is a projection;

(ii) for each n, the difference pn ´ 1kn is in CcpX,Kq;

(iii) for each r ą 0,

lim sup
nÑ8

t|pnpxq ´ pnpyq| | x, y P X, dpx, yq ď ru “ 0.

A class α in K0pXq is almost constant if there exists an almost constant
sequence ppn, 1knq such that α “ rpns ´ r1kns for all n.

Example 11.1.2. Say X is a bounded metric space. Assume moreover that
α P K0pXq is represented by an almost constant sequence of pairs ppn, 1knq
such that each pn and 1kn actually take image in some fixed corner

Bp`2t1, ..., Nuq “ 1NKp`2pNqq1N Ď Kp`2pNqq.

Then α is a multiple of the class of the identity: see Exercise 11.3.1. This is false
either if one drops the assumption that X is bounded, or drops the assumption
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that the maps pn and 1kn all take image in the same finite-dimensional corner
of K.

Example 11.1.3. For any d, any class α in K0pRdq is almost constant. Indeed,
write α “ rps´r1ks for some p : X` Ñ K which is equal to 1k in a neighbourhood
of 8. For each n P N, define

pnpxq :“ ppx{pn` 1qq

(with the convention that 8{pn` 1q “ 8). As each of the maps

Rd Ñ Rd, x ÞÑ x{pn` 1q

is proper and properly homotopic to the identity, each of the classes rpns´r1ks is
equal to our original α. On the other hand, as p is equal to 1k in a neighbourhood
of infinity, p is uniformly continuous for the standard metric on Rd, and thus
ppn, 1kq satisfies condition iii in Definition 11.1.1.

We will explore the geometry underlying the above example and generalise
it in the next section.

The next result explains the usefulness of almost constant classes for studying
assembly maps.

Proposition 11.1.4. Let C˚pXq be the Roe algebra of X and let ppn, 1knq be
an almost constant sequence . Then there is a well-defined homomorphism

φ : K0pC
˚pXqq Ñ

ś

n Z
‘nZ

such that if
µ : K˚pXq Ñ K˚pC

˚pXqq

is the assembly map from Definition 7.1.1 then

φpµpβqq “ r xβ, rp0s ´ r1k0
sy , xβ, rp1s ´ r1k1

sy , ¨ ¨ ¨ s (11.1)

for all β P K0pXq; here xβ, rpns ´ r1knsy denotes the result of the usual pairing
between K-theory and K-homology (see Definition 9.2.3), and the right hand
side in the formula above denotes the class of the sequence of integers

pxβ, rp0s ´ r1k0
sy , xβ, rp1s ´ r1k1

sy , ¨ ¨ ¨ q

in
ś

n Z{ ‘n Z.

Proof. Let HX be an ample X module, and let H be an auxiliary separable
Hilbert space. The natural amplified representations of CpX`q and KpHq on
HX b H commute, giving rise to a representation of CpX`,KpHqq on this
Hilbert space. Assume that C˚pXq is defined using the X module HX and
consider C˚pXq as acting on HX bH via the amplified representation.

Write now B for BpHX bHq, and K for KpHX bHq. Let

DBpKq :“ tpS, T q P B ‘ B | S ´ T P Ku
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denote the double of B along K as in Definition 2.7.8. Consider the C˚-algebra

D8 :“

ś

nPNDBpKq
‘nPNDBpKq

.

It follows from (a slight elaboration of) Lemma 6.1.2 that for any T P C˚pXq,
the commutator rpn, T s tends to zero as n tends to infinity, whence we have a
well-defined ˚-homomorphism

ψ : C˚pXq Ñ D8, T ÞÑ rpp1T, 1k1
T q, pp2T, 1k2

T q, ¨ ¨ ¨ s.

Using Lemma 2.7.9, and the fact that K˚pBq “ 0 (see Corollary 2.7.7), there is
a natural isomorphism K0pDBpKqq – Z. Piecing these isomorphisms together
gives us a map

K0pD8q Ñ

ś

nPN Z
‘nPNZ

and the map φ from the statement is by definition the composition of this and
the map ψ˚ : K0pC

˚pXqq Ñ K0pD8q induced by ψ.
The compatibility of this with the pairing with K-homology is clear from

the ‘naive’ description of the pairing from Definition 9.1.3 above.

The point of Proposition 11.1.4 is that it gives us a simple way of showing
that certain elements of K-homology are not sent to zero by the assembly map.

Corollary 11.1.5. Say β P K0pXq is a K-homology class such that there exists
an almost constant K-theory class α P K0pXq with xβ, αy ‰ 0. Then µpβq ‰ 0.

Proof. Let ppn, 1knq be any almost constant sequence such that rpns´r1kns “ α
for all n. Let

φ : K0pC
˚pXqq Ñ

ś

n Z
‘nZ

be the homomorphism from Proposition 11.1.4. Then Proposition 11.1.4 implies
that φpµpβqq is the image of the constant sequence with value xβ, αy in

ś

Z{‘Z,
and this is non-zero.

This corollary is relatively simple, but already quite powerful. As an example
of how it can be used, here is another proof that the d-torus does not admit a
metric of positive scalar curvature, at least for d even.

Theorem 11.1.6. The d-torus does not admit a metric of positive scalar cur-
vature for d even.

Proof. Using Exercise 10.4.1, it suffices to prove that the assembly map

µ : K˚pRdq Ñ K˚pC
˚pRdqq

is injective. However, we know from Bott periodicity as in Theorem 9.3.5 and
Exercise 6.8.7 that K0pRdq – Z, and that the class of the Bott bundle in K0pRdq
pairs non-trivially with the canonical generator given by the Dirac operator.
Example 11.1.3 and Corollary 11.1.5 complete the proof.
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In the rest of this section, we quickly sketch how to extend the above to get
similar results in K1.

Definition 11.1.7. Let i ě 0. An almost constant sequence of projections for
Ri ˆX is a sequence of pairs ppn, 1knq of functions from pRi ˆXq` to K with
the following properties:

(i) for each n, pn is a projection;

(ii) for each n, the difference pn ´ 1kn is in CcpRi ˆX,Kq;

(iii) for each r ą 0,

lim sup
nÑ8

sup
tPRi
t|pnpt, xq ´ pnpt, yq| | x, y P X, dpx, yq ď ru “ 0.

A class x in K´ipXq “ K0pRi ˆ Xq is almost constant if there exists an
almost constant sequence ppn, qnq of projections for Ri ˆ X such that x “
rpns ´ r1kns for all n.

Proposition 11.1.8. Let i ě 0. Let C˚pXq be the Roe algebra of X and let
ppn, 1knq be an almost constant sequence for RiˆX. Then there is a well-defined
homomorphism

φ : K´ipC
˚pXqq Ñ

ś

n Z
‘nZ

such that if
µ : K˚pXq Ñ K˚pC

˚pXqq

is the assembly map from Definition 7.1.1 then

φpµpyqq “ rxβ, rp0s ´ rq0sy, xβ, rp1s ´ rq1sy, ¨ ¨ ¨ s (11.2)

for all β in KipXq.

Proof. The argument from Proposition 11.1.4 applied pointwise in the Ri vari-
able gives a homomorphism

φ : K´ipC
˚pXqq “ K0pC0pRi, C˚pXqqq Ñ

ś

nK
0pR2iq

‘nK0pR2iq
.

Now apply Bott periodicity to get the image in
ś

n Z{ ‘n Z.

The following corollary is proved in exactly the same way as Corollary 11.1.9.

Corollary 11.1.9. Say β P K1pXq is a K-homology class such that there exists
an almost constant K-theory class α P K1pXq with xβ, αy ‰ 0. Then µpβq ‰
0.

Using an obvious analogue of the argument in Example 11.1.3, we can show
that any class in K´ipRkq is almost constant. Thus we may remove the dimen-
sion restriction in Corollary 11.1.6.
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Theorem 11.1.10. The d-torus does not admit a metric of positive scalar
curvature.

In the next section, we will push this idea quite a bit further, using the
geometry of non-positive and negative curvature to give injectivity results for
assembly maps (with trivial group action).

11.2 Non-positive curvature

In this section we look at some examples where one can produce almost flat
sequences. Throughout this section, X is a proper geodesic metric space: i.e.
X is a metric space, all closed balls in X are compact, for any x, y P X there
is a continuous function γ : r0, dpx, yqs Ñ X such that γp0q “ x, γp1q “ y, and
such that the length of γ equals the distance from x to y (see Example A.3.4
for more on this). Such a function γ is called a geodesic. Note that we do not
demand any uniqueness for geodesics between two points (although this will be
true for our main examples).

Definition 11.2.1. Let a, b, c be any three points inX. LetA,B,C be any three
points in the Euclidean plane such that we have equality of pairwise distances:

dR2pA,Bq “ dXpa, bq, dR2pB,Cq “ dXpb, cq, dR2pA,Cq “ dXpa, cq

(it is easy to see that such A,B,C always exist and are unique up to an isometry
of the ambient plane). Let γAB and γAC be the geodesics from A to B and from
B to C respectively in R2.

The triple pa, b, cq satisfies the CAT(0)-inequality1 if for any geodesics γab
and γac from a to b and a to c respectively, and for any tb P r0, dpa, bqs and any
tc P r0, dpa, cqs we have that

dXpγabptbq, γacptcqq ď dR2pγABptbq, γACptcqq.

The metric space X is CAT(0) if any triple pa, b, cq satisfies the CAT(0) inequal-
ity.

Intuitively, the above definition says that triangles in X are ‘no fatter’ than
triangles in the Euclidean plane.

Examples 11.2.2. (i) Euclidean spaces are (tautologically) CAT(0).

(ii) Let T be a tree (i.e. a connected, undirected graph with no loops, at
most one edge between any two points, and no non-trivial circuits), and
metrise the underlying topological space of T by stipulating that each edge
is isometric to r0, 1s and the distance between two points is the length of
the shortest path between them. Then T is CAT(0): the key point is that
triangles in T have ‘zero width’ in an appropriate sense, and therefore are
certainly not fatter than their Euclidean counterparts.

1Note that this does not depend on the choice of pA,B,Cq

376



(iii) The hyperbolic plane, and more generally hyperbolic n-space, is CAT(0).

We now collect some basic facts about CAT(0) spaces: our first goal is Propo-
sition 11.2.7 which gives us information about the assembly map for CAT(0)
spaces. We will then combine that with the Cartan-Hadamard theorem (Theo-
rem 11.2.10) and Exercise 10.4.1 to deduce that certain manifolds cannot carry
metrics of positive scalar curvature.

Lemma 11.2.3. Say X is a CAT(0) space, and let γ1 : r0, b1s Ñ X and
γ2 : r0, b2s Ñ X be any two geodesics starting from the same point, i.e. such
that γ1p0q “ γ2p0q. Then for any t P r0, 1s,

dpγ1ptb1q, γ2ptb2qq ď tdpγ1pb1q, γ2pb2qq.

Proof. This follows directly from the CAT(0) inequality for the triple

pγ1p0q, γ1pb1q, γ2pb2qq

and the corresponding fact for the Euclidean plane.

The following corollary is immediate.

Corollary 11.2.4. Let X be a CAT(0) space and x, y be points in X. Then
there is a unique geodesic from x to y.

Corollary 11.2.5. CAT(0) spaces are contractible.

Proof. Let X be CAT(0) and fix a basepoint x0 P X. For each x P X let γx0x be
the unique geodesic from x0 to x as in Corollary 11.2.4. A contracting homotopy
is then defined by

H : r0, 1s ˆX Ñ X, Hpx, tq “ γx0xptdpx0, xqq

(note that continuity of H follows from Lemma 11.2.3).

Corollary 11.2.6. Let X be a (proper) CAT(0) space. Fix a basepoint x0 P X,
and for each x P X let γx0x be the unique geodesic from x0 to x as in Corollary
11.2.4. Define a function

s : X Ñ X, x ÞÑ γx0x

´dpx0, xq

2

¯

.

Then s is continuous, proper, and properly homotopic to the identity. Moreover,

dpspxq, spyqq ď
1

2
dpx, yq (11.3)

for all x, y P X.
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Proof. Continuity and the inequality in line (11.3) are immediate from Lemma
11.2.3. Properness of s follows as any compact subset K of X is contained
in some ball Bpx0; rq, and so s´1pKq is contained in Bpx0; 2rq and thus has
compact closure by properness of X. A homotopy between s and the identity
is given by

H : r0, 1s ˆX Ñ X, Hpt, xq “ γx0x

´dpx0, xq

2´ t

¯

;

properness of H follows by a similar argument to properness of s, and continuity
of H again follows from Lemma 11.2.3.

Proposition 11.2.7. Say X is a CAT(0) space. Then every class in K˚pXq
is almost constant.

Proof. Let α “ rps ´ r1ks be a class in K´ipXq, where p is a projection in
CppRiˆXq`,Kq, and p´1k is in CcpRiˆX,MkpCqq; any class can be represented
in this form. Let s be as in Lemma 11.3 and define

s̃ : Ri ˆX Ñ Ri ˆX, pt, xq ÞÑ pt, spxqq.

Set pn “ p ˝ s̃n. Corollary 11.2.6 combined with uniform continuity of p shows
that the sequence ppn, 1kq has the properties required by Definition 11.1.7 to
show that rps ´ r1ks is almost constant.

Corollary 11.2.8. Say X is a CAT(0) space such that K˚pXq is finitely gen-
erated. Then the assembly map

µ : K˚pXq Ñ K˚pC
˚pXqq

as in Definition 7.1.1 is rationally injective.

Proof. This follows immediately from Proposition 11.2.7, Corollary 11.1.9, and
the universal coefficient theorem (Theorem 9.2.8).

Definition 11.2.9. The space X has non-positive curvature if for any x P M
there exists r ą 0 such that for any y, z P Bpx; rq, the triple px, y, zq satisfies
the CAT(0) inequality from Definition 11.2.1.

Thus a space X has non-positive scalar curvature if it satisfies the CAT(0)
inequality on ‘small scales’. For example, this is true if X is the quotient of
a CAT(0) space by a group acting freely, properly cocompactly (see Definition
A.2.2) by isometries. This applies to many examples of classical interest, such
as when X is a closed surface of genus at least one, and higher dimensional
analogues of such spaces.

We now turn our attention to manifolds. The following is a version of the
Cartan-Hadamard theorem. We will not prove this here: see the references at
the end of the section.
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Theorem 11.2.10. Say M is a complete Riemannian manifold with non-
positive curvature. Then the universal cover ĂM with the lifted metric is a
CAT(0) space.

Theorem 11.2.11. Let M be a closed Riemannian manifold, and assume that
the metric has non-positive curvature. Then M cannot admit a (different) met-
ric of positive scalar curvature.

Proof. The Cartan-Hadamard Theorem 11.2.10 implies that the universal cover
ĂM is CAT(0) and thus contractible by Corollary 11.2.5. Hence by Corollary

9.6.12 KipĂMq is isomorphic to Z if i “ dimpXq (mod 2) and is zero otherwise,
and the non-zero group is generated by the class of the Dirac operator (note

that ĂM is spinc as contractible). Corollary 11.2.8 implies that the assembly map

µ : K˚pĂMq Ñ K˚pC
˚pĂMqq

is rationally injective; given that the left hand side is just a copy of Z, however,
this is the same as injectivity. The result follows from Exercise 10.4.1.

11.3 Exercises

11.3.1. Prove the claim in Remark 11.1.2: if X is bounded, any class in K0pXq
that is represented by an almost constant sequence of projections with image in
a fixed corner of K is a multiple of the class of the identity in K-theory.
Hint: the space of projections in MN pCq is locally contractible, so any projection-
valued map p : X Ñ MN pCq whose image has small enough diameter is homo-
topic to a constant map.

11.3.2. Show that a CAT(0) space is uniformly contractible (see Definition
7.3.1).
It follows from this and Theorem 7.3.7 that if we can give such an X the struc-
ture of a good simplicial complex, then the coarse Baum-Connes assembly map
identifies with the assembly map for X. Corollary 11.2.8 combined with the UCT
then implies that the coarse Baum-Connes assembly map is rationally injective.

11.4 Notes and references

The book [38] contains a great deal of information about the geometry of non-
positive curvature [38]. In particular, it includes a proof [38, Chapter II.1,
appendix] that in the case of a manifold, the definition of non-positive curvature
that we used (Definition 11.2.9 above) is equivalent to the standard definition
of non-positive sectional curvature, defined using the Riemannian curvature
tensor. It also proves a more general version of the Cartan-Hadamard theorem:
see [38, Chapter II.4]. The class of CAT(0) spaces is large and interesting: one
particularly beautiful class of examples comes from work of Davis [78], who
shows that there are closed smooth manifolds with universal covers admitting a
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CAT(0) measure (so in particular, the original manifold is aspherical), but where
the cover is not homeomorphic to Euclidean space (such a manifold cannot admit
a metric of non-positive Riemannian curavture).

Our Corollary 11.2.8 proves rational injectivity of the coarse Baum-Connes
assembly map for certain CAT(0) spaces. In fact, the coarse assembly map is
know to be an isomorphism in this case, as one can see using the ideas in [133]
(and by other methods). One also knows the coarse Baum-Connes conjecture
for arbitrary subspaces of non-positively curved manifolds [235]. This, however,
is open for arbitrary subspaces of CAT(0) spaces; moreover, surjectivity of the
coarse assembly map can fail for (bounded geometry) subspaces of CAT(0)
spaces, as one can see by combining results from [157] and [258].

The result of Theorem 11.2.11 that a closed manifold of non-positive sec-
tional curvature does not admit a metric of positive scalar curvature is due to
Gromov and Lawson: see for example [180] for some of their work. The tech-
nique they use is essentially the same as ours, but looks much more differential-
geometric than our soft-and-topological proof.

One can get a more general notion than our almost constant classes by con-
sidering ‘almost flat classes’, also due to Gromov and Lawson. See for example
[144] or [47] for foundational material. Subsequent work of Connes, Gromov,
and Moscovici pushed related ideas much further [62, 63]. More recent appli-
cations of almost flat ideas include: proofs of the Novikov conjecture for ‘low-
degree’ classes by Mathai [175] and Hanke-Schick [122]; recent work of Kubota
[158] on relative index theory; and connections to quasi-diagonality in abstract
C˚-algebra due to Dadarlat [73].
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Chapter 12

Higher index theory for
coarsely embeddable spaces

Our goal in this chapter is to prove the coarse Baum-Connes conjecture for
bounded geometry metric spaces that coarsely embed into Hilbert space.

Definition 12.0.1. Let X and Y be metric spaces. A map f : X Ñ Y is a
coarse embedding if there exist non-decreasing functions ρ´, ρ` : r0,8q Ñ r0,8q
such that

ρ´pdXpx1, x2qq ď dY pfpx1q, fpx2qq ď ρ`pdXpx1, x2qq

for all x1, x2 P X, and such that ρ´ptq Ñ 8 as tÑ8.
The space X is said to coarsely embed into the space Y if a coarse embedding

from X to Y exists.

A coarse embedding between two metric spaces may or may not exist. For
example, if Y is bounded, then there can be no coarse embedding of an un-
bounded metric space X into Y . On the other hand, any separable metric
space X coarsely embeds into `8pNq: see Exercise 12.7.1. Here is the main
theorem we aim to prove in this chapter.

Theorem 12.0.2. Let X be a bounded geometry metric space that coarsely
embeds into a Hilbert space. Then the coarse assembly map

µ : KX˚pXq Ñ K˚pC
˚pXqq

is an isomorphism.

Much of the power of Theorem 12.0.2 comes as the existence of a coarse
embedding into an infinite dimensional Hilbert space is a fairly weak condition,
satisfied by many spaces (and groups) of classical interest.

On a vague level, the idea of this theorem is that the existence of a coarse
embedding of X into a Hilbert space H says that one can draw a ‘good’ picture
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of X inside H. The very well-behaved geometry of Hilbert spaces then allows us
to prove Theorem 12.0.2 via an index-theoretic localisation technique. The key
technical ingredient is a careful analysis of the so-called Bott-Dirac operator of
Section 9.3 on finite dimensional Hilbert spaces, and the closely related classical
harmonic oscillator of mathematical physics.

All of this chapter is devoted to the proof of Theorem 12.0.2, which is the
deepest result in this book. The chapter is structured as follows.

Sections 12.1 and 12.2 provide background. Section 12.1 studies the prop-
erties we need of the Bott-Dirac operator on finite-dimensional Hilbert spaces.
Section 12.2 establishes notation, and proves some combinatorial and analytic
facts coming from bounded geometry. Both Sections 12.1 and 12.2 are some-
what technical and poorly motivated if read in isolation; we recommend that
the reader just skims them (or does not read them at all) on the first go through
and refers back as needed.

Sections 12.3 and 12.4 contain the proof of Theorem 12.0.2 in the case of
a coarse embedding into a finite dimensional Hilbert space E; this is the heart
of the proof and contains all the key ideas. Section 12.3 uses the (higher) in-
dex theory of the Bott-Dirac operator to replace the Roe algebra C˚pXq with
another C˚-algebra ApX;Eq without losing any K-theoretic information. The
C˚-algebra ApX;Eq is ‘local’ in some sense, which allows one to prove the ana-
logue of the coarse Baum-Connes conjecture for it by Mayer-Vietoris arguments;
this step is carried out in Section 12.4. Together, these two sections establish
Theorem 12.0.2 in the case that the Hilbert space is finite dimensional.

The remaining two sections 12.5 and 12.6 give the proof of Theorem 12.0.2
in the case of a coarse embedding into an infinite dimensional Hilbert space.
Section 12.5 uses Mayer-Vietoris arguments to reduce to a statement about a
sort of ‘uniform’ version of the coarse Baum-Connes conjecture for a sequence
pXnq of metric spaces that coarsely embed into a sequence pEnq of finite dimen-
sional Euclidean spaces in an appropriate sense. Finally, Section 12.6 completes
the proof of Theorem 12.0.2 by explaining how to adapt the finite dimensional
proof of Sections 12.3 and 12.4 to the uniform statement arrived at in Section
12.5.

12.1 The Bott-Dirac operator

In this section, we introduce the Bott-Dirac operator and study some of its
key properties. See the notes and references for a concrete discussion of the
Bott-Dirac operator in the one-dimensional case.

To fix terminology, let us say that by a Euclidean space we mean a Hilbert
space over the real numbers. It is straightforward to check that a metric space
X coarsely embeds into a real Hilbert space if and only if it coarsely embeds into
a complex Hilbert space (see Exercise 12.7.2), so we do not lose any generality
by restricting to the real case.

Let then E be a finite dimensional, even dimensional Euclidean space. We
write |v| for the norm of an element v of E. As in Example E.1.11, the (complex)
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Clifford algebra of E, denoted CliffCpEq, is the universal unital complex algebra
containing E as a (real) subspace and subject to the multiplicative relations

xx “ |x|2

for all x P E (on the left hand side, we write “xx” for the multiplication in
CliffCpEq, and on the right hand side |x|2 means the scalar |x|2 multiplied by
the identity of CliffCpEq). Just as in the discussion in Example E.2.12, we
can treat CliffCpEq as either a graded C˚-algebra or a graded Hilbert space;
considered in the latter way, we write it HE .

Let L2
E denote the Hilbert space of square integrable functions from E to

HE and let SE denote the subspace of Schwartz class functions from E to HE .
Note that both L2

E and SE inherit a grading from the grading on CliffCpEq. Fix
for now an orthonormal basis te1, ..., edu of E, and let x1, ..., xd : E Ñ R be the
corresponding coordinates. The Clifford and Dirac operators, which we think
of as unbounded operators on L2

E with domain SE , are defined by the formulas

pCuqpvq “
d
ÿ

i“1

pxieiq ¨ upxq and Du “
d
ÿ

i“1

êi
Bu

Bxi
(12.1)

just as in Definition 9.3.1 above. One can check that C and D do not depend
on the choice of orthonormal basis of E.

Definition 12.1.1. The Bott-Dirac operator is the unbounded operator

B “ D ` C

on L2
E with domain S.

Note that B is an odd operator. Moreover, it maps its domain into itself and
thus powers of B make sense. The following result records the basic properties
of B2 that we will need.

Proposition 12.1.2. The eigenvalues of B2 are exactly the non-negative even
integers, with the kernel being one-dimensional and spanned by the function

E Ñ R, x ÞÑ e´
1
2 |x|

2

.

Moreover, if H2n is the eigenspace corresponding to the eigenvalue 2n, then
H2n is a finite dimensional subspace of S, and there is an orthogonal direct sum
decomposition

L2
E “

8
à

n“0

H2n.

In particular, the Bott-Dirac operator B is essentially self-adjoint, and has com-
pact resolvent.

Finally, we have the formula

B2 “ D2 ` C2 `N,

where the so-called number operator N :“ CD ` DC extends to a bounded
self-adjoint operator on L2

E with norm equal to the dimension d of E.
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Proof. The discussion in Remark 9.3.2 and the choice of orthonormal basis gives
rise to a tensorial decompoisition

L2
E – L2pR, HRqpb ¨ ¨ ¨ pbL

2pR, HRq
looooooooooooooooomooooooooooooooooon

d copies

,

where the ith copy of R is identified with spanteiu. Analogously to Remark
9.3.2, we have that if B1 is the one-dimensional Bott-Dirac operator, then

B “
d
ÿ

i“1

1pb ¨ ¨ ¨ pb1pb B1
loomoon

ith place

pb1pb ¨ ¨ ¨ pb1.

Choosing an orthonormal basis t1, eu for H1 where e P R is a norm one vector,
we have

B1 “

ˆ

0 x´ d
dx

x` d
dx 0

˙

,

just as in the proof of Theorem 9.3.5. It follows from the last two displayed
lines that

B2 “

d
ÿ

i“1

1pb ¨ ¨ ¨ pb1pb B2
1

loomoon

ith place

pb1pb ¨ ¨ ¨ pb1

where

B2
1 “

ˆ

H 0
0 H ` 2

˙

,

with H with harmonic oscillator of Definition D.3.1. The result follows from
this, the eigenspace decomposition for the harmonic oscillator from Proposition
D.3.3, and direct computations that we leave to the reader.

Now, the origin 0 P E plays the role of a basepoint for B: for example, the
kernel of B is spanned by the Gaussian e´

1
2 |x|

2

centered at zero. We will need to
consider other basepoints for B, and also to introduce another parameter that
will govern a deformation.

For x P E, let cx be the bounded operator on L2
E defined by (left) Clifford

multiplication by the fixed vector x. Note that cx is self-adjoint and c2x “ |x|
2,

whence the spectrum of cx consists precisely of ˘|x| and the norm of cx is |x|.

Definition 12.1.3. Let s P r1,8q and x P E. The Bott-Dirac operator associ-
ated to ps, xq is the unbounded operator

Bs,x “ s´1D ` C ´ cx

on L2
E with domain S.

For x P E define Vx : L2
E Ñ L2

E to be the unitary translation given by

pVxuqpyq “ upy ´ xq (12.2)
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and for each s P r1,8q define a unitary shrinking operator Ss : L2
E Ñ L2

E by
the formula

pSsuqpxq :“ s´dimpEq{2upsxq. (12.3)

Then Vx and Ss both preserve the space SE of Schwartz class functions, and so
the operator VxSsBS

˚
s V

˚
x makes sense as an unbounded operator on L2

E with
domain S. It is moreover straightforward to check that

Bs,x “ s´1{2VxS?sBS?̊sV
˚
x (12.4)

as operators on S. The following corollary is immediate from this formula and
Proposition 12.1.2.

Corollary 12.1.4. Each B2
s,x is an essentially self-adjoint, odd operator of

compact resolvent. It has eigenvalues equal to s´1{2 times the non-negative even
integers, finite dimensional eigenspaces, and one-dimensional kernel spanned by
the function

E Ñ C Ď CliffCpEq, y ÞÑ e´
s
2 |y´x|

2

.

Moreover, we have the formula

B2
s,x “ s´2D2 ` pC ´ cxq

2 ` s´1N

where N is the same number operator as in Proposition 12.1.2.

In our set-up, it is convenient to work with bounded versions of the Bott-
Dirac operator. We build these using the functional calculus for unbounded
operators (see Theorem D.1.7).

Definition 12.1.5. Let x P E and s P r1,8q, and let Bs,x “ s´1D`C ´ cx be
as in Definition 12.1.3 above. Define

Fs,x :“ Bs,xp1`B
2
s,xq

´1{2.

Our aim in the remainder of this section is to prove some useful properties
of the operators Fs,x: see Proposition 12.1.10 below.

We will need the following integral representation of Fs,x. For the statement
(and at several other points below), recall that a net pTiq of bounded operators
on a Hilbert space H converges strongly to an operator T if for all u P H,
Tiu Ñ u as i Ñ 8. Similarly, pTiq converges strong-˚ to T if pTiq converges
strongly to T , and pT˚i q converges strongly to T˚. Recall also that cx denotes
the operator on L2

E of Clifford multiplication by the fixed vector x P E

Lemma 12.1.6. For all s P r1,8q and all x P E, we have that

Fs,x “
2

π

ż 8

0

Bs,xp1` λ
2 `B2

s,xq
´1dλ,

with the integral on the right converging in the strong-˚ operator topology.

385



Moreover for any s P r1,8q and x, y P E we have

Fs,x ´ Fs,y “ cx´yp1`B
2
s,xq

´1{2

`
2

π

ż 8

0

Bs,yp1` λ
2 `B2

s,yq
´1

´

Bs,ycx´y ` cx´yBs,x

¯

p1` λ2 `B2
s,xq

´1
˘

dλ,

where again convergence takes place in the strong-˚ topology.

Proof. The integral formula follows from the formula

x
?

1` x2
“

2

π

ż 8

0

x

1` λ2 ` x2
dλ

and the functional calculus: indeed, strong-˚ convergence of the integral is
straightforward to check given the description of the eigenspace decomposition
of Bs,v in Corollary 12.1.4 (one only gets strong-˚ convergence rather than norm
convergence as the integral does not converge uniformly for all x, only uniformly
on compact subsets of x P R).

For the second formula, we have

Fs,x´Fs,y “ pBs,x´Bs,yqp1`B
2
s,xq

´1{2´Bs,y
`

p1`B2
s,yq

´1{2´p1`B2
s,xq

´1{2
˘

.

Using (a slight variation on) the integral formula and the computation Bs,x ´
Bs,y “ cx´y, this equals

cx´yp1`B
2
s,xq

´1{2´
2

π

ż 8

0

Bs,yp1`λ
2`B2

s,yq
´1dλ`

2

π

ż 8

0

Bs,yp1`λ
2`B2

s,xq
´1dλ.

Combining the integrals and using the formulas

p1`λ2`B2
s,yq

´1´p1`λ2`B2
s,xq

´1 “ p1`λ2`B2
s,yq

´1
`

B2
s,y´B

2
s,x

˘

p1`λ2`B2
s,xq

´1

and

B2
s,y ´B

2
s,x “ Bs,ypBs,y ´Bs,xq ` pBs,y ´Bs,xqBs,x “ Bs,ycy´x ` cy´xBs,x

to manipulate the integrand gives the result.

We record the following corollary for later use.

Corollary 12.1.7. For all s and all x, y P E,

}Fs,x ´ Fs,y} ď 3|x´ y|.

Proof. We estimate using the formula for Fs,x´Fs,y from Lemma 12.1.6. First,
note that the functional calculus gives

}cx´yp1`B
2
s,xq

´1{2} ď }cx´y}}p1`B
2
s,xq

´1{2} ď |x´ y|.
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Second, note that by the functional calculus }B2
s,yp1 ` λ2 ` B2

s,yq
´1} ď 1 and

}p1` λ2 `B2
s,xq

´1} ď p1` λ2q´1, whence

›

›

›

2

π

ż 8

0

B2
s,yp1` λ

2 `B2
s,yq

´1cx´yp1` λ
2 `B2

s,xq
´1dλ

›

›

›

ď
2

π

ż 8

0

|x´ y|

1` λ2
dλ “ |x´ y|.

Finally, the elementary estimate

sup
xPr0,8q

x

1` λ2 ` x2
ď

1

2
?

1` λ2
.

and the functional calculus imply that

›

›

›

2

π

ż 8

0

Bs,yp1` λ
2 `B2

s,yq
´1cx´yBs,yp1` λ

2 `B2
s,yq

´1dλ
›

›

›

ď
2

π

ż 8

0

|x´ y|

4p1` λ2q
ď |x´ y|.

Combining these three estimates with the formula for Fs,x ´ Fs,y from Lemma
12.1.6 completes the proof.

To state the next lemma, for each x P E and R ě 0, let χx,R denote the
characteristic function of the ball in E, centered at x and of radius R.

Lemma 12.1.8. Let d be the dimension of E. Then for any R ě 0, λ P r0,8q,
x P E, and s P r2d,8q, we have that

}p1` λ2 `B2
s,xq

´1{2p1´ χR,xq} ď p
1

2
` λ2 `R2q´1{4.

Proof. For notational simplicity, let us assume that x “ 0, and write χR “ χR,0;
this makes no real difference to the proof. As in Corollary 12.1.4, we have

B2
s,0 “ s´2D2 ` s´1N ` C2,

where N is the number operator, a self-adjoint operator of norm d. Hence

p1` λ2 `B2
s,0q

´1{2 “ p1` λ2 ` s´2D2 ` s´1N ` C2q´1{2.

Now, let u P L2
E be Schwartz class and have norm one. Define

v :“ p1` λ2 `B2
s,0q

´1u “ p1` λ2 ` s´2D2 ` s´1N ` C2q´1u,

which is also Schwartz class and has norm at most one. The operators D2 and
1
2´s

´1N are positive (the latter follows as s is in r2d,8q and as N is self-adjoint
with norm d) so we have that

1 ě |xu, vy| “ xp1` λ2 ` s´2D2 ` s´1N ` C2qv, vy ě xp
1

2
` λ2 ` C2qv, vy.
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Hence

}p
1

2
` λ2 ` C2q1{2v}2 “ |xp

1

2
` λ2 ` C2qv, vy| ď 1. (12.5)

On the other hand, for any Schwartz class w P L2
E and any x P E, we have that

}pCwqpxq}CliffCpEq ě |x|}wpxq}CliffCpEq. Combining this with line (12.5) above
gives that

}p1´ χRqv} ď
1

b

1
2 ` λ

2 `R2
}p

1

2
` λ2 ` C2q1{2p1´ χRqv}

ď
1

b

1
2 ` λ

2 `R2
}p

1

2
` λ2 ` C2q1{2v}

ď
1

b

1
2 ` λ

2 `R2
.

This implies that for any Schwartz class function u of norm one, we get that

}p1´ χRqp1` λ
2 `B2

s,0q
´1v} ď

1
b

1
2 ` λ

2 `R2
.

As the Schwartz class functions are dense in L2, this gives that

}p1´ χRqp1` λ
2 `B2

s,0q
´1} ď

1
b

1
2 ` λ

2 `R2
.

To complete the argument, note that by the C˚-identity, this implies that

}p1` λ2 `B2
s,0q

´1{2p1´ χRq}
2 “ }p1´ χRqp1` λ

2 `B2
s,0q

´1p1´ χRq}

ď }p1´ χRqp1` λ
2 `B2

s,0q
´1}

ď p
1

2
` λ2 `R2q´1{2.

Taking square roots gives the estimate we want.

The following result is probably the most technically difficult of this section.

Proposition 12.1.9. For any r, ε ą 0 there exists R0 ą 0 such that for all
R ě R0, all s P r2d,8q, and all x, y P E with |x, y| ď r we have

}pFs,x ´ Fs,yqp1´ χx,Rq} ă ε.

Proof. It will suffice to consider the case where x “ 0: the general case differs
from this by conjugation by the unitary Vx from line (12.2). For simplicity,
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write then χR :“ χ0,R. Consider the formula from Lemma 12.1.6

Fs,0 ´ Fs,y “ c´yp1` λ
2 `B2

s,0q
´1{2

loooooooooooooomoooooooooooooon

α

`
2

π

ż 8

0

Bs,yp1` λ
2 `B2

s,yq
´1

`

Bs,yc´y ` c´yBs,0
˘

p1` λ2 `B2
s,0q

´1
˘

dλ
looooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooon

β

.

(12.6)

It will suffice to show the corresponding estimate for each of the terms labeled
α and β separately.

First, let us look at the term labeled α in line (12.6). Lemma 12.1.8 gives
that for any R ą 0

}c´yp1`B
2
s,0q

´1{2p1´ χRq} ď
|y|
?
R
,

which implies the desired statement for the term labeled α.
On the other hand, the expression β in line (12.6) above splits into a sum of

two terms:

2

π

ż 8

0

B2
s,yp1` λ

2 `B2
s,yq

´1c´yp1` λ
2 `B2

s,0q
´1dλ (12.7)

and
2

π

ż 8

0

Bs,yp1` λ
2 `B2

s,yq
´1c´yBs,0p1` λ

2 `B2
s,0q

´1dλ (12.8)

We will look at each separately.
First, look at the term in line (12.7). The functional calculus gives that

}B2
s,yp1` λ

2 `B2
s,yq

´1} ď 1.

Hence

›

›

›

2

π

ż 8

0

B2
s,yp1` λ

2 `B2
s,yq

´1c´yp1` λ
2 `B2

s,0q
´1dλp1´ χRq

›

›

›

ď
2|y|

π

ż 8

0

}p1` λ2 `Bs,0q
´1{2}}p1` λ2 `Bs,0q

´1{2p1´ χRq}dλ.

The functional calculus gives that

}p1` λ2 `Bs,0q
´1{2} ď

1
?

1` λ2

and Lemma 12.1.8 gives that

}p1` λ2 `Bs,0q
´1{2p1´ χRq} ď p

1

2
` λ2 `R2q´1{4.
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Hence the term in line (12.7) multiplied by 1´χR has norm bounded above by

2r

π

ż 8

0

1
?

1` λ2 4

b

1
2 ` λ

2 `R2
dλ.

This tends to zero as R tends to infinity by the dominated convergence theorem
(at a rate depending on r, but not on s P r2d,8q), so we are done with the term
in line (12.7).

It remains to deal with the term in line (12.8). The functional calculus gives
that

}Bs,yp1` λ
2 `B2

s,yq
´1} ď sup

xPr0,8q

x

1` λ2 ` x2
.

