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Abstract. We show that if X and Y are uniformly locally finite metric
spaces whose uniform Roe algebras, C∗u(X) and C∗u(Y ), are isomorphic
as C∗-algebras, then X and Y are coarsely equivalent metric spaces.
Moreover, we show that coarse equivalence between X and Y is equiv-
alent to Morita equivalence between C∗u(X) and C∗u(Y ). As an applica-
tion, we obtain that if Γ and Λ are finitely generated groups, then the
crossed products `∞(Γ)or Γ and `∞(Λ)or Λ are isomorphic if and only
if Γ and Λ are bi-Lipshitz equivalent.

1. Introduction

Coarse geometry is the study of metric spaces when one forgets about
the small scale structure and focuses only on large scales. For example,
this philosophy underlies much of geometric group theory. As the local
structure of a space is irrelevant, one typically assumes that the spaces one
is working with are discrete: we will focus here on uniformly locally finite1

metric spaces (X, dX), meaning that supx∈X |Br(x)| <∞ for all r > 0, where
|Br(x)| is the cardinality of the closed ball in X of radius r centered at x.
Typical examples that are important for applications are finitely generated
groups with word metrics, and discretizations of non-discrete spaces such as
Riemannian manifolds. There is a natural coarse category of metric spaces
considered from a large-scale point of view, and the isomorphisms in this
category are called coarse equivalences.

Here is the formal definition. Given metric spaces (X, dX) and (Y, dY ), a
map f : X → Y is coarse if for all r > 0 there is s > 0 so that

dX(x, x′) 6 r implies dY (f(x), f(x′)) 6 s

for all x, x′ ∈ X. If f : X → Y and g : Y → X are coarse and

sup
x∈X

dX(x, g(f(x))) <∞ and sup
y∈Y

dY (y, f(g(y))) <∞

then f and g are called mutual coarse inverses, each of f and g is called a
coarse equivalence, and X and Y are said to be coarsely equivalent.

Date: June 16, 2021.
1Also called bounded geometry metric spaces in the literature.
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Associated to the large-scale structure of a uniformly locally finite met-
ric space is a C∗-algebra, i.e., a norm-closed and adjoint-closed algebra of
bounded operators on a complex Hilbert space, called the uniform Roe al-
gebra of X and denoted by C∗u(X). Prototypical versions of this C∗-algebra
were introduced by Roe [31] for index-theoretic purposes. The theory was
consolidated in the 1990s by Roe, Yu and others, and uniform Roe alge-
bras have since found applications in index theory (for example, [36, 16]),
C∗-algebra theory (for example, [34, 26]), single operator theory (for exam-
ple, [30, 38]), topological dynamics (for example, [22, 6]), and mathematical
physics (for example, [10, 17]).

Here is the formal definition. For a metric space (X, dX), the propagation
of an X-by-X matrix a = [axy] of complex numbers is

prop(a) := sup{dX(x, y) | axy 6= 0} ∈ [0,∞].

If a = [axy] has finite propagation and uniformly bounded entries, then a
canonically induces a bounded operator on the Hilbert space `2(X) as long as
(X, dX) is uniformly locally finite. For any such (X, dX), the operators with
finite propagation form a ∗-algebra, and C∗u(X) is the C∗-algebra defined as
the norm closure of this ∗-algebra.

For many applications of uniform Roe algebras, one wants to know how
much of the underlying metric geometry is remembered by C∗u(X). This
leads to the foundational question below.

Problem 1.1 (Rigidity of uniform Roe algebras). If the uniform Roe al-
gebras of uniformly locally finite metric spaces are ∗-isomorphic, are the
underlying metric spaces coarsely equivalent?

Recently, the rigidity problem for uniform Roe algebras has been exten-
sively studied. For example: [37] started this study; [2] introduced several
new ideas that are relevant for this paper; and [25] represents the most
recent developments before this paper. All of these papers (and others)
give positive answers to Problem 1.1 in the presence of additional geometric
conditions on the underlying metric spaces.

1.1. Main results. In this paper, we give an unconditional positive answer
to the rigidity problem.

Theorem 1.2. Let X and Y be uniformly locally finite metric spaces. If
C∗u(X) and C∗u(Y ) are ∗-isomorphic, then X and Y are coarsely equivalent.