Elementary calculus gives that for fixed λ, the function fpxq “ x
1`λ2`x2 attains

a maximum of 1
2
?

1`λ2 on the interval r0,8q, and so we get

}Bs,yp1` λ
2 `B2

s,yq
´1} ď

1

2
?

1` λ2
.

Hence

›

›

›

2

π

ż 8

0

Bs,yp1` λ
2 `B2

s,yq
´1c´yBs,0p1` λ

2 `B2
s,0q

´1dλp1´ χRq
›

›

›

ď
2|y|

π

ż 8

0

1

2
?

1` λ2
}Bs,0p1` λ

2 `Bs,0q
´1{2}}p1` λ2 `Bs,0q

´1{2p1´ χRq}dλ.

The functional calculus again gives that

}Bs,0p1` λ
2 `Bs,0q

´1{2} ď 1

and Lemma 12.1.8 again gives that

}p1` λ2 `Bs,0q
´1{2p1´ χRq} ď

1

4

b

1
2 ` λ

2 `R2
.

Hence the term in line (12.8) multiplied by 1´χR has norm bounded above by

2r

π

ż 8

0

1

2
?

1` λ2

1

4

b

1
2 ` λ

2 `R2
dλ.

Again this tends to zero as R tends to infinity by the dominated convergence
theorem, and we are done.

Having got through the above technical proof, the next result summarizes
the facts we will need about the Bott-Dirac operator. Fortunately, we have done
most of the work already. For the statement, if x P E, and R ě 0, write again
χx,R for the characteristic function of the ball in E centered at x and radius R.
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Proposition 12.1.10. For each ε ą 0 there exists an odd function Ψ : R Ñ

r´1, 1s such that Ψptq Ñ ˘1 as tÑ ˘8, and with the following properties.

(i) For all s and all x, }Fs,x ´ΨpBs,xq} ă ε.

(ii) There exists R0 ą 0 such that for all s P r1,8q and all v P E, proppΨpBs,xqq ď
s´1R0.

(iii) For all s P r1,8q and all x P E, the operator ΨpBs,xq
2 ´ 1 is compact.

(iv) For all s P r1,8q and all x, y P E, the operator ΨpBs,xq ´ ΨpBs,yq is
compact.

(v) There exists c ą 0 such that for all s P r1,8q and all x, y P E.

}ΨpBs,xq ´ΨpBs,yq} ď c|x´ y|.

(vi) For all x P E, the function

r1,8q Ñ BpL2
Eq s ÞÑ ΨpBs,xq

is strong-˚ continuous.

(vii) The family of functions

r1,8q Ñ BpL2
Eq s ÞÑ ΨpBs,xq

2 ´ 1

is norm equi-continuous as x varies over E and s varies over any fixed
compact subset of r1,8q.

(viii) For any r ě 0, the family of functions

r1,8q Ñ BpL2
Eq s ÞÑ ΨpBs,xq ´ΨpBs,yq

is norm equi-continuous as px, yq varies over the elements of E ˆ E with
|x´ y| ď r, and s varies over any fixed compact subset of r1,8q.

(ix) There exists R1 ą 0 such that for all R ě R1, all s P r1,8q, and all x P E
we have that

}pΨpBs,xq
2 ´ 1qp1´ χx,Rq} ă 3ε.

(x) For any r ą 0 there exists R2 ą 0 such that for all R ě R2 and all
s P r2d,8q and all x, y P E with |x´ y| ď r we have that

}pΨpBs,xq ´ΨpBs,yqqp1´ χx,Rq} ă 3ε.

Remark 12.1.11. It will be important when we move to the infinite dimensional
case that the various constants appearing in almost all of the above are indepen-
dent of the dimension of E. The only exceptions are that the various continuity
statements in the parameter s do not give equicontinuity as the dimension varies,
and the explicit appearance of the dimension in part (x).
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Proof of Proposition 12.1.10. We claim first that there is an odd function Ψ :
R Ñ r´1, 1s such that Ψptq Ñ ˘1 as t Ñ ˘8, such that suptPR |Ψptq ´ xp1 `
x2q´1{2| ă ε, and such that the (distributional) Fourier transform of Ψ is com-
pactly supported. To see this, let g : R Ñ r0,8q be a smooth even function of
integral one, and with compactly supported Fourier transform. Define Ψ to the
convolution

Ψpxq :“

ż

R
yp1` y2q´1{2δgpδ´1px´ yqqdy

for some suitably small δ ą 0. It is not too difficult to check that this works:
for the statement on support of the Fourier transform, use that the Fourier
transform converts convolution to multiplication.

Part (i) is now immediate from the functional calculus.
For part (ii), let R0 be such that the support of the Fourier transform of

Ψ is contained in r´R0, R0s. Then Corollary 8.2.3 combined with the fact
that the propagation speed (see Definition 8.1.7) of Bs,x is s´1 gives that
proppΨpBs,xqq ď s´1R0.

Part (iii) follows as Ψ2´1 is in C0pRq, and from the eigenspace decomposition
of Bs,x as in Corollary 12.1.4.

For part (iv), let δ ą 0, define Ψδptq :“ Ψpδtq. Note that

Bs,x ´Bs,y “ cx´y

extends to a bounded operator on L2
E with norm |x´ y|, whence Lemma D.2.4

and the conditions on Ψ imply there exists c ą 0 (depending on Ψ) such that

}ΨδpBs,xq ´ΨδpBs,yq} ď c}δpBs,x ´Bs,yq} “ cδ|x´ y|. (12.9)

In particular, then, the difference

pΨ´ΨδqpBs,xq ´ pΨ´ΨδqpBs,yq “ ΨδpBs,xq ´ΨδpBs,yq `ΨpBs,yq ´ΨpBs,xq
(12.10)

converges to ΨpBs,xq´ΨpBs,yq as δ Ñ 0. Note further that for any δ the function
Ψ ´ Ψδ is in C0pRq, whence by the eigenspace decompositions from Corollary
12.1.4 we have that pΨ´ΨδqpBs,xq and pΨ´ΨδqpBs,yq are both compact, which
gives the result.

Part (v) is immediate from line (12.9) (with δ “ 1).
Part (vi) is straightforward from the eigenspace decomposition of Corollary

12.1.4, strong-˚ continuity of the map s ÞÑ S?s where S?s is the shrinking
operator from line (12.3), and the formula in line (12.4).

For part (vii), norm continuity of the map s ÞÑ ΨpBs,0q
2 ´ 1 follows again

from the eigenspace decomposition of Corollary 12.1.4, strong-˚ continuity of the
map s ÞÑ S?s where S?s is the shrinking operator from line (12.3), the formula
in line (12.4), and the fact that the function Ψ2´ 1 is in C0pRq. Equicontinuity
of the family follows as all the functions involved are conjugates of this one by
the unitaries Vx from line (12.2).

For part (viii) with notation as in the proof of part (iv) above, consider the
function

s ÞÑ pΨ´ΨδqpBs,xq
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for fixed δ ą 0. This is norm continuous by the eigenspace decomposition of
Bs,v from Corollary 12.1.4, and strong-˚ continuity of the map s ÞÑ S?s where
S?s is the shrinking operator from line (12.3), and the formula in line (12.4).
It is moreover equicontinuous as x varies over E and s over compact subsets
of r1,8q as all the functions involved are unitary conjugates of each other by
the operators Vx of line (12.2). To summarize, putting this together with the
estimate in line (12.9) and the formula in line (12.10), we have shown that for
px, yq varying across the subset of EˆE consisting of elements with |x´y| ď r,
the family of functions s ÞÑ ΨpBs,xq ´ΨpBs,yq can be approximated uniformly
by an equicontinuous family, which is enough to complete the proof.

For part (ix), note that it suffices by part (i) to prove that for any ε ą 0
there exists R1 ą 0 such that for all R ě R1 and all s P r1,8q and all x P E,
we have }pF 2

s,x´ 1qpχx,R´ 1q} ă ε. We have, however, from Lemma 12.1.8 that

}pF 2
s,x ´ 1qp1´ χx,Rq} “ }p1`B

2
s,xq

´1p1´ χx,Rq}

ď }p1`B2
s,xq

´1{2}}p1`B2
s,xq

´1{2p1´ χx,Rq}

ď p
1

2
`R2q´1{4,

which implies the desired result.
Finally, part (x) is straightforward from Proposition 12.1.9.

12.2 Bounded geometry spaces

This section establishes notational conventions, and proves a few combinato-
rial and analytic facts, about Roe algebras associated to (Rips complexes of)
bounded geometry metric spaces as in Definition A.3.19.

Throughout this section, we let X be a bounded geometry metric space
equipped with a coarse embedding f : X Ñ E to some finite-dimensional, even-
dimensional Euclidean space.

For each r ě 0, let Pr :“ PrpXq be the Rips complex of X at scale r as in
Definition 7.2.8.

Definition 12.2.1. A good covering system forX consists of a collection pBr,xqrě0,xPX

of with the following properties:

(i) for each r, the collection pBr,xqxPX is a cover of Pr by disjoint Borel sets;

(ii) for each r, x, Br,x contains x;

(iii) for each r, x, Br,x is contained in the union of the simplices that contain
x;

(iv) for each r ď s, Br,x Ď Bs,x.

We leave it as an exercise for the reader to show that a good covering system
exists: see Exercise 12.7.4 below.
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Definition 12.2.2. For each r ě 0, extend f to a Borel map fr : Pr Ñ E by
stipulating that fr takes all points in Br,x to fpxq.

Note that the maps fr are compatible with the inclusions Pr Ñ Ps for r ď s,
meaning that fs restricts to fr on Pr (and all restrict to f “ f0 on X itself).
We will generally therefore abuse notation, and write f for all of them.

For each r ě 0, let Zr be the collection of all points in Pr such that all the
coefficients tx as in Definition 7.2.8 take rational values; thus Zr is a countable
dense subset of Pr. Let H be a separable, infinite-dimensional Hilbert space,
and define HPr :“ `2pZrq bH and HPr,E :“ `2pZrq bH bL2

E . Then HPr is an
ample Pr module (see Definition 4.1.1), and HPr,E is both an ample Pr module
and an ample E module. For a bounded operator T on HPr,E , write propP pT q
and propEpT q for the propagation of T (see Definition 4.1.8) considered with
respect to the Pr module structure and the E module structure respectively.

Let C˚pHPr q and C˚pHPr,Eq denote the Roe algebras of Pr constructed
using the Pr modules HPr and HPr,E respectively (see Definition 5.1.4). It will
be useful to keep these algebras distinct, so contrary to our usual conventions we
do not write C˚pPrq for either of them. We will consider C˚pHPr q as represented
on HPr,E “ HPr bL2

E via the amplified representation T ÞÑ T b 1; note that in
this way C˚pHPr q becomes a subalgebra of the multiplier algebra of C˚pHPr,Eq.
We will also let C˚LpHPr q and C˚LpHPr,Eq denote the localised Roe algebras
(Definition 6.6.1) of Pr associated to these Pr modules.

It will be convenient to represent operators on HPr and HPr,E as X-by-
X matrices. For each x P X, define Hx,Pr :“ pχBr,x b 1HqHPr . We may
think of a bounded operator on HPr (respectively, HPr,E) as an X-by-X matrix
pTxyqx,yPX where each Txy is a bounded operator Hy,Pr Ñ Hx,Pr (respectively,
Hy,Pr bL2

E Ñ Hx,Pr bL2
E). Note that according to the definition of the metric

on Pr from Definition 7.2.8 and the fact that the canonical inclusion X Ñ Pr
is a coarse equivalence (Part ii of Proposition 7.2.11), there exists a proper
non-decreasing function fr : r0,8q Ñ r0,8q such that

propP pT q ´ 2 ď suptdXpx, yq | Txy ‰ 0u ď frppropP pT qq. (12.11)

For later use, note that for r ď s there are canonical inclusions Zr Ñ Zs,
whence canonical isometric inclusions

HPr Ñ HPs and HPr,E Ñ HPs,E , (12.12)

which in turn give rise to canonical inclusions of C˚-algebras

C˚pHPr q Ñ C˚pHPsq and C˚pHPr,Eq Ñ C˚pHPs,Eq. (12.13)

These inclusions are compatible with the matrix representations pTxyqx,yPX de-
fined above in the sense that increasing the Rips parameter does not alter the
matrix representation: this follows from part (iv) of Definition 12.2.1

We finish this section with some facts about bounded geometry spaces and
matrices indexed by them. These will be used several times later in the chapter.

394



Lemma 12.2.3. Say X is a bounded geometry metric space. Then for each
s ě 0 there exists N P N such that:

(i) there is a decomposition

tpx, yq P X ˆX | dpx, yq ď su “
N
ğ

n“1

Fn

such that for each x P X there is at most one element of the form px, yq
or py, xq in Fn;

(ii) there is a decomposition

X “

N
ğ

n“1

Xn

such that for each x, y P Xn with x ‰ y, dpx, yq ą s.

Proof. For part (i), let F1 be a maximal subset of

tpx, yq P X ˆX | dpx, yq ď su

such that for each x P X there is at most one element of the form px, yq or
py, xq in F1 (such a maximal subset exists by Zorn’s lemma). Having defined
F1, ..., Fn, define Fn`1 to be a maximal subset of

tpx, yq P X ˆX | dpx, yq ď suzpF1 Y ¨ ¨ ¨ Y Fnq

such that for each x P X there is at most one element of the form px, yq or py, xq
in Fn. We claim that Fn is empty for all suitably large n, which will suffice to
complete the proof. Indeed, if not, then for any n there is px, yq P X ˆX with
dpx, yq ď s, and px, yq R pF1 Y ¨ ¨ ¨ YFnq. Hence by maximality of each Fi, there
are either at least tn{2u distinct points y within distance s of x, or at least tn{2u

distinct points x within distance s of y; in either case, this contradicts bounded
geometry for n suitably large.

Part (ii) is similar: one defines X1 to be a maximal subset of X with the
property that dpx, yq ą s for all distinct points x, y P X1, defines X2, X3, ...
iteratively, and shows that Xn must be empty for suitably large n, otherwise
bounded geometry is contradicted.

Lemma 12.2.4. For any s, r ě 0 there exists N P N such that whenever T “
pTxyqx,yPX is a bounded operator on HPr,E such that propP pT q ď s, then

}T } ď N sup
x,yPX

}Txy}.

Proof. Let fr : r0,8q Ñ r0,8q be as in line (12.11), and let F1, ..., FN be as in
part (i) of Lemma 12.2.3 for the parameter frpsq. For each n P t1, ..., Nu define
T pnq to be the operator with matrix entries

T pnqxy “

"

Txy px, yq P Fn
0 otherwise

.
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Using the fact that for each x P X there is at most one element of the form
px, yq or py, xq in Fn, one sees that

}T pnq} ď sup
px,yqPFn

}Txy},

whence each T pnq is indeed a well-defined bounded operator. Moreover, as
s ě propP pT q, we have by line (12.11) above that whenever Txy ‰ 0, dXpx, yq ď

frpsq. It follows that T “
řN
n“1 T

pnq whence

}T } ď
N
ÿ

n“1

}T pnq} ď N sup
x,yPX

}Txy}

as required.

The following corollary, which says one can detect continuity of a one pa-
rameter family of operators from the associated matrix entries, is immediate.

Corollary 12.2.5. Let

ra, bs Ñ BpHPr,Eq, s ÞÑ Ts

be a bounded map so that sups propP pTsq ă 8, and write Ts “ pTs,xyqx,yPX .
Then pTsq is norm-continuous if and only if the family of maps

ps ÞÑ Ts,xyqx,yPX

is norm equicontinuous.

12.3 Index maps

This section contains the index-theoretic part of the proof of Theorem 12.0.2 in
the finite-dimensional case.

Throughout then, X is a bounded geometry metric space, and f : X Ñ E
is a coarse embedding into a finite-dimensional and even-dimensional Euclidean
space. We will use the notation introduced in Section 12.2 for Rips complexes Pr,
dense subset Zr Ď Pr, good covering systems pBr,xqrě,xPX (Definition 12.2.1)
and associated Hilbert spaces and Roe algebras. We will work at a fixed ‘Rips
scale’ r ě 0 throughout the whole section; as such, we will generally drop r
from the notation, and write P “ PrpXq for the Rips complex, Bx “ Br,x for
the Borel sets in the fixed good covering system, and Z “ Zr for the dense set
of rational points in P . We also write f : P Ñ E for the fixed extension of the
coarse embedding from a function on X to a function on P given in Definition
12.2.2, and also HP :“ `2pZqbH and HP,E :“ HPbL2

E for the for the associated
Hilbert spaces. Finally, we have for each x P X an associated subspaces Hx,P :“
pχBxbidHqHP of HP . We will generally think of a bounded operator T on HP,E

as a matrix pTxyqx,yPX , where each Txy is a bounded operator

Txy : Hy,P b L2
E Ñ Hx,P b L2

E .
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The following notation will be convenient shorthand for several of our con-
structions. Recall from line (12.2) that for x P E, Vx : L2

E Ñ L2
E denotes the

unitary translation operator by x.

Definition 12.3.1. Let T be a bounded operator on L2
E . Define a bounded

operator TV on HP,E “ `2pZq bH b L2
E by the formula

TV : δx b ξ b u ÞÑ δx b ξ b VfpxqTV
˚
fpxqu.

In other words, with respect to our usual matrix conventions, TV is the
operator with matrix entries

TVxy “

"

1H b VfpxqTV
˚
fpxq x “ y

0 otherwise
.

We will in particular want to apply the above definition to the operator χR of
multiplication by the characteristic function of the ball in E centered at the
origin and of radius R. In this case, note that VfpxqχRV

˚
fpxq equals the operator

χfpxq,R of multiplication by the ball centered at fpxq and of radius R.
Here are the algebras that we will use.

Definition 12.3.2. Let Cbpr1,8q, C
˚pHP,Eqq denote the C˚-algebra of all bounded

continuous functions from r1,8q to C˚pHP,Eq. Write elements of this ˚-algebra
as parametrized matrices pTsqsPr1,8q “ pTs,xyqsPr1,8q,x,yPX , and equip it with
the norm

}pTsq} :“ sup
s
}Ts}BpHP,Eq. (12.14)

Let ApX;Eq denote the ˚-subalgebra of Cbpr1,8q, C
˚pHP,Eqq consisting of ele-

ments satisfying the following conditions.

(i) sup
sPr1,8q

propP pTsq ă 8.

(ii) lim
sÑ8

propEpTsq “ 0.

(iii)
lim
RÑ8

sup
sPr1,8q

}χVRTs ´ Ts} “ lim
RÑ8

sup
sPr1,8q

}Tsχ
V
R ´ Ts} “ 0.

(iv) If ppiq is the net of finite rank projections on L2
E , then for each s P r1,8q

lim
iÑ8

}pVi Ts ´ Ts} “ lim
iÑ8

}Tsp
V
i ´ Ts} “ 0.

Define ApX;Eq to the closure of ApX;Eq inside Cbpr1,8q, C
˚pHP,Eqq.

Note the different role of s in conditions (iii) and (iv): the former holds
uniformly in s, while the latter only holds in each s separately.

Note that Cbpr1,8q, C
˚pHP,Eqq, and therefore also ApX;Eq is represented

on L2pr1,8q, HP,Eq in a natural way. The Hilbert space L2pr1,8q, HP,Eq is
equipped with the grading (in the sense of Definition E.1.4) induced from the
grading on L2

E .
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Definition 12.3.3. Define ALpX;Eq to be the collection of uniformly continu-
ous bounded functions pTtq from r1,8q to ApX;Eq such that the P -propagation
of pTtq tends to zero as t tends to infinity. Precisely, an element pTtq “ pTt,sq
of ALpX;Eq is an element of Cbpr1,8q, ApX;Eqq that satisfies the following
conditions.

(i) lim
tÑ8

sup
sPr1,8q

propP pTt,sq “ 0.

(ii) for each t P r1,8q, lim
sÑ8

propEpTt,sq “ 0.

(iii) for each t P r1,8q,

lim
RÑ8

sup
s,tPr1,8q

}χVRTt,s ´ Tt,s} “ lim
RÑ8

sup
s,tPr1,8q

}Tt,sχ
V
R ´ Tt,s} “ 0.

(iv) If ppiq is the net of finite rank projections on L2
E , then for each s, t P r1,8q

lim
iÑ8

sup
tPr1,8q

}pVi Ts,t ´ Ts,t} “ }Ts,tp
V
i ´ Ts,t} “ 0.

DefineALpX;Eq to the completion of ALpX;Eq for the norm }pTtq} :“ supt }Tt}ApX;Eq.

Our main goal in this section is to construct index maps

K˚pC
˚pHP qq Ñ K˚pApX;Eqq and K˚pC

˚
LpHP qq Ñ K˚pALpX;Eqq

and (partially) compute the effect of these maps on K-theory. The key in-
gredient for this is the following family of operators on HP,E , built out of the
Bott-Dirac operators of Section 12.1. For the next definition, let d denote the
dimension of the ambient Euclidean space E.

Definition 12.3.4. For each s P r1,8q let Fs,0 : L2
E Ñ L2

E be the operator
from Definition 12.1.5 above. Let Fs be the bounded operator on HP,E defined
by

Fs :“ FVs`2d,0

Let F be the operator on L2pr1,8q, HP,Eq defined by pFuqpsq :“ Fsupsq.
Analogously, if Ψ has the properties in Proposition 12.1.10 (for some ε ą 0),

we write FΨ
s and FΨ for the operators built in the same way as Fs and F , but

starting with ΨpBs,0q in place of Fs,0.

In order to construct index maps out of F , we need some lemmas. For the
first of these, recall that a net pTiq of bounded operators converges to a bounded
operator T in the strong-˚ topology if for all v in the underlying Hilbert space,
Tiv Ñ v and T˚i v Ñ T˚v in norm. Equivalently, for any finite rank projection
P , TiP Ñ TP and PTi Ñ PT in norm.
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Lemma 12.3.5. Let S and T be norm bounded sets of operators on a Hilbert
space H, such that T consists only of compact operators. Equip S with the
strong-˚ topology and T with the norm topology. Then if K denotes the compact
operators on H, the product maps

S ˆ T Ñ K and T ˆ S Ñ K

are jointly continuous.

Proof. Let pSiq be a net in S converging strong-˚ to some S P S, and let pTjq
be a net of compact operators in T converging to some T in norm. We will
show that the net pSiTjq converges to ST (the case with the products reversed
is essentially the same). Let M be a norm bound for all operators in S and T ,
and let ε ą 0. As pTjq is a norm convergent net of compact operators, there
exists a finite rank projection P and j0 such that for all j ě j0, }p1´P qTj} ă ε.
Then for any i and any j ě j0

}SiTj ´ ST } ď }pSi ´ SqPTj} ` }pSi ´ Sqp1´ P qTj} ` }SpTj ´ T q}

ď }pSi ´ SqP }M ` 2Mε`M}Tj ´ T }.

Taking the limsup over both i and j, we get

lim sup
i,j

}SiTj ´ ST } ď 2Mε

for any ε, and letting ε tends to zero gives the result.

Lemma 12.3.6. The operator F is a self-adjoint, norm one, odd operator in
the multiplier algebra of ApX;Eq.

Proof. The operator F is self-adjoint, norm one, and odd as each Fs,0 has these
properties. Let ε ą 0 and let Ψ is as in Proposition 12.1.10 for this ε. Then if
FΨ is as in Definition 12.3.4 we have that

}F ´ FΨ} ď sup
x,s
}Fs,fpxq ´ΨpBs,fpxqq} ď ε

by part (i) of Proposition 12.1.10 and Lemma 12.2.4. As the collection of mul-
tipliers of any concrete C˚-algebra is closed, it will suffice to check that any
such FΨ is a multiplier of ApX;Eq. Moreover, as ApX;Eq is generated as a C˚-
algebra by elements satisfying the properties in Definition 12.3.2, it will suffice
to show that if pTsq satisfies those properties, then pTsF

Ψ
s q does too (as FΨ is

self-adjoint, we do not need to check the other product pFΨ
s Tsq separately).

We first claim that the map

s ÞÑ TsF
Ψ
s

is norm continuous. For this, it suffices to show that it is continuous when
restricted to any compact subset r1, bs of r1,8q. Now, by compactness of r1, bs

399



and norm continuity of the map s ÞÑ Ts, part (iv) of Definition 12.3.2 gives us
that for any ε ą 0 there is a finite rank projection p on L2

E such that

}TsF
Ψ
s ´ Tsp

V FΨ
s } ď }Ts ´ Tsp

V }}FΨ
s } ă ε.

Hence it suffices to show that the map s ÞÑ Tsp
V FΨ

s is norm continuous. Part
(vi) of Proposition 12.1.10 together with Lemma 12.3.5 gives that the map

r1, bs Ñ BpL2
Eq, s ÞÑ pΨpBs,0q

is norm continuous, whence the family

r1, bs Ñ BpL2
Eq, s ÞÑ VfpyqpΨpBs,0qV

˚
fpyq

is equicontinuous as y ranges over X. Moreover, the collection s ÞÑ Ts,xy as
x, y range over X is equicontinuous on r1, bs by Corollary 12.2.5, and so the
collection

s ÞÑ Ts,xyVfpyqpΨpBs,0qV
˚
fpyq

is equicontinuous as x, y range over X. This collection is precisely the collec-
tion of matrix entries of the functions s ÞÑ Tsp

V FΨ
s , so this function is also

continuous by Corollary 12.2.5 again.
For part (i) of Definition 12.3.2, note that as each FΨ

s clearly has P -propagation
zero, Corollary 4.1.14 gives that the P -propagation of TsF

Ψ
s is bounded by that

of Ts. For part (ii), note that the E-propagation of FΨ
s tends to zero as s tends

to infinity by part (ii) of Proposition 12.1.10, whence Corollary 4.1.14 again
gives that the E-propagation of TsF

Ψ
s also tends to zero. Part (iii) of Definition

12.3.2 follows from the fact that the E-propagation of FΨ
s is uniformly bounded

in s.
Finally, for part (iv) let ppiq be the net of finite rank projections on L2

E .
Then for any s

}pVi TsF
Ψ
s ´ TsF

Ψ
s } ď }p

V
i Ts ´ Ts},

which tends to zero as i tends to infinity. On the other hand, for any ε ą 0 and
i we may choose a finite rank projection qi ě pi such that

}qiΨpBs,0qpi ´ΨpBs,0qpi} ă ε,

from which it follows that

}qVi ΨpBs,0q
V pVi ´ΨpBs,0q

V pVi } ă ε.

Hence

}TsF
Ψ
s ´ TsF

Ψ
s p

V
i } ď }Tspq

V
i F

Ψ
s p

V
i ´ F

Ψ
s p

V
i q} ` }pTs ´ Tsq

V
i qF

Ψ
s p

V
i }

ď }Ts}ε` }Ts ´ Tsq
V
i }.

taking the lim sup over i gives that

lim sup
i

}TsF
Ψ
s ´ TsF

Ψ
s p

V
i } ă }Ts}ε.
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Hence as ε was arbitrary

lim
i
}TsF

Ψ
s ´ TsF

Ψ
s p

V
i } “ 0

as required.

Lemma 12.3.7. Let T be a norm compact subset of KpL2
Eq, for each x P E let

Vx be the translation operator as in line (12.2) above, and let r ě 0. Then the
sets

tVxA | |x| ď r and A P T u and tAVx | |x| ď r and A P T u

are norm compact.

Proof. The map
E Ñ BpL2

Eq, x ÞÑ Vx

is strong-˚ continuous: one way to see this is to note first that if u P L2
E is

continuous and compactly supported, then

x ÞÑ Vxu

is continuous, and then approximate a general u P L2
E by continuous elements

of compact support. Hence the set tVx | |x| ď ru is strong-˚ compact; it is
moreover norm bounded as it consists entirely of unitary operators. Lemma
12.3.5 now shows that the sets in the statement are the image of a compact set
under a continuous map, so compact.

Lemma 12.3.8. Considered as represented on L2r1,8q bHP,E via the ampli-
fication of the identity representation on HP , C˚pHP q is a subalgebra of the
multiplier algebra of ApX;Eq.

Proof. It will suffice to show that if S is in CrHP s and if pTsq is in ApX;Eq,
then pSTsq is in ApX;Eq. It is clear that the function s ÞÑ STs is bounded
and norm continuous. The fact that pSTsq satisfies conditions (i) and (ii) from
Definition 12.3.2 follow from Corollary 4.1.14 and the facts that S has finite
P -propagation and has E-propagation zero.

Let us now looks at condition (iii) from Definition 12.3.2. The condition

lim
RÑ8

sup
sPr1,8q

}STsχ
V
R ´ STs} “ 0

is clear, so we need to check

lim
RÑ8

sup
sPr1,8q

}χVRSTs ´ STs} “ 0.

For this, assume that

R ě sup
dpx,yqďproppSq

|fpxq ´ fpyq|
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and define
R1 :“ R´ sup

dpx,yqďproppSq

|fpxq ´ fpyq|.

Then for any x, y P X and any s P r1,8q

pSχVR1
Tsqxy “

ÿ

tzPX|dpx,zqďproppSqu

pSxz b 1L2
E
qp1H b χfpzq,R1

qTs,zy

“
ÿ

tzPX|dpx,zqďproppSqu

pSxz b χfpxq,Rχfpzq,R1
qTs,zy

“ χfpxq,R
ÿ

tzPX|dpx,zqďproppSqu

pSxz b χfpzq,R1
qTs,zy

“ pχVRSχ
V
R1
Tsqxy.

Hence for any s
SχVR1

Ts “ χVRSχ
V
R1
Ts,

and so

}χVRSTs ´ STs} ď }χ
V
RSpχ

V
R1
Ts ´ Tsq} ` }Spχ

V
R1
Ts ´ Tsq}.

This tends to zero as R tends to infinity (uniformly in s) by assumption.
It remains to check part (iv) from Definition 12.3.2. The only thing we need

to check is that if ppiq is the net of finite rank projections, then

lim
iÑ8

}pVi STs ´ STs} “ 0.

For this, it suffices to show that for any ε ą 0 we can find a finite rank projection
p on L2

E such that }pV STs ´ STs} ă ε. Let q be any finite rank projection on
L2
E such that

}qV Ts ´ Ts} ă
ε

3}S}
. (12.15)

Computing matrix coefficients for any s and x, y P X

pSqV Tsqxy “
ÿ

tzPX|dpx,zqďproppSqu

pSxz b 1L2
E
qp1H b VfpzqqV

˚
fpzqqTs,zy

“
ÿ

tzPX|dpx,zqďproppSqu

pSxz b VfpzqqV
˚
fpzqqTs,zy. (12.16)

Using Lemma 12.3.7, the set

A :“
!

VuqV
˚
u | |u| ď sup

dpx,yqďproppSq

|fpxq ´ fpyq|
)

is a norm compact set of compact operators. Hence there is a finite rank pro-
jection p on L2

E , which we may assume dominates q, that satisfies

}pp´ 1qa} ă
ε

3}S}}T }NM
(12.17)
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for all a P A, where N is as in Lemma 12.2.4 for the parameter proppSq, and
where M is an absolute bound on the number of points in a ball of radius
proppSq in X. Now, for any x, z P X such that Sxz ‰ 0 we have that

pVfpxqpV
˚
fpxq ´ 1qVfpzqqV

˚
fpzq “ Vfpxqpp´ 1qVfpzq´fpxqqV

˚
fpzq´fpxqV

˚
fpxq,

whence by line (12.17)

}pVfpxqpV
˚
fpxq ´ 1qVfpzqqV

˚
fpzq} ă

ε

3}S}}T }NM
.

It follows from this and the computation in line (12.16) above that

}pSqV Tsqxy ´ pp
V SqV Tsqxy}

“

›

›

›

ÿ

tzPX|dpx,zqďproppSqu

pSxz b p1´ VfpxqpV
˚
fpxqqVfpzqqV

˚
fpzqqTs,zy

›

›

›

ďM sup
tzPX|dpx,zqďproppSqu

}pVfpxqpV
˚
fpxq ´ 1qVfpzqqV

˚
fpzq}}S}}T }

ă
ε

3N

Hence by Lemma 12.2.4, for each s

}SqV Ts ´ p
V SqV Ts} ă

ε

3
.

Combining this with line (12.15), we thus have that

}pV STs ´ STs} ď }p
V SpTs ´ q

V Tsq} ` }Sq
V Ts ´ p

V SqV Ts} ` }Spq
V Ts ´ Tsq}

ă }S}
ε

3}S}
`
ε

3
` }S}

ε

3}S}

and we are done.

Lemma 12.3.9. For any T P C˚pHP q and s P r1,8q, the function s ÞÑ rT, Fss
is in ApX;Eq.

Proof. We may assume that T P CrHP s. Let ε ą 0, and let Ψ be as in Proposi-
tion 12.1.10. Then

}rT, Fss ´ rT, F
Ψ
s s} “ }rT, Fs ´ F

Ψ
s s} ă 2ε}T }.

It will thus suffice to prove that any function of the form s ÞÑ rT, FΨ
s s with Ψ as

in Proposition 12.1.10 is in ArX;Es. First note that the function s ÞÑ rT, FΨ
s s

is bounded, while it is continuous by part (viii) of Proposition 12.1.10, finite
propagation of T , and Lemma 12.2.4.

It remains to check conditions (i) through (iv) from Definition 12.3.2 for the
function s ÞÑ rT, FΨ

s s. First note that using that FΨ
s has P -propagation zero,

part (i) of Definition 12.3.2 is clear. Part (ii) follows as T has E-propagation
zero, using part (ii) of Proposition 12.1.10.
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For part (iii), we first compute matrix coefficients

rT, FΨ
s sxy “ Txy b pF

Ψ
s,fpyq ´ F

Ψ
s,fpxqq.

Hence
pχVRrT, F

Ψ
s sqxy “ Txy b χfpxq,RpF

Ψ
s,fpyq ´ F

Ψ
s,fpxqq.

It follows from this and part (x) of Proposition 12.1.10 that for any ε ą 0 there
exists R2 ě 0 such that for all x, y with Txy ‰ 0 and all s we have that

}pχVRrT, F
Ψ
s sqxy´prT, F

Ψ
s sqxy} ă }Txy}}p1´χfpxq,RqpF

Ψ
s,fpyq´F

Ψ
s,fpxqq} ă 3ε}T }.

Hence from Lemma 12.2.4 we have that

lim
RÑ8

sup
sPr1,8q

}rT, FΨ
s s ´ χ

V
RrT, F

Ψ
s s} “ 0.

The case of rT, FΨ
s sχ

V
R is essentially the same.

Finally, it remains to check condition (iv) from Definition 12.3.2. For this
we compute that for any s and any finite rank projection p on L2

E ,

ppV rT, FΨ
s sqxy “ Txy b VfpxqpV

˚
fpxqpF

Ψ
s,fpyq ´ F

Ψ
s,fpxqq

“ Txy b VfpxqppF
Ψ
s,fpyq´fpxq ´ F

Ψ
s,0qV

˚
fpxq

Now, the map
E Ñ KpL2

Eq, x ÞÑ FΨ
s,x ´ F

Ψ
s,0

is norm continuous by part (v) of Proposition 12.1.10, whence the collection

tFΨ
s,fpyq´fpxq ´ F

Ψ
s,0 P KpL2

Eq | dpx, yq ď proppT qu

has compact closure. It follows that for any ε ą 0 there exists a finite rank
projection p on L2

E such that whenever dpx, yq ď proppT q, we have that

}p1´ pqpFΨ
s,fpyq´fpxq ´ F

Ψ
s,0q} ă ε.

For this p, we therefore get that for any x, y,

}p1´ pV qrT, FΨ
s sqxy} ă }T }ε.

Hence with N as in Lemma 12.2.4 for the parameter proppT q, we get that

}p1´ pV qrT, FΨ
s s} ă }T }Nε,

which gives that if ppiq is the net of finite rank projections on L2
E , then

lim
iÑ8

}p1´ pVi qrT, F
Ψ
s s} “ 0.

The case of lim
iÑ8

}rT, FΨ
s sqp1´ p

V
i q} is similar, so we are done.
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Lemma 12.3.10. Let p P C˚pHP q be a projection. Then the function

s ÞÑ ppFspq
2 ´ p

is in the corner pApX;Eqp.

Proof. Using Lemma 12.3.9, that p is a projection, and that F and p are mul-
tipliers of ApX;Eq (see Lemmas 12.3.6 and 12.3.8 respectively), it suffices to
show that the function s ÞÑ F 2

s p´ p is in ApX;Eq. For this, it suffices to show
that if q is a finite propagation approximant to p (which need no longer be a
projection), then s ÞÑ F 2

s q´ q is in ApX;Eq. Note then that the px, yqth matrix
entry of F 2

s q ´ q is

qxy b pF
2
s,fpxq ´ 1q “ qxy b VfpxqpF

2
s,0 ´ 1qV ˚fpxq´fpyqV

˚
fpyq.

The fact that Bs,0 has compact resolvent shows that F 2
s,0´1 is compact. Corol-

lary 12.3.7 then shows that the collection

tpF 2
s,0 ´ 1qV ˚fpxq´fpyq | dpx, yq ď propP pqqu

is compact. The result follows from this and computations very similar to (and
easier than) those in the last few lemmas: we leave the details to the reader.

It follows that for a projection p P C˚pHP q, the odd self-adjoint operator
ppFspqsPr1,8q on the graded Hilbert space p

`

L2r1,8q b HP,E

˘

can be used to
build an index class in K0ppApX;Eqpq as in Definition 2.8.5. Being a little more
specific about this, the fact that pFsp is odd and self-adjoint means it has the
form

pFsp “

ˆ

0 u˚

u 0

˙

when decomposed as a matrix with respect to the grading on p
`

L2r1,8qbHP,E

˘

,
while the fact that p is even means it has the form

p “

ˆ

p0 0
0 p1

˙

when decomposed as a matrix with respect to the grading. The fact that

ppFspq
2 ´ p P pApX;Eqp

from Lemma 12.3.10 translates to saying that the matrix
ˆ

u˚u´ p0 0
0 uu˚ ´ p1

˙

(again, decomposed with respect to the grading) is in pApX;Eqp. We may now
form the explicit formal difference

IndppFspq “

ˆ

pp0 ´ uu
˚q2 u˚pp1 ´ uu

˚q

up2´ u˚uqp1´ u˚uq uu˚pp1 ´ uu
˚q2

˙

´

ˆ

0 0
0 p1

˙

(12.18)
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(compare line (2.21) above) of idempotents. The idempotents are in the mul-
tiplier algebra of pApX;Eqp and their difference is in pApX;Eqp so we get a
class
„

pp0 ´ uu
˚q2 u˚pp1 ´ uu

˚q

up2´ u˚uqp1´ u˚uq uu˚pp1 ´ uu
˚q2



´

„

0 0
0 p1



P K0ppApX;Eqpq. (12.19)

Now, composing with the map onK0 groups induced by the inclusion pApX;EqpÑ
ApX;Eq, we get an element of K0pApX;Eqq that we call IndF rps.

Lemma 12.3.11. For each s P r1,8q, the process above gives a well-defined
homomorphism

IndF : K0pC
˚pHP qq Ñ K0pApX;Eqq.

Proof. Note first that using the result of Exercise 5.4.2, K0pC
˚pHP qq is gen-

erated by classes of projections in matrix algebras over C˚pHP q, despite this
algebra being non-unital1. Replacing H with H‘n in the definitions of HP and
HP,E , it is straightforward to check that the above construction makes good
sense for projections in MnpC

˚pHP qq for some n. To see that we get a well-
defined homomorphism on K0, it suffices to show that if p, q PMnpC

˚pHP qq are
homotopic, then IndF rps “ IndF rqs, and that if p, q PMnpC

˚pHP qq are orthog-
onal, then IndF rp` qs “ IndF rps ` IndF rqs. Indeed, using the concrete formula
for the index in line (12.19) above, homotopies carry through to homotopies,
while orthogonality is preserved as the corners pApX;Eqp and qApX;Eqq are
themselves orthogonal.

Passing to suspensions and applying the above construction pointwise, we
similarly get a map

IndF : K0pC0pR, C˚pHP qqq Ñ K0pC0pR, ApX;Eqqq,

i.e. up to the usual canonical identifications, an index map on the level of K1.
Similarly, we also get an index map on the localised level, for both K0 and K1,
by applying the above constructions pointwise in t.

Definition 12.3.12. For s P r1,8q, the index maps associated to Fs are the
homomorphisms

IndF : K˚pC
˚pHP qq Ñ K˚pApX;Eqq

and
IndFL : K˚pC

˚
LpHP qq Ñ K˚pALpX;Eqq

constructed above.

For any s P r1,8q, let now ιs : ApX;Eq Ñ C˚pHP,Eq be the map defined
by evaluation at the parameter s: in symbols, pTsq ÞÑ Ts. The following is the
most important result of this section.

1Actually, one does not even need matrix algebras, but we do not need to use this.
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Proposition 12.3.13. With notation as above, for any s P r1,8q the compo-
sition

K˚pC
˚pHP qq

IndF // K˚pApX;Eqq
ιs˚ // K˚pC˚pHP,Eqq ,

is an isomorphism. The analogous statement holds for the localised algebras.

The point of the proposition is not the fact that the groups K˚pC
˚pHP qq and

K˚pC
˚pHP,Eqq are isomorphic! Indeed, the groupsK˚pC

˚pHP qq andK˚pC
˚pHP,Eqq

are isomorphic for the much more elementary reason that the underlying C˚-
algebras are themselves isomorphic (see Remark 5.1.13). The point is that there
is an isomorphism between them that factors through K˚pApX;Eqq.

Proof. We will focus on the case directly in the statement; the localised case
follows from the same argument applied pointwise.

Define a map κ : E Ñ E by the formula

κpxq “

" x
|x| p|x| ´ 1q |x| ě 1

0 |x| ă 1

(thus κ ‘moves each element of E one unit closer to the origin’). For simplicity
of notation, fix s, and write Fx for Fs,x. For each n P NY t0u define

F pnq : HP,E Ñ HP,E , δx b ξ b u ÞÑ δx b ξ b Fκnpfpxqqu

(so F p0q “ F as in Definition 12.3.4) and analogously define F p8q by the formula

F p8q : HP,E Ñ HP,E , δx b ξ b u ÞÑ δx b ξ b F0u.

Note that all the operators F pnq are odd multipliers of C˚pHP,Eq. Let p P
MmpC

˚pHP qq be a projection representing a class rps in K0pC
˚pHP qq. For

notational simplicity, let us assume that p is actually in C˚pHP q; the matri-
cial case amounts to replacing H with H‘m in the definition of HP,E and
is analogous (or can be avoided using an argument based on quasi-stability).
Note that p is a multiplier of C˚pHP,Eq, whence the compression pF pnqp is too
for each n P N Y t0,8u. An argument analogous to (but simpler than) the
proof of Lemma 12.3.10 shows that the difference ppF pnqpq2 ´ p is in the corner
pC˚pHP,Eqp, so we get an index class in K0ppC

˚pHP,Eqpq via the construction
of Definition 2.8.5, and hence via the inclusion pC˚pHP,Eqp Ñ C˚pHP,Eq an
element IndF pnqrps P K0pC

˚pHP,Eqq. Applying this process pointwise to the
suspended algebras, we get a similar construction on the level of K1. Quite
analogously to (but again, with a simpler proof than) Lemma 12.3.11, we thus
get a homomorphism

IndF pnq : K˚pC
˚pHP qq Ñ K˚pC

˚pHP,Eqq (12.20)

for each n P N Y t0,8u. Clearly IndF p0q is the same map as in the statement.
We will complete the proof by showing first that IndF p0q “ IndF p8q , and then
that IndF p8q is an isomorphism.

407



Let now pL2
Eq
‘8 be the direct sum of infinitely many copies of L2

E . Define

HP,E,8 :“ `2pZq bH b pL2
Eq
‘8

and let C˚pHP,E,8q be the corresponding Roe algebra. The corresponding ‘top
left corner inclusion’

C˚pHP,Eq Ñ C˚pHP,E,8q, T ÞÑ

¨

˚

˝

T 0 . . .
0 0
...

. . .

˛

‹

‚

(12.21)

is then induced by a covering isometry for the identity map, so induces an
isomorphism on K-theory by Theorem 5.1.15. To show that IndF p0q “ IndF p8q ,
it thus suffices to show that their compositions with the map on K-theory
induced by this top corner inclusion is the same.

We will focus on K0; the case of K1 can be handled similarly using a sus-
pension argument. Let p P MnpC

˚pHP qq be a projection. As the classes of
such projections generate K0pC

˚pHP qq (see Exercise 5.4.2), it suffices to show
that IndF p0qrps “ IndF p8qrps. For notational simplicity, let us assume that p is
actually in C˚pHP q; the case when p is in some matrix algebra MmpC

˚pHP qq

over C˚pHP q amounts to replacing H with H‘m in the definition of HP,E and
is quite analogous.

Analogously to Remark 2.8.2, for each n, the class IndF pnqrps is represented
by a concrete difference of projections, say

rppnqs ´ rqs

(the second such projection does not depend on F pnq) in M2ppC
˚pHP,Eqpq.

Consider now the projections

¨

˚

˚

˚

˝

pp0q 0 0 . . .

0 pp1q 0

0 0 pp2q

...
. . .

˛

‹

‹

‹

‚

,

¨

˚

˚

˚

˝

pp8q 0 0 . . .

0 pp8q 0

0 0 pp8q

...
. . .

˛

‹

‹

‹

‚

in the multiplier algebra of C˚pHP,E,8q. Using the fact that for any x P P ,
Fκnpfpxqq “ F0 for all n suitably large (depending on x), it is not too difficult to
see that the difference of these projections is in C˚pHP,E,8q whence the formal
difference

a :“

»

—

—

—

–

pp0q 0 0 . . .

0 pp1q 0

0 0 pp2q

...
. . .

fi

ffi

ffi

ffi

fl

´

»

—

—

—

–

pp8q 0 0 . . .

0 pp8q 0

0 0 pp8q

...
. . .

fi

ffi

ffi

ffi

fl

defines a class in K0pC
˚pHP,E,8qq. On the other hand, there is also a class
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b P K0pC
˚pHP,E,8qq defined by the difference

b :“

»

—

—

—

–

pp0q 0 0 . . .
0 0 0
0 0 0
...

. . .

fi

ffi

ffi

ffi

fl

´

»

—

—

—

–

pp8q 0 0 . . .
0 0 0
0 0 0
...

. . .

fi

ffi

ffi

ffi

fl

.

We claim next that a ` b “ a, whence b “ 0; this will complete the proof that
IndF p0q “ IndF p8q .

Indeed, consider the path pF pnq,rqrPr0,1s of operators on HP,E defined by

F pnq,r : δx b ξ b u ÞÑ δx b ξ b Fs,p1´rqκnpfpxqq`rκn`1pfpxqqu,

which by Corollary 12.1.7 satisfies

}F pnq,r ´ F pnq,r
1

} ď 3|r ´ r1|

for each n. It follows that a is homotopic to the element
»

—

—

—

–

pp1q 0 0 . . .

0 pp2q 0

0 0 pp3q

...
. . .

fi

ffi

ffi

ffi

fl

´

»

—

—

—

–

pp8q 0 0 . . .

0 pp8q 0

0 0 pp8q

...
. . .

fi

ffi

ffi

ffi

fl

of K˚pC
˚pHP,E,8qq, and thus by a rotation homotopy ‘moving everything up a

step’ that a` b “ a as claimed.
To complete the proof, we need to show that IndF p8q is an isomorphism.

Let p0 be the projection onto the one-dimensional kernel of F0, spanned by the
unit vector v0, say. Recall that F0 “ fps´1D`Cq, where fpxq “ xp1`x2q´1{2.
Now, introduce another parameter r P r1,8s, and consider the path F r0 defined
by

F r0 :“ fprps´1D ` Cqq.

This defines a norm continuous homotopy between F0 “ F 1
0 and the operator

F80 , which decomposes with respect to the grading as

F80 “

ˆ

0 1
1´ p0 0

˙

.

It follows from this that IndF p8q equals IndF80 . However, using the fact that F r0
commutes with all operators in C˚pHP q for all r, a computation quite analogous
to (and easier than) that of Example 2.8.3 shows that for any p P C˚pHP q we
have

IndF80 rps “ rpb p0s. (12.22)

It follows that IndF p8q is the same as the map induced on K-theory by the
inclusion

`2pZq bH Ñ `2pZq bH b L2
E , v ÞÑ v b v0.

As this is an isometry covering the identity map, it induces an isomorphism on
K-theory by Theorem 5.1.15, and we are done.
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12.4 The local isomorphism

We use the notation introduced in Sections 12.2 and 12.3 for the space X, and
associated Rips complexes, C˚-algebras, and so on. We make one notational
change as follows: in Definitions 12.3.2 of ApX;Eq and 12.3.3 of ALpX;Eq
above, there is an implicit ‘Rips parameter’ r ě 0, which was kept fixed through-
out Section 12.3. In this section, we will need to ‘unfix’ this parameter. As such,
we introduce it into the notation, writing ArpX;Eq and ArLpX;Eq for the C˚-
algebras of Definitions 12.3.2 and 12.3.3.

For each r, there is an analogue of the usual evaluation-at-one homomor-
phism

ev : ArLpX;Eq Ñ ArpX;Eq, pTtq ÞÑ T1. (12.23)

Recall that for r ď s we have inclusions of Hilbert spaces HPr,E Ñ HPs,E as in
line (12.12) above. These give rise to a commutative diagram

ArLpX;Eq
ev //

��

ArpX;Eq

��
AsLpX;Eq

ev // AspX;Eqq

for each r ď s. In particular, it makes sense to take the direct limit of the maps
in line (12.23) as the Rips parameter r tends to infinity. Our goal in this section
is to prove the following result.

Proposition 12.4.1. The map

ev˚ : lim
rÑ8

K˚pA
r
LpX;Eqq Ñ lim

rÑ8
K˚pA

rpX;Eqq

induced by the direct limit of the maps in line (12.23) is an isomorphism.

Before embarking on the proof of this, let us see how it implies our main
result in the finite-dimensional case.

Theorem 12.4.2. Let X be a bounded geometry metric space, and say there
exists a coarse embedding of X into a finite-dimensional real Hilbert space. Then
the coarse Baum-Connes conjecture holds for X.

Proof. We may assume the Hilbert space is even dimensional (if not, just take
the direct sum with R). For each r ě 0, we consider the diagram

K˚pC
˚
LpHPr qq

IndFL
��

// K˚pC˚pHPr qq

IndF

��
K˚pA

r
LpX;Eqq

��

// K˚pArpX;Eqq

��
K˚pC

˚
LpHPr,Eqq

// K˚pC˚pHPr,Eqq
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where: all the horizontal arrows are evaluation-at-one maps in the ‘X-localisation’
(‘t’) variable; the first pair of vertical maps are the index maps of Definition
12.3.12; and the second pair of vertical maps are induced by evaluation-at-one
in the ‘E-localisation’ (‘s’) variable. It is immediate from the definitions that
this commutes. The compositions of the two vertical maps on either side are
isomorphisms for all r by Proposition 12.3.13.

For r ď s, the inclusions HPr,E Ñ HPs,E of line (12.12) induce inclusions
on all the algebras appearing in the diagram above, and the whole diagram
commutes with these inclusions. Thus we may take the limit as r tends to
infinity getting the following commutative diagram

lim
rÑ8

K˚pC
˚
LpHPr qq

IndFL
��

// lim
rÑ8

K˚pC
˚pHPr qq

IndF

��
lim
rÑ8

K˚pA
r
LpX;Eqq

��

// lim
rÑ8

K˚pA
rpX;Eqq

��
lim
rÑ8

K˚pC
˚
LpHPr,Eqq

// lim
rÑ8

K˚pC
˚pHPr,Eqq

.

The vertical compositions are direct limits of isomorphisms, so isomorphisms.
The middle horizontal map is an isomorphism by Proposition 12.4.1. It now
follows from a diagram chase that the top horizontal map is injective, and
the bottom horizontal map is surjective. However, both the top and bottom
horizontal maps identify with the coarse Baum-Connes assembly map for X
(see Theorem 7.2.16), so we are done.

We now turn back to the proof of Proposition 12.4.1. Let F be a closed
subset of E, and let

ArpX;F q :“ p1b χF qA
rpX;Eqp1b χF q

be the corner of ArpX;Eq defined by the idempotent 1 b χF in its multiplier
algebra. Similarly, 1b χF canonically defines a multiplier of ArLpX;Eq and we
let ArLpX;F q be the associated corner

ArLpX;F q :“ p1b χF qA
r
LpX;Eqp1b χF q.

Note that the evaluation-at-one map restricts to a ˚-homomorphism

ev : ArLpX;F q Ñ ArpX;F q

for any closed subset F of E. The rough idea of the proof of Proposition 12.4.1
is to show that the assignments

F ÞÑ lim
rÑ8

K˚pA
r
LpX;F qq, F ÞÑ lim

rÑ8
K˚pA

rpX;F qq (12.24)
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are ‘homology theories on the collection of closed subsets of E’ in an appropriate
sense, and that ev˚ is a natural transformation between them. This reduces the
check that the map in Proposition 12.4.1 is an isomorphism to proving that the
map

ev : lim
rÑ8

K˚pA
r
LpX;F qq Ñ lim

rÑ8
K˚pA

rpX;F qq

is an isomorphism when F is a disjoint union of uniformly bounded closed
subsets of E, which can be done directly (see Lemma 12.4.4 below).

As a preliminary ingredient, we need an abstract K-theoretic lemma. See
Definition 2.7.11 for the notion of quasi-stability.

Lemma 12.4.3. Let A be a quasi-stable C˚-algebra, and let Cubpr1,8q, Aq
denote the C˚-algebra of uniformly continuous bounded functions from r1,8q to
A. Then the natural evaluatiuon-at-one map

Cubpr1,8q, Aq Ñ A

induces an isomorphism on K-theory.

See Exercise 12.7.8 for some related results.

Proof. Using the six-term exact sequence, it suffices to show that the kernel
B “ tf P Cubpr1,8q, Aq | fp1q “ 0u of the evaluation-at-one map has zero
K-theory. Let

X :“
ğ

ně2, n even

rn, n` 1s and Y :“
ğ

ně3, n odd

rn, n` 1s.

Note that B fits into a pullback diagram (see Definition 2.7.14)

B //

��

CubpX,Aq

��
C0pp1, 2s, Aq ‘ CubpY,Aqq //

ź

ně1

A

.

We thus get an associated Mayer-Vietoris sequence by Proposition 2.7.15, which
(on homotoping away the cone C0pp1, 2s, Aq) looks like

// KipBq // KipCubpX,Aqq ‘KipCubpY,Aqq //
ź

ně2

KipAq // .

Homotopy invariance of K-theory (combined with uniform continuity) gives us
that the natural inclusion

ź

ně2, n even

AÑ CubpX,Aq
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where the nth copy of A is included as constant functions on the interval rn, n`1s
induces an isomorphism on K-theory. Moreover, we can use quasi-stability of
A and Proposition 2.7.12 to commute the products and K-functors, so that we
have a natural isomorphism

Ki

´

ź

ně2, n even

A
¯

–
ź

ně2, n even

KipAq

and similarly for Y . Our Mayer-Vietoris sequence thus reduces to

// KipBq //
ź

ně2, n even

KipAq ‘
ź

ně3, n odd

KipAq //
ź

ně2

KipAq // .

Using the description in Proposition 2.7.15, we can also compute that the map

ź

ně2 even

KipAq ‘
ź

ně3 odd

KipAq //
ź

ně2

KipAq

takes a pair of sequences pαnqně2 even, pβnqně3 odd to the sequence whose first
few terms are α2, α2 ´ β3, α4 ´ β3, α4 ´ β5, α6 ´ β5, and so on. This map is
both injective and surjective, whence KipBq “ 0 as required.

Lemma 12.4.4. Let F be a closed subset of E which splits as a disjoint union
F “

Ů8

n“1 Fn of closed subsets such that there exists R ą 0 such that for each
n there exists xn P X such that

Fn Ď Bpfpxnq;Rq.

Then the evaluation-at-one map

ev˚ : lim
rÑ8

K˚pA
r
LpX;F qq Ñ lim

rÑ8
K˚pA

rpX;F qq

is an isomorphism.

Proof. Consider the C˚-algebraic product
ś

nA
rpX;Fnq as represented on the

Hilbert space L2pr1,8q bHPr,E , and define the ‘restricted product’

res
ź

n

ArpX;Fnq :“
´

ź

n

ArpX;Fnq
¯

XArpX;F q

and similarly for
śres
n ArLpX;Fnq. There is then a commutative diagram

ArLpX;F q
ev // ArpX;F q

śres
n ArLpX;Fnq

ś

ev //

OO

śres
n ArpX;Fnq

OO
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in which the vertical maps are the tautologous inclusions of subalgebras. More-
over, quite analogously to the proof of Theorem 6.4.20, the vertical maps induce
isomorphisms on K-theory for each r. It thus suffices to prove that the canonical
evaluation-at-one map

res
ź

n

ArLpX;Fnq Ñ
res
ź

n

ArpX;Fnq

induces an isomorphism on K-theory on taking the limit as r tends to infinity.
Now, for a closed subset Y of Pr and closed subset G of E, define

ArpY ;Gq “ pχY b 1qArpX;GqpχY b 1q

to be the associated corner, and similarly for ArLpY ;Gq. Condition (iii) from
Definition 12.3.2 implies that for each r ą 0 and each n we have that

ArpX;Fnq “ lim
mÑ8

ArpBXpxn;mq;Fnq,

and moreover that this limit is ‘uniform’ in the sense that

res
ź

n

ArpX;Fnq “ lim
mÑ8

res
ź

n

ArpBXpxn;mq;Fnq

On the other hand, it is clear from the definitions that

lim
rÑ8

lim
mÑ8

res
ź

n

ArpBXpxn;mq;Fnq “ lim
mÑ8

lim
rÑ8

res
ź

n

ArpBXpxn;mq;Fnq

(note that both limits are just increasing unions of subalgebras). This all works
similarly for the localised versions, whence it suffices to prove that

ev˚ : lim
rÑ8

K˚p
res
ź

n

ArLpBXpxn;mq;Fnqq Ñ lim
rÑ8

K˚p
res
ź

n

ArpBXpxn;mq;Fnqq

is an isomorphism for each fixed m. Note, however, that this limit stabilises:
for all r ě 2m, PrpBpxn;mqq is just equal to the full simplex on BXpxn;mq,
which we denote ∆n. It thus suffices to prove that

ev˚ : K˚p
res
ź

n

ArLp∆n;Fnqq Ñ K˚p
res
ź

n

Arp∆n;Fnqq

is an isomorphism. Moreover, the inclusion of the single point xn Ñ ∆n induces
a commutative diagram

K˚p
śres
n ArLp∆n;Fnqq // K˚p

śres
n Arp∆n;Fnqq

K˚p
śres
n ArLptxnu;Fnqq

OO

// K˚p
śres
n Arptxnu;Fnqq

OO
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where the vertical maps are isomorphisms by analogues of Theorem 6.4.16 for
the left hand side, and Theorem 5.1.15 for the right hand side. Hence it suffices
to prove that the evaluation-at-zero map induces an isomorphism

ev˚ : K˚p
res
ź

n

ArLptxnu;Fnqq Ñ K˚p
res
ź

n

Arptxnu;Fnqq.

At this point, however, the condition that propPr pT q Ñ 0 defining the ‘L’ version
on the left is vacuous, whence the left hand side

śres
n ArLptxnu;Fnq is simply

the C˚-algebra of uniformly bounded continuous functions to the right hand
side

śres
n Arptxnu;Fnq. The result follows from Lemma 12.4.3.

Lemma 12.4.5. Let s be a positive real number. Then there exists M P N
(depending on s, X, and the coarse embedding f : X Ñ E) and a decomposition

X “ X1 \ ¨ ¨ ¨ \XM

such that for each i and all x ‰ y with x, y P Xi we have Bpfpxq; sqXBpfpyq; sq “
∅.

Proof. This follows from the fact that f is a coarse embedding and part (ii) of
Lemma 12.2.3.

Proof of Proposition 12.4.1. Fix s ą 0 for the moment, and let

Ws “ NspfpXqq. (12.25)

Using Lemma 12.4.5 there exists a decomposition

Ws “

M
ď

i“1

ğ

xPXi

Bpfpxq; sq

loooooooomoooooooon

“:W i
s

.

Lemma 12.4.4 implies that each evaluation-at-one map

ev˚ : lim
rÑ8

K˚pA
r
LpX;W s

i qq Ñ lim
rÑ8

K˚pK˚pA
rpX;W s

i qqq

is an isomorphism. It therefore follows from a Mayer-Vietoris argument using an
analogue of Theorem 6.3.4 (and Lemma 12.4.4 again to deal with intersections)
that

ev˚ : lim
rÑ8

K˚pA
r
LpX;W sqq Ñ lim

rÑ8
K˚pA

rpX;W sqq

is an isomorphism. Finally, note that Definition 12.3.2) implies that for any r
we have that

lim
sÑ8

ArpX;W sq “ ArpX;Eq.

and similarly for the localised versions. The proposition follows.
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12.5 Reduction to coarse disjoint unions

We will now work towards the proof of Theorem 12.0.2 – that a bounded ge-
ometry metric space that coarsely embeds into Hilbert space satisfies the coarse
Baum-Connes conjecture – in the case that the underlying Hilbert space is in-
finite dimensional.

Our goal in this section is to reduce the proof to a ‘uniform’ statement for
a sequence of finite metric spaces. The advantage of this is that if a finite
metric space coarsely embeds into a Hilbert space then, it coarsely embeds into
a finite-dimensional Hilbert space, and so we may use our earlier work in the
finite-dimensional case.

We now start working towards a precise statements.

Definition 12.5.1. Let pXnq
8
n“1 be a sequence of finite metric spaces (with

finite-valued distance functions). The sequence pXnq has bounded geometry if
for all r ě 0 there exists N P N such that for all n, all r balls in Xn have
cardinality at most N .

A metric space pX, dq is a coarse union of the sequence pXnq if it is equal as
a set to the disjoint union

Ů8

n“1Xn, and if the metric d satisfies the following
conditions:

(i) d is finite-valued;

(ii) d restricts to the original metric on each Xn;

(iii) dpXn, XzXnq Ñ 8 as nÑ8.

The separated coarse union of pXnq is the metric space X which is again
equal to

Ů

Xn as a set, and is equipped with the metric

dpx, yq “

"

dXnpx, yq there exists n with x, y P Xn

8 otherwise
.

The sequence pXnq uniformly coarsely embeds into Hilbert space if there exist
a sequence of (real) finite-dimensional Hilbert spaces pEnq, a sequence of maps
fn : Xn Ñ En and non-decreasing maps ρ˘ : r0,8q Ñ r0,8q such that for all n
and all x, y P Xn

ρ´pdXnpx, yqq ď }fpxq ´ fpyq}En ď ρ`pdXnpx, yqq

and ρ´ptq Ñ 8 as tÑ8.

Remark 12.5.2. The conditions above on the metric on a coarse unionX “
Ů

Xn

do not determine the metric uniquely in terms of the metrics on the spaces
Xn. However, if d, d1 are two metrics satisfying these conditions, then the set-
theoretic identity map pX, dq Ñ pX, d1q is a coarse equivalence (see Definition
A.3.9 - we leave this as an exercise). Hence the choice of such a metric on

Ů

Xn

does not matter up to coarse equivalence; in particular, we will sometimes abuse
terminology and speak of ‘the’ coarse union of a sequence pXnq.
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We now give two lemmas that reduce the proof of Theorem 12.0.2 to the
proof of the coarse Baum-Connes conjecture for bounded geometry separated
coarse unions of sequences that uniformly coarsely embed into Hilbert space.

Lemma 12.5.3. To prove the coarse Baum-Connes conjecture for all bounded
geometry metric spaces that coarsely embed into Hilbert space, it suffices to prove
the coarse Baum-Connes conjecture for any bounded geometry coarse union that
coarsely embeds into Hilbert space.

Proof. Assume we know the coarse Baum-Connes conjecture for all bounded
geometry coarse unions that coarsely embed into Hilbert space. We must show
that if X is an arbitrary bounded geometry that coarsely embeds into Hilbert
space, then X satisfies the coarse Baum-Connes conjecture. Fix a basepoint
x0 P X and for each n ě 0 let

Xn :“ tx P X | n3 ´ n ď dpx, x0q ď pn` 1q3 ` pn` 1qu.

Define Y “
Ů

n evenXn and Z “
Ů

n oddXn (both metrised as subspaces as X).
Note that as X coarsely embeds into Hilbert space, the metric on X must be
finite-valued, whence X “ Y YZ. Note moreover that Y , Z and Y XZ are coarse
unions of the sequences pXnqn even, pXnqn odd, and pXn X Zqneven respectively,
and that they have bounded geometry and coarsely embed into Hilbert space,
as they are subspaces of X. Hence the coarse Baum-Connes conjecture is true
for Y , Z, and Y X Z by assumption.

We claim now that the cover X “ Y Y Z of X is coarsely excisive in the
sense of Definition 7.5.3, meaning that if for a subset W of X we write

NrpW q :“ tx P X | dpx,wq ď r for some w PW u

for the r-neighbourhood of W , then for each r ą 0 there is s ą 0 such that

NrpY q XNrpZq Ď NspY X Zq.

Indeed, let n ą r, and choose s “ pn ` 1q3; we claim this works. Let then
x P NrpY q X NrpZq. If dpx, x0q ď s, then x P NspY X Zq, as x0 P Y X Z.
Otherwise there must exist

y P Y zBpx0;n3q and z P ZzBpx0;n3q

such that dpx, yq ď r, and dpx, zq ď r. Hence in particular, dpy, zq ď 2r. We
claim that either y P Y X Z, or z P Y X Z. Indeed, if not then

y P
ğ

měn, m even

tx P X | n3 ` n ď dpx, x0q ď pn` 1q3 ´ pn` 1qu

and

z P
ğ

měn, m odd

tx P X | n3 ` n ď dpx, x0q ď pn` 1q3 ´ pn` 1qu.
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It follows that dpy, zq ě 2n ě 2r, which is a contradiction.
Having observed this coarse excisiveness, the elaboration of Theorem 7.5.5

from Exercise 7.6.14 gives a commutative diagram of long-exact sequences

// KXipY X Zq //

��

KXipY q ‘KXipZq //

��

KXipXq //

��
// KipC

˚pY X Zqq // KipC
˚pY qq ‘KipC

˚pZqq // KipC
˚pXqq //

,

where the vertical maps are coarse Baum-Connes assembly maps. The coarse
Baum-Connes conjecture for X now follows from the conjecture for Y , Z, and
Y X Z together with the five lemma.

Lemma 12.5.4. To prove the coarse Baum-Connes conjecture for any bounded
geometry metric space that coarsely embeds into Hilbert space, it suffices to prove
the coarse Baum-Connes conjecture for any separated coarse union of a bounded
geometry sequence that uniformly coarsely embeds into Hilbert space.

Proof. Assume we know the coarse Baum-Connes conjecture to hold for any
separated coarse union of a bounded geometry sequence that uniformly coarsely
embeds into Hilbert space. It suffices by Lemma 12.5.3 to prove the coarse
Baum-Connes conjecture for a bounded geometry coarse union that coarsely
embeds into Hilbert space.

Let then pXnq be a sequence of finite metric spaces, and X a corresponding
coarse union, which we assume has bounded geometry, and coarsely embeds
into Hilbert space. As the coarse Baum-Connes conjecture is insensitive to
coarse equivalences (see Exercise 7.6.2), and using Remark 12.5.2, we may as
well assume that the metric d on X satisfies

if n ą m then dpXn, Xmq ą diampX0 Y ¨ ¨ ¨ YXnq. (12.26)

Note that the sequence pXnq uniformly coarsely embeds into Hilbert space: to
see this just restrict the coarse embedding from X to each Xn. Let Y be the
separated coarse union of the sequence pXnq; by our assumption, the coarse
Baum-Connes conjecture is true for Y .

For each r ě 0, it follows directly from the definition of the assembly map
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(Definition 7.1.1) that there is a commutative diagram

0

��

0

��
À

nK˚pPrpXnqq //

��

À

nK˚pC
˚pPrpXnqqq

��
K˚pPrpY qq //

��

K˚pC
˚pPrpY qqq

��
K˚pPrpY qq

À

nK˚pPrpXnqq
//

��

K˚pC
˚
pPrpY qqq

À

nK˚pC
˚pPrpXnqqq

��
0 0

(12.27)

where the horizontal maps are induced by assembly and the vertical maps are
induced by the natural inclusions. These diagrams are compatible with increas-
ing the Rips parameter r, so we may take the limit as r tends to infinity. In
the limit, the central horizontal map is an isomorphism as we are assuming the
coarse Baum-Connes conjecture for Y . Moreover, the top-most horizontal map
is an isomorphism in the limit as r Ñ8: indeed, using homotopy invariance of
K-homology and coarse invariance of K-theory of Roe algebras, each summand

K˚pPrpXnqq Ñ K˚pC
˚pPrpXnqqq

identifies with the assembly map for a point as soon as r ě diameterpXq, which
is an isomorphism (see Example 7.1.13). Hence by the five lemma, the bottom-
most horizontal map in diagram (12.27) is an isomorphism.

Looking now at X, if we fix r ě 0 then we may write

PrpXq “ ∆r \
ğ

něNr

PrpXnq

for some Nr P N such that ∆r “ PrpX0\ ¨ ¨ ¨\XNr´1q is a single simplex (such
a decomposition exists by the assumption in line (12.26) above). Then we have
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a similar commutative diagram,

0

��

0

��
K˚p∆rq ‘

à

něNr

K˚pPrpXnqq

��

// K˚pKpHrqq

��
K˚pPrpXqq //

��

K˚pC
˚pPrpXqqq

��
K˚pPrpXqq

K˚pP0q ‘
À

něNr
K˚pPrpXnqq

//

��

K˚pC
˚pPrpXqqq

K˚pKpHrqq

��
0 0

(12.28)

where the horizontal maps are all induced by assembly. Note that K˚p∆rq

identifies with the K-homology of a point, and the restriction

K˚p∆rq Ñ K˚pKpHrqq (12.29)

of the top-most horizontal map to the summand K˚p∆rq is an isomorphism.
The diagram is again compatible with increasing the Rips parameter r, so we
again may take the limit as r tends to infinity. In the limit as r tends to infinity,
the top-most horizontal map identifies with any of the maps in line (12.29)
above, and is thus an isomorphism. On the other hand, for each r ě 0, PrpY q is
naturally a subspace of PrpXq, whence we may use the same Hilbert space, say
Hr, to define C˚pPrpXqq and C˚pPrpY qq. Using this we see that for any r ě 0

C˚pPrpXqq “ KpHrq ` C
˚pPrpXqq

and
C˚pPrpY qq XKpHrq “

à

n

C˚pPrpXnqq,

whence elementary algebra gives a canonical isomorphism

C˚pPrpXqq

KpHrq
–

C˚pPrpY qq
À

n C
˚pPrpXnqq

.

It follows from this and a similar argument on the K-homology level that the
bottom-most horizontal map in diagram (12.28) identifies with the bottom-most
horizontal map in diagram (12.27) (even before taking the limit as r Ñ 8),
whence the right hand vertical map in diagram (12.28) is an isomorphism after
taking the limit in r. The five lemma now gives that the central vertical map in
diagram (12.28) is an isomorphism in the limit as r Ñ8, and we are done.
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12.6 The case of coarse disjoint unions

Using Lemma 12.5.4, the next proposition is enough to complete the proof of
Theorem 12.0.2, and thus to complete our work in this chapter.

Proposition 12.6.1. Let X be a separated coarse union of a bounded geome-
try sequence pXnq that uniformly coarsely embeds into Hilbert space. Then the
coarse Baum-Connes conjecture holds for X.

The idea of the proof is to carry out a ‘uniform version’ of the proof of
Theorem 12.4.2. Rather than repeat the whole argument for that theorem, we
just sketch out the necessary changes, and where it is important than we have
uniformity in certain arguments.

First, notation. Let r ě 0. Let Pr,n be the Rips complex of Xn at scale
r and Pr the Rips complex of X at scale r. Note that as dpXn, Xmq “ 8

for n ‰ m, Pr “
Ů8

n“1 Pr,n. For each n, let fn : Xn Ñ En be a map as in
the definition of uniform coarse embeddability (Definition 12.5.1 above). We
may assume that each En is even-dimensional on replacing it with En ‘ R if
necessary. Throughout this section, we use X as a shorthand for the sequence
pXnq and pEnq as a shorthand for the sequence pEnq.

Let Zr,n Ď Pr,n consist of all the rational points in Pr,n, i.e. those points
such that all the coefficients tx as in Definition 7.2.8 take rational values. Let

Hr,n :“ `2pZr,nq bH and Hr,n,E :“ `2pZr,nq bH b L2
En .

We use these modules to build Roe algebras C˚pHr,nq and C˚pHr,n,Eq of Pr,n
as in Section 12.2. Define also

Hr :“
à

n

Hr,n and Hr,E “
à

n

Hr,n,E

and again use these to define Roe algebras C˚pHrq and C˚pHr,Eq of Pr. As
before, we consider C˚pHr,nq and C˚pHrq in their amplified representations on
Hr,n,E and Hr,E respectively, and thus as subalgebras of the multiplier algebra
of C˚pHr,n,Eq and C˚pHr,Eq respectively. Note that because dpXn, Xmq “ 8

for n ‰ m there is a canonical inclusion

C˚pHrq Ď
ź

n

C˚pHr,nq

and thus an element T of C˚pHrq can be written as a sequence T “ pTnq
8
n“1

with each Tn P C
˚pHr,nq; all this works analogously on replacing Hr,n and Hr

with Hr,n,E and Hr,E . We fix a good covering system tBx,r,nuxPX, nPN, rě0

for each Xn as in Definition 12.2.1, and use it to consider each element of a
sequence pTnq as above (for either Hr or Hr,E) as a matrix Tn “ pTn,xyqx,yPXn
with respect to the corresponding decomposition

Hr,n,E “
à

xPXn

Hx,r,n,E , with Hx,r,n,E “ pχBx,r,n b 1qHr,n,E .
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This whole discussion works similarly for the purely algebraic versions of the
Roe algebras: for example

CrHrs Ď
ź

n

CrHr,ns,

which will also get used below.
We now define analogues of the Roe algebras with coefficients of Definition

12.3.2; the basic idea is the same, but we must enforce some more uniformity
over n. We use the notation χVR and pVi analogously to Definition 12.3.2 (see
also Definition 12.3.1), but for each Xn separately.

Definition 12.6.2. Let
ś

nPN Cbpr1,8q, C
˚pHr,n,Eqq denote the product C˚-

algebra of the C˚-algebras of all bounded continuous functions from r1,8q
to C˚pHr,n,Eq. Write elements of this ˚-algebra as collections pTn,sqn,sPr1,8q.
We may further consider each Tn,s as a matrix pTn,s,xyqsPr1,8q,nPN,x,yPXn . Let
ArpX;Eq denote the ˚-subalgebra of

ś

nPN Cbpr1,8q, C
˚pHr,n,Eqq consisting of

elements satisfying the following conditions.

(i) sup
sPr1,8q,nPN

propP pTn,sq ă 8.

(ii) lim
sÑ8

sup
n

propEpTn,sq “ 0.

(iii)

lim
RÑ8

sup
sPr1,8q,nPN

}χVRTn,s ´ Tn,s} “ lim
RÑ8

sup
sPr1,8q

}Tn,sχ
V
R ´ Tn,s} “ 0.

(iv) If ppiq is the net of finite rank projections on L2
En

, then for each s P r1,8q
and each n P N

lim
iÑ8

}pVi Tn,s ´ Tn,s} “ lim
iÑ8

}Tn,sp
V
i ´ Tn,s} “ 0.

Define ArpX;Eq to the closure of ArpX;Eq inside
ś

nPN Cbpr1,8q, C
˚pHr,n,Eqq.