We will discuss an outline of the proof in Section 1.2 below. For now, let
us focus on some applications and elaborations.

A first application of Theorem 1.2 regards groups. Associated to an action
of a group Γ on a compact topological space X, there is a C∗-algebra crossed
product C(X)or Γ that models the underlying dynamics. In particular, one
can do this when X = βΓ is the Čech-Stone compactification of Γ, which
is the universal compact Γ-space in some sense. If Γ is discrete, C(βΓ)
naturally identifies with `∞(Γ), so we get the crossed product `∞(Γ) or Γ.
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If Γ is a finitely generated group, then it becomes a uniformly locally finite
metric space when equipped with a word metric. The uniform Roe algebra
of Γ then identifies with the C∗-algebra crossed product `∞(Γ)orΓ discussed
above, i.e., there is a canonical ∗-isomorphism C∗u(Γ) ∼= `∞(Γ) or Γ (see [9,
Proposition 5.1.3]).

The following result is of interest in pure C∗-algebra theory and topolog-
ical dynamics (see Corollary 3.5 below for a more general statement).

Corollary 1.3. Let Γ and Λ be finitely generated groups. The following are
equivalent:

1. With any choice of word metrics, Γ and Λ are bi-Lipschitz equivalent.2

2. The C∗-algebras `∞(Γ) or Γ and `∞(Λ) or Λ are ∗-isomorphic.

Our next main result concerns Morita equivalence. This is a notion of
isomorphism for C∗-algebras that is a little weaker than ∗-isomorphism.
Roughly, it says that the C∗-algebras involved are ∗-isomorphic ‘up to mul-
tiplicity’, and is typically considered the ‘correct’ notion of isomorphism
for C∗-algebras in noncommutative geometry. That Morita equivalence of
uniform Roe algebras is connected to coarse equivalence of the underlying
spaces seems to have been guessed at by Gromov in the early 90s [19, page
263]. Brodzki, Niblo, and Wright [7, Theorem 4] subsequently showed that
coarse equivalence of uniformly locally finite metric spaces implies Morita
equivalence of their uniform Roe algebras. Our methods allow us to obtain
that the converse also holds.

Theorem 1.4. Let X and Y be uniformly locally finite metric spaces. The
following are equivalent:

1. X and Y are coarsely equivalent.
2. C∗u(X) and C∗u(Y ) are Morita equivalent.

Our findings also allow us to remove the geometric assumptions from
the main result of [3]. Precisely, if X is a uniformly locally finite metric
space then the compact operators K(`2(X)) are an ideal in C∗u(X). The
associated quotient is the uniform Roe corona of X, denoted by Q∗u(X).
In [3], the authors investigate whether rigidity also holds given the weaker
assumption of isomorphism between uniform Roe coronas. In this paper we
obtain the following:

Theorem 1.5. Let X and Y be uniformly locally finite metric spaces. If
Q∗u(X) and Q∗u(Y ) are ∗-isomorphic and one assumes appropriate forcing
axioms3, then X and Y are coarsely equivalent.

2Metric spaces (X, dX) and (Y, dY ) are bi-Lipschitz equivalent if there is a bijection
f : X → Y such that f and f−1 are Lipschitz.

3For the set theorist reader, this result is a theorem in ZFC + OCAT + MAℵ1 .
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1.2. The road to rigidity. We now discuss our methods of proof in more
detail. If H is a Hilbert space then B(H) denotes the C∗-algebra of all
bounded operators on H. The strong operator topology on B(H) is the
topology of pointwise convergence on B(H). We write “SOT” as an ab-
breviation for “strong operator topology” and “SOT-

∑
” for a sum that

converges in the strong operator topology.
As already noted above, the C∗-algebra of compact operators K(`2(X))

is an ideal in C∗u(X), and in fact is the unique minimal ideal. As a result,
a ∗-isomorphism between uniform Roe algebras of uniformly locally finite
metric spaces sends compact operators to compact operators. Isomorphisms
of the compact operators must be “spatially implemented”, i.e., given by
conjugation by an isometric isomorphism between the corresponding Hilbert
spaces (see for example [14, Corollary 4.1.8]). From this discussion, it is not
difficult to deduce the following result.