Analogously to Definition 12.3.3, define ArLpX;Eq to be the collection of
uniformly continuous bounded functions pTtq from r1,8q to ApX;Eq such that
the P -propagation of pTtq tends to zero as t tends to infinity. Define ArLpX;Eq
to the completion of ArLpX;Eq for the norm }pTtq} :“ supt }Tt}ArpX;Eq.

Now, let Fn,s be as in Definition 12.1.5 for En. Let dn be the dimension of
En, and use the collection F “ pFsq where Fs :“ pFn,s`2dnq

8
n“1 to define an

index map
IndF : K˚pC

˚pHrqq Ñ K˚pA
rpX;Eqq

just as in the process that led up to Lemma 12.3.11. We then have the following
analogue of Proposition 12.3.13.
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Proposition 12.6.3. Let ιs : ArpX;Eq Ñ C˚pHr,Eq be the map induced by
evaluation at any s P r1,8q. Then for each s P r1,8q, the composition

K˚pC
˚pHrqq

IndF // K˚pArpX;Eqq
ιs˚ // K˚pC˚pHr,Eqq ,

is an isomorphism. The analogous statement holds for for the localised algebras.

Sketch proof. The proof of Proposition 12.6.3 proceeds by applying the argu-
ment for Proposition 12.3.13 in all the factors in a sequence pTnq simultane-
ously. To make the homotopies used to show that IndF p0q “ IndF p8q continuous
over the whole sequence, one needs to use that the estimate in part Lemma
12.1.7 is independent of the dimension of the space involved. We then see that
IndF “ IndF p8q just as in the proof of Proposition 12.3.13.

The last step in the argument is the homotopy in the variable r from the
proof of Proposition 12.3.13 that is used to show that

IndF p8qrps “ rpb p0s

as in line (12.22) above. There is a problem here: this homotopy is not equicon-
tinuous as the dimension of the Hilbert space increases (the problem is that the
parameter s is replaced by s` 2dn, with dn the dimension of En, and the larger
s is, the worse the modulus of continuity).

To get around this problem, we use a ‘stacking argument’: the idea is that
one can exchange ‘space for speed’. As the details are notationally messy, we
explain the idea here, leaving a careful write-up in the specific case at hand to
the diligent reader. Say then that pptqtPr0,1s is a homotopy of projections in a
quasi-stable C˚-algebra A. We want to show that p0 and p1 define the same
class in K-theory using only homotopies with uniformly bounded (independent
of pptq, or even of the ambient algebra A) modulus of continuity. Fix some large
N , and consider the formal difference

»

—

—

—

–

p0 0 ¨ ¨ ¨ 0
0 p1{N ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ p1

fi

ffi

ffi

ffi

fl

´

»

—

—

—

–

0 0 ¨ ¨ ¨ 0
0 p1{N ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ p1

fi

ffi

ffi

ffi

fl

, (12.30)

where we use quasi-stability of A to make sense of the matrix representations.
Clearly this formal difference represents rp0s in K-theory. On the other hand,
a ‘short’ homotopy from pn{N to ppn´1q{N in each entry of the second matrix,
followed by a rotation homotopy between

¨

˚

˚

˚

˚

˚

˝

0 0 0 ¨ ¨ ¨ 0
0 p0 0 ¨ ¨ ¨ 0
0 0 p1{N ¨ ¨ ¨ 0
...

...
...

. . .
...

0 0 0 ¨ ¨ ¨ ppn´1q{N

˛

‹

‹

‹

‹

‹

‚

and

¨

˚

˚

˚

˚

˚

˝

p0 0 ¨ ¨ ¨ 0 0
0 p1{N ¨ ¨ ¨ 0 0
...

...
. . .

...
...

0 0 ¨ ¨ ¨ ppn´1q{N 0
0 0 ¨ ¨ ¨ 0 0

˛

‹

‹

‹

‹

‹

‚
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shows that the formal difference in line (12.30) above defines the same class in
K-theory as

»

—

—

—

–

p0 0 ¨ ¨ ¨ 0
0 p1{N ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ p1

fi

ffi

ffi

ffi

fl

´

»

—

—

—

–

p0 0 ¨ ¨ ¨ 0
0 p1{N ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

fl

,

which represents rp1s. We can make the modulus of continuity of the homtopies
between each pn{N and ppn´1q{N as small as we like by increasing N enough, and
the rotation homotopy used has an absolutely bounded modulus of continuity.
This completes the argument.

We now have the following analogue of Proposition 12.4.1.

Proposition 12.6.4. The map

ev˚ : lim
rÑ8

K˚pA
r
LpX;Eqqq Ñ lim

rÑ8
K˚pA

rpX;Eqq

induced by the direct limit of the evaluation-at-zero maps on K-theory is an
isomorphism.

Sketch proof. One can carry out the proof of Lemma 12.4.4 across all n at once,
as long as the number R in the statement of the lemma is assumed to be the
same across all Xn. The very last step in the proof of Lemma 12.4.4 that
invokes Lemma 12.4.3 can be redone using quasi-stability again to commute the
product over n and the K-functors (Proposition 2.7.12); thus we only have to
use continuity in s one n at a time to invoke Lemma 12.4.3, and the lack of
uniformity of the continuity in s as n varies is irrelevant.

Analogously with the rest of the proof of Proposition 12.4.1, we use the
sets Ws defined in line (12.25) for each Xn in place of X. We apply a Mayer-
Vietoris sequence simultaneously across all n to cut the sets Ws into pieces
where we can apply Lemma 12.4.4. It is important for this that we have the
uniform estimates in part (iii) of Definition 12.3.2, as this means we only need
a number of cutting-and-pasting steps that is independent of the (dimension of
the) ambient Euclidean space En for each of the sets Ws.

The proof of Proposition 12.6.1 now proceeds quite analogously to the finite
dimensional case. This is enough to complete the proofs.

12.7 Exercises

12.7.1. Let X be a separable metric space. Let pxnq
8
n“0 be a dense sequence in

X, and for each x P X, define a map fx : NÑ R by

fxpnq “ dpx, xnq ´ dpx0, xnq,
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and show that each fx is bounded. Show that

f : X Ñ `8pNq, x ÞÑ fx

is an isometric (so in particular, coarse) embedding.

12.7.2. Show that a metric space X coarsely embeds into a real Hilbert space
if and only if it coarsely embeds into a complex Hilbert space.

12.7.3. Let T be the vertex set underlying a (connected, undirected) tree,
equipped with the edge metric defined by setting dpx, yq to be the smallest
number of edges in a path connecting x and y. Write E for the edge set of the
tree. Observe that for any x, y P T , there is a unique minimal set γxy Ď E of
edges that is contained in any path from x to y (and moreover, that forms such
a path itself). Fix a basepoint x0 P T , and define

f : T Ñ `2pEq, x ÞÑ
ÿ

ePγx0x

δe.

Show that f satisfies
}fpxq ´ fpyq}2 “ dpx, yq

for all x, y P T , and thus in particular that f is a coarse embedding of T into a
Hilbert space.

12.7.4. Show that a good Borel covering system as in Definition 12.2.1 exists.
Hint: one way to do this is to write X “ pxnq as a sequence (we can do this, as
it is a bounded geometry metric space with finite-valued metric, so countable);
now iteratively choose Br,xn to consist of all points where the coordinate txn
of Definition 7.2.8 is non-zero, and that have not appeared in Br,xm for any
m ă n.

12.7.5. Show that ifA is a norm compact set of compact operators, andB a norm
bounded and strong-˚ compact set of bounded operators, then the collection

tST | S P A, T P Bu

of compact operators is norm compact.
Show also that if s ÞÑ Ss is a strong-˚ continuous and norm bounded map

defined on a bounded interval, then the family of maps

ts ÞÑ SsSS
˚
s | S P Au

is norm equicontinuous.

12.7.6. In part (iv) of Proposition 12.1.10 we proved a special case of the follow-
ing fact: ‘Let χ : RÑ r´1, 1s be an odd function such that limtÑ˘8 χptq “ ˘1.
If D1, D2 are essentially self-adjoint operators with the same domain S such
that

D1 ¨ S Ď S, D2 ¨ S Ď S,

and if D1 ´D2 is bounded and D1, D2 have compact resolvent, then χpD1q ´

χpD2q is compact’.
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Give a different proof of this by considering the difference

ψpD1q ´ ψpD2q,

where ψpxq “ x{px` iq.

12.7.7. Let pXnq be a sequence of finite metric spaces. Show that ‘the’ coarse
union of the Xn only depends on the choice of metric up to coarse equivalence
(see Definition A.3.9).

Show moreover that ‘the’ coarse union of the sequence pXnq coarsely embeds
into Hilbert space if and only if the separated coarse union of the spaces Xn

separately coarsely embeds into Hilbert space.

12.7.8. The aim of this exercise is to study analogues of Lemma 12.4.3 when
the uniform continuity result is dropped. Let A be a C˚-algebra, and let
Cbpr1,8q, Aq denote the C˚-algebra of bounded continuous functions from r1,8q
to A.

(i) Show that ifA is quasi-stable, then the evaluation-at-one map Cbpr1,8q, Aq Ñ
A induces an isomorphism on K-theory.
Hint: It suffices to show the kernel B of this map has trivial K-theory.
Show that B fits into a pullback diagram

B //

��

ź

ně2 even

Cprn, n` 1s, Aq

��
C0pp1, 2s, Aq ‘

ź

ně3 odd

Cprn, n` 1s, Aq //
ź

ně1

A

and use the Mayer-Vietoris sequence associated to this diagram (Proposi-
tion 2.7.15), combined with the the ability to compute products with K-
theory in the presence of quasi-stability (Proposition 2.7.12).

(ii) Show that if A “ C, then the conclusion of the first part fails: one way
to do this is to show that function x ÞÑ eix defines a non-zero class in
K1pCbr1,8qq.

12.8 Notes and references

We take the opportunity here to give a concrete description of the Bott-Dirac
operator in the dimension one case, and a proof of its index theoretic propeties.
Consider the operator A on functions u : RÑ C defined by

pAuqpxq :“ u1pxq ` xupxq.

This is the so-called annihilation operator of mathematical physics. Solving the
differential equation u1 ` xu “ 0, one sees that the kernel of A is spanned by
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e´
1
2x

2

. More generally, if v is a Schwartz class function on R, then one computes
that the differential equation u1 ` xu “ v has explicit solutions

upxq “ e´
1
2x

2

ż x

0

vptqe
1
2 t

2

dt` Ce´
1
2x

2

,

which are also Schwartz class. In particular, considered as an operator A :
SpRq Ñ SpRq from the space of Schwartz class functions to itself, A is surjective
with one-dimensional kernel, so has index one.

Our Bott-Dirac operator is given by

B “

ˆ

0 A˚

A 0

˙

,

where A˚ is the formal adjoint of A, defined by pA˚uqpxq “ ´u1pxq ` xupxq
for Schwartz class u. Thus B is built to be a self-adjoint operator that, when
taking gradings into account, has the same index-theoretic behaviour in the
graded sense as A does in the usual ungraded sense; the choice of whether to
work with B or A is really just one of technical convenience.

Going into more depth, one can make the of A even more explicit in terms
of the right basis for L2pRq: it turns out that A is a weighted shift operator.
Indeed, there is an orthonormal basis of L2pRq given by the classical Hermite

functions pψnq
8
n“0, where each ψn is a degree n polynomial multiplied by e´

1
2x

2

,

so in particular ψ0 is a constant multiple of e´
1
2x

2

: see Proposition D.3.3. The
functions pψnq

8
n“0 are very natural and important: for example, the basis pψnq

diagonalises the Fourier transform. In terms of this basis, the action of A is
very simple to describe: it is given by

Aψn “
?

2nψn´1,

where ψ´1 is interpreted as the zero function. Hence, up to a scaling factor, A
behaves like the adjoint of the unilateral shift. Moreover, one can show that the
Schwartz class functions §pRq consist precisely of series

ř8

n“0 λnψn, where the
sequence pλnq of complex coefficients decays faster than any polynomial in n
(see for example [211, Appendix to V.3]). In particular, this description makes
it quite clear that A has index one as an operator from SpRq to itself.

The Bott-Dirac operator has been explicitly used in index theory at least
since the 1980s. A version appears for example in Hörmander’s classical text
on pseudodifferential operators [142, pages 204-205], and is used by Hörmander
as a key ingredient in [142, Sections 19.2 and 19.3] to prove a version of the
Atiyah-Singer index theorem.

In terms of the material in this chapter, Theorem 12.0.2 was first proved by
Yu in [272]. The original proof used a variant of the Dirac-dual-Dirac method
of Kasparov [150], the infinite-dimensional Bott periodicity techniques of Hig-
son, Kasparov, and Trout [130] and the ideas that went into the proof of the
Baum-Connes conjecture for a-T-menable groups due to Higson and Kasparov
[129] (amongst other things). The Dirac-dual-Dirac method underlies many
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proofs of special cases of the Baum-Connes conjecture: the very rough idea is
to use a (possibly very elaborate) version of Bott periodicity to replace the C˚-
algebra one is interested in (something like a group C˚-algebra, or Roe algebra)
with a ‘proper’ C˚-algebra whose K-theory can be computed using elementary
techniques like Mayer-Vietoris sequences.

Our proof of Theorem 12.0.2 is still based on this idea in some sense: we
use the Bott-Dirac operator that underlies one picture of Bott periodicity to
replace the original Roe algebras with something much more K-theoretically
tractable. However, rather than using versions of Kasparov’s Dirac and dual
Dirac elements, we in effect use his so-called ‘gamma element’ directly to pass
to something more computable; see [191] for a recent paper on (different cases
of) the Baum-Connes conjecture that uses a philosophically similar approach.
We are also able to use some tricks to reduce to the finite-dimensional case, and
thus avoid any need to discuss infinite-dimensional Bott periodicity.

Before going on to discuss examples, we note that the coarse Baum-Connes
conjecture fails for some metric spaces that do not satisfy the bounded geometry
assumption, but do still coarsely embed into Hilbert space: the ‘large spheres’
of [271, Section 7] as discussed in Section 13.1 below are an example. Thus the
bounded geometry assumption in Theorem 12.0.2 really is necessary.

See for example [195, Chapter 5], [257, Section 3], or [218, Chapter 11] for
more background on coarse embeddings into Hilbert space and related issues.
The class of metric spaces that coarsely embed into Hilbert space is very large.
It includes for example the following classes of groups, considered as geometric
objects:

• word hyperbolic groups [234] (see also [219] for a stronger result on asymp-
totic dimension);

• amenable groups [29] (see for example [109] for how wildly ‘non-algebraic’
this class can be);

• linear groups [113];

• relatively hyperbolic groups with suitable peripheral subgroups [202, 74];

• mapping class groups [120, 156] (see also [31] for a stronger result on
asymptotic dimension);

• outer automorphism groups of free groups [32];

• Thompson’s group F [92].

All but the last of these classes of groups are also known to have a stronger
property called property A [272, Section 2] (equivalently, by [114], [201], [134],
so-called boundary amenability, or C˚-exactness); property A for Thompson’s
group F is a well-known open problem.

Another interesting example of spaces that coarsely embed into Hilbert
space, this time coming from outside the world of groups, comes from mani-
folds of subexponential volume growth [107] (this class of spaces also turns out
to have property A [241, Section 6]).
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Taking all of the above into account, Theorem 12.0.2 is the source of some of
the most general known positive results on questions like the Novikov conjecture,
and the existence of positive scalar curvature metrics.

There are, however, examples of groups that do not coarsely embed into
Hilbert space: these are based on ideas around expanders as we will discuss in
Chapter 13. The insight here is due to Gromov and seems to first appear at the
end of [178]: the key idea is to embed expanders into groups based on random
presentations. The paper [111] of Gromov develops this further. See [5] and
most recently [196] for more detailed constructions, and [229] for a construction
allowing one to build fundamental groups of aspherical manifolds that do not
coarsely embed into Hilbert space.

Partly inspired by the above (counter)examples, there has also been work
on whether coarse embeddings into other classes of Banach spaces can have K-
theoretic consequences. For example, [153] deduces K-theoretic consequences
when a space coarsely embeds into a uniformly convex Banach space, and [154]
when it coarsely embeds into a space with what is there called property (H);
the latter is particularly interesting, as there are no (bounded geometry) metric
spaces that are known not to embed in a property (H) Banach space. On
the other hand, there are bounded geometry metric spaces that are known
not to coarsely embed into any uniformly convex Banach space: certain so-
called superexpanders as constructed in [160] or [176] have this property. It is
known, however, that any bounded geometry metric space coarsely embeds into
a strictly convex (in particular, reflexive) Banach space [43].

We should mention also that there has been a great deal of interesting work
telling apart different classes of Banach spaces based on their coarse geometry,
or on which Banach spaces admit coarse embeddings into other classes. We
make no attempt to give an exhaustive list of references here, just mentioning
[145] and [190] for the case of Lp spaces.

Other recent results which connect to similar ideas include: [243], which uses
coarse embeddability in Hilbert space to investigate the K-theory of different
completions of the Roe ˚-algebra; [108], studying (possibly infinite-dimensional)
manifolds that are non-positively curved in some sense; and [104], which proves
a theorem containing both the case of Baum-Connes for a-T-menable groups,
and coarse Baum-Connes for groups that coarsely embed into Hilbert space as
special cases.
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Chapter 13

Counterexamples

Our aim in this chapter is to discuss two counterexamples to the coarse Baum-
Connes conjecture, i.e. to the statement that the assembly map

µ : KX˚pXq Ñ K˚pC
˚pXqq

is an isomorphism. In both cases, the counterexamples have a similar form.
They consist of an infinite sequence pXnq of bounded metric spaces (although
with diameter tending to infinity) with the following property: there are oper-
ators Dn on modules over Xn that one can show have spectrum contained in
t0uYrc,8q for some c ą 0, independent of n. The key point is the fact that the
constant c is uniform in n: this allows one to show the existence of interesting
global phenomena over the disjoint union space X :“

Ů8

n“0Xn.
We give counterexamples to both the injectivity and surjectivity of the coarse

Baum-Connes assembly map separately, of fairly different forms. These coun-
terexamples are due respectively to Yu and Higson; see the notes and references
at the end for more detail.

For the injectivity counterexample, the spaces Xn are spheres (of carefully
chosen dimension and radius) and the operatorsDn are Dirac operators on them.
The uniform spectral gap discussed above is used to show that the associated
operator D on the global space X :“

Ů8

n“0Xn has essentially trivial higher
index in K˚pC

˚pXqq, while Poincaré duality implies that D represents a non-
trivial class in KX˚pXq. The injectivity counterexample we give is not coarsely
equivalent to a bounded geometry space: it would be very interesting to have a
bounded geometry example.

For the surjectivity counterexample, we consider a sequence pXnq of so-called
expander graphs: very roughly, these are graphs that are sparse in terms of not
having many edges, but also highly connected in some sense. The exotic ge-
ometry of expanders allows us to show that certain combinatorial Laplacian
operators ∆n have uniform spectral gap. Putting these together gives an op-
erator ∆ in C˚pXq such that the spectral projection associated to the isolated
point zero in the spectrum of ∆ represents a class in K-theory that cannot (at
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least in some special cases) be in the image of the coarse Baum-Connes assembly
map. The surjectivity counterexample does have bounded geometry.

This chapter is structured as follows. In Section 13.1 we discuss the injec-
tivity counterexample arising from large spheres. In Section 13.2 we give some
background on expander graphs, and sketch a construction of such graphs based
on the notion of property pτq from representation theory of groups. Finally, in
Section 13.3 we show how to construct surjectivity counterexamples from some
of these expanders.

13.1 Injectivity counterexamples from large spheres

The purpose of this section is to give counterexamples to injectivity of the
coarse Baum-Connes assembly map coming from sequences of ‘large’ spheres;
this example is originally due to Yu. It is worth commenting straight away that
these counterexamples are not of bounded geometry, and no bounded geometry
counterexamples to injectivity of the coarse Baum-Connes assembly map are
known (in contrast to the surjectivity case as considered in Section 13.3 below).

Before getting to the details, we note that the proof uses differential ge-
ometry as a key ingredient. It would be very interesting to have a similar
counterexample (or a different explanation of this one) that did not use any
differential geometry. This is partly as understanding what is going on from a
more elementary point of view might allow one to construct bounded geometry
counterexamples.

The key geometric fact underlying our analysis is as follows. We will just
use this as a black box.

Proposition 13.1.1. Let

Sdr :“ tpx1, ..., xd`1q P Rd`1 | x2
1 ` ¨ ¨ ¨x

2
d`1 “ r2u

be the d-sphere of radius r and center the origin in Rd`1, equipped with the
Riemannian metric induced1 and from the standard metric on Rd. Then the
scalar curvature of M is dpd´ 1q{r2.

Sketch proof. The sectional curvatures of the standard round d-sphere

Sd :“ tpx1, ..., xd`1q P Rd`1 | x2
1 ` ¨ ¨ ¨x

2
d`1 “ 1u

are well-known to be constantly equal to one. Scaling this by r to get Sdr
multiplies the Riemannian metric by r2, and therefore multiplies the sectional
curvature by 1{r2, so all sectional curvatures of Sdr are 1{r2. The scalar curvature
of a d-manifold is dpd ´ 1q times the average (in an appropriate sense) of the
sectional curvatures at that point, so we get that all scalar curvatures of Sd,r

are dpd´ 1q{r2 as claimed.

1This not the same as the restriction of the usual metric from Rd`1! For example, the
diameter of Sdr is πr with the induced Riemannian metric, but 2r with the restricted metric.
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Now, for each n, let Xn :“ S2n
2n . Define X :“

Ů8

n“1Xn with the coarse
disjoint union metric: the metric that restricts to the given Riemannian metric
on each Xn, and sets the distance between distinct Xn to be infinity. Note that
this space is not coarsely equivalent to a bounded geometry metric space.

We aim to prove the following theorem.

Theorem 13.1.2. With X as above, the coarse Baum-Connes assembly map

µ : KX˚pXq Ñ K˚pC
˚pXqq

fails to be injective.

The next two lemmas complete the proof: the first says that the Dirac
operators on each Xn combine to define a non-zero class in KX˚pXq, and the
second says that this class goes to zero under the assembly map.

For each n, let then Dn be the (spinor) Dirac operator on Xn. Using that
these operators have uniformly bounded propagation speed, a slight adaptation
of the machinery of Chapter 8 gives a class rDs P K˚pXq.

Lemma 13.1.3. The natural map cX : K˚pXq Ñ KX˚pXq from the definition
of KX˚pXq (Definition 7.1.7) sends rDs to a non-zero class in KX˚pXq.

Proof. It follows from Poincaré duality (Theorem 9.6.11) that for each n, the
K-homology of Xn is K0pS

2nq “ Zrpts‘ZrDns, where rpts is the class generated
by the inclusion of any rDns is the class of the Dirac operator. Let Z Ď X be
any net in X in the sense of Definition A.3.10 (such exists by Lemma A.3.11).
Then

KX˚pXq “ lim
rÑ8

K˚pPrpZqq

by Theorem 7.2.16.
Note now that for each fixed n, as soon as r is larger than the diameter of

Xn, we get that PrpZ XXnq is properly homotopy equivalent to a point; on the
other hand, for each fixed r and all suitably large n, PrpZ X Xnq is properly
homotopy equivalent to Xn. Using these two facts, one computes that

KX˚pXq “ lim
rÑ8

K˚pPrpZqq “

ś

nPNpZrpts ‘ ZrDnsq

‘nPNZrDns
.

Under the canonical map, cX : K˚pXq Ñ KX˚pXq, rDs goes to the class

prD1s, rD2s, rD3s, rD4s, ...q P

ś

nPNpZrpts ‘ ZrDnsq

‘nPNZrDns
,

which is non-zero.

The next lemma is a uniform version of of Lemma 10.2.5: it follows from
exactly the same proof, once we have observed that Proposition 13.1.1 gives us
a uniform lower bound on the scalar curvatures of each ‘component’ Xn.
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Lemma 13.1.4. The assembly map µX : K˚pXq Ñ K˚pC
˚pXqq sends the

Dirac operator to zero.

Proof of Theorem 13.1.2. Using the definitions of assembly and the Baum-Connes
assembly map (Section 7.1), we have a commutative diagram

K˚pXq

µX

''
cX

��
KX˚pXq

µ // K˚pC˚pXqq

where the horizontal map is the Baum-Connes assembly map for X. The result
follows from Lemmas 13.1.3 and 13.1.4.

13.2 Expanders and property pτq

In this section, we study expander graphs, in particular sketching a construction
of such graphs coming from property pτq. This material will be used to construct
surjectivity counterexamples in Section 13.3.

We will be interested in graphs considered as metric spaces; everything could
be done in a purely metric language, but the combinatorial language of graphs
will be convenient. For us a graph will consist of a set X of vertices equipped
with a set E of edges: precisely E is a subset of the set tA Ď X | |A| “ 2u of
two-element subsets of X (thus our graphs are undirected, and have no loops).
The vertex set X of our graph is given the metric

dpx, yq :“ mintn | there are x “ x0, ..., xn “ y with txi, xi`1u P E for all iu

(to be interpreted as 8 if the set on the right is empty). In words, the distance
between two vertices is the smallest number of edges in a path between them.
A graph is connected if the metric above is finite-valued (or in other words, if
any two vertices are connected by some edge path). The degree of a vertex is
the number |ttx, yu P E | y P Xu| of edges with x as a vertex; the metric space
pX, dq has bounded geometry (Definition A.3.19) if and only if there is a uniform
bound on the degrees of all vertices.

Typically, we will abuse terminology and say something like ‘let X be a
graph’ leaving the other structure implicit; we are in any case only really inter-
ested in X as a metric space.

Group theory provides an interesting class of examples.

Example 13.2.1. Let G be a finitely generated discrete group, and let S Ď G be
a finite generating set such that S “ S´1 and S does not contain. Let X “ G,
and let the edge set consist of all 2-tuples tx, yu such that x “ ys for some non-
identity s P S (as S is symmetric, this is well-defined). The resulting (bounded
geometry, connected) graph is called the Cayley graph of Γ with respect to S.
For example, if Γ “ Z{n is the cyclic group with n elements and S “ t1,´1u,
then the associated Cayley graph is the cycle with n vertices.
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Definition 13.2.2. Let X be a finite connected graph. The Laplacian on X is
the linear operator ∆ “ ∆X defined by

∆ : `2pXq Ñ `2pXq, p∆uqpxq “
ÿ

tx,yuPE

upxq ´ upyq

Rewriting the formula slightly, if dpxq is the degree of a vertex x, and S1pxq
is the sphere of radius one about x, then

p∆uqpxq “ dpxqupxq ´
ÿ

yPS1pxq

upyq;

thus up to normalisation, p∆uqpxq looks at the difference between the value of
the function at x, and its average values on the sphere centered at x. This
should be compared to the standard Laplacian

∆ “ ´

d
ÿ

i“1

B2

Bx2

on Rd (the sign convention is chosen to make ∆ a positive operator). In this
case, one has the formula

p∆uqpxq “ lim
rÑ0

2d

r2

´

upxq ´
1

VolpSrpxqq

ż

Srpxq

upyqdy
¯

,

where Srpxq is the sphere of radius r centered at x; thus the operator in Defini-
tion 13.2.2 is a sort of ‘discretized version’ of this, which justifies the terminology.

Here are the basic properties we will need.

Lemma 13.2.3. The Laplacian on a finite connected graph X:

(i) has propagation at most one (and exactly one if X has at least two points);

(ii) is positive;

(iii) has one dimensional kernel consisting of the constant functions;

(iv) has norm bounded by four2 times the highest degree of any vertex in X.

Proof. The statement about propagation is immediate from the formula for ∆.
Positivity follows from the computation

xu,∆uy “
ÿ

xPX

upxq
´

ÿ

tx,yuPE

upxq ´ upyq
¯

“
ÿ

tx,yuPE

|upxq ´ upyq|2.

From this formula, we also see that u P `2pXq is in the kernel of ∆ if and only
if upxq “ upyq whenever tx, yu is an edge; as we are assuming X is connected,

2Not optimal: we leave it as an exercise to find a better estimate.
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this is equivalent to u being constant. Finally, note that the above implies that
if }u} “ 1 and d is an upper bound on the degrees of all vertices of X, then

xu,∆uy ď
ÿ

tx,yuPE

2|upxq|2 ` 2|upyq|2 ď
ÿ

xPX

2d|upxq|2 `
ÿ

yPX

2d|upyq|2 “ 4d}u}2

“ 4d

giving the norm estimate.

We will be interested in ‘heat flow’ on a finite connected graph X. Let
putqtPr0,8q be a smooth family of vectors in `2pXq. Consider the Heat equation

But
Bt
`∆ut “ 0,

which governs how the initial distribution u0 ‘spreads out by flowing along
edges’ as time increases. The solution to the heat equation for a given initial
distribution u0 P `

2pXq is given by ut “ e´t∆u0. Note that (as one should
expect), e´t∆ converges in norm to the projection pc onto the constant vectors
in `2pXq. Indeed, the functional calculus gives the

}e´t∆ ´ pc} “ e´tλ1pXq, (13.1)

where λ1pXq is the first non-zero eigenvalue of ∆. Thus, the larger λ1pXq is,
the more quickly heat flows to a constant distribution: we conclude from these
heuristics that the first non-zero eigenvalue of ∆ is a measure of how connected
the graph X is.

Example 13.2.4. Let Xn “ Z{n be the finite cyclic group with n elements, and
consider its Cayley graph with respect to the generating set S “ t˘1u as in
Example 13.2.1. Let CrZ{ns denote the group algebra of Z{n, represented on
`2pZ{nq via the regular representation, and let u be the unitary corresponding
to shifting by one. Then for n ą 2 we have

∆ “ 2´ u´ u˚.

The spectrum of ∆ can be computed by representation theory: indeed, as the
C˚-algebra C˚pZ{nq “ CrZ{ns is commutative we have

specp∆q “ tφp∆q | φ : CrZ{ns Ñ C a ˚-homomorphismu.

The ˚-homomorphisms from CrZ{ns to C are determined by where they send u,
and the possibilities are e2πik{n, k P t0, ..., n´ 1u. Hence we have

specp∆q “ t2´ 2 cosp2πk{nq | k P t0, ..., n´ 1uu.

In particular, λ1pXq “ 2 ´ 2 cosp2π{nq. As this tends to zero as n Ñ 8,
we conclude from our above discussion of heat kernels that the graphs Xn get
‘less-and-less well connected’ as nÑ8.
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Definition 13.2.5. An expander is an infinite sequence pXnq of finite connected
graphs such that:

(i) |Xn| Ñ 8 as nÑ8;

(ii) there is a uniform bound on the degrees of all vertices;

(iii) there is c ą 0 such that λ1pXnq ě c for all n.

The idea is that an expander consists of an infinite family of graphs which is
‘uniformly well connected’ in some sense, despite there being a uniform bound
on all vertex degrees. Note that the computations of Example 13.2.4 show
that the sequence of finite cyclic graphs is not an expander; indeed, it is not
immediately clear that examples exist. To build examples, we will generalize
Example 13.2.4 to groups with more complicated representation theory.

Construction 13.2.6. Let Γ be an infinite discrete group generated by a finite
symmetric set S. Let

K1 DK2 D ¨ ¨ ¨

be an infinite sequence of finite index nested normal subgroups of Γ such that
Ş

nKn “ teu (such a sequence exists if and only if Γ is residually finite). Let
Γn :“ Γ{Kn, and let Xn be the Cayley graph of Γn built with respect to
the generating set given by the image of S. Then the sequence pXnq satisfies
conditions (i) and (ii) from Definition 13.2.5. Moreover, at least for all n suitably
large, the Laplacian of Xn is given by the image of the operator

∆S “
ÿ

sPS

1´ us P CrΓs.

in the canonical left quasi-regular representation (see Example C.1.4) of CrΓs on
`2pXnq. Thus whether or not pXnq is an expander is a property of the operator
∆S .

Note that if Γ “ Z, S “ t˘1u and Kn “ Z{2n, then we have a subsequence
of the sequence in Example 13.2.4.

Definition 13.2.7. With notation as in Construction 13.2.6, one says that G
has property pτq with respect to the sequence pXnq if pXnq is an expander, i.e.
if there exists c ą 0 such that the image of the Laplacian ∆S in Bp`2pXnqq has
spectrum contained in t0u Y rc,8q for all n.

It is not immediately obvious, but property pτq does not depend on the choice
of generating set S: see Exercise 13.4.1 below. In general, it is a difficult problem
to show that a particular group has property pτq with respect to some sequence
pXnq, and many residually finite groups (e.g. residually finite amenable groups:
see Exercise 13.4.2), never have property pτq with respect to any sequence. We
will use the following theorem as a black box: see the notes and references at
the end of the chapter for more information.

Theorem 13.2.8. The following groups admit a sequence pXnq as in Construc-
tion 13.2.6 with respect to which they have property pτq:
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(i) free groups on at least two generators;

(ii) surface groups of surfaces with genus at least two;

(iii) SLpn,Zq for n ě 2.

Remark 13.2.9. A group G has property (T) if there exists c ą 0 such that the
image of ∆S P CrΓs in any unitary representation has spectrum contained in
t0u Y rc,8q. Thus a group with property (T) has property pτq with respect to
any sequence pXnq as in Example 13.2.6, i.e. any such sequence is an expander
(note that such a sequence will only exist if G is residually finite). Examples of
groups with property (T) include SLpn,Zq for n ě 3.

On the other hand, free groups, surface groups, and SLp2,Zq all admit
sequences pXnq which are not expanders. There are also residually finite groups
which have property pτq with respect to any sequence pXnq, but do not have
property (T): an example is given by SLp2,Zr1{psq for any prime p.

In the next section, we will show that at least some expanders are counterex-
amples to the coarse Baum-Connes conjecture. Here is the crucial property we
will need.

Lemma 13.2.10. Let pXnq be an expander, and X “
Ů

Xn. Let ∆ be the
block-diagonal operator on `2pXq “

À

n `
2pXnq that restricts to the Laplacian

on Xn in each summand. Let p be the block diagonal operator on `2pXq that
restricts to the projection onto the constant functions in each Xn. Then ∆ is a
well-defined bounded operator, and

lim
tÑ8

e´t∆ “ p

in norm.

Proof. The operator ∆ is bounded as Lemma 13.2.3 gives a uniform bound on
the norms of its restriction to each block in terms of the degrees of vertices. Let
∆n and pn be the restrictions of ∆ and p to each block `2pXnq. Then

}e´t∆ ´ p} “ sup
n
}e´t∆n ´ pn} “ sup

n
e´tλ1pXnq,

where the second equality follows from the functional calculus as in line (13.1)
above. As there is c ą 0 with λ1pXnq ě c for all n, this tends to zero as
tÑ8.

The point of the proposition is that one gets norm convergence of the ‘heat
semigroup’ pe´t∆qtPr0,8q for an expander: for any bounded degree sequence

pXnq of finite connected graphs e´t∆ will converge to p in the strong operator
topology, but this is no use for what we need in the next section. In particular,
we see that the projection p is a norm limit of operators with finite propagation,
as ∆ has finite propagation, whence each e´t∆ is itself a norm limit of operators
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with finite propagation (i.e. of polynomials in ∆). This may be surprising at
first: indeed, p has block-diagonal matrix representation

p “

¨

˚

˚

˚

˝

p1 0 0 . . .
0 p2 0 . . .
0 0 p3 . . .
...

...
...

. . .

˛

‹

‹

‹

‚

,

where each pn has the |Xn| ˆ |Xn| matrix representation

pn “
1

|Xn|

¨

˚

˚

˚

˝

1 1 ¨ ¨ ¨ 1
1 1 ¨ ¨ ¨ 1
...

...
. . .

...
1 1 ¨ ¨ ¨ 1

˛

‹

‹

‹

‚

;

thus the matrix representation of p gets wider and wider as one goes further
along the basis, and it looks like p is a long way from being finite propagation.

Definition 13.2.11. The projection p as above is called the Kazhdan projection
associated to the expander pXnq.

13.3 Surjectivity counterexamples from expanders

Throughout this section, we fix a finitely generated group G and an expander
pXnq built from G as in Construction 13.2.6. Let X be the separated coarse
union of pXnq as in Definition 12.5.1: recall this means that as a set X “
Ů8

n“1Xn is the disjoint union of the Xn, and that X is equipped with the
metric that restricts to the original (graph) metric on each Xn, and that puts
distinct Xn at infinite distance from each other (equivalently, we could just
set X to be the graph disjoint union of the Xn, and equip it with the graph
metric). Our aim is to show that X is a counterexample to surjectivity of the
coarse Baum-Connes assembly map, at least under additional assumptions on
G.

Note that X has bounded geometry, as there is a uniform bound on the
degrees of all vertices coming from the size of the fixed generating set for G.
As a sanity check, let us first show that X does not satisfy the hypotheses of
Proposition 12.6.1, and therefore it is at least possible that the coarse Baum-
Connes conjecture does not hold for G.

Proposition 13.3.1. With notation as above, X does not admit a uniform
coarse embedding (see Definition 12.5.1) into Hilbert space.

Proof. Say for contradiction X does admit such a uniform coarse embedding,
so there are non-decreasing functions ρ´, ρ` : r0,8q Ñ r0,8q with ρ´ptq Ñ 8

as tÑ8, and functions fn : Xn Ñ En from each Xn to some Hilbert space En
(which we may assume complex on tensoring with C) such that for all n

ρ´pdpx, yqq ď }fnpxq ´ fnpyq}En ď ρ`pdpx, yqq
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for all px, yq P Xn. Now, for each n, consider the Hilbert space `2pXn, Enq “
`2pXnq bEn and the Laplacian ∆n :“ ∆Xn b 1En on this space. Note that the
computations in Lemma 13.2.3 show that the kernel of ∆n consists exactly of
the constant functions from Xn to En. Replacing each fn by

fn ´
1

|Xn|

ÿ

xPXn

fnpxq,

we may assume that each fn P `
2pXn, Enq is orthogonal to the constant func-

tions. Let c ě 0 be as in the definition of an expander, whence we have that

cxfn, fny ď xfn,∆nfny.

Let d be an absolute bound on the degrees of all vertices in all the Xn so there
are at most d|Xn| edges in Xn. Expand the inner products to get

c
ÿ

xPXn

}fpxq}2 ď
ÿ

tx,yu an edge

}fnpxq ´ fnpyq}
2 ď d|Xn|ρ`p1q

2.

It follows that at least half of the points inXn must satisfy }fpxq}2 ď 2dρ`p1q
2{c.

Combined with bounded geometry and the fact that |Xn| Ñ 8 and n Ñ 8,
this contradicts the existence of ρ´, and we are done.

Now, let us move on to the coarse Baum-Connes conjecture. In order to
prove that X is a counterexample to the coarse Baum-Connes conjecture, we
need an additional analytic assumption on G that we now introduce.

Definition 13.3.2. A countable, proper metric space Y has the operator norm
localisation property (ONL for short) if for any r ě 0 and c P p0, 1q there
exists s ě 0 such that for any Hilbert space H and any bounded operator T
on `2pY,Hq with proppT q ď r there exists a unit vector u P `2pY,Hq such that
diampsupppuqq ď s, and such that

}Tu} ě c}T }.

The point of the definition is the fact that s only depends on the propagation
bound r, and not on the specific operator T .

Remark 13.3.3. It is straightforward to check from the definition that ONL is
invariant under coarse equivalences as in Definition A.3.9. Hence by Lemma
A.3.13 it makes sense to speak of ONL holding for a countable group G.

Example 13.3.4. Our space X built out of an expander does not have ONL.
Indeed, let p be the Kazhdan projection on `2pXq as in Definition 13.2.11 above,
and let q be a finite propagation operator on `2pXq with }p ´ q} ă 1{4. Let
r “ proppqq, and say for contradiction there is s ě 0 with the property in
Definition 13.3.2 for this r, and for c “ 3{4. For each N , let qN be the restriction
of q to

À

něN `
2pXnq. Then each qN has propagation at most r, whence there

is a unit vector uN in `2pXq with support in a set of diameter at most s and

}qNuN } ě p3{4q}qN } ě 9{16; (13.2)
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note that uN is supported in Xn for some n ě N . Now, the restriction of p to
each `2pXnq is the matrix with all entries |Xn|

´1. As |Xn| Ñ 8 and as there
is an absolute bound on the cardinality of the support of each uN (by bounded
geometry), we must have that }puN } Ñ 0 as N Ñ8. Hence the estimate

}qNuN } “ }quN } ď }pq ´ pquN } ` }puN } ď p1{4q ` }puN }

implies that
lim sup
NÑ8

}qNuN } ď 1{4,

which contradicts line (13.2) above.

On the other hand, the ‘parent group’ G giving rise to an expander may
have ONL. We will use the next example as a black box.

Lemma 13.3.5. The fundamental group of any closed surface of genus at least
two has ONL.

Now, let H be an auxiliary Hilbert space. Let pXnq be our expander built
from a group G as in Construction 13.2.6 with associated separated coarse union
X. Let C˚pXq denote the Roe algebra of X associated to the ample X module
`2pX,Hq. Fixing a unit vector v P H gives rise to an isometric inclusion

V : `2pXq Ñ `2pX,Hq, u ÞÑ ub v

that preserves propagation. Moreover, conjugation by V sends all operators on
`2pXq to locally compact operators on `2pX,Hq. Hence in particular conjugation
by V maps the Kazhdan projection of Definition 13.2.11 to an element pK P

C˚pXq, which we also call the Kazhdan projection.

Theorem 13.3.6. Say G is a fundamental group of a smooth, closed manifold
with contractible universal cover, that G has ONL, and that pXnq an expander
constructed from G as above. Then the coarse Baum-Connes conjecture fails for
X: more precisely, the class of the Kazhdan projection is not in the image of
the coarse assembly map

µ : KX˚pXq Ñ K˚pC
˚pXqq.

Thanks to Example 7.4.2 part (iv), Theorem 13.2.8, Lemma 13.3.5, the hy-
potheses of Theorem 13.3.6 are satisfied for G the fundamental group of a surface
of genus at least two. Thus there exist bounded geometry counterexamples to
the coarse Baum-Connes conjecture.

The proof will occupy the remainder of this section. Fixing notation as in
the statement of Theorem 13.3.6, the strategy of the proof is as follows. Let
ś

n R
‘nR denote the product of countable many copies of R divided by the direct
sum in the category of abelian groups; in particular, there are no boundedness
assumptions of sequences in

ś

n R. We construct two trace-type maps

tr, τ : K0pC
˚pXqq Ñ

ś

n R
‘nR
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that agree on the image of µ by an analogue of Atiyah’s covering index theorem
(Section 10.1). We then show that for the Kazhdan projection pK we have
τ rpKs ‰ trrpKs, completing the proof.

The first of these traces tr is elementary. Indeed, as dpXn, Xmq “ 8 for
n ‰ m, we have that

C˚pXq Ď
ź

n

Kp`2pXn, Hqq.

Hence there is a map

K0pC
˚pXqq Ñ K0

´

ź

n

Kp`2pXn, Hqq
¯

Ñ
ź

n

K0pKp`2pX,Hqq, (13.3)

where the second arrow is induced from the obvious quotient maps
ś

nKp`2pXn, Hqq Ñ
Kp`2pXn, Hqq onto each factor (it is an isomorphism by Proposition 2.7.12, but
we do not need this).

Definition 13.3.7. Define a map

tr : K0pC
˚pXqq Ñ

ś

nR
‘nR

by composing the map in line (13.3) above with the canonical isomorphism

ź

n

K0pKp`2pX,Hqq –
ź

n

Z,

and the composition
ź

n

ZÑ
ź

n

RÑ
ś

n R
‘nR

of the canonical inclusion and quotient map.

As the restriction of pK to each block `2pXn, Hq has rank one, the following
lemma follows directly from the definitions.

Lemma 13.3.8. With notation as above, trppKq is the class of the constant
sequence p1, 1, 1, 1, ...q in

ś

nR{ ‘n R.

We now look at the other trace map τ , which is more involved; in particular,
it is here that we need to use that G has ONL. Let Kn ď G be the kernel of the
quotient map πn : G Ñ Xn. Equip G with the word metric associated to the
fixed generating set S used to define the graph structure on each Xn, i.e.

dpg, hq “ mintn | g´1h “ s1...sn with each si P Su,

so G becomes a proper metric space with bounded geometry. The left action of
G on itself is by isometries, whence so too is the restricted action of each Kn.
This action makes the ample G module `2pG,Hq equivariant for the action of
Kn, and so we may use it to define an equivariant Roe ˚-algebra C˚p|G|qKn

(Definition 5.2.1 - we use the notation ‘|G|’ from Conventions 5.1.16 instead of
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‘G’ to avoid confusion with the group C˚-algebra) for each n. Define now a
C˚-algebra

A :“

ś

n C
˚p|G|qKn

‘nC˚p|G|qKn
.

The key step in the construction of τ is the construction of a ˚-homomorphism

φ : C˚pXq Ñ A,

which we now do.
Let then T be an element of CrXs. As

CrXs Ď
ź

n

Kp`2pXn, Hqq,

we may write T as a sequence pT pnqq, where each T pnq is an element ofKp`2pX,Hqq.
We may write each T pnq as a matrix pT

pnq
xy qx,yPXn , with each T

pnq
xy in KpHq. Let

r “ proppT q, so r is also a bound for proppT pnqq for all n. For each n, let ĆT pnq

be the element of Cr|G|sKn (see Definition 5.2.1) defined by the matrix

Ć

T
pnq
xy :“

#

T
pnq
πnpxqπnpyq

dpx, yq ď r

0 dpx, yq ą r
. (13.4)

AsG has bounded geometry, an easier analogue of Lemma 12.2.4 above (we leave

this to the reader) shows that ĆT pnq is indeed a well-defined bounded operator,

and that the sequence p rT pnqq8n“1 has uniformly bounded norms.

Definition 13.3.9. With notation as above, define

φ : CrXs Ñ A, T ÞÑ pĆT pnqq.

The discussion above shows that φ is a well-defined ˚-preserving linear map.
In fact, more is true.

Lemma 13.3.10. The map φ : CrXs Ñ A defined above is a ˚-homomorphism.

Proof. With Kn the kernels of the quotient maps πn : GÑ Xn, the fact that the
Kn are nested and that

Ş

nKn “ teu implies that for any s there is N such that
for all n ě N , πn is an isometry when restricted to any ball of radius at most s
(it is important here that we use the same generating set to define the metrics
on G and on each Xn). However, the matricial formulas for multiplying two
finite propagation operators S, T together show that pTSqxy depends only on
information in the ball of radius proppT q`proppSq about x. We conclude from
this discussion that for operators of a fixed propagation and for suitably large
n, it makes no difference whether we multiply two operators in Bp`2pXn, Hqq,
then lift to Bp`2pG,Hqq via the formula in line (13.4) above; or if we lift them
to Bp`2pG,Hqq, then multiply. It follows that φ is multiplicative, proving the
lemma.
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Here is the key use of ONL.

Lemma 13.3.11. Say G has ONL. Then for any T P CrXs

}φpT q}A “ sup
sě0

lim sup
nÑ8

supt}T pnqu} | u P `2pXn, Hq, }u} “ 1, diampsupppuqq ď su.

Proof. Recalling that

A :“

ś

n C
˚p|G|qKn

‘nC˚p|G|qKn
,

we have that with notation as in line (13.4) above,

}φpT q}A “ lim sup
nÑ8

}ĆT pnq}.

It follows directly from the definition of the operator norm that }φpT q}A equals

lim sup
nÑ8

sup
sě0

supt}ĆT pnqu} | u P `2pG,Hq, }u} “ 1,diampsupppuqq ď su.

On the other hand, using that the operators ĆT pnq have uniformly finite propa-
gation, we may use ONL to switch the order above to get that }φpT q}A equals

sup
sě0

lim sup
nÑ8

supt}ĆT pnqu} | u P `2pG,Hq, }u} “ 1,diampsupppuqq ď su.

As in the proof of Lemma 13.3.10, there is N such that for n ě N , πn : GÑ Xn

is an isometry on all balls of radius proppT q`s. Transferring vectors ‘downstairs’
from G to Xn using these isometries, we see that for any fixed T P CrXs and
s ě 0,

lim sup
nÑ8

supt}ĆT pnqu} | u P `2pG,Hq, }u} “ 1,diampsupppuqq ď su

“ lim sup
nÑ8

supt}T pnqu} | u P `2pXn, Hq, }u} “ 1,diampsupppuqq ď su,

whence the result in the statement.

This lemma has two crucial corollaries for our analysis.

Corollary 13.3.12. If G has ONL, then φ extends to a ˚-homomorphism

φ : C˚pXq Ñ A.

Proof. Lemma 13.3.10 gives that φ : CrXs Ñ A is a ˚-homomorphism. As the
right hand side of the equation in Lemma 13.3.11 is clearly bounded above by
}T }, φ extends by continuity to a map φ : C˚pXq Ñ A.

For the second corollary, it will be convenient to introduce the following
terminology.
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Definition 13.3.13. An operator T P C˚pXq is a ghost if for all ε ą 0 there

exists N such that for all n ě N , all matrix entries T
pnq
xy of the restriction T pnq

of T to `2pXn, Hq have norm less than ε.

Note that compact operators are ghost operators. Conversely, if X has ONL
then all ghost operators are compact (Exercise 13.4.3). However, note that in
our case the Kazhdan projection is a ghost operator that is an infinite rank
projection, so certainly not compact.

Corollary 13.3.14. Say G has ONL. Then the kernel of φ : C˚pXq Ñ A
consists exactly of the ghost operators.

Proof. The formula

sup
sě0

lim sup
nÑ8

supt}T pnqu} | u P `2pXn, Hq, }u} “ 1,diampsupppuqq ď su.

for }φpT q}A from Lemma 13.3.11 continues to hold for any T P C˚pXq by
continuity. Using bounded geometry of X, for each s, there is a uniform bound
on the number of points in any s-ball in any Xn. It follows from this that the
right hand side of the formula above is zero exactly when T is a ghost operator,
giving the result.

Finally, we are ready to construct τ : K0pC
˚pXqq Ñ

ś

R{ ‘ R. For each
n, let Dn Ď G be a bounded set of coset representatives for Kn, so that
G “

Ů

gPDn
gKn. Let λ : Kn Ñ Bp`2pG,Hqq be the amplified left regular

representation of G, restricted to Kn. Then Proposition 5.3.4 gives a unitary
isomorphism

Un : `2pG,Hq Ñ `2pKnq b `
2pDn, Hq, u ÞÑ

ÿ

kPKn

δk b χDnλ
´1
k u (13.5)

such that conjugation by Un induces an isomorphism

C˚p|G|qKn Ñ C˚ρ pKnq bKp`2pDn, Hqq, T ÞÑ UnTU
˚
n .

Putting the various Un together therefore gives an isomorphism

ψ : AÑ

ś

n C
˚
ρ pKnq bKp`2pDn, Hqq

‘nC˚ρ pKnq bKp`2pDn, Hqq
. (13.6)

On the other hand, for each n, we have a trace map

rτn : K0pC
˚
ρ pKnq bKp`2pDn, Hqqq Ñ R

defined via the tensor product of the canonical trace on the group C˚-algebra
C˚ρ pKnq and the canonical unbounded trace on the compact operators as in
Example 2.3.4. Putting all these together gives with the canonical map

K0

´

ź

n

C˚ρ pKnq bKp`2pDn, Hqq
¯

Ñ
ź

n

K0pC
˚
ρ pKnq bKp`2pDn, Hqqq
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gives a trace map

rτ : K0

´

ź

n

C˚ρ pKnq bKp`2pDn, Hqq
¯

Ñ

ś

n R
‘R

. (13.7)

On the other hand, the short exact sequence

0 Ñ ‘nC
˚
ρ pKnq bKp`2pDn, Hqq Ñ

ź

n

C˚ρ pKnq bKp`2pDn, Hqq

Ñ

ś

n C
˚
ρ pKnq bKp`2pDn, Hqq

‘nC˚ρ pKnq bKp`2pDn, Hqq
Ñ 0

gives rise to a long exact sequence on K-theory. The induced map

K0p‘nC
˚
ρ pKnq bKp`2pDn, Hqqq Ñ K0p

ź

n

C˚ρ pKnq bKp`2pDn, Hqqq

is injective, whence we have a canonical isomorphism

K0p

ś

n C
˚
ρ pKnq bKp`2pDn, Hqq

‘nC˚ρ pKnq bKp`2pDn, Hqq

¯

–
K0p

ś

n C
˚
ρ pKnq bKp`2pDn, Hqqq

K0p‘nC˚ρ pKnq bKp`2pDn, Hqqq
.

Clearly rτ as in line (13.7) vanishes on the image ofK0p‘nC
˚
ρ pKnqbKp`2pDn, Hqqq,

so the above isomorphism induces a map

rτ : K0p

ś

n C
˚
ρ pKnq bKp`2pDn, Hqq

‘nC˚ρ pKnq bKp`2pDn, Hqq

¯

Ñ

ś

n R
‘R

. (13.8)

Definition 13.3.15. Define a map

τ : K0pC
˚pXqq Ñ

ś

n R
‘nR

by composing the map in line (13.8) with the maps on K-theory induced by
the ˚-homomorphisms φ of Corollary 13.3.12 and the ˚-isomorphism ψ of line
(13.6).

As pK P C
˚pXq is a ghost operator, the following result is immediate from

the definition of τ and Lemma 13.3.14.

Lemma 13.3.16. With notation as above, τppKq is the class of the constant
sequence p0, 0, 0, 0, ...q in

ś

nR{ ‘n R.

The last ingredient we need for the proof of Theorem 13.3.6 is the next
proposition. It is here we use the assumption that G is the fundamental group
of a closed aspherical manifold. Recall that

µ : KX˚pXq Ñ K0pC
˚pXqq

denotes the assembly map.
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Proposition 13.3.17. For any β P KX˚pXq, τpµpβqq “ trpµpβqq.

Proof. We first claim that for any β P KX˚pXq, the class of µpβq can be rep-
resented by a formal difference rps ´ rqs of idempotents in matrix algebras over
the unitisation C˚pXq`, which are both of finite propagation, and with the ad-
ditional property that for each x, y P X, pxy ´ qxy is a trace class operator on
H.

Indeed, to prove this, using Theorem 7.2.16 we have µpxq is in the image of
the map

µPrpXq,X : K˚pPrpXqq Ñ K˚pC
˚pXqq

for some r ě 0. Using Theorem 6.4.20 (and the fact that the different Xn are
infinitely far apart), the left hand side splits as a product

K˚pPrpXqq –
ź

n

K˚pPrpXnqq.

Let now M be a closed manifold with fundamental group G equipped with a
Riemannian metric, and let ĂM be its universal cover equipped with the lifted
metric. Fix x P ĂM giving rise to an orbit inclusion map

f : GÑ ĂM, g ÞÑ gx;

this is an equivariant coarse equivalence by the Svarc-Milnor theorem (Lemma

A.3.14). Let Mn :“ ĂM{Kn be the cover of M corresponding to Kn, so f
induces a map fn : Xn ÑMn. The sequence pfnq is a uniform family of coarse

equivalences in a natural sense. As the covering maps πn : ĂM Ñ Mn are
isometries on larger and larger balls, a uniform version of the proof of Theorem
7.3.6 that we leave to the reader shows that there are s ě r and uniformly
continuous coarse equivalences gn : Mn Ñ PrpXnq for all n suitably large such
that if pβnq is the image of β under the map

K˚pPrpXqq Ñ K˚pPspXqq –
ź

n

K˚pPspXnqq

then for all n suitably large, we have that βn is in the image of the map

pgnq˚ : K˚pMnq Ñ K˚pPspXnqq.

The claim follows from this and an appeal to Corollary 9.6.13 as in the proof of
Theorem 10.1.8.

Having established the claim above, write ppnq and qpnq for the nth com-
ponents of p and q respectively, so these are elements of MmpBp`2pXn, Hqq –
Bp`2pXn, H

‘mqq. Then we have that if Tr is the canonical densely defined trace
on the compact operators on H‘m (see Example 2.3.3) then trprps ´ rqsq is the
class of the sequence

´

ÿ

xPXn

Trpppnqxx ´ q
pnq
xx q

¯
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of integers in
ś

n R{ ‘ R. On the other hand, writing Ąppnq and Ąqpnq for the
lifts of ppnq and qpnq as defined in line (13.4) (the same formula makes sense for
operators in the unitisations, as long as they still have finite propagation) and
using the formula in line (13.5) we have that τprps´ rqsq is given by the class of
the sequence

´

ÿ

xPDn

Trp
Ą

p
pnq
xx ´

Ą

q
pnq
xx q

¯

.

in
ś

nR{ ‘ R. However, using that the restriction of πn to Dn is a bijection
from Dn to Xn, this is the same as the earlier expression for trprps ´ rqsq, and
we are done.

Proof of Theorem 13.3.6. Let pK be the Kazhdan projection. Lemma 13.3.8
implies that trppKq “ r1, 1, 1, ...s P

ś

R{ ‘ R, and Lemma 13.3.16 implies that
τppKq “ r0, 0, 0, ...s P

ś

R{ ‘ R. However, Proposition 13.3.17 implies that tr
and τ agree on the range of the assembly map, so pK cannot be in the range of
assembly.

13.4 Exercises

13.4.1. With notation as in Example 13.2.6 show that the following are equiv-
alent.

(i) There exists d ą 0 and a finite subset F of G such that for all n and all
u P `2pXnq in the orthogonal complement of the constant vectors there
exists s P F such that

}λsu´ u} ě d}u}

(here λs is the quasi-regular representation of G on `2pXnq).

(ii) There exists c ą 0 such that for all n and all u P `2pXnq in the orthogonal
complement of the constant vectors there exists s P S such that

}λsu´ u} ě c}u}.

(iii) G has property pτq with respect to pXnq.

(iv) If C˚
pXnq

pGq denotes the completion of CrGs in the direct sum represen-

tation
À

n `
2pXnq of its quasi-regular representations on `2pXnq, then the

image of ∆S in C˚
pXnq

pGq has spectrum contained in t0u Y rc,8q for some
c ą 0.

Formulate and prove similar equivalences for property (T) as defined in Remark
13.2.9.

13.4.2. Recall that a group G is amenable if for any ε ą 0 and finite subset F
of G there exists a unit vector u P `2pGq with }λgu´ u} ă ε for all g P F . Show
that an amenable group does not have property (τ) for any sequence pXnq as
in Example 13.2.6.
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13.4.3. Show that if X is a bounded geometry separated coarse union of finite
metric spaces with ONL, then all ghost operators on X are compact.
Hint: compare Example 13.3.4.

13.5 Notes and references

The large sphere counterexample comes from [271, Section 8]. Recently, this
example has been studied in more detail: in particular [200] shows that if the
radii of the spheres involved increase fast enough relative to the dimensions, then
the coarse Baum-Connes assembly map is injective. There is still a mysterious
zone between this positive result, and the existence of the counterexample in
Section 13.1. Another intriguing question is whether one can deduce that this
sequence of spheres is a counterexample without using any differential geometry:
this would be interesting, as it might suggest methods that might be more
usefully generalizable.

Expander graphs have been very widely studied due to their connections to
several interesting parts of both pure and applied mathematics: the book [171]
gives a beautiful tour of some of the theory of expanders and property (τ). The
fact that expanders do not coarsely embed into Hilbert space was first observed
by Gromov; our proof of this is due to Higson.

Our approach to showing that expanders give counterexamples to the coarse
Baum-Connes conjecture is based on an unpublished sketch of Higson [126].
Since then, starting with [197], there has been some study of just ‘how badly’
the coarse Baum-Connes conjecture fails for certain expanders, particularly if
one replaces the Roe C˚-algebra with other completions of the ˚-algebra CrXs
as first studied in [106]. See also for example [115, 258, 259, 54, 103, 102] for
some results in this direction.

Published counterexamples to various versions of the Baum-Connes conjec-
ture appear in the paper of Higson and Lafforgue and Skandalis [131], using
a somewhat different approach based on failures of exactness; this includes a
different approach in the case of expanders. Exactness turns out to be closely
tied to operator algebra theory and coarse geometry: in particular, Ozawa [201]
shows that exactness of a group G is equivalent to property A as discussed at
the end of the last chapter. The paper [26] surveys some of the connections
between exactness and the Baum-Connes conjecture, and gives a reformula-
tion of the Baum-Connes conjecture that obviates some counterexamples to the
so-called Baum-Connes conjecture with coefficients. Nonetheless, due to phe-
nomena related to property (T) [260], these methods cannot be used to obviate
the counterexamples to the coarse Baum-Connes conjecture. See the book [44]
for an extensive discussion of exactness from an operator algebraic point of view.

Having said all of this about counterexamples, we should note that the orig-
inal version of the Baum-Connes conjecture itself, as stated in Definition 7.1.11
above, is open.

The definition of ONL comes from [52]. Sako showed that ONL is also equiv-
alent to property A [228], and there are thus many examples of spaces with this
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property, including all linear groups as discussed at the end of the last chapter.
One relatively direct way to prove that higher genus surface groups have ONL as
in Lemma 13.3.5 is to use that such groups are quasi-isometric to the hyperbolic
plane by the Svarc-Milnor lemma (Lemma ??), that the hyperbolic plane has
finite asymptotic dimension (see for example [218, Corollary 9.21]), and that
finite asymptotic dimension implies ONL (this is essentially [218, Lemma 9.26],
or see [52, Remark 3.2 and Proposition 4.1]).

The definition of ghost operators (Definition 13.3.13 above) is due to Yu,
and appears first in [218, Section 11.5.2]. It turns out that existence of non-
trivial ghost operators is actually equivalent to failure of property A [220], and
therefore also to failure of ONL.
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Appendix A

Topological spaces, group
actions, and coarse
geometry

This appendix covers some background facts about topological spaces, metric
and coarse geometry, and group actions that are needed in the main body of
the book. Results are generally only proved if we could not easily find what we
need in the literature.

The structure of this appendix is as follows. Section A.1 covers background
from general topology, including descriptions of the categories of topological
spaces that we work with, and technical results on the existence of Borel covers
with nice properties. Section A.2 covers results we need about group actions,
quotient spaces, metric properties of groups, and more technical results about
Borel covers, this time in the presence of a group action. Finally, Section A.3
discusses ideas from coarse geometry, including basic definitions as well as some
results connecting coarse geometry to group actions.

A.1 Topological spaces

Some results from general topology

One of our main goals in this book is to study topological spaces. We typically
work with the class of Hausdorff, locally compact, second countable topological
spaces. The following foundational theorem from general topology says such
spaces cannot be too wild.

Theorem A.1.1. Let X be a locally compact, Hausdorff, second countable topo-
logical space. Then there is a metric on X that induces the topology.

Thus we can, and do, work with either metric or purely topological notions
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for this class of spaces: the choice just depends on which approach seems cleaner
or more intuitive.

Another property of locally compact, second countable spaces that gets used
all the time is the existence of partitions of unity.

Definition A.1.2. Let X be a topological space, and U an open cover of X. A
partition of unity subordinate to U is a collection of functions pφi : X Ñ r0, 1sqiPI
with the following properties:

(i) each φi is supported in some element of U ;

(ii) for any compact subset K of X, the set ti P I | φi|K ‰ 0u is finite;

(iii) for all x P X,
ř

iPI φipxq “ 1.

Theorem A.1.3. Let X be a locally compact, Hausdorff, second countable
space, and let U be an open cover of X. Then a partition of unity subordi-
nate to U exists.

Morphisms and duality

Here we discuss a class of maps between locally compact, Hausdorff topological
spaces; these are the morphisms appropriate to our C˚-algebraic approach to
topology. We first need the one point compactification.

Definition A.1.4. Let X be a locally compact, Hausdorff, topological space.
The one point compactification of X is the topological space X` with underlying
set the disjoint union X` “ X \t8u of X with a ‘point at infinity’, and where
a subset U Ď X` is open if either:

(i) it is an open subset of X, or

(ii) its complement is a compact subset of X.

It is not difficult to check that the above definition makes X` a (Hausdorff),
compact space, which is second countable if X is. Moreover, the restriction of
the topology to the subset X is the original topology, and X is an open dense
subset. We note that X is compact if and only if t8u is an open set in X`, i.e.
if and only if 8 is an isolated point.

We think of X` as a pointed space, i.e. a topological space with a fixed
choice of basepoint, which in this case is 8. Recall that a map between pointed
spaces is itself pointed if it takes the basepoint to the basepoint.

Definition A.1.5. The category LC has objects locally compact, Hausdorff,
second countable, topological spaces (possibly empty). A morphism from X to
Y in LC is a continuous, pointed function f : X` Ñ Y `. Composition and
identities are defined using the usual composition of functions, and the usual
identity function.
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Remark A.1.6. In topology, one often considers the category whose objects
are pointed, compact, second countable, Hausdorff spaces pX,x0q, and whose
morphisms are continuous pointed maps f : X Ñ Y . This is equivalent to our
category LC via the functors defined on objects by

X ÞÑ pX`,8q, pX,x0q ÞÑ Xztx0u

and which leaves morphisms essentially unchanged. This uses the following fact,
which we leave as an exercise: if X is compact, then the one point compactifica-
tion of Xztx0u identifies as a pointed space with pX,x0q via a homeomorphism
which is the set theoretic identity on Xztx0u, and that takes 8 to x0. While
the category of compact pointed spaces is maybe more standard, we use the lan-
guage of Definition 6.4.1 instead as we are interested primarily in non-compact
spaces and it emphasises this aspect.

There is another useful description of morphisms in LC. First we have a
standard definition.

Definition A.1.7. A map f : X Ñ Y between topological spaces is proper if
for any compact K Ď Y , f´1pKq is compact in X.

Now, define a new category LC1 as follows. A morphism from X to Y in
LC1 is a choice of an open subset U in X (possibly empty, and possibly all of
X), together with a continuous and proper function f : U Ñ Y . We will write
f : pU Ď Xq Ñ Y for such a morphism. The composition of two morphisms
f : pU Ď Xq Ñ Y and g : pV Ď Y q Ñ Z is defined to be the morphism

f ˝ g : pf´1pV q X U Ď Xq Ñ Z

(the domain is allowed to be empty).

Proposition A.1.8. The categories LC and LC1 are canonically isomorphic,
via an isomorphism that is the identity on objects.

Proof. Let f : X` Ñ Y ` be a morphism in LC. To get a morphism in LC1, let
U “ f´1pY q, which is an open subset of X. Then the restriction f |U : U Ñ Y is
proper (it is important here that the codomain is Y and not Y `), and therefore
f |U : pU Ď Xq Ñ Y is a morphism in LC1. In the other direction, let f : pU Ď
Xq Ñ Y be a morphism in LC1. Continuity and properness of f imply that the
extension of f to X` defined by

x ÞÑ

"

fpxq x P U
8 x R U

is continuous, so gives a morphism in LC.
We leave it to the reader to check that these processes define mutually inverse

isomorphisms of categories.

As a consequence, note that proper continuous maps f : X Ñ Y canonically
define morphisms in LC, but that there are many others in general. An illustra-
tive and important example is given when U is an open subset of X. Then the
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identity map on U defines a morphism pU Ď Xq Ñ U in LC1; on the level of one
point compactifications, it corresponds to the map X` Ñ U` that collapses
everything in X`zU to the point at infinity in U`.

From the point of view of C˚-algebras, morphisms in LC1 (equivalently LC)
are the morphisms that are dual to ˚-homomorphisms between commutative C˚-
algebras. To make this precise, recall (see Definition 1.3.4) first that if A is a

commutative C˚-algebra, then its spectrum pA is the space of ˚-homomorphisms
φ : A Ñ C equipped with the topology of pointwise convergence. If A` is the

unitisation of such an A, then xA` canonically identifies with pA`. Let CC˚ denote
the category of separable, commutative C˚-algebras and ˚-homomorphisms. De-
fine a functor from CC˚ to LC by sending a C˚-algebra A to pA on the level of
objects, and a ˚-homomorphism φ : A Ñ B to the continuous map pB` Ñ pA`

defined by
x ÞÑ x ˝ φ`,

where φ` : A` Ñ B` is the canonical unital extension of φ. Define a functor
from LC to CC˚ by sending a space X to C0pXq, and a morphism f : pU Ď

Xq Ñ Y to the ˚-homomorphism C0pY q Ñ C0pXq defined by

a ÞÑ Ća ˝ f,

where Ća ˝ f is the extension of the function a ˝ f P C0pUq to all of X defined by
setting it equal to zero outside of U .

Here is an equivalent formulation of Theorem 1.3.14 from the main body of
the text.

Theorem A.1.9. The functors defined above give a contravariant equivalence
of categories between LC and CC˚.

Borel covers

We finish our general discussion of topological spaces with a technical lemma
that gets used many times in the main text. As usual, all topological spaces
considered are Hausdorff.

Lemma A.1.10. Let X be a locally compact, Hausdorff, second countable topo-
logical space, and let U be an open cover of X. Then there exists a countable
collection pEiqiPI of non-empty Borel subsets of X such that:

(i) the collection pEiq covers X;

(ii) for i ‰ j, Ei X Ej “ ∅;

(iii) each Ei is contained in some element of U ;

(iv) each Ei has compact closure;

(v) for any compact subset K of X, the set ti P I | Ei XK ‰ ∅u is finite;
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(vi) each Ei is contained in the closure of its interior.

In order to prove this, we quote a useful lemma about ‘shrinking’ covers; we
omit the standard proof, which can be found in many texts on general topology
(or makes a good exercise).

Lemma A.1.11. Let X be a locally compact, Hausdorff, second countable topo-
logical space, and let pUiqiPI be an open cover of X. Then there is an open cover
pViqiPI such that for each i P I, Vi Ď Ui.

Proof of Lemma A.1.10. Using local compactness, Hausdorffness, and second
countability, there is a countable open cover pAnq

8
n“1 of X such that each An

has compact closure, and is contained in some element of U . Use Lemma A.1.11
to produce an open cover pBnq of X such that Bn Ď An for all n. Define
C1 “ A1, and for each n ą 1 define

Cn :“ Anz
´

n´1
ď

k“1

Bk

¯

.

Induction shows that
Ťn
k“1 Ck “

Ťn
k“1Ak, and thus pCnq is an open cover of

X. Note that if K Ď X is compact, then K Ď
ŤN
n“1Bn for some N , and thus

Cn XK “ ∅ for all but finitely many n. Using Lemma A.1.11, produce a new
open cover pDnq such that Dn Ď Cn for all n; note that for any compact K Ď X,
K XDn “ ∅ for all but finitely many n.

Define now E1 “ D1 and for n ą 1 define

En :“ Dnz

´

n´1
ď

k“1

Dk

¯

.

Set I :“ tn P N | En ‰ ∅u. We claim that pEiqiPI has the right properties. First
note that each Ei is clearly Borel, and that

Ť8

n“1En “
Ť8

n“1Dn “ X, so pEiq
covers X giving property (i). Property (ii) is clear by construction. Properties
(iii) and (iv) follow from the corresponding properties of pAnq, and the fact that
each En is contained in An. Property (v) follows as the corresponding property
holds for the collection tDn | n P Nu.

Finally, for property (vi), we claim that

En Ď Dnz

´

n´1
ď

k“1

Dk

¯

.

As Dn is open, the set Dnz

´

Ťn´1
k“1 Dk

¯

is open, so contained in the interior of

En; the claim will thus complete the proof. Let then x be an element of En,
whence in particular x is in Dn, so there is a sequence pxjq in Dn that converges

to x. As x is not in
Ťn´1
k“1 Dk only finitely many elements of the sequence can be

in Dk for each k P t1, ..., n´ 1u; passing to a subsequence, we may thus assume

that pxjq is a sequence in Dnz

´

Ťn´1
k“1 Dk

¯

. Hence x is in the closure of this

latter set, which completes the proof.
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A.2 Group actions on topological spaces

In this section we will establish our conventions on group actions, and prove
some useful technical facts. If G is a group acting on a set X, and S, E are
subsets of G, X respectively then we write SE or S ¨ E for the (partial) orbit

SE :“ tgx | g P S, x P Eu

of E under S. If S “ tgu (respectively, E “ txu) is a singleton, this will be
abbreviated to gE or g ¨E (respectively, Sx or S ¨ x). The stabiliser of x P X is
defined to be tg P G | gx “ xu and is denoted Gx.

The following result, which follows directly from Theorem A.1.9, gets used
all the time in the main text.

Proposition A.2.1. Say G acts by homeomorphisms on a locally compact,
Hausdorff space X. Then the formula

pαgpfqqpxq :“ fpg´1xq

defines an action α of G by ˚-automorphisms on C0pXq. Moreover, every action
of G on C0pXq by ˚-automorphisms arises in this way from a unique action on
X.

For the rest of this section, we will work only with proper actions as in the
next definition.

Definition A.2.2. Let G be a countable discrete group acting by homeomor-
phisms on a locally compact, Hausdorff, second countable space X. The action
is proper if for any compact subset K of X the set

tg P G | gK XK ‰ ∅u

is finite.

The following example is worth bearing in mind, partly for intuition.

Example A.2.3. Any action of a finite group is proper.

Proper actions share many good properties with actions of finite groups.
This is illustrated by the next two lemmas.

Lemma A.2.4. Let G act properly on a locally compact, Hausdorff, second
countable space X, and let K Ď X be compact. Then GK is closed.

Proof. Let z be in the closure of GK, and say pgnxnq is a sequence in GK
converging to z. Let U be an open neighbourhood of z with compact closure,
and note that

tgn P G | gnxn P Uu Ď tg P G | gK X U ‰ ∅u
Ď tg P G | gpK Y Uq X pK Y Uq ‰ ∅u;

the last set appearing above is finite by properness, whence the first is too.
Hence passing to a subsequence, we may assume that there is g P G with gn “ g
for all n. It follows that gxn P gK for all n, whence z P gK as this set is
closed.
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Lemma A.2.5. Let G act properly on a locally compact, Hausdorff, second
countable space X. Then when equipped with the quotient topology, X{G is
locally compact, Hausdorff, and second countable.

Proof. Local compactness and second countability always pass to quotient spaces;
we leave the direct checks to the reader. For the Hausdorff property, let x, y
be distinct points in X{G with lifts x, y P X. We must show that there are
disjoint, G-invariant, open sets containing x and y.

From Lemma A.2.4, Gy is closed. As x is in the open set XzGy, local
compactness gives us an open set V Q x with compact closure, and which satisfies
V Ď XzGy. As XzGy is G-invariant, this last inclusion implies that GV Ď

XzGy. As V is compact, GV is closed by Lemma A.2.4. Hence GV and XzGV
are open, disjoint, G-invariant sets containing x, y respectively.

Example A.2.6. Let F be a finite subgroup of G, and let Y be a topological
space on which F acts by homeomorphisms. Then the balanced product of G
and Y over F , denoted G ˆF Y , is the quotient of G ˆ Y by the diagonal F
action defined by

f ¨ pg, yq “ pgf´1, fyq, f P F, g P G, y P Y.

The space Gˆ Y is equipped with the product topology, and GˆF Y with the
quotient topology. Note that if the original topology on Y is locally compact,
second countable and Hausdorff, thenGˆFY has these properties too by Lemma
A.2.5, and the fact that any action of a finite group is always proper. Write
rg, ys for the image of pg, yq P Gˆ Y in GˆF Y .

The formula
g ¨ ph, yq “ pgh, yq,

defines an action of G on Gˆ Y , which clearly passes to the quotient GˆF Y .
This action is proper: this follows as for any compact K Ď G ˆF Y there is a
finite subset S of G such that K is covered by trg, ys P GˆF Y | g P Su.

Any proper action is locally built from balanced products: this is the content
of the next lemma.

Lemma A.2.7. Let G be a discrete group acting properly by homeomorphisms
on a Hausdorff, locally compact, second countable space X. Let x be a point in
X, Gx ď G be the stabiliser of x, and let U be an open subset of X containing
x. Then there is an open Gx-invariant set V Q x with compact closure such that
the map

φ : GˆGx V Ñ G ¨ V , rg, ys ÞÑ gy

is a well-defined, equivariant homeomorphism onto its image.

Proof. Local compactness gives us an open set W1 Q x with compact closure,
and which satisfies W1 Ď U . Set

S :“ tg P G | gW1 XW1 ‰ ∅u,
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which is finite by properness of the action. As X is Hausdorff there is open
W2 Q x such that W2 ĎW1, and such that W2 X S

´1x “ txu. Define

W3 :“W2z

´

ď

gPSzGx

gW2

¯

,

an open subset of W2. We claim that x P W3. Indeed, if x P gW2 for some
g P S, then g´1x P S´1x XW2 “ txu by choice of W2, whence g´1 P Gx by
choice of W2, and so g P Gx; this implies that x is contained in W3.

Choose now W4 Q x to be any open set such that W4 Ď W3. We claim that
gW4 XW4 “ ∅ for g R Gx. Indeed, as W4 is contained in W1, gW4 XW4 “ ∅ if
g R S by definition of S. On the other hand, as W4 Ď W3, gW4 XW4 “ ∅ for
g P SzGx.

Finally, define V :“
Ş

gPGx
gW4. We claim this V has the right properties.

Indeed, note first that V is an open Gx-invariant neighbourhood of x, it is
contained in U , it has compact closure, and for all g R Gx, gV X V “ ∅ (as
follows from the analogous property for W4). Moreover, the map φ from the
statement is clearly well-defined and continuous. To complete the proof, we will
construct a continuous inverse map to φ.

Provisionally define

ψ : G ¨ V Ñ GˆGx V , gy ÞÑ rg, ys, g P G, y P V .

To see that this is well-defined, note that if gy “ hz for g, h P G and y, z P V ,
then h´1gy “ z P h´1gV X V , whence h´1g P Gx. Hence by definition of
GˆGx V ,

rh, zs “ rhh´1g, g´1hzs “ rg, ys

as required. To see that ψ is continuous, say pxnq is a sequence in GV converging
to some x P GV . For definiteness, say that x P gV for some g P G. Note that as
the action is proper, the set tn P N | xn P hV u must be infinite for some h P G;
moreover, as gV and hV are either disjoint or equal for all g, h P G the only
h P G for which this is possible is h “ g. Hence on throwing out finitely many
elements from our sequence, we may assume that xn is in gV for all n. Set now
yn “ g´1xn and y “ g´1x, which are elements of V with yn Ñ y as n Ñ 8.
Then

ψpxnq “ rg, yns Ñ rg, ys “ ψpxq as nÑ8,

establishing continuity. As φ and ψ are clearly mutual inverses, this completes
the proof.

Corollary A.2.8. Let G act properly on a locally compact, Hausdorff, second
countable space X. Let U be an equivariant cover of X, meaning that for all
U P U and g P G, gU is also in U . Then there exists a partition of unity pφiqiPI
on X that is invariant1 under the G action on functions on X, and such that
each φi is supported in some element of U .

1More precisely, we mean that for each i there exists j such that gφi “ φj , not that for
each i, gφi “ φi; in other words, the set tφi | i P Iu is invariant under the action, but it will
not in general be true that each φi is fixed by G.

458



Proof. Using the previous lemma, we may assume on refining that each U has
the properties stated there (do this one orbit at a time). If π : X Ñ X{G is
the quotient map, then tπpUq | U P Uu is an open cover of X{G. The required
partition of unity on X can now be constructed by taking a partition of unity
as in Theorem A.1.3 on X{G for this new cover, and using the structure coming
from Lemma A.2.7 to pull back.

The following technical result provides a Borel decomposition of a metric
space equipped with a proper action: it is an equivariant version of Lemma
A.1.10, and is similarly important for us.

Lemma A.2.9. Let G be a countable discrete group acting properly on a locally
compact, Hausdorff, second countable space X. Let U be an open cover of X.
Then there exists a countable collection pEiqiPI of non-empty Borel subsets of
X such that:

(i) the collection pGEiqiPI covers X;

(ii) for i ‰ j, GEi XGEj “ ∅;

(iii) each Ei is contained in some element of U ;

(iv) each Ei has compact closure;

(v) for any compact subset K of X, the set ti P I | Ei XK ‰ ∅u is finite;

(vi) each Ei is contained in the closure of its interior;

(vii) for each i there is a finite subgroup Fi ď G such that Ei is Fi invariant
and such that the function

φ : GˆFi Ei Ñ GEi, rg, xs ÞÑ gx

is an equivariant homeomorphism.

Proof. For each x P X, choose an open set Vx Q x with the properties in Lemma
A.2.7, and that is contained in some U P U . Note that the quotient map
π : X Ñ X{G is open, and consider the open cover V :“ tπpVxq | x P Xu of
X{G. As X{G is Hausdorff, second countable, and locally compact, Lemma
A.2.5 gives a Borel cover pEi,X{GqiPI of X{G with the properties in Lemma
A.1.10 with respect to the open cover V. For each i, choose xpiq such that
Ei,X{G Ď πpVxpiqq, and define Ei “ π´1pEi,X{Gq X Vxpiq. We claim that the
collection pEiqiPI of Borel subsets of X has the right properties.

Note first that

GEi “ GpVxpiq X π
´1pEi,X{Gqq “ GVxpiq X π

´1pEi,X{Gq “ π´1pEi,X{Gq. (A.1)

Hence (i), (ii), and (v) follow from the corresponding properties of pEi,X{Gq. On
the other hand, (iii) and (iv) follow as each Vx is contained in some element of
U , and also has compact closure. For property (vii), let Fi be the stabilizer of xi,
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and note that Ei is Fi invariant as it is the intersection of Vxpiq and π´1pEi,X{Gq,
and both of these sets are Fi invariant. Moreover, as Vxpiq satisfies the conditions
in Lemma A.2.7, there is a homeomorphism

φ : GˆFi Vxpiq Ñ GVxpiq, rg, xs ÞÑ gx;

the homeomorphism required by (vii) is then just the restriction of this to GˆFi
Ei.

Finally, we must show property (vi). Write Y ˝ for the interior of a set Y .
Let x be a point in Ei. As πpEiq Ď Ei,X{G, and as E˝i,X{G is dense in Ei,X{G,

there is a sequence pynq
8
n“1 in E˝i,X{G converging to πpxq. As πpVxpiqq Ě Ei,X{G

by line (A.1) above, we may assume that there is a sequence pxnq in Vxpiq such
that πpxnq “ yn for all n. Note that each xn is in Vxpiq X π´1pE˝i,X{Gq, which

is an open subset of Ei. Hence pxnq is a sequence in E˝i . As Ei has compact
closure, we may assume on passing to a subsequence that pxnq converges to
some z P Ei. We must then have that πpxq “ πpzq, and thus there is g P G such
that gz “ x. Using part (vii), this is impossible unless g P Fi. On the other
hand, as Fi preserves Ei, it preserves E˝i . This shows that pgxnq is a sequence
in E˝i converging to x, so x is in the closure of E˝i as required.

A.3 Coarse geometry

In this section we set up conventions on the large-scale, or coarse structure, of
an appropriate space.

Proper metric spaces

We will allow metrics to take infinite distances. As this is non-standard, we give
the precise definition for the readers’ convenience.

Definition A.3.1. Let X be a set. A metric on X is a function d : X ˆX Ñ

r0,8s such that for all x, y, z P X,:

(i) dpx, yq “ 0 if and only if x “ y;

(ii) dpx, yq “ dpy, xq;

(iii) dpx, yq ď dpx, zq ` dpz, yq (where we adopt the usual conventions that
8` t “ t`8 “ 8 and t ď 8 for all t P r0,8s).

A set X equipped with a metric is called a metric space.

We will use the notation Bpx; rq, or occasionally Bdpx; rq or BXpx; rq if it
helps to clarify what is going on, for open balls, i.e.

Bpx; rq :“ ty P X | dpx, yq ă ru.

These balls generate a topology in the usual way (it makes no difference whether
or not the metric is finite-valued). We will use other metric terminology in
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standard ways: for example, a subset K of X is bounded if it is contained in a
ball of finite radius; the diameter of a subset A Ď X is diampAq :“ suptdpx, yq |
x, y P Au; an isometry is a function f : X Ñ Y such that dpfpx1q, fpx2qq “

dXpx1, x2q for all x1, x2 P X, and so on.
There are some slight differences in the theory between metric spaces where

one allows infinite distances and the usual case. Perhaps the oddest is that
compact sets need no longer be bounded. Fortunately, one at least has the
following.

Lemma A.3.2. Any compact subset of a metric space is a finite union of
bounded sets.

Proof. If K Ď X, the open cover tBpx; 1q | x P Ku of K has a finite subcover.

For the purposes of coarse geometry, we will almost exclusively be interested
in proper metric spaces as in the next definition.

Definition A.3.3. A metric space is proper if every closed bounded set is
compact.

For example, a finite dimensional Euclidean space is a proper metric space,
but an infinite dimensional Hilbert space is not. Note that a closed subset of a
proper metric space is itself a proper metric space with the induced metric, but
that an open subset typically will not be a proper metric space.

Geodesic spaces as in the next definition are an important source of examples
of proper metric spaces.

Definition A.3.4. Let X be a metric space. Let γ be a path in X, meaning
that γ is a continuous function from r0, 1s to X. The length of γ is

Lpγq :“ sup
!

n
ÿ

i“1

dpγpti´1q, γptiqq
ˇ

ˇ

ˇ
n P N, 0 “ t0 ď ¨ ¨ ¨ ď tn “ 1

)

(note that Lpγq can be infinite). The space X is a length space if for all x, y P X
we have

dpx, yq “ inftLpγq | γ : r0, 1s Ñ X a path with γp0q “ x, γp1q “ yu,

where we assume that infp∅q “ 8, i.e. dpx, yq “ 8 if no path between x
and y exists. The space X is a geodesic space if this infimum is attained (not
necessarily uniquely).

Remark A.3.5. If X is a length space that is not path connected (for instance,
a Riemannian manifold with more than one connected component), then there
will be points at distance infinity from each other. This sort of example is one
of our main reasons for allowing infinite distances.

The following is a version of the classical Hopf-Rinow theorem for general
metric spaces; see the notes and references at the end for a proof.
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Theorem A.3.6. Let pX, dq be a length space, which is locally compact and
complete. Then X is a proper, geodesic space.

In particular (this is the classical case), if X is a Riemannian manifold, then
the metric it inherits from the Riemannian structure always makes it a length
space. Thus if X is complete, then its metric is proper in the sense of Definition
A.3.3 above.

Remark A.3.7. There is an abstract notion of coarse structure on a topological
space X defined as follows. A coarse structure on X (that is compatible with
the topology) consists of a collection of controlled sets E Ď X ˆ X satisfying
the following conditions:

(i) the collection of controlled sets is closed under finite unions, subsets, in-
verses2, and compositions3;

(ii) there is an open set U Ď X ˆX that is controlled, and that contains the
diagonal;

(iii) for all controlled sets E, the slice Ex :“ ty P X | px, yq P Eu has compact
closure.

The key examples of coarse structures come from proper metric spaces: one
defines the controlled sets to be those on which the restriction of the metric
is finite-valued. Much of what we do in this book could be carried out in the
settings of abstract coarse structures, and the extra generality is sometimes
useful.

However, for intuition, and as we did not have any important examples to
apply the more general theory to, it seemed better to us to stick to proper metric
spaces. The following metrizability theorem of Wright also says that one does
not really lose any generality by keeping to the case of proper metric spaces.

Theorem A.3.8. Let X be a second countable, locally compact, Hausdorff topo-
logical space, equipped with a countably generated4 compatible coarse structure.
Then there is a proper metric on X that induces both the topology and the coarse
structure.

Morphisms and the coarse category

We now turn our attention to functions between (proper) metric spaces.

Definition A.3.9. Let X and Y be metric spaces. For a map f : X Ñ Y and
x P X, the expansion function of f at x is the function ωf,x : r0,8q Ñ r0,8s
defined by

ωf,xprq “ suptdY pfpx1q, fpxqq | dXpx1, xq ď ru.

2For E Ď X ˆX, the inverse of E is E´1 :“ tpy, xq P X ˆX | px, yq P Eu.
3For E,F Ď X ˆX, the composition of E and F is E ˝F :“ tpx, zq P X ˆX | there is y P

X with px, yq P E and py, zq P F u.
4i.e. there is a countable collection of controlled sets such that the given coarse structure

is the intersection of all coarse structures that contain these sets.
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The (global) expansion function of f is the function ωf : r0,8q Ñ r0,8s defined
by

ωf prq “ sup
xPX

ωf,rpxq P r0,8s.

A map f : X Ñ Y is uniformly expansive if for all r P r0,8q, ωf prq is finite,
and is proper if for all compact subsets K of Y , f´1pKq has compact closure in
X. The map f is coarse if it is both uniformly expansive and proper.

Two maps f, g : X Ñ Y are close if there exists a constant c ě 0 such that

dY pfpxq, gpxqq ď c

for all x P X. A coarse map f : X Ñ Y is called a coarse equivalence if there
exists a coarse map g : Y Ñ X such that f ˝g and g˝f are close to the identities
on Y , X respectively

The coarse category , denoted Coa, is defined to have as objects all proper
metric spaces, and as morphisms all closeness classes of coarse maps5. Note
that the isomorphisms in Coa are exactly the coarse equivalences.

The next lemma says that one can replace any object in Coa with a metric
space in a way that destroys all the local structure; it is both psychologically
and technically useful. First, we need a definition.

Definition A.3.10. Let X be a metric space and r P p0,8q. A subset Z of X
is r-separated if for all x, y P Z, dpx, yq ě r.

A net in X is a subset Z Ď X such that there is there is r P p0,8q with the
properties that:

(i) Z is r-separated;

(ii) for any x P X there is z P Z with dpx, zq ă r.

If we need to specify the constant, we will say that Z is an r-net .

Lemma A.3.11. For any r P p0,8q, any proper metric space admits an r-net.
Moreover, the metric on a proper metric space restricts to a proper metric on
any net, and the inclusion map i : Z Ñ X is a coarse equivalence.

Proof. Let r P p0,8q. Zorn’s lemma implies that there exists a maximal r-
separated subset Z of X. This is an r-net, as maximality implies that every
x P X must be within r of some point of Z.

Let now Z be any r-net in X. As Z is r-separated, it is closed, which implies
that the restriction of the metric on X to Z is proper. It remains to show that
i : Z Ñ X is a coarse equivalence. We may define a map p : X Ñ Z by sending
each x P X to some point ppxq P Z such that dpx, ppxqq ď r. Properness of p
follows from the fact that any compact subset of X must have finite intersection

5For this to be well-defined one needs to check that closeness is an equivalence relation,
and that properties such as ‘if f is close to g, then f ˝h is close to g ˝h’ hold for coarse maps;
we leave it to the reader to check that this does all work.
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with Z, and the estimate ωppsq ď s ` 2r then shows that p is coarse. Finally,
note that for all x P X and z P Z

dpx, ipppxqqq ď r and dpy, ppipyqqq ď r,

i.e. both compositions p˝ i and i˝p are close to the identity, whence i is a coarse
equivalence.

We conclude our discussion of morphisms with a useful lemma with a similar
proof to the above.

Lemma A.3.12. Let f : X Ñ Y be a coarse map between proper metric spaces.
Then there exists a Borel coarse map g : X Ñ Y which is close to f .

Note that this says in particular that any morphism in Coa is represented
by a Borel map.

Proof. Let r P p0,8q, and apply Lemma A.3.12 to the open cover tBpx; rq |
x P Xu of X to get a Borel cover pEiqiPI with the properties in that lemma.
For each i P I, choose a point xi in the interior of Ei, and let Z be the subset
txi P X | i P Iu of X. As the interiors of the sets Ei are all disjoint, the set Z
is discrete. Let f |Z : Z Ñ Y be the map defined by restricting f to Z; this is
continuous as Z is discrete.

Define a map p : X Ñ Z by sending all points in each Ei to xi; this is Borel
as all the sets Ei are Borel. Finally, define g : X Ñ Y to be the composition
f |Z ˝ p. This is a composition of Borel maps, so Borel. Say x P X is in Ei for
some i, whence ppxq is in the same Ei, and so

dpfpxq, gpxqq “ dpfpxq, fpppxqqq ď ωf pdiampEiqq ď ωf p2rq.

Hence f and g are close, which also implies that g is coarse and thus completes
the proof.

Coarse geometry of groups and group actions

We now look at groups acting on proper metric spaces, and at groups as proper
metric spaces in their own right.

The next lemma says that any countable discrete group can be thought of
as a proper metric space, up to canonical coarse equivalence.

Lemma A.3.13. Let G be a countable discrete group. Then there exists a proper
metric d on G, which is in addition left invariant, meaning that dpgh, gkq “
dph, kq for all g, h, k P G.

Moreover, if d1, d are any two metrics satisfying these conditions, then the
identity map on G is a coarse equivalence from pG, dq to pG, d1q.

Proof. Set g0 “ e, and let g0, g1, g2, ... be an ordered list of elements of G such
that exactly one element from each set of the form tg, g´1u, g P G, occurs.
Define a length function l : GÑ N by

lpgq “ minta1n1 ` a2n2 ` ¨ ¨ ¨ ` aknk | g “ g˘a1
n1

¨ ¨ ¨ g˘aknk
, ni, ai P Nu.
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This function has the properties that lpgq “ 0 if and only if g “ e, lpgq “ lpg´1q,
and the set

tg P G | lpgq ď ru

is finite for all r P r0,8q; we leave the checks of these properties to the reader.
Define a metric on G by the formula

dpg, hq “ lpg´1hq;

the properties of l imply that this is a proper metric, and it is clearly left-
invariant.

To show the uniqueness statement, let d, d1 be two proper left invariant
metrics on G. It suffices to show that the identity map id : pG, dq Ñ pG, d1q is a
coarse map. As it is clearly proper, it suffices to consider its expansion function
ωid. Define lpgq “ dpe, gq and l1pgq “ d1pe, gq, which are length functions with
the properties listed above. Then

ωidprq “ suptd1pg, hq | dpg, hq ď ru “ suptd1pe, g´1hq | dpe, g´1hq ď ru

“ suptl1pg´1hq | lpg´1hq ď ru,

which is the supremum over a finite set, so bounded.

We now look at isometric group actions on proper metric spaces, i.e. actions
such that for all x, y P X and g P G, dpgx, gyq “ dpx, yq. We will assume also
that the actions are proper in the sense of Definition A.2.2 above: recall this
means that for any compact subset K of the space,

tg P G | gK XK ‰ ∅u

is finite. Note that a countable group G equipped with a metric d as in Lemma
A.3.13 is a proper metric space, and the left translation of G on itself is a proper
action by isometries.

Say now that an action of G on a proper metric space is cobounded if there is
a bounded subset B Ď X such that GB “ X. The following lemma is a version
of the Svarc-Milnor lemma, a fundamental result in the subject of geometric
group theory. For the statement, if G acts on X, then an orbit map is any
function GÑ X of the form g ÞÑ gx for some fixed x P X. Note that any orbit
map is equivariant.

Lemma A.3.14. Let X be a proper metric space equipped with a proper, cobounded
action of a countable discrete group G by isometric homeomorphisms. Equip G
with a metric as in Lemma A.3.13. Then any orbit map G Ñ X is a coarse
equivalence, and any two such orbit maps are close.

Proof. Let f : GÑ X be any orbit map, so fpgq “ gx for some fixed x P X and
all g P G. Note that for any compact K Ď Y ,

f´1pKq “ tg P G | gy P Ku Ď tg P G | gpK Y tyuq X pK Y tyuq ‰ ∅u,
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which is finite by properness of the G-action on Y . Hence f is a proper function.
Moreover, for any r ě 0

ωf prq “ suptdY pgy, hyq | dGpg, hq ď ru

“ suptdY py, g
´1hyq | dGpe, g

´1hq ď ru

“ suptdY py, gyq | dGpe, gq ď ru,

which is the supremum over a finite set, so finite. We have thus shown that f
is a coarse map.

Note now that as the G action on Y is cobounded, there exists c ě 0 such
that dY px,Gyq ď c for all x P Y . Define a map p : Y Ñ G by setting ppxq to
be equal to any g P G which minimises tdY px, gyq | g P Gu (this makes sense
as Gy X Bpx; cq is finite for any x P Y ). We claim that p is coarse. Indeed, it
is proper as for any compact (i.e. finite) subset K of G, p´1pKq is contained
in

Ť

gPK Bpgy; cq, which has compact closure by properness of the metric on Y .
On the other hand, for any r ě 0,

ωpprq “ suptdGpppy1q, ppy2qq | dY py1, y2q ď ru

ď suptdGpg, hq | dY pgy, hyq ď r ` 2cu

ď suptdGpe, gh
´1q | dY py, g

´1hq ď r ` 2cu

ď suptdGpe, gq | dY py, gyq ď r ` 2cu.

We have that

tg P G | dY py, gyq ď r ` 2cu Ď tg P G | gBpy; r ` 2cq XBpy; r ` 2cq ‰ ∅u,

which is finite by properness of the action and of dY . Hence the supremum
suptdGpe, gq | dY py, gyq ď r ` 2cu is over a finite set, so finite; this completes
the argument that p is coarse.

We now show that f ˝p and p˝f are close to the identity, which will complete
the proof that f is a coarse equivalence. For f ˝ p, note that for any x P Y and
g P G, dY px, fpppxqqq ď c. For p ˝ f , note that for any g P G, ppfpgqq “ ppgyq,
which by definition of p, is equal to some h P G such that dY phy, gyq “ 0 (this
need not force h “ g). Similarly to earlier arguments, note that we have

tdGpg, hq | dY phy, gyqu “ tdGpe, gq | dY py, gyq “ 0u,

which is a finite set. Hence it is bounded by some M ą 0 (independent of g and
h). We thus have that dGpg, ppfpgqqq ďM for all g P G.

Finally, to see that any two orbit inclusions are close, let x, y P X. Then
for any g P X, as the action is by isometries, dpgx, gyq “ dpx, yq. As this is
independent of g, we are done.

Corollary A.3.15. Let X and Y be proper metric spaces, equipped with proper
cobounded actions of a countable group G by isometric homeomorphisms. Then
any equivariant map f : X Ñ Y is a coarse equivalence.
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Proof. Let i : GÑ X be any orbit inclusion map i : g ÞÑ gx. Then the diagram

G
i //

f˝i   

X

f

��
Y

commutes. Moreover, i and f ˝ i are coarse equivalences by Lemma A.3.14, so
f is too.

The following category is the one we will use when considering coarse topo-
logical spaces equipped with G actions.

Definition A.3.16. Let G be a countable discrete group. Let CoaG be the
category with objects given by proper metric spaces, equipped with a proper
action ofG by isometries. Morphisms in CoaG are closeness classes of equivariant
coarse maps. We call CoaG the (G-)equivariant coarse category .

The following class of examples is important for applications to topology
and geometry.

Example A.3.17. Let M be a closed Riemannian manifold. Let ĂM be its uni-
versal cover with the lifted Riemannian metric. This is a proper metric space
by Example A.3.4 above. Let G be the fundamental group of M , which acts
properly on ĂM by isometries for this metric. Thus ĂM is naturally an object
of CoaG. Moreover, it is isomorphic to G itself via any orbit map g ÞÑ gx by
Lemma A.3.14.

Finally, we give a technical lemma. The proof is essentially the same as that
of Lemma A.3.12, using Lemma A.2.9 in place of Lemma A.1.10 as appropriate.

Lemma A.3.18. Let f : X Ñ Y be a coarse equivariant map between proper
metric spaces, equipped with isometric and proper actions of a countable discrete
group G. Then there exists an equivariant Borel coarse map g : X Ñ Y which
is close to f .

Bounded geometry

In the last part of this section, we consider a particularly well-behaved class of
discrete metric spaces.

Definition A.3.19. A metric space X has bounded geometry if for all r P p0,8q
there is nr P N such that Bdpx; rq has cardinality at most nr.

Note that a bounded geometry metric space is proper and discrete. One of
the most important classes of examples is as follows.

Example A.3.20. A countable discrete group with a proper left invariant metric
as in Lemma A.3.13 is a bounded geometry metric space. This follows directly
from the proof of Lemma A.3.13. As a consequence, if X is a proper metric
space with a cobounded, proper, isometric action of a countable group, then
one can deduce from Lemma A.3.14 that bounded geometry nets exist in X.
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The following example takes much more work, but is also an important class
to bear in mind for readers interested in Riemannian geometry.

Example A.3.21. Say X is a complete, connected Riemannian manifold, with
injectivity radius bounded away from zero, and all sectional curvatures in some
bounded interval r´M,M s. For example, these assumptions are satisfied by the
universal cover of any closed Riemannian manifold (equipped with the lifted
metric).

Then any net in X is a bounded geometry metric space in the sense of
Definition A.3.19. Indeed, say Z is an r-net in X for some r P p0,8q. Then the
assumptions plus some comparison results from Riemannian geometry imply
the following:

(i) there is v ą 0 such that the volume of each ball BXpz; r{2q is at least v
(this uses the lower bound on the injectivity radius, and the upper bound
on sectional curvature);

(ii) for each s ą 0 there is V psq P p0,8q such that for all x P X, the volume of
BXpx; sq is at most V psq (this uses the lower bound on sectional curvature,
although actually a lower bound on Ricci curvature suffices).

Now, say the cardinality of BZpz0; sq is N for some N P N and z0 P Z (the
cardinality must be finite, as Z is discrete and the ball BXpz0; sq has compact
closure by properness of X as in Example A.3.4). We need to find a bound for
N depending only on s (and the fixed constant r). Note that the collection of
balls tBXpz; r{2q | z P BZpz0; squ is disjoint, and moreover that

ğ

zPBZpz0;sq

BXpz; r{2q Ď BXps0; s` r{2q.

Taking volumes of both sides gives Nv ď V ps`r{2q, and thus N ď V ps`r{2q{v,
completing the argument.

A.4 Exercises

A.4.1. Show that if X is a proper, geodesic metric space, then any uniformly
continuous, proper map f : X Ñ Y is coarse. Show that this fails if f is only
assumed continuous and proper.

A.4.2. Show that a proper action of a torsion free group on a locally compact
(Hausdorff) space is free.

A.4.3. Let X and Y be proper metric spaces. A coarse map f : X Ñ Y is called
a coarse embedding if there exist nondecreasing functions α˘ : r0,8q Ñ r0,8q
such that α´ptq Ñ 8 as tÑ8 and

α´pdXpx1, x2qq ď dY pfpx1q, fpx2qq ď α`pdXpx1, x2qq.

A coarse map f : X Ñ Y is called a coarse surjection if there exists a constant
c ě 0 such that dY py, fpXqq ď c for all y P Y .
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(i) Show that a map f : X Ñ Y is a coarse equivalence if and only if it is a
coarse embedding and a coarse surjection.

(ii) A morphism f in an abstract category is a monomorphism if for all mor-
phisms g, h, f ˝ g “ f ˝ h ñ g “ h, and similarly f is an epimorphism
if g ˝ f “ h ˝ f ñ g “ h. Show that a coarse map f : X Ñ Y is a
monomorphism in Coa if and only if it is a coarse embedding, and is an
epimorphism in Coa if and only if it is a coarse surjection.

A.4.4. Show that if X and Y are length spaces, then any coarse equivalence
f : X Ñ Y is automatically a quasi-isometry : there exist constants r ą 0 and
s, c ě 0 such that

r´1dXpx1, x2q ´ s ď dY pfpx1q, fpx2qq ď rdXpx1, x2q ` s

and for all y P Y , dpy, fpXqq ď c.

A.4.5. Lemma A.2.5 states that quotient spaces by proper actions (on reasonable
spaces) are Hausdorff. This can fail badly in general, as the following example
shows. Let Z act on S1 by n : z ÞÑ e2πinθz for θ an irrational number in
p0, 1q. Show that the quotient space S1{Z is uncountable, but has the indiscrete
topology (i.e. the only open sets in the quotient are the whole thing and the
empty set).

A.5 Notes and references

The book of Munkres [188] (for example) contains proofs of the general topol-
ogy results that we cited: Theorem A.1.1, Theorem A.1.3, and Lemma A.1.11
follow from [188, Theorem 34.1] (plus that locally compact, Hausdorff spaces
are regular, which is [188, Exercise 3 in Section 32]), [188, Lemma 41.6], and
[188, Theorem 41.7] respectively (the latter two results also need that locally
compact, second countable, Hausdorff spaces are paracompact, which follows
from [188, Theorem 34.1 and Theorem 41.4]).

A proof of the Hopf-Rinow theorem as stated in Theorem A.3.6 can be
found for example in [38, Section I.3], together with a discussion of the history.
The book [38] also contains a great deal of other information about length
spaces and metric geometry more generally: see for example [38, Section I.7]
for a discussion of simplicial (and more general polyhedral) complexes as length
spaces. One can also find a different version of the Svarc-Milnor lemma, and
some historical references in [38, Section I.8].

The notion of an abstract coarse structure is due to Roe: see for example
[218, Chapter 2]. Wright’s ‘coarse metrizability theorem’ stated as Theorem
A.3.8 above, is proved in [263]. Coarse structure is more general than our
notion of proper metric space, and almost all the work in this book could have
been done in that language. Nonetheless, all the examples we are interested
in are in the narrower class of proper metric spaces as long as one is allowed
infinite distances; we thus preferred to keep to this language as it seems more
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intuitive for most purposes. For readers interested in the set up of the coarse
Baum-Connes conjecture (amongst other things) for abstract coarse structures,
a good reference is Wright’s thesis [262, Chapter 5].

The facts from Riemannian geometry that are quoted in Example A.3.21
can be derived (for example) from [30, Theorem 103] and [30, Theorem 107] in
Berger’s survey of Riemannian geometry; this book is recommended in general
as a source of information and inspiration on Riemannian geometry.
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Appendix B

Categories of topological
spaces and homology
theories

In this appendix, Section B.1 summarises the categories of topological spaces
that we work with in the main part of the text. We then briefly discuss a
collection of axioms for a generalised homology theory in Section B.2: this is
not used in a substantial way in the main text, but we thought it might be useful
to show how K-homology fits into the sort of general framework commonly used
in algebraic topology.

B.1 Categories that we work with

In this section, we will define the various categories of spaces that get used
in the main text. For a locally compact, Hausdorff space X, X` denotes its
one point compactification as in Definition A.1.4 above. We think of X` as a
pointed space with basepoint 8; in particular a pointed map f : X` Ñ Y ` is
by definition a function from X` to Y ` that takes the point at infinity in X`

to the point at infinity in Y `.

Definition B.1.1. (i) LC. Objects: locally compact, second countable, Hau-
dorff topological spaces.
Morphisms from X to Y : continuous, pointed maps f : X` Ñ Y `.

(ii) Cont. Objects: locally compact, second countable, Hausdorff topological
spaces.
Morphisms from X to Y : continuous functions f : X Ñ Y .

(iii) Pro. Objects: proper (see Definition A.3.3) metric spaces.
Morphisms from X to Y : continuous, coarse functions f : X Ñ Y .

471



(iv) Coa. Objects: proper (see Definition A.3.3) metric spaces..
Morphisms: closeness classes of coarse functions f : X Ñ Y .

(v) G. For any of the above four categories, we allow a variant with super-
script G; this means that a fixed countable discrete group G acts properly
by homeomorphisms (by isometries in the metric cases) on all objects1,
and that all morphisms are assumed equivariant.

(vi) GA. Objects: Z{2-graded abelian groups.
Morphisms from A to B: graded group homomorphisms.

Note that there is a canonical functor Pro Ñ LC defined by forgetting the
metric structure, and extending a (proper, continuous) function f : X Ñ Y to a
(pointed, continuous) function f : X` Ñ Y `. In particular, a homology theory
on LC in the sense of the next section defines one on Pro in a natural way
by compositing with the functor Pro Ñ LC. There is also a canonical functor
from Pro to Coa, defined by sending a function f : X Ñ Y to its closeness
equivalence class.

B.2 Homology theories on LC
For us, a Z{2-graded2 homology theory on LC is a functor from LC to GA
satisfying certain axioms. To make this precise, we start with what it means for
two morphisms to be homotopic.

Definition B.2.1. A homotopy between two morphisms f0, f1 from X to Y in
LC (i.e. pointed functions f0, f1 : X` Ñ Y `) is a morphism h from X ˆ r0, 1s
to Y (i.e. a pointed function h : pX ˆ r0, 1sq` Ñ Y `) from X ˆ r0, 1s to Y such
that the restriction of h to pXˆtiuq` identifies with fi for i “ 0, 1; we say f0, f1

are homotopic if such an h exists.
Two spaces X and Y in LC are homotopy equivalent if there are morphisms

f from X to Y and g from Y to X such that the compositions f ˝ g, g ˝ f are
homotopic to the identity morphisms on X, Y respectively.

A space X is contractible in LC if it is homotopy equivalent to the empty
set.

In other words, a space X is contractible if X` admits a deformation re-
traction to the basepoint 8 in the usual sense of homotopy theory. Thus for
example any space of the form X ˆ r0,8q is contractible in this sense.

Definition B.2.2. A (Steenrod3) homology theory on LC is a functor H : LC Ñ
GA, written H “ H0 ‘H1, such that the following conditions hold.

1Meaning on the object X in the LC case, not on X`. Note that such an action extends
to an action on X`. The extended action fixes 8, and so is never proper if G is infinite

2Essentially the same definition applies in the Z-graded case: just replace six-term exact
sequences with long exact sequences.

3The qualifier ‘Steenrod’ means that the cluster axiom is included.
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(i) Empty set : Hp∅q “ 0.

(ii) Homotopy invariance: if f, g are homotopic, then Hpfq “ Hpgq.

(iii) Mayer-Vietoris sequences: if E, F are closed subsets of X, then there is a
natural six-term exact sequence

H0pE X F q // H0pEq ‘H0pF q // H0pXq

��
H1pXq

OO

H1pEq ‘H1pF qoo H1pE X F qoo

where if

iE : E X F Ñ E, iF : E X F Ñ F, jE : E Ñ X, jF : F Ñ X

are the respective inclusions, then the map HpE X F q Ñ HpEq ‘ HpF q
appearing above is HpiEq ´HpiF q, and the map HpEq ‘HpF q Ñ HpXq
is Hpjeq `HpjF q

4.

(iv) Cluster Axiom: if X “
Ů

Xn is a countable disjoint union of spaces in LC,
then the inclusions in : Xn Ñ X induce an isomorphism

ź

Hpinq :
ź

n

HpXnq Ñ HpXq.

It is perhaps more usual to replace the Mayer-Vietoris axiom by an axiom
assigning a six-term exact sequence to a pair pX,F q of an object in LC and a
closed subset. This is in fact equivalent to the above definition: we prove one
direction below, and leave the other to the exercises.

Proposition B.2.3. Let pX,Aq be a pair consisting of an object of LC and a
closed subset A of X, and assume that H is a homology theory in the sense
of Definition B.2.2 above, except from possibly not satisfying the cluster axiom.
Then there is a natural six-term exact sequence

H0pAq // H0pXq // H0pXzAq

��
H1pXzAq

OO

H1pXqoo H1pAqoo

where the morphisms HpAq Ñ HpXq, HpXq Ñ HpXzAq are induced by the
inclusion of A into X and the ‘collapse A to 8’ map X` Ñ pXzAq` respectively.

4The exact signs here are not important as long as one is consistent: it is important for
exactness, however, that they are opposite.
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Proof. Let CpX,Aq be the space obtained by ‘coning off A’, i.e. by gluing a copy
of Aˆ r0,8q to X along Aˆ t0u. Let E, F be the closed subsets

E “ X Y pAˆ r0, 1sq, F “ Aˆ r1,8q

of CpX,Aq, and note that CpX,Aq “ EYF . Then EXF “ Aˆt1u, E is homo-
topy equivalent to X, F is contractible, and CpX,Aq is homotopy equivalent to
XzA by collapsing the cone Aˆ r0,8qY t8u in CpX,Aq` to the point 8. Ho-
motopy invariance and the empty set axiom then imply that the Mayer-Vietoris
sequence

H0pE X F q // H0pEq ‘H0pF q // H0pCpX,Aqq

��
H1pCpX,Aqq

OO

H1pEq ‘H1pF qoo H1pE X F qoo

identifies with

H0pAq // H0pXq ‘ 0 // H0pXzAq

��
H1pXzAq

OO

H1pXq ‘ 0oo H1pAqoo

.

Naturality follows from naturality of the Mayer-Vietoris sequence. A little more
work to identify the morphisms involved shows that this is the desired exact
sequence (possibly up to sign conventions, which we elide).

B.3 Exercises

B.3.1. Show that if H : LC Ñ GA satisfies axioms (i), (ii) in the above, and the
existence of the long exact sequence for a pair as in Proposition B.2.3, then it
satisfies the Mayer-Vietoris axiom (axiom (iii)).

B.3.2. The goal of this exercise is to show that a Steenrod homology theory as
in Definition B.2.2 is (at least in some sense) determined on compact metric
spaces by what it does on finite simplicial complexes. Let

¨ ¨ ¨ Ñ X3 Ñ X2 Ñ X1

be a sequence of continuous maps between compact metric spaces. The inverse
limit of the sequence is the compact metrizable space defined as

lim
Ð
Xn :“

!

pxnq P
ź

n

Xn | xn`1 maps to xnu (B.1)

(and equipped with the restriction of the product topology). It is equipped
with continuous coordinate projections pn : lim

Ð
Xn Ñ Xn that commute with
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the original maps Xn`1 Ñ Xn, and has the universal property that if Y is any
other space equipped with compatible maps qn : Y Ñ Xn, then there is a unique
continuous map Y Ñ X such that the diagrams

Xn`1

��

Y

55

))

// lim
Ð
Xn

;;

##
Xn

commute. Similarly, the inverse limit lim
Ð
An of the sequence of (abelian) groups

¨ ¨ ¨ Ñ A3 Ñ A2 Ñ A1

is defined to be the subgroup of the product group
ś

nAn defined analogously
to line (B.1), and has the analogous universal property. Finally, for such a
sequence of abelian groups, the lim1 group, denoted lim

Ð

1An, is defined as the

cokernel of the map
ź

n

An Ñ
ź

n

An

taking a sequence panq to the sequence pan ´ pimage of an`1qq.

(i) Show that if lim
Ð
Xn is an inverse limit as above with each Xn a compact

metric space, and if H is a homology theory as in Definition B.2.2 then
there is a natural exact Milnor exact sequence

0 // lim
Ð

1Hi´1pXnq // HiplimÐXnq // lim
Ð
HipXnq // 0 ,

where the map Hiplim
Ð
Xnq Ñ lim

Ð
HipXnq comes from the universal prop-

erty of the inverse limit group.
Hint: define the mapping telescope of the sequence to be

ğ

n

Xn ˆ r0, 1s{ „,

where px, 1q „ py, 0q whenever x P Xn`1 maps to y P Xn. Analyse this by
breaking it into two infinite disjoint unions, using the Mayer-Vietoris se-
quence, using homotopy invariance, and using the fact that disjoint unions
are taken to products.

(ii) Show that any compact metric space is the inverse limit of a sequence of
finite simplicial complexes.
Hint: Fix a sequence of finite covers pUnq such that supUPUndiampUq Ñ 0
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as nÑ8, and such that each element of Un`1 is contained in an element
of Un. The nerve of such a (finite) cover U is defined to be the simplicial
complex with a vertex for each U P Un, and where a collection of vertices
U0, ..., Ud spans a d-simplex if and only if

Şd
i“0 Ui ‰ ∅. Let Nn be the

nerve of Un, and define a continuous map Nn`1 Ñ Nn by sending each
vertex U to some choice of vertex (open set) containing it, and extending
affinely on simplices. Show that X is the inverse limit of the system

¨ ¨ ¨ Ñ N3 Ñ N2 Ñ N1.

B.3.3. Show that if Φ : H Ñ G is a natural transformation of homology theories
satisfying the axioms in Theorem B.2.2 such that Φpptq : Hpptq Ñ Gpptq is an
isomorphism, then Φ is an isomorphism for all spaces in LC.
Hint: show this first for finite simplicial complexes using the Mayer-Vietoris ax-
iom, the homotopy invariance axiom, and induction on the number of simplices.
Then use limits as in Exercise B.3.2 to deduce the result for general compact
metric spaces. Finally, use that for a possibly non-compact space X, the group
HpXq is the cokernel of the natural map Hpt8uq Ñ HpX`q to deduce the result
in general.

B.4 Notes and references

The ‘axiomatic approach’ to homology theories was developed particularly by
Eilenberg and Steenrod, and is discussed in their classic text [87]. The Milnor
exact sequence from Exercise B.3.2 (and the proof we hint at) comes from [181].
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Appendix C

Unitary representations

In this appendix we summarise the terminology, examples, and facts that we
will need about group representations. Section C.1 discusses basic properties
and examples of unitary representations, and Section C.2 discusses Fell’s trick,
an important ‘untwisting’ argument that gets used a little in the main text.

Throughout this appendix, G denotes a countable discrete group.

C.1 Unitary representations

Definition C.1.1. A unitary representation of G on a Hilbert space H is a
group homomorphism

U : GÑ UpHq, g ÞÑ Ug

from G to the unitary group of H. Two unitary representations U : GÑ UpHU q

and V : G Ñ UpHV q are isomorphic if there is an unitary isomorphism W :
HU Ñ HV such that WUg “ VgW for all g P G.

We will also often say something like ‘let H be a G representation’, leaving
the homomorphism, and the fact that the representation is unitary, implicit.

Example C.1.2. Let H be an arbitrary Hilbert space. The trivial representation
on H is the homomorphism G Ñ UpHq that sends every element of G to the
identity.

Example C.1.3. Let `2pGq denote the Hilbert space of square summable complex-
values functions on G. The left regular representation of G on `2pGq is defined
by g ÞÑ λg, where

λg : δh ÞÑ δgh

and the right regular representation by g ÞÑ ρg, where

ρg : δh ÞÑ δhg´1 .

These two representations are isomorphic via the unitary

W : `2pGq Ñ `2pGq, δg ÞÑ δg´1 .
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As they are isomorphic, is to quite common to just say ‘the regular representa-
tion’ and not be specific about whether one is using the left or right version.

Example C.1.4. Let H be a subgroup of G, and let `2pG{Hq denote the square
summable functions on the set tgH | g P Gu of left cosets. Then the (left)
quasi-regular representation of G on `2pG{Hq is defined by

λg : δkH ÞÑ δgkH .

There is similarly a right quasi-regular representation on the right coset space.

Example C.1.5. Let pX,µq be a measure space, equipped with a measure pre-
serving G action: this means that G acts on X, the action preserves the σ-
algebra of measurable sets, and that it satisfies µpgEq “ µpEq for all g P G and
measurable E Ď X. For each g P G, define Ug P UpL2pX,µqq by

pUguqpxq ÞÑ upg´1xq.

The map g ÞÑ Ug is then a representation, sometimes called the Koopman
representation. Note that the previous example is the special case when X “

G{H and µ is counting measure.

In addition to these examples, there are two basic constructions that build
new representations out of old ones.

Definition C.1.6. Let U : G Ñ UpHU q and V : G Ñ UpHV q be unitary
representations. Their direct sum is the representation defined by

U ‘ V : GÑ UpHU ‘HV q, pU ‘ V qg :“ Ug ‘ Vg,

and their tensor product is the representation defined by

U ‘ V : GÑ UpHU bHV q, pU b V qg :“ Ug b Vg.

Definition C.1.7. The reduced group C˚-algebra of G, denoted C˚λ pGq, is the
C˚-subalgebra of Bp`2pGqq generated by the unitaries λg from the left regular
representation of Example C.1.3 above. We also denote by C˚ρ pGq the C˚-
algebra generated by the unitaries ρg of the right regular representation.

Note that C˚λ pGq and C˚ρ pGq are canonically isomorphic via conjugation by
the unitary U from Example C.1.3. We will thus sometimes abuse terminology
slightly and also call C˚ρ pGq the reduced group C˚-algebra of G.

Let now A be a C˚-algebra. An action of G on A is a homomorphism

α : GÑ AutpAq, g ÞÑ αg

from G to the group of ˚-automorphisms of A; a C˚-algebra equipped with an
action is called a G-C˚-algebra. For example, if G acts on a space X, then
C0pXq comes equipped with a canonical G action by Proposition A.2.1 above.
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Definition C.1.8. LetA be aG-C˚-algebra, and π : AÑ BpHq a ˚-representation.
Then a unitary representation U : G Ñ UpHq spatially implements the action
of G on A if the covariance relation

πpαgpaqq “ UgπpaqU
˚
g

holds for all a P A and g P G. If U spatially implements π, the pair pπ, Uq is
called a covariant representation.

There are always plenty of covariant representations, as exemplified by the
following lemma.

Lemma C.1.9. Let A be a G-C˚-algebra. Then there exists a faithful covariant
representation of A.

Proof. Let π : A Ñ BpHq be a faithful representation of A (forgetting the
G-action). Define an action of rπ of A on `2pG,Hq by the formula

prπpaquqpgq :“ πpαg´1paqqupgq.

It is not difficult to see that rπ is still a faithful representation of A. Moreover,
if we define a representation Ug on `2pG,Hq by

pUguqphq :“ upg´1hq

then for any a P A, u P `2pG,Hq, and g, h P G the computation

`

UgrπpaqU
˚
g u

˘

phq “
`

rπpaqU˚g u
˘

pg´1hq “ πpαh´1gpaq
`

U˚g u
˘

pg´1hq

“
`

rπpαgpaqqu
˘

phq

shows that rπ is covariant for U .

C.2 Fell’s trick

In this section we introduce Fell’s trick (also called Fell’s absorption principle),
and a consequence for representations of finite groups. Fell’s trick is the next
proposition: it can be summarised by saying that the regular representation
‘tensorially absorbs’ any other representation.

Proposition C.2.1. Let U : GÑ UpHq be a representation, and let HT be the
same Hilbert space as H, but equipped with the trivial representation. Let `2pGq
be equipped with the left regular representation, and equip both tensor products
`2pGq bH and `2pGq bHT with the tensor product representations. Then the
formula

W : `2pGq bH Ñ `2pGq bHT , δg b u ÞÑ δg b U
˚
g u

defines an isomorphism of representations.
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Proof. Note that for any δg b u, δh b v P `
2pGq bH,

xW pδg b uq, δh b vy “

"

xU˚g u, vy g “ h
0 g ‰ h

*

“ xδg b u, δh b Uhvy;

it follows that W˚ is given by the formula δh b v ÞÑ δh b Uh, and in particular
from this that WW˚ and W˚W are the identity. Moreover, for any g, h P G
and u P H

W pλg b Ugqpδh b vq “W pδgh b Ugvq “ δgh b U
˚
h u “ pλg b 1qW pδh b uq,

whence W is equivariant with respect to the G actions on `2pGqbH and `2pGqb
HT respectively.

We record here a consequence of Fell’s trick: it says that if F is a finite
group and H8 is an infinite dimensional separable Hilbert space with the trivial
F -representation, then `2pF q b H8 contains a copy of any separable F repre-
sentation.

Corollary C.2.2. Let F be a finite group and U : F Ñ UpHq a representation
on a separable Hilbert space. Let H8 be an infinite dimensional Hilbert space
equipped with the trivial F representation, and `2pF q b H8 the corresponding
tensor product representation. Then there is an F equivariant isometry

V : H Ñ `2pF q bH8.

Proof. Note first that there is an F equivariant isometry

V1 : H Ñ `2pF q bH, u ÞÑ
´ 1
a

|F |

ÿ

gPF

δg

¯

b u.

Let HT be the same underlying Hilbert space as H equipped with the trivial
representation, so Fell’s trick gives an isomorphism of representations

V2 : `2pF q bH – `2pF q bHT .

Let V3 : HT Ñ H8 be any isometry (which exists as H8 is infinite dimensional
and H is separable). Then

V “ p1b V3qV2V1 : H Ñ `2pF q bH8

has the right properties.

C.3 Notes and references

The classic reference on the C˚-algebraic approach to unitary representation
theory is the second half of Dixmier’s book [80]. A highly recommended in-
troduction to unitary representation theory and related issues is Deitmar and
Echterhoff’s text [86]. Both of these books go much further than anything we
need in this text; in particular they have a lot to say on the analytic subtleties
that arise when one is dealing with non-discrete groups.
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Appendix D

Unbounded operators

The first two sections of this appendix summarise the facts we need about
unbounded operators: Section D.1 discusses the basic definitions associated to
unbounded operators and the spectral theorem, while Section D.2 discusses facts
about the ‘one paramter unitary group’ peitDqtPR associated to a self-adjoint
operator D, and some of the Fourier theory one can thus build. Section D.3 has
quite a different character: it discusses a particular concrete example in detail,
and proves some important formulas.

The first two sections cover general theory, and do not really contain any
proofs. Section D.3, on the other hand, has fairly detailed arguments: although
this material is more-or-less contained in the literature, we could not find con-
venient references, so give details here.

D.1 Self-adjointness and the spectral theorem

Definition D.1.1. Let H be a Hilbert space. An unbounded operator on H
consists of a pair pS,Dq where S is a dense subspace of H, and D : S Ñ H is a
linear operator. The subspace S is called the domain of the operator.

Often, we will just write D for an unbounded operator, especially if S is clear
from context. However, be warned that there is often more than one ‘reasonable’
choice for S, and that the properties of pD,Sq can be quite different if different
choices are made.

Definition D.1.2. An unbounded operator pS,Dq on a Hilbert space S is closed
if its graph

graphpDq :“ tpu,Duq P H ‘H | u P Su

is closed in H ‘H (equipped with the product topology). It is closable if the
closure graphpDq of its graph is still the graph of a linear operator (equivalently,
if whenever pu, vq and pu,wq are both in graphpDq, we must have v “ w).
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If pS,Dq is closable, then its closure is the unbounded operator D with
graph equal to the closure graphpDq of the graph of D (and domain equal to
the projection of graphpDq onto the first coordinate).

There are several natural versions of self-adjointness for unbounded opera-
tors of varying strengths. The following is the weakest that we will consider; it
is maybe the most intuitive definition, but unfortunately also the least useful.

Definition D.1.3. An unbounded operator pS,Dq on a Hilbert space H is
formally self-adjoint if for all u, v P S, xDu, vy “ xu,Dvy.

A formally self-adjoint operator pS,Dq on a Hilbert space H is always
closeable: this follows as if punq and pvnq are sequences in S converging to
some u P H (possibly not in S) and such that pDunq and pDvnq also converge
in H, then for all w P S,

x lim
nÑ8

Dun, wy “ lim
nÑ8

xun, Dwy “ xu,Dwy “ lim
nÑ8

xvn, Dwy “ x lim
nÑ8

Dvn, wy,

and as S is dense in H this forces

lim
nÑ8

Dun “ lim
nÑ8

Dvn.

Formal self-adjointness does not, however, allow one to prove a reasonable ver-
sion of the spectral theorem. For this we need stronger defintions.

Definition D.1.4. Let pS,Dq denote a formally self-adjoint operator on a
Hilbert space H. The minimal domain of D is the domain of the closure D.
The maximal domain of D is the collection of all v P H such that there exists
w P H such that for all u P S,

xDu, vy “ xu,wy.

The operator pS,Dq is essentially self-adjoint if its minimal and maximal do-
mains coincide, and it is self-adjoint if the minimal and maximal domains co-
incide with the original domain S.

Definition D.1.5. Let pS,Dq be an unbounded operator on a Hilbert space
H. The resolvent set of D is the collection of all λ P C such that the operator
D ´ λ : S Ñ H is a bijection with bounded inverse. The spectrum of D is the
complement of the resolvent set.

We will give a proof of the next result, as the argument quite nicely illustrates
a point where self-adjointness is really needed, and formal self-adjointness would
not be enough.

Lemma D.1.6. If pS,Dq is self-adjoint, then the spectrum of D is real.
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Proof. For v P S and λ P CzR we have

xpD ` λqv, pD ` λqvy “ }Dv}2 ` 2RepλqxDv, vy ` |λ|2}v}2

ě }Dv}2 ´ 2Repλq}v}}Dv} ` |λ|2}v}2

ě p}Dv} ´ Repλq}v}q2 ` |Impλq|2}v}2

ě Impλq2}v}2. (D.1)

It follows that if λ P CzR, D ` λ : S Ñ H is injective with closed range.
We claim that that for any λ P C,

RangepD ` λqK “ KerpD ` λq. (D.2)

Indeed, if u P KerpD` λq then in particular u P S. Let pD` λqv be an element
of RangepD ` λq for some v P S. As both u and v are in S, we may compute

xpD ` λqv, uy “ xv, pD ` λquy “ 0

giving the inclusion

RangepD ` λqK Ě KerpD ` λq.

For the opposite inclusion1, say u P RangepD ` λqK. Then for any v P S,
xpD ` λqv, uy “ 0, whence

xDv, uy “ xv,´λuy.

This exactly says that u is in the maximal domain of D, whence by self-
adjointness u is in the domain S of D. We then have

0 “ xpD ` λqv, uy “yv, pD ` λquy

for all v P S, and as S is dense this forces pD ` λqu “ 0 as required.
To complete the proof, we have already noted by line (D.1) that if λ P CzR,

then D`λ : S Ñ H is injective. Hence line (D.2) implies that RangepD`λqK “
t0u, and thus RangepD`λq is dense. On the other hand, line (D.1) implies that
RangepD ` λq is closed, so it equals all of H. At this point we have that
D ` λ : S Ñ H is a bijection. Finally, line (D.1) implies that the inverse of
D ` λ is bounded, so we are done.

As the spectrum of a self-adjoint operator is real, the statement of the fol-
lowing fundamental result makes sense. It is called the functional calculus for
unbounded operators. For the statement, let BpRq denote the C˚-algebra of
complex-valued bounded Borel functions on the real line.

Theorem D.1.7. Let pS,Dq be an unbounded self-adjoint operator on a Hilbert
space H. Then there exists a unique ˚-homomorphism

BpRq Ñ BpHq, f ÞÑ fpDq

from the C˚-algebra of bounded Borel functions on R to the bounded operators on
H such that for any λ P CzR, if fpxq “ px´ λq´1, then fpDq “ pD´ λq´1.

1So far the proof just uses formal self-adjointness; the next part uses self-adjointness.
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Remark D.1.8. Note that the spectral theorem extends to a version for essen-
tially self-adjoint operators: if pS,Dq is essentially self-adjoint, then its closure
pS,Dq as in Definition D.1.2 is self-adjoint, and one can apply the spectral
theorem to this operator. We will sometimes apply the functional calculus to
essentially self-adjoint operators without further comment: technically, what we
are doing is applying the functional calculus to the self-adjoint closure as above.

We close this section with a useful lemma that follows from uniqueness of
the functional calculus.

Lemma D.1.9. Let pS,Dq be an essentially self-adjoint operator on H. Let f
be a bounded Borel function, and let U be a unitary operator such that U ¨S “ S.
Then UfpDqU˚ “ fpUDU˚q.

D.2 Some Fourier theory for unbounded opera-
tors

In this section, we collect together some useful consequences of the functional
calculus. All are well-exposited in the literature, so we just state the results,
and collect references at the end.

The basic fact here is a version of the Stone von Neumann theorem, which
we split into two parts.

Proposition D.2.1. Let pS,Dq be a self-adjoint operator on H. Then for any
u P S the functions RÑ H defined by

t ÞÑ eitDu, t ÞÑ cosptDqu, and t ÞÑ sinptDqu

take values in S, are smooth for the norm topology on H, and their t-derivatives
are given by

t ÞÑ ieitDDu, t ÞÑ ´ sinptDqDu, and t ÞÑ cosptDqDu

respectively.

Theorem D.2.2. Conversely to Proposition D.2.1, let pVtqtPR be a strongly
continuous map from R to the unitary group of some Hilbert space H. Then
there exists a self-adjoint operator pS,Dq such that eitD “ Vt for all t P R.

Moreover, if S0 is a dense subspace of H which is invariant under Vt and is
such that for each u P S0 the map

RÑ H, t ÞÑ Vtu

is differentiable, then the operator D0 : S0 Ñ H defined by

D0 : u ÞÑ lim
tÑ0

1

i

Vtu´ u

t

is essentially self-adjoint, and its closure equals the operator D above.
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The following proposition can be thought of as a version of the Fourier
inversion theorem for unbounded operators.

Proposition D.2.3. Let pS,Dq be a self-adjoint operator on H, and f a Schwartz
class function on R. Then the integral

1

2π

ż

R
pfptqeitDdt

makes sense as a Riemann sum, and is equal to fpDq.
Moreover, if f is a bounded Borel function on R with compactly supported

distributional Fourier transform, then the identity

fpDq “
1

2π

ż

R
pfptqeitDdt

still holds, where now it is interpreted to mean that for every u, v P S, the pairing
of the distribution pf with the smooth function

t ÞÑ
1

2π
xeitDu, vy

is equal to xfpDqu, vy.

We need one more technical result about unbounded operators whose differ-
ence is bounded.

Proposition D.2.4. Let pS,D1q and pS,D2q be essentially self-adjoint opera-
tors on a Hilbert space, with the same domain, and assume moreover that

Dn
1 ¨ S Ď S and Dn

2 ¨ S Ď S

for all n, and that D1 ´ D2 is a bounded operator. Let f be a bounded Borel
function such that the distributional Fourier transform pf is compactly supported,
and so that the function ξ ÞÑ ξ pfpξq is smooth. Define

c :“
1

2π

ż

R
|ξ pfpξq|dξ.

Then
}fpD1q ´ fpD2q} ď c}D1 ´D2}.

D.3 The harmonic oscillator and Mehler’s for-
mula

This section is quite different in character from the previous two. Those sections
work in broad generality and use fairly soft functional analysis techniques; here
on the other hand, we discuss some aspects of a particularly important operator
in concrete detail.
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Definition D.3.1. The Harmonic oscillator is the unbounded operator

H :“ ´
d2

dx2
` x2 ´ 1

on L2pRq with domain the Schwartz class functions.

Define A :“ x` d
dx and A˚ :“ x´ d

dx , considered as bounded operators on
L2pRq with domain the Schwartz class functions; A and A˚ are traditionally
called the annihilation and creation operators respectively. Note that integra-
tion by parts implies the relation xAu, vy “ xu,A˚vy for Schwartz class u and v
partly2 justifying the notation. Note also that we have the relations

H “ A˚A “ AA˚ ´ 2. (D.3)

as operators on the Schwartz class functions.
Define now ψ0pxq “ π´1{4e´x

2
{2, and for k ě 0, set

ψk “
1

?
2kk!

pA˚qkψ0 and hkpxq :“ ψkpxqe
x2
{2.

We will see below that each hk is a polynomial, whence each ψk is Schwartz
class, and therefore in particular contained in L2pRq.

Lemma D.3.2. We have the following identities:

(i) For all k ě 1,
?

2khkpxq “ 2xhk´1pxq ´ h
1
kpxq.

(ii) For all k ě 0,
?

2kk!hkpxq “ π´1{4p´1qkex
2 dk

dxk
pe´x

2

q.

(iii) For all s P C,

expp2sx´ s2q “ π1{4
8
ÿ

k“0

c

2k

k!
skhkpxq.

Proof. For part (i), note that by definition of ψk we have that

?
2kψk “ pA

˚ψk´1q

whence by definition of hk we get

?
2khkpxqe

´x2
{2 “ xhk´1pxqe

´x2
{2 ´ h1k´1pxqe

´x2
{2 ` hk´1pxqe

´x2
{2,

so canceling the e´x
2
{2 factors gives the result. For part (ii), note that

h0pxq “ ψ0pxqe
x2
{2 “ π´1{4,

2Note, however, that there is a notion of adjoint in unbounded operator theory, and that
A˚ is not the adjoint of A in this sense as its domain is wrong. We are thus doing something
a little notationally non-standard here.
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whence the result holds for k “ 0. For the general case, proceed by induction
on k. We have by inductive hypothesis that

π´1{4p´1qk`1 d
k`1

dxk`1
e´x

2

“ ´
?

2kk!
d

dx

`

e´x
2

hkpxq
˘

“ ´
?

2kk!e´x
2

p2xhkpxq ´ h
1
kpxqq.

Applying part (i), we therefore get

π´1{4p´1qk`1 d
k`1

dxk`1
e´x

2

“
?

2kk!e´x
2a

2pk ` 1qhk`1pxq,

which gives the result on rearranging. Finally, for part (iii) consider the Taylor

expansion of the analytic function e´z
2

for z “ s´ x centered at x to get

expp2sx´ s2 ´ x2q “ expp´px´ sq2q “
8
ÿ

k“0

dk

dzk
pe´z

2

q

ˇ

ˇ

ˇ

z“x

px´ s´ xqk

k!
.

Hence applying part (ii)

expp2sx´ s2q “

8
ÿ

k“0

ex
2 dk

dxk
pe´x

2

qp´1qk
sk

k!
“ π1{4

8
ÿ

k“0

?
2kk!hkpxq

sk

k!
,

which implies the result.

Proposition D.3.3. The collection pψkq
8
k“0 is an orthonormal basis for L2pRq

consisting of eigenvectors for H with associated eigenvalue 2k.

Proof. We show by induction that Hψk “ 2kψk. For k “ 0, this is a direct
computation. Assuming Hψk “ 2kψk, we have using line (D.3) that

Hψk`1 “
1

a

2pk ` 1q
A˚AA˚ψk “

1
a

2pk ` 1q
A˚pH ` 2qψk

“
2k ` 2

a

2pk ` 1q
A˚ψk “ 2pk ` 1qψk`1.

Orthogonality of the ψk now follows as they are eigenvectors of a (formally)
self-adjoint operator for distinct eigenvalues. We next show that each ψk has
norm one by induction. Indeed, for ψ0 this is a direct computation. Assuming
}ψk} “ 1, we see that

}ψk`1}
2 “

1

2pk ` 1q
xA˚ψk, A

˚ψjy “
1

2pk ` 1q
xAA˚ψk, ψky

“
1

2pk ` 1q
xpH ` 2qψk, ψky “

2k ` 2

2k ` 2
xψk, ψky “ 1.
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It remains to show that pψkq
8
k“0 has dense span. Note first that h0pxq “

π´1{4, and induction on k and Lemma D.3.2 part (i) imply that hk is a poly-

nomial of degree k. It thus suffices to show that if φkpxq “ xke´x
2
{2 then the

sequence pφkq
8
k“0 has dense span. We have

}φk}
2 “

ż

R
x2ke´x

2

dx “ 2

ż 8

0

x2ke´x
2

dx.

Setting y “ x2, this equals
ş8

0
yk`1{2e´ydy, and induction on k (or comparison

to the Γ function) shows that this is bounded above by k!. Hence we have
L2-norm convergence of the series

8
ÿ

k“0

φkpxq
piλxqk

k!

to the function eiλx´x
2
{2 for any λ P R. It follows that if u P L2pRq is orthogonal

to all of the φk then
ż

R
upxqe´x

2
{2e´ixλdx “ 0

for all λ P R. In other words, the Fourier transform of upxqe´x
2
{2 is zero. The

Plancherel formula thus forces upxqe´x
2
{2 to be zero almost everywhere. We

therefore get that u is zero almost everywhere, completing the proof.

Lemma D.3.4. For any s P C, we have

8
ÿ

k“0

sk
?
k!2k

ψkpxq “ esx´
1
4 s

2

ψ0pxq

as functions in L2pRq (i.e. the convergence of the series of functions on the left
to the function on the right is in L2-norm).

Proof. As pψkq
8
k“0 is an orthonormal basis for L2pRq and as the sequence p s

k

k!2k
q8k“0

is square summable for any s P C, the series on the left hand side converges in
L2pRq. To prove the given equality, it therefore suffices to show that we have
pointwise convergence of the left hand side to the right hand side. Multiplying
the identity in part (iii) of Lemma D.3.2 by e´x

2
{2 gives

expp2sx´ s2qψ0pxq “
8
ÿ

k“0

c

2k

k!
skψkpxq.

Replacing s by s{2 in the above gives the claimed identity.

Consider now the operator e´tH for t ě 0.

Lemma D.3.5. For s P R, set fspxq “ eisx`
1
4 s

2

ψ0pxq. Then for any t ě 0,

e´tHfs “ fe´2ts.
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Proof. Using Lemma D.3.4 and that e´tH is a bounded operator on L2pRq, we
have that

pe´tHfsq “
8
ÿ

k“0

pisqk
?
k!2k

e´tHψk.

As ψk is an eigenvector for H with eigenvalue 2k, this equals

π1{4
8
ÿ

k“0

pie´2tsqk
?
k!2k

ψk “ fe´2ts

as claimed.

Finally, we are ready for Mehler’s formula, which is the main result of this
section.

Theorem D.3.6. . For any t ą 0 and u P L2pRq,

pe´tHuqpxq “

ż

R
ktpx, yqupyqdy,

where

ktpx, yq “ π´1{2p1´ e´4tq´1{2exp
´

´

1
2 p1` e

´4tqpx2 ` y2q ´ 2e´2txy

p1´ e´4tq

¯

.

Proof. For any t ą 0, e´tH has eigenvalues te´2tn | n P Nu with all associ-
ated eigenspaces being one-dimensional. The sequence pe´2tnq8n“0 is square-
summable, so e´tH is Hilbert Schmidt. Hence there is a kernel kt P L

2pRˆ Rq
with

pe´tHuqpxq “

ż

R
ktpx, yqupyqdy

for all u P L2pRq. Set now ltpx, yq “ ψ0pxq
´1ktpx, yqψ0pyq; this makes sense as

a measurable function on R2, although may not be in L2pR2q any more. For
fixed s P R, let fs P L

2pRq be as in Lemma D.3.5, and note that the result of
that lemma and the definitions of the kernels above give that

exppise´2tx`
1

4
e´4ts2qψ0pxq “ fe´2tspxq “ pe

´tHfsqpxq

“

ż

R
ktpx, yqe

isx` 1
4 s

2

ψ0pyqdy

“ ψ0pxqe
1
4 s

2

ż

R
ltpx, yqe

isxdy.

Looking at both the first and last terms, cancelling ψ0pxq and rearranging gives
that

ż

R
ltpx, yqe

isxdy “ exppise´2txqexpp´
1

4
s2p1´ e´4tqq.
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It follows from Fourier theory (noting that lt is integrable in the y variable) that

ltpx, yq “
1

2π

ż

R
expp´

1

4
s2p1´ e´4tqqexppise´2txqe´isyds

“
1

2π

ż

R
expp´

1

4
s2p1´ e´4tqqe´ispy´e

´2txqds.

This is the Fourier transform of a Gaussian, so is explicitly computable. Indeed,
the Fourier transform of the Gaussian expp´ 1

4s
2p1´ e´4tqq is

ξ ÞÑ

c

4π

1´ e´4t
exp

´

´ξ2

1´ e´4t

¯

.

The above expression is equal to this evaluated at ξ “ y´e´2tx (and multiplied
by 1{2π), so we get

ltpx, yq “
1

a

πp1´ e´4tq
exp

´

´py ´ e´2txq2

1´ e´4t

¯

.

Finally, by definition of lt, ktpx, yq “ ψ0pxqltpx, yqψpyq
´1, and so

ktpx, yq “
1

a

πp1´ e´4tq
e´x

2
{2exp

´

´py ´ e´2txq2

1´ e´4t

¯

ey
2
{2

which in turn equals

1
a

πp1´ e´4tq
exp

´´ 1
2x

2p1´ e´4tq ´ y2 ` 2e´2txy ´ e´4tx2 ` 1
2y

2p1´ e´4tq

1´ e´4t

¯

.

Simplifying, we get the formula in the statement and are done.

We can rewrite the formula above in a version that will be more convenient
for us.

Corollary D.3.7. For any t ą 0,

e´tH “ ete´αx
2

e´β
d2

dx2 e´αx
2

,

where

α “ αptq :“
coshp2tq ´ 1

2 sinhp2tq
and β “ βptq :“

sinhp2tq

2
.

Proof. We rearrange the expression

´

1
2 p1` e

´4tqpx2 ` y2q ´ 2e´2txy

p1´ e´4tq
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appearing in the formula for kt in Theorem D.3.6 to get

´
e´2tpx´ yq2 ` 1

2e
´2tpe2t ` e´2tqpx2 ` y2q ´ e´2tpx2 ` y2q

e´2tpe2t ´ e´2tq

“ ´
px´ yq2 `

`

1
2 pe

´2t ` e2tq ` 1
˘

px2 ` y2q

e2t ´ e´2t

“ ´
px´ yq2 ` pcoshp2tq ` 1qpx2 ` y2q

2 sinhp2tq
.

Hence

ktpx, yq “ π´1{2p1´ e´4tq´1{2expp´αx2qexpp´
1

4β
px´ yq2qexpp´αy2q.

Thus if we can show that

π´1{2p1´ e´4tq´1{2expp´
1

4β
px´ yq2q

is the integral kernel for the operator ete´β
d2

dx2 we will be done: indeed, in that
case kt will be identified with the integral kernel for the operator on the right
hand side in the formula for the statement and Theorem D.3.6 already identifies
it with the integral kernel for the operator on the left hand side.

For this, we need to be precise about Fourier transform conventions. We will
use the (unitary) Fourier transform

U : L2pRq Ñ L2pRq, pUuqpξq :“
1

2π

ż

R
upxqe´ixξdx

with inverse given by

pU˚uqpxq :“
1

2π

ż

R
upξqeixξdξ.

Let fpxq “ e´
1

4β x
2

and let Cf : L2pRq Ñ L2pRq be the operator of convolution
by f (which is bounded as f is integrable). We are trying to show the identity

π´1{2p1´ e´4tq´1{2Cf “ e´2te´β
d2

dx2 (D.4)

of operators on L2pRq. We will first compute Cf in terms of d2

dx2 . A standard
computation shows that if Mg is the operator of multiplication by a bounded
function f , then

UCfU
˚ “

?
2πM

pf ,

where pf is the Fourier transform of f , i.e. the function Uf . More standard
computations with Gaussians (the authors suggest looking at a table of Fourier
transforms - the one on wikipedia will work for this at time of writing) show
that

pfpxq “
a

2βe´βx
2

.
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Letting Mx2 be the self-adjoint unbounded operator on L2pRq with domain the
Schwartz class functions, we can think of M

pf as the operator
?

2βe´βMx2 defined
using the functional calculus. Hence by our computations so far and naturality
of the functional calculus (Lemma D.1.9).

Cf “ U˚
?

2π
a

2βe´βMx2U “ 2
a

πβe´βU
˚Mx2U .

On the other hand, one computes that U˚Mx2U “ d2

dx2 and so we get that

Cf “
a

2π sinhp2tqe´β
d2

dx2 .

Hence

π´1{2p1´ e´4tq´1{2Cf “

d

2π sinhp2tq

πe´2t2 sinhp2tq
e´β

d2

dx2 ,

which is exactly our desired formula from line (D.4).

D.4 Notes and references

The material in the first two sections of this appendix is based on [211, Chapter
VIII] and [135, Chapter 10], with the former in particular being a good general
introduction to unbounded operator theory. The functional calculus (Theorem
D.1.7) , including the uniqueness statement used to prove Lemma D.1.9 can be
found in [211, Theorem VIII.5].

For a proof of what we called the Stone von Neumann theorem (Proposition
D.2.1 and Theorem D.2.2), see [211, Theorems VIII.7, VIII.8, and VIII.10]. For
proofs of Propositions D.2.3 and D.2.4, see [135, Proposition 10.3.5] and [135,
Proposition 10.3.7] respectively.

The material in Section D.3 is based on [217, Chapter 9] and [72, Section
12.9]. In particular, our proof of Mehler’s formula is based on [72, page 292].
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Appendix E

Gradings

In this appendix, we summarise some facts about gradings on C˚-algebras and
Hilbert spaces. This provides a very convenient language for some of the con-
tents of the book. Section E.1 discusses definitions and basic examples of graded
Hilbert spaces and C˚-algebras, while Section E.2 discusses graded tensor prod-
ucts.

E.1 Graded C˚-algebras and Hilbert spaces

Definition E.1.1. Let A be a ˚-algebra. A grading on A is a ˚-automorphism
ε : A Ñ A that satisfies ε2 “ id. A ˚-algebra (or C˚-algebra) equipped with a
grading is called a graded ˚-algebra (or graded C˚-algebra).

If A is a C˚-algebra and there exists a self-adjoint unitary u in the multiplier
algebra of A such that εpaq “ uau˚ for all a P A, then the grading is said to be
inner .

We will often just say something like ‘let A be a graded C˚-algebra’, leaving
the automorphism ε implicit. We will also often write εA for the grading on a
graded ˚-algebra A.

Definition E.1.2. If A and B are graded ˚-algebras, then a ˚-homomorphism
φ : AÑ B is graded if φpεApaqq “ εBpφpaqq.

Remark E.1.3. A grading on a ˚-algebra A as defined is the same thing as
an action of Z{2Z on A, and graded ˚-homomorphisms are the same thing as
equivariant ˚-homomorphisms.

For computations, it will be convenient to have a notion of ‘spatially induced’
grading. Partly for this reason, we formalise the idea of a graded Hilbert space.

Definition E.1.4. A graded Hilbert space is a Hilbert space H equipped with
a self-adjoint unitary operator U , called the grading operator . If A is a graded
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C˚-algebra and H a graded Hilbert space, then a representation π : AÑ BpHq
is graded if

πpεApaqq “ UπpaqU˚

for all a P A.

Remark E.1.5. Let pH,Uq be a graded Hilbert space. As U is a self-adjoint op-
erator satisfying U2 “ 1, H admits an orthogonal decomposition H “ H0 ‘H1

with Hi the eigenspace for the eigenvalue p´1qi of U (possibly Hi “ t0u). Con-
versely, any orthogonal decomposition of a Hilbert space H “ H0‘H1 gives rise
to a grading U on H: one stipulates that U acts as multiplication by p´1qi on
Hi. In conclusion: gradings on Hilbert spaces are the same thing as decomposi-
tions into a pair of orthogonal subspaces. We will use either description below
as convenient.

Lemma E.1.6. Any graded C˚-algebra has a faithful graded representation.

Proof. As noted in Remark E.1.3, a grading on A is the same thing as a Z{2Z-
action. Checking definitions, this lemma is just the special case of Lemma C.1.9
where the acting group is Z{2Z.

We now turn to some examples.

Example E.1.7. Any C˚-algebra can be equipped with the trivial grading where
ε is the identity. This is inner.

Example E.1.8. If A is a graded C˚-algebra, then there is a (unique) extension
to a grading on the unitisation A` defined by

εA` : pa, λq ÞÑ pεApaq, λq.

Example E.1.9. Let pH,Uq be a graded Hilbert space. Then conjugation by U
induces gradings on BpHq and KpHq. As any U P BpHq is in the multiplier
algebra of both BpHq and KpHq, these gradings are always inner.

If in the associated decomposition H “ H0 ‘ H1, the subspaces H0 and
H1 are isomorphic (i.e. have the same dimension) then this is called the stan-
dard grading on KpHq. We allow the case when H is finite (necessarily even)
dimensional, in which case we get the standard grading on MdimpHqpCq.

The case when H is separable and infinite-dimensional, this example is im-
portant enough that we introduce special notation for it: we write K for KpHq
equipped with the standard grading.

Example E.1.10. Let C0pRq be equipped with the grading defined by pεpfqqptq “
fp´tq. This is not inner, as one can see using the identification MpC0pRqq “
CbpRq of Example 1.7.7. This example is again important enough to merit its
own notation: S denotes C0pRq equipped with this grading.

Note that the multiplication action of S on L2pRq is a graded representation
with respect to the grading operator defined by pUuqpxq :“ up´xq.
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Example E.1.11. Let V be a vector space over R equipped with an inner product.
The Clifford algebra of V , denoted CliffCpV q, is the unital complex algebra
generated by an R-linear copy of V and subject to the relations

vv “ }v}2

for all v P V (in words, ‘v times v equals the norm of v squared times the
identity’); one way to make this precise is sketched in Exercise E.3.2. Stipu-
lating that each v P V is self-adjoint determines a ˚-operation on CliffCpV q,
noting that this is compatible with the relation above. The map v ÞÑ ´v on V
also preserves these relations, and thus extends to a Z{2Z action on CliffCpV q,
making CliffCpV q a graded ˚-algebra.

As a concrete example let V “ R and choose a norm one element e of
R. Then one computes that CliffCpRq “ tz ` we | z, w P Cu with ˚-algebra
operations given by

pz `weq˚ “ z `we, pz1 `w1eqpz2 `w2eq “ pz1z2 `w1w2q ` pz1w2 `w2z1qe.

It is graded by the ˚-automorphism z ` we ÞÑ z ´ we. Hence as a ˚-algebra,
CliffCpRq identifies with C‘ C via the ˚-isomorphism

C‘ C Q pz, wq ÞÑ
1

2
pz ` wq `

1

2
pz ´ wqe P CliffCpRq.

Under this isomorphism, the grading on CliffCpRq corresponds to the flip auto-
morphism pz, wq ÞÑ pw, zq, which is clearly not inner.

Having explored these examples, let us introduce some more terminology.
This will be useful for certain concrete formulas and computations.

Definition E.1.12. Let A be a graded ˚-algebra. An element a P A is called
homogeneous if εApaq “ a or εApaq “ ´a. If a P A is homogeneous, its degree is
the number Ba P t0, 1u defined by εApaq “ p´1qBaa.

It is common in the literature to call degree zero elements even and degree
one elements odd ; we will use both terminologies.

Note that as a grading is an order two automorphism of a ˚-algebra A, its
eigenvalues are a subset of t1,´1u. Hence A splits as a direct sum of eigenspaces
A “ Ap0q ‘ Ap1q, with Apiq consisting of eigenvectors for the eigenvalue p´1qi,
or in other words elements of degree i. In particular, any element of A can be
written uniquely as a sum of a degree zero and a degree one element; thus to
determine an operation on a graded ˚-algebra, it often suffices to define it for
homogeneous elements. We will use this fact without comment from now on.

Example E.1.13. Let pH,Uq be a graded Hilbert space with associated decom-
position H “ H0 ‘ H1 as in Remark E.1.5. Then if BpHq has the associated
inner grading from Example E.1.9, an operator on H is even (respectively, odd)
if and only if when it is written as a 2 ˆ 2 matrix with respect to the decom-

position H “ H0 ‘ H1 it is diagonal, i.e. of the form

ˆ

T 0
0 S

˙

(respectively,
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off-diagonal, i.e. of the form

ˆ

0 T
S 0

˙

). The same descriptions apply to ele-

ments of any graded C˚-algebra that is faithfully realised as operators on H via
a graded representation.

Example E.1.14. We will also use the even / odd terminology for an unbounded
operator pS,Dq on a graded Hilbert space pH,Uq (see Section D.1 for conven-
tions on unbounded operators). In this case, U should be assumed to preserve
the domain S of the operator, whence it makes sense to consider UDU : S Ñ H.
The operator D is even if UDU “ D, and odd if UDU “ ´U . An illustrative
example is the unbounded operator D “ i ddx acting on L2pRq with domain
C8c pRq, and with the grading defined by pUuqpxq :“ up´xq. This operator D is
odd.

Analogously to Example E.1.13, the domain S splits into a direct sum of
˘1-eigenspaces for U as for H itself. Whether the operator is even / odd can
again be thought of in terms of on / off diagonal matrices.

Example E.1.15. If S is as in Example E.1.10 then even and odd have their
usual meanings for functions on R.

Example E.1.16. If CliffCpV q is as is Example E.1.11, then an element is even if
it can be written as a sum of products of an even number of elements of V , and
odd if it can be written as a sum of products of an odd number of elements.

E.2 Graded tensor products

In this section, we discuss graded tensor products. First, we look at the purely
algebraic theory, and then the spatial and maximal versions in turn.

Definition E.2.1. Let A and B be graded ˚-algebras. The graded algebraic
tensor product ApdB of A and B is the algebraic tensor product over C equipped
with the ˚-operation, multiplication, and grading defined1 on elementary tensors
of homogeneous elements by the formulas

papbbq˚ :“ p´1qBaBba˚pbb˚,

pa1pbb1qpa2pbb2q :“ p´1qBa2Bb1a1a2pbb1b2,

and
εApbBpapbbq :“ εApaqpbεBpbq.

Remark E.2.2. A heuristic for the formulas above (and others in this section)
is that the sign p´1qBaBb should be introduced whenever homogeneous elements
a and b have to be moved past each other.

Remark E.2.3. The graded algebraic tensor product is both commutative and
associative up to canonical isomorphism. However, there is a subtlety: the

1We leave it as an exercise for the reader to show that the formulas below really do give a
well-defined graded ˚-algebra structure.
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isomorphisms must be defined using the heuristic from Remark E.2.2. They are
determined on elementary tensors of homogeneous elements by

ApdB Ñ BpdA, apbb ÞÑ p´1qBaBbbpba

and
pApdBqpdC Ñ ApdpBpdCq, papbbqpbc ÞÑ apbpbpbcq.

Remark E.2.4. If A and B are ˚-algebras, recall from Remark 1.8.1 that the
algebraic tensor product ˚-algebra AdB has the following universal property:
if φ : A Ñ C and ψ : B Ñ C are ˚-homomorphisms with commuting images,
then there is a unique ˚-homomorphism φ b ψ : A d B Ñ C taking a b b to
φpaqψpbq.

The graded tensor product pd has an analogous universal property, which we
now describe. Define the graded commutator of homogeneous elements a, b in a
graded ˚-algebra by

ra, bsg :“ ab´ p´1qBaBbba,

and extend this to all elements by linearity. Let φ : AÑ C and ψ : B Ñ C are
graded ˚-homomorphisms such that rφpaq, ψpbqsg “ 0 for all a P A and b P B.
Then one can check that the formula

apbb ÞÑ φpaqψpbq

uniquely determines a graded ˚-homomorphism φpbψ : ApbB Ñ C.

We will also need graded Hilbert spaces, and operators on them.

Definition E.2.5. Let pH1, U1q and pH1, U1q be graded Hilbert spaces. Define
the graded tensor product of H1 and H2, denoted H1pbH2, to be the same
underlying Hilbert space as the usual tensor product H1 b H2 (see Definition
1.8.4), equipped with the grading operator U1 b U2. We usually write vpbw
for elementary tensors in H1pbH2 to remind us that we are in a graded setting
(compare Remark E.2.6 below).

If T1 P BpH1q are T2 P BpH2q are bounded operators that are homogeneous
for the respective gradings, then we define the operator T1pbT2 by the formula

T1pbT2 :“ T1U
BT2 b T2.

where the tensor product of operators on the right is as in Lemma 1.8.6. For
non-homogeneous T1 and T2, we define T1pbT2 by extending the above formula
by linearity.

For i P t1, 2u, let Di be an unbounded operator on Hi with domain Si that
is invariant under Ui as in Example E.1.8. Define D1pbD2 to be the unbounded
operator on H1pbH2 with domain S1 d S2 given by the formula

D1pbD2 : v1pbv2 ÞÑ D1U
BD2
1 v1pbD2v2
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on elementary tensors. We allow the case that one2 of D1 and D2 is bounded,
in which case the domain of the bounded operator should just be taken to be
the whole Hilbert space.

Remark E.2.6. It might help intuition to compare the formula for T1pbT2 above
with the heuristic in Remark E.2.2. Indeed, for a graded Hilbert space H “

H0 ‘ H1, say v is homogeneous if v is in Hi for some i, and in this case set
Bv “ i. Then the formula for T1pbT2 is equivalent to saying that if v1 and v2

are homogeneous, then

pT1pbT2qpv1pbv2q “ p´1qBT2Bv1T1v1pbT2v2.

Thus one introduces the sign p´1qBT2Bv1 as the ‘price’ for moving T2 past v1.

The spatial graded tensor product

Say that πA : A Ñ BpHAq and πB : B Ñ BpHAq are graded representations,
and consider the map defined by

πApb1 : AÑ BpHApbHBq, a ÞÑ πApaqpb1

and similarly for 1pbπB . One checks directly that these maps are graded ˚-
homomorphisms: more concretely, with notation as in Lemma 1.8.6 they are
given on homogeneous elements by the formulas pπApb1qpaq “ πApaq b 1, and
p1pbπBqpbq “ UBBA b πBpbq. More direct checks show that with notation as in
Remark E.2.4 these maps satisfy

rpπApb1qpaq, p1pbπBqpbqsg “ 0,

and therefore by that remark give rise to a graded ˚-homomorphism

pπApb1qpbp1pbπBq : ApbB Ñ BpHApbHBq.

Definition E.2.7. With notation as above, we write πApbπB for pπApb1qpbp1pbπBq,
and call it the graded tensor product of πA and πB .

Lemma E.2.8. With notation as above, if πA and πB are faithful, then πApbπB
is also faithful. Moreover, the norm defined on ApdB defined by

}c} :“ }pπApbπBqpcq}

does not depend on the choice of πA and πB.

Proof. The proof is very similar to that of Proposition 1.8.9. For example, let
us look at faithfulness in detail. Let

řn
i“1 aipbbi be as in the kernel of πApbπB .

Rewriting, we may assume that each ai and bi are homogeneous, and that the

2If both D1 and D2 are bounded, the definition here does not quite agree with that for
T1 pbT2 above, as the domain of D1 pbD2 would be H1 d H2; for two bounded operators, we
always use the definition with domain all of H1 pbH2.

498



set b1, ..., bn is linearly independent. Then with conventions as in Remark E.2.6,
for homogeneous u, v P HA and w, x P HB , we have

0 “
A

v b x,
´

n
ÿ

i“1

πApaiqpbπBpbiq
¯

pub wq
E

“

n
ÿ

i“1

p´1qBbiBuxv, πApaiquyxx, πBpbiqwy

“

A

x, πB

´

n
ÿ

i“1

p´1qBbiBuxv, πApaiquybi

¯

w
E

.

As x and w are arbitrary homogeneous elements and as πB is injective, this
forces

n
ÿ

i“1

p´1qBbiBuxv, πApaiquybi “ 0.

As b1, ..., bn is a linearly independent collection, this in turn forces

p´1qBbiBuxv, πApaiquy “ 0

for each i. Finally, as v and u are arbitrary homogeneous elements and πA is
injective, this forces ai “ 0 for all i. Thus πApbπB is injective as claimed.

The fact that the norm }pπApbπBqpcq} does not depend on the choice of πA
and πB can again be handled similarly to the proof of the Proposition 1.8.9: the
only real difference is that it might help to assume that the net pPiq appearing
there consists only of finite rank projections that are even for the grading on
BpHBq. We leave the details to the reader.

Definition E.2.9. Let A and B be graded C˚-algebras, and let πA and πB be
any faithful graded representations (such always exist by Lemma E.1.6), and let
πApbπB be the graded tensor product representation of Definition E.2.7. The
graded spatial norm on ApdB is defined by

}c} :“ }pπApbπBqpcq};

this does not depend on the choice of πA and πB by Lemma E.2.8. The asso-
ciated completion of ApdB is then a C˚-algebra denoted ApbB, and called the
graded spatial tensor product of A and B.

Remark E.2.10. The canonical commutativity and associativity isomorphisms
for pd of Remark E.2.3 extend to the spatial completions. Indeed if A, B, and
C are graded C˚-algebras with faithful graded representations on HA, HB , and
HC , then the formula

pHApbHBqpbHC ÞÑ HApbpHB pbHCq, pupbvqpbw ÞÑ upbpvpbwq

determines a unitary isomorphism that intertwines the defining representations
of pApbBqpbC and of ApbpBpbCq. Similarly, with conventions as in Remark E.2.6,
the formula

HApbHB Ñ HB pbHA, vpbw ÞÑ p´1qBvBwwpbv
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determines a unitary isomorphism that intertwines the defining representations
of ApbB and BpbA.

Remark E.2.11. Analogously to Remark 1.8.12 the graded spatial tensor prod-
uct is functorial: precisely, if φ : A Ñ B and ψ : C Ñ D are graded ˚-
homomorphisms, then there is a unique graded ˚-homomorphism φpbψ : ApbC Ñ
BpbD satisfying pφpbψqpapbcq “ φpaqpbψpcq on elementary tensors. This can be
proved in the the same way as for the usual spatial tensor product: see the
argument sketched in Exercise 1.9.16.

Example E.2.12. Let d ě 1, and let CliffCpRdq be the Clifford algebra of Rd as
in Example E.1.11, so CliffCpRdq is a graded ˚-algebra. Consider the bijection

Rd´1 ˆ RÐÑ Rd, ppv1, ..., vd´1q, vq ÐÑ pv1, ..., vd´1, vq

defined by putting the R component on the left in the last coordinate. One can
check3 that this extends to a ˚-isomorphism

CliffCpRd´1qpbCliffCpRq – CliffCpRdq. (E.1)

It follows from this and the explicit description of CliffCpRq from Example E.1.11
that CliffCpRdq is a ˚-algebra of dimension 2d, and moreover that if e1, ..., ed is
an orthonormal basis for Rd, then

tei1ei2 ¨ ¨ ¨ eik | k P t0, ..., du, i1 ă ¨ ¨ ¨ ă iku

is a basis for CliffCpRdq (if k “ 0 in the above, the corresponding ‘empty product’
is by definition the identity of CliffCpRdq). Note that this basis consists of
homogeneous elements, with the parity of ei1 ¨ ¨ ¨ eik equalling that of k.

Stipulating that this basis is orthonormal gives CliffCpRdq the structure of
a Hilbert space, say Hd. The grading operator on CliffCpRdq defines a self-
adjoint unitary operator on Hd, turning it into a graded Hilbert space. The
left multiplication of the Clifford algebra on itself gives rise to a faithful graded
˚-representation CliffCpRdq Ñ BpHdq. Equipped with the corresponding oper-
ator norm, CliffCpRdq becomes a C˚-algebra. From now on, we will think of
CliffCpRdq as a graded C˚-algebra in this way.

Let us note also that the ˚-isomorphism in line (E.1) allows us to determine
the structure of CliffCpRdq as a graded C˚-algebra. Indeed, one can check that
if te1, e2u is an orthonormal basis for R2, then the assignments

e1 ÞÑ

ˆ

0 1
1 0

˙

, e2 ÞÑ

ˆ

0 i
´i 0

˙

determine a (necessarily isometric) ˚-isomorphism CliffCpR2q Ñ M2pCq; more-
over, the grading corresponds to ‘the’ standard (inner) grading on M2pCq as in
Example E.1.9. It follows from this, induction using the isomorphism in line

3Exercise! – the unjustified claims in this example all make good practice in getting used
to Clifford algebras and graded tensor products.
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(E.1), the result of Exercise E.3.3, and associativity of the graded tensor product
(Remark E.2.10), that

CliffCpRdq –
"

M2d{2pCq, d even
M2pd´1q{2pCq ‘M2pd´1q{2pCq, d odd

. (E.2)

The grading is the standard (inner) grading of Example E.1.9 if d is even.
If d is odd, the grading is not inner: it is given by the flip ˚-automorphism
pa, bq ÞÑ pb, aq with respect to the direct sum decomposition.

Example E.2.13. Let A be an inner graded C˚-algebra, and K be a standard
graded copy of the compact operators on a separable infinite dimensional Hilbert
space H “ H0‘H1 as in Example E.1.9. The purpose of this example is to give
a useful description of ApbK : we will show that it is isomorphic as a graded
C˚-algebra to M2pA b KpH0qq with grading given by the unitary multiplier
ˆ

1 0
0 ´1

˙

. We will also show that the isomorphism we define is canonical up

to homotopy equivalence. We warn the reader that we do not give the shortest
possible proof of this!

Note first that by Exercise E.3.3 that there is a canonical isomorphism

ApbK – AbK ,

where the both sides are equipped with the tensor product grading. Choose
orthonormal bases penq

8
n“1 and pfnq

8
n“1 of H0 and H1 respectively. Let Z{2 “

t0, 1u be the group with two elements, and consider the unitary isomorphism
determined as follows

U : `2pZ{2q bH0 Ñ H0 ‘H1, δi b en ÞÑ
1
?

2
pen, p´1qifnq.

Let λ1b idH0 be the grading on `2pZ{2qbH0 determined by the tensor product
of the non-trivial element λ1 of the left regular representation associated to Z{2
(Example C.1.3) and the identity on H0. Then conjugation by U determines an
isomorphism

AbK – AbKp`2pZ{2q bH0q

that intertwines the tensor product gradings on both sides.
Concretely represent A on some Hilbert space HA, and let the inner grading

on A be induced by some unitary V in the multiplier algebra MpAq of A. Let

W : HA b `
2pZ{2q bH0 Ñ `2pZ{2q bH0

be the unitary isomorphism underlying Fell’s trick (Proposition C.2.1) defined
by

W : ub δi b v ÞÑ V iub δi b v.

It is not difficult to see that W is in the multiplier algebra of AbKp`2pZ{2qbH0q

and intertwines the actions of Z{2 given by

i ÞÑ V i b λi b 1H0
and i ÞÑ 1HA b λi b 1H0

.
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Hence conjugating by W shows that A b Kp`2pZ{2q b H0q (with the tensor
product grading) is isomorphic as a graded C˚-algebra to AbKp`2pZ{2q bH0q

equipped with the tensor product of the trivial grading on A, and the grading
induced by λ1 b 1H0

on Kp`2pZ{2q bH0q. Using the canonical isomorphisms

Kp`2pZ{2q bH0q –M2pKpH0qq

we have an isomorphism

AbKp`2pZ{2q bH0q –M2pAbKpH0qq

where the right hand side is equipped with the grading induced by the unitary

multiplier

ˆ

0 1
1 0

˙

. The matrix

ˆ

0 1
1 0

˙

is unitarily equivalent (in M2pCqq to
ˆ

1 0
0 ´1

˙

; as such a unitary equivalence is unique up to homotopy equivalence,

we get the claimed result.

The maximal graded tensor product

We now look at the maximal graded tensor product, which we will need to define
some products in K-theory.

Definition E.2.14. Let A and B be graded C˚-algebras. With notations for
graded commutators as in Remark E.2.4, let S be the set of all triples pφ, ψ,Cq
consisting of a graded C˚-algebra C and graded ˚-homomorphisms φ : A Ñ C
and ψ : B Ñ C that satisfy

rφpaq, ψpbqsg “ 0

for all a P A and b P B. As in Remark E.2.4, for each triple pφ, ψ,Cq in S we
get a graded ˚-homomorphism φpbψ : ApdB Ñ C that satisfies

pφpbψqpapbbq “ φpaqψpbq

on elementary tensors. We define the maximal norm on ApdB by

}c}max :“ supt}pφpbψqpcq}C | pφ, ψ,Cq P Su.

We define the maximal graded tensor product , denoted ApbmaxB, to be the
associated completion of ApdB.

Remark E.2.15. The commutativity and associativity isomorphisms of Remark
E.2.3 extend to pbmax: this follows straightforwardly from the definitions, as we
leave to the reader to check.

Remark E.2.16. The maximal graded tensor product is functorial: precisely, if
φ : AÑ B and ψ : C Ñ D are graded ˚-homomorphisms, then there is a unique
graded ˚-homomorphism φpbψ : ApbmaxC Ñ BpbmaxD satisfying pφpbψqpapbcq “
φpaqpbψpcq on elementary tensors. This is not completely obvious from the way
that we have defined pbmax: see Exercise E.3.5 for a sketch proof.
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Remark E.2.17. The maximal tensor product also has the following universal
property: if A, B, and C are graded C˚-algebras, and if φ : ApdB Ñ C is
any graded ˚-homomorphism, then there is a unique extension of φ to a graded
˚-homomorphism φ : ApbmaxB Ñ C: see Exercise E.3.5 again.

Note that if A and B are graded C˚-algebras, then we may form both ApbB
and AbB, and similarly for the maximal tensor products. The norms on these
C˚-algebras are actually closely related.

Lemma E.2.18. Let A and B be graded C˚-algebras. Then the identity map
on AdB extends to Banach space isomorphisms

ApbB – AbB and ApbmaxB – Abmax B.

Proof. Consider the ˚-homomorphism εApbid : ApbB Ñ ApbB, which exists
by functoriality (Remark E.2.11). For i P t0, 1u, we may thus make sense of
contractive linear maps

1

2

`

εApbid` p´1qipidpbidq
˘

: ApbB Ñ ApbB,

Note that if Ai denotes the subspace of A consisting of elements of degree i,
then 1

2

`

εApbid` p´1qipidpbidq
˘

is idempotent, with image the closure of Ai dB

inside ApbB. This works similarly for εB . Thus for i, j P t0, 1u we may define
contractive linear maps Eij : ApbB Ñ ApbB by

Eij :“
1

2

`

εApbid` p´1qipidpbidq
˘

˝
1

2

`

idpbεB ` p´1qjpidpbidq
˘

.

The image of Eij is the closure of Ai d Bj inside ApbB. Note moreover that
ř1
i,j“0Eij is the identity. Putting this discussion together, we have that for any

c P ApbB,

maxt}Eijpcq} | i, j P t0, 1uu ď }c} ď
ÿ

i,j“0,1

}Eijpcq}. (E.3)

In particular, the norm on ApbB is equivalent to the norm defined by }c} :“
ř1
i,j“0 }Eijpcq}. All this works analogously for pbmax, b, and bmax, using that

all of these tensor products are functorial for ˚-homomorphisms (see Exercises
E.3.5, 1.9.16 and 1.9.20 respectively). It follows from this discussion that to
prove the desired result, it suffices to show that }Eijpcq}ApbB “ }Eijpcq}AbB for
all c P A d B, and similarly in the maximal case. It therefore suffices to prove
that }c}ApbB “ }c}AbB for any c P Ai d Bj and similarly in the maximal case;
this is what we will do.

Note first that the degree zero elements A0 and B0 in A and B respectively
are C˚-subalgebras. We claim that the inclusion A0 d B0 Ñ ApbB extends
to an isometric ˚-homomorphic inclusion A0 b B0 Ñ ApbB and similarly in
the ungraded and maximal cases: see Exercise E.3.6. Given this, let c be any
element of Ai dBj . Then

}c}2
ApbB

“ }c˚c}ApbB
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However, c˚c is A0dB0, and by the claim, the norm of any element here equals
its norm in A0 bB0. Thus we get

}c}2
ApbB

“ }c˚c}ApbB “ }c
˚c}AbB “ }c}

2
AbB .

Everything works analogously in the maximal case, so we are done.

The following result says that for the most important examples we are in-
terested in, it is not important whether we use pb of pbmax.

Corollary E.2.19. Let A be a graded C˚-algebra, and B be one of: K ,
CliffCpV q for some finite dimensional vector space V , or a graded commuta-
tive C˚-algebra. Then the canonical map ApbmaxB Ñ ApbB is an isomorphism.

Proof. If B “ CliffCpV q, ApdB is already a C˚-algebra for either the pb or
pbmax norms, so these norms are the same by uniqueness of C˚-algebra norms
(Corollary 1.3.16). If B “ K , then one can use that K is the closure of
the union of graded subalgebras M2npCq (with the standard even grading) and
that each tensor product ApdM2npCq has a unique C˚-algebra norm: compare
Exercise 1.9.18.

In the commutative case, we use Lemmas 1.8.13 and E.2.18.

E.3 Exercises

E.3.1. Show that if A is a graded C˚-algebra, then A has an approximate unit
consisting of even elements.
Hint: if phiq is an arbitrary approximate unit, then 1

2 phi ` εphiqq works.

E.3.2. Let V be a real vector space, and let dR denote the algebraic tensor
product over R. The tensor algebra T pV q is defined to be the direct sum

T pV q :“
8
à

n“0

V bn,

where
V bn :“ V dR ¨ ¨ ¨ dR V

loooooooomoooooooon

n times

and V b0 :“ R. The vector space T pV q is equipped with the multiplication
defined on elementary tensors v1b ¨ ¨ ¨b vn P V

bn and w1b ¨ ¨ ¨bwm P V
bm by

pv1 b ¨ ¨ ¨ b vnqpw1 b ¨ ¨ ¨ b wmq :“ v1 b ¨ ¨ ¨ b vn b w1 b ¨ ¨ ¨ b wm P V
bpn`mq

and made into a ˚-algebra via the operation defined on elementary tensors by

pv1 b ¨ ¨ ¨ b vnq
˚ :“ vn b ¨ ¨ ¨ b v1.

Let ι : V Ñ T pV q be the linear map defined via the tautological inclusion of
V “ V b1 in

À8

n“0 V
bn.
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Let TCpV q denote the tensor product ˚-algebra T pV q dR C. If moreover V
is equipped with an inner product, let I be the ideal in TCpV q generated by all
elements of the form v b v ´ }v}21TCpV q, where } ¨ } is the norm associated to
the inner product on V .

(i) Show that T pV q has the following universal property: for any linear map
φ : V Ñ A from V into a real ˚-algebra A that satisfies φpvq˚ “ φpvq for
all v P V , there is a unique algebra homomorphism filling in the dashed
arrow below

T pV q

!!
V

ι

OO

φ // A

so the diagram commutes. Show that TCpV q has the analogous universal
properties for (real) linear maps from V into a complex ˚-algebra.

(ii) Show that if φ : V Ñ A is any real-linear map to a unital complex ˚-
algebra such that φpvq2 “ }v}21A and φpvq˚ “ φpvq for all v P V , then
there is a unique unital ˚-algebra homomorphism making the following
diagram commute

TCpV q{I

##
V

φ //

OO

A

(here the vertical map is the composition

V Ñ T pV q Ñ TCpV q Ñ TCpV q{I,

where the first map is the canonical inclusion ι : V Ñ T pV q, the second is
the map v ÞÑ v b 1C, and the third is the canonical quotient).

From this exercise, we conclude that TCpV q{I is one way to make rigorous sense
of the ‘generators and relations’ description of the Clifford algebra from Example
E.1.11: more precisely, we may reasonably define CliffCpV q :“ TCpV q{I.

E.3.3. Let A and B be graded C˚-algebras, with at least one of the gradings
inner. Show that there is an isomorphism of C˚-algebras ApbB – A b B, that
is moreover compatible with the gradings where A b B is given the canonical
tensor product grading determined by εAbBpab bq :“ εApaq b εBpbq.
Hint: if say B is inner graded by u, the map ApbB Ñ A b B determined on
elementary tensors of homogeneous elements by the formula apbb ÞÑ a b uBab
works. Show this.

E.3.4. More generally than the computations in Example E.2.12, show that if
V and W are finite-dimensional real vector spaces, then there is a canonical
isomorphism CliffCpV ‘W q – CliffCpV qpbCliffCpW q.
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E.3.5. (i) Let π : ApdB Ñ BpHq be a nondegenerate graded representation.
Show that there are graded representations πA : AÑ BpHq and πB : B Ñ
BpHq such that (with notation as in Remark E.2.4) rπApaq, πBpbqsg “ 0
for all a P A and b P B, and π “ πApbπB .
Hint: analogously to Exercise 1.9.20, choose an even approximate unit phiq
for B as in Exercise E.3.4. Show that the net πpapbhiq strongly converges
for all a P A, and define πApaq to be the associated limit. Proceed similarly
for πB.

(ii) Use the previous part to prove the functoriality claim for pbmax in Remark
E.2.16.
Hint: with notation as in that remark, fix a faithful nondegenerate repre-
sentation π : C pbmaxD Ñ BpHq. Let πC and πD be representations of C
and D as in the first part of the exercise. Using Remark E.2.4, we then
get a ˚-homomorphism

pπC ˝ φqpbpπD ˝ ψq : ApdB Ñ BpHq,

which extends to ApbmaxB by definition of the maximal norm. Show that
this takes image in C pbmaxD, and is the required ˚-homomorphism.

(iii) Use a similar argument to justify the universal property in Remark E.2.17.

E.3.6. With notation as in the proof of Lemma E.2.18, prove that the natural
˚-homomorphic inclusion A0 dB0 Ñ ApdB extends to isometric inclusions

A0 bB0 Ñ ApbB and A0 bmax B0 Ñ ApbmaxB,

and similarly there are inclusions

A0 bB0 Ñ AbB and A0 bmax B0 Ñ Abmax B

in the ungraded case.
Hint: the spatial case is the easier of the two, and we leave it to the reader. The
maximal case is trickier: one way to proceed is as follows. Choose a faithful
representation π : A0 bmax B0 Ñ BpHq. Define a form on pApdBq dH by the
formula

xcb u, db vy :“ xu, πpE00pc
˚dqqvy

on elementary tensors. Show that the separated completion is a Hilbert space
rH. For c P ApdB and db v P pApdBq dH, show that the formula

rπpcq : db v ÞÑ cdb v

determines a well-defined representation rπ of ApbmaxB on rH. Finally, show
that the restriction of rπ to A0 dB0 is isometric.
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E.4 Notes and references

The introduction of Clifford algebras into the study ofK-theory is due to Atiyah,
Bott, and Shapiro [9]. Since then, gradings have been a useful tool in K-theory,
particularly in the setting of Kasparov’s bivariant theory [150]. Gradings and
Clifford algebras become particularly important in the setting of real K-theory:
we will not touch on this here, but the theory is important for applications to
topology and geometry. The interested reader can see [164, Chapter 1] for a
detailed study.

Graded tensor products of C˚-algebras are (fairly briefly) discussed in [128,
Section 1.2] and [33, Section 14.4].
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Banach ˚-algebra, 12
Baum-Connes conjecture, 252

for a group, 252
block sum, 58
Borel conjecture, 360
Bott map, 87
Bott operator on Rd, 323
Bott periodicity theorem, 87
Bott-Dirac operator, 383
bounded geometry, 467

C˚-algebra, 11
C˚-identity, 11
C˚-subalgebra, 11
cap product, 334
Cartan-Hadamard theorem, 379
CAT(0) inequality, 376

CAT(0) space, 376
Cayley graph, 433
Cayley transform, 106
classifying space, 267

for proper actions, 271
Clifford algebra, 495
Clifford bundle, 340
closable unbounded operator, 481
close maps, 463
closed unbounded operator, 481
closure of an unbounded operator,

482
cluster axiom, 473

for K-homology, 223
co-isometry, 16
coarse K-homology, 251
coarse Baum-Connes conjecture,

252
coarse category, 463

equivariant, 467
coarse embedding, 468
coarse equivalence, 463
coarse map, 463
coarse structure, 462
coarse surjection, 468
coarsely excisive cover, 278
coassociativity, 117
cobounded action, 187
compact operators, 12
composition of sets, 151
comultiplication, 117
concrete C˚-algebra, 36
cone, 85
continuity of K-theory, 89
continuous cover, 163
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contractible, 85
contraction in a C˚-algebra, 16
controlled set, 462
corner, 42

full, 42
covariance relation, 479
covariant representation, 479
covering isometry, 157

equivariant, 170
creation operator, 486

degree of an element of a graded
algebra, 495

descent principle, 276
diameter, 461
differential operator, 287
Dirac connection, 342
Dirac operator, 342
Dirac operator on Rd, 323
direct limit C˚-algebra, 35
direct sum

of C˚-algebras, 13
of group representations, 478

direct system of C˚-algebras, 35
distributional Fourier transform,

295
domain of an unbounded operator,

481
double, 93

Eilenberg swindle, 91
elliptic differential operator, 300
empty set axiom, 473
epimorphism in a category, 469
equivariant bounded category, 249
even element of a graded algebra,

495
exact sequence for a pair, 473
exotic sphere, 361
expander, 436
expansion function, 462
exponential map (on K-theory), 88
external product

on K-homology, 320
on K-theory, 117

Fell’s trick, 479

F -group, 250
Fourier transform for tori, 301
Fredholm index, 102
Fredholm module, 236
Friedrich’s mollifers, 290
functional calculus

Borel, 40
continuous, 28
for unbounded operators, 483
holomorphic, 30

fundamental domain, 188

G̊arding’s inequality, 302
Gauss-Bonnet theoem, 130
G-compact, 225
G-C˚-algebra, 478
Gelfand transform, 23
Gelfand-Mazur theorem, 22
Gelfand-Naimark theorem, 38
geodesic space, 461
geometric module, 148

ample (as an X module), 148
ample (as an X-G module),

164
equivariant, 163
locally free, 164

ghost operator, 444
graded ˚-algebra, 493
graded ˚-homomorphism, 493
graded algebraic tensor product,

496
graded commutator, 497
graded Hilbert space, 493
graded representation, 494
graded tensor product of

representations, 498
grading on a ˚-algebra

inner, 493
grading operator, 493
graph of an unbounded operator,

481
group C˚-algebra

maximal, 14
reduced, 36

group algebra, 13
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half-exact functor, 79
Harmonic oscillator, 486
hereditary subset of a C˚-algebra,

68
higher ρ-invariant, 359
higher index map, 248
higher signature, 362
Hilbert-Schmidt operator, 68
Hirzebruch L-class, 362
Hirzebruch signature theorem, 362
homogeneous element of a graded

algebra, 495
homology theory, 472
homotopy

of homomorphisms, 66
of idempotents, 62
of invertibles, 82

homotopy invariance
of K-homology, 221
of representable K-homology,

332
homotopy invariance axiom, 473
Hopf-Rinow theorem, 462

ideal in a C˚-algebra, 31
idempotent, 16
index class formula, 101

graded setting, 103
using exponential map, 102

index map, 84, 101
induction isomorphism, 228
invariant translation

approximation property,
193

inverse closed subalgebra, 74
inverse limit, 474
inverse of a set, 151
invertible element of a C˚-algebra,

16
isometric action, 465
isometry (in a C˚-algebra), 16
isometry (of a metric space), 461
isomorphic group representations,

477

K-homology, 204

equivariant, 227
K0 group, 60
K1 group, 82
Kadison-Kaplansky conjecture, 350
Kaplansky’s conjecture, 351
Kasparov K-homology, 237
Kazhdan projection, 438
Kazhdan-Warner theorem, 131
kernel operator, 150
Koopman representation, 478

Laplacian on a graph, 434
left invariant metric, 464
length space, 461
lens space, 360
Lichnerowicz formula, 141
lim1 group, 475
local trivialisation of a vector

bundle, 119
localisation ˚-algebra, 200

equivariant, 225
localisation algebra, 200

equivariant, 225
localised Roe ˚-algebra, 233
localised Roe algebra, 233
locally compact operator, 178
long exact sequence

in K-homology, 222

mapping cone, 125
mapping telescope, 475
maximal domain of an unbounded

operator, 482
maximal graded tensor product,

502
Mayer-Vietoris axiom, 473
Mayer-Vietoris sequence

associated to a closed cover, 99
associated to a pullback, 96
associated to a pushout, 96
associated to an open cover, 98
for K-homology, 206
for representable K-homology,

332
Mehler’s formula, 489
metric, 460
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metric space, 460
Milnor exact sequence, 475
minimal domain of an unbounded

operator, 482
monomorphism in a category, 469
Morita equivalent, 42
multiplier algebra

of a concrete C˚-algebra, 40
of an abstract C˚-algebra, 42

multiplier data, 299

net (in a metric space), 463
Neumann series, 17
normal element of a C˚-algebra, 16
Novikov conjecture, 363
Novikov’s theorem, 361
nuclear C˚-algebra, 49

odd element of a graded algebra,
495

one point compactification, 452
ONL, 439
operator norm localisation

property, 439
orbit, 456
orbit map, 465

pairing between K-theory and
K-homology, 319

partial isometry, 16
partial pairing between K-theory

and K-homology, 319
pointed map, 452
polarization identity, 67
Pontrjagin class, 361
positive element of a C˚-algebra,

16
product of C˚-algebras, 13
projection, 16
projective module, 118
propagation, 149
propagation speed, 290
proper action, 456
proper map, 453
proper metric space, 461
properly supported operator, 151

property pτq, 436
property (T), 437
property A, 428
pullback, 96
Puppe sequence, 86
pushout, 96

quasi-idempotent, 65
quasi-isometry, 469
quasi-morphism, 94
quasi-projection, 65
quasi-regular representation, 478
quasi-stable C˚-algebra, 94
quotient C˚-algebra, 33

r-net, 463
r-separated set, 463
reduced group C˚-algebra, 478
refinement of an open cover, 159
regular representation, 478

left, 477
right, 477

Rellich lemma, 301
representable K-homology, 329
representation of a C˚-algebra, 16

ample, 37
faithful, 37
nondegenerate, 37

resolvent set of an unbounded
operator, 482

rigid manifold, 360
Rips complex, 258
Roe ˚-algebra, 179

equivariant, 185
Roe C˚-algebra, 179

equivariant, 185

scalar curvature, 130
Schatten p-class, 302
self-adjoint element of a

C˚-algebra, 16
semi-spherical distance, 258
separated completion, 149
signature of a manifold, 362
signature operator, 363
slow oscillation at infinity, 296
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Sobolev space of a torus, 301
spatial tensor product

graded, 499
spatially implemented action, 479
spectral K-theory groups, 108
spectral radius, 19
spectral radius formula, 19
spectrum

of a commutative Banach
algebra, 22

of an element of an algebra, 18
of an unbounded operator, 482

spherical distance, 255
spherical Rips complex, 254
spherical simplex, 254
spin structure, 342
spinc structure, 341

on a product, 344
split exact functor, 81
stabiliser, 456
stability of K-theory, 90
stable C˚-algebra, 50
standard grading, 494
˚-algebra, 12
˚-homomorphism, 16
Stone von Neumann theorem, 484
strong convergence, 39
strong Novikov conjecture, 364
support of a distribution, 295
support of an operator, 149
suspension, 85
Svarc-Milnor lemma, 465
symbol, 288

tensor algebra, 504
tensor product

of C˚-algebras, 47

of algebra representations, 45
of group representations, 478
of Hilbert spaces, 44

Toeplitz index theorem, 139
Toeplitz operator, 139
trace, 61

canonical on BpHq and KpHq,
67

map induced on K-theory, 61
positive, 67
positive and bounded, 67

positive and densely defined, 70
positive and lower semi-continuous,

70
trace class operator, 68, 310
trivial representation, 477

U-cover, 154
equivariant, 166

unbounded operator, 481
essentially self-adjoint, 482
formally self-adjoint, 482
self-adjoint, 482

uniform Roe algebra, 180
uniformly contractible, 265
uniformly expansive map, 463
unitary element of a C˚-algebra, 16
unitary representation, 477
unitisation, 14
universal coefficient theorem, 322

vector bundle, 119

wave equation, 293
wave operators, 293
wrong way functoriality for maps

of open sets, 98
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