Lemma 1.6 ([37, Lemma 3.1]). Let X and Y be uniformly locally finite
metric spaces and Φ: C∗u(X) → C∗u(Y ) be a ∗-isomorphism. Then there
is an isometric isomorphism u : `2(X) → `2(Y ) so that Φ(a) = uau∗ for
all a ∈ C∗u(X). In particular, Φ is rank-preserving and continuous for the
strong operator topology. �

The automatic SOT-continuity of isomorphisms between uniform Roe al-
gebras will be very important for us. In addition to this basic observation,
our proof of Theorem 1.2 has two main ingredients at its core:

(I) the “equi-approximability” of certain families of operators by opera-
tors with uniformly bounded propagation (see Lemma 1.8);

(II) a uniform lower bound on certain matrix coefficients.4

Let us first look at equi-approximability. We need a definition which
quantifies how well a bounded operator can be approximated by a finite
propagation operator.

Definition 1.7. Let X be a metric space, ε > 0, and r > 0. An operator a in
B(`2(X)) is ε-r-approximable if there exists b ∈ B(`2(X)) with propagation
at most r such that ‖a− b‖ 6 ε.

The key “equi-approximability lemma” was obtained as an application of
the Baire category theorem and diagonalization methods in [2, Section 4] (a
weaker version appeared earlier in [37, Lemma 3.2]).

Lemma 1.8 ([2, Lemma 4.9]). Let X be a uniformly locally finite metric
space and let (an)n be a sequence of operators so that SOT-

∑
n∈M an con-

verges to an element of C∗u(X) for all M ⊆ N. Then for all ε > 0 there is
r > 0 so that SOT-

∑
n∈M an is ε-r-approximable for all M ⊆ N. �

The second ingredient (II) is a uniform lower bound on certain matrix
entries. Given a set X, (δx)x∈X denotes the standard orthonormal basis of

4This was formalized as rigidity of a ∗-isomorphism in [2, page 1008].
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`2(X) and, given x, y ∈ X, exy denotes the rank 1 partial isometry sending
δy to δx. The current proofs of rigidity in the literature all follow a similar
path: given a ∗-isomorphism Φ: C∗u(X)→ C∗u(Y ), one uses some geometric
property of Y in order to ensure an inequality of the form

(1.1) inf
x∈X

sup
y∈Y
‖Φ(exx)δy‖ > 0.

This inequality was first obtained in [37, Lemma 4.6] under the assumption
of Yu’s property A (see [45, Definition 2.1]), which is an amenability-like
property of metric spaces.

The inequality in line (1.1) was then shown to hold under conditions on
the absence of certain ghost operators in [2, Section 6]: an operator a = [axy]
on `2(X) is a ghost if limx,y→∞ axy = 0. Compact operators are easily seen
to be ghosts, and we regard these as the trivial ghost operators. Property
A is equivalent to the statement that all ghost operators are compact ([33,
Theorem 1.3]), i.e., that there are no non-trivial ghosts. In [2, Theorem
6.2], the inequality in line (1.1) was established under the absence of certain
families of non-trivial ghost projections, which is much weaker. Prior to this
paper, the most general geometric condition that is sufficient to establish the
inequality in line (1.1) also used ghostly ideas, and is due to Li, Špakula, and
Zhang [25, Theorem A]. Nonetheless, there are many examples where non-
trivial ghosts exist, and that do not satisfy the Li–Špakula–Zhang condition.

The reason the condition in line (1.1) is useful is that it shows the existence
of a map f : X → Y so that

inf
x∈X
‖Φ(exx)δf(x)‖ > 0.

The situation is symmetric, so that one also gets a map g : Y → X satisfying
the same condition with the roles of X and Y reversed. Repeated use of
the equi-approximability lemma (Lemma 1.8 above) implies that the maps
f and g are both coarse, and in fact mutual coarse inverses. We isolate the
key point in the following proposition, the proof of which is contained in the
proof of [37, Theorem 4.1] (see also [2, Theorem 4.12]).

Proposition 1.9. Let X and Y be uniformly locally finite metric spaces and
Φ: C∗u(X)→ C∗u(Y ) be a ∗-isomorphism. If there are maps f : X → Y and
g : Y → X so that infx∈X ‖Φ(exx)δf(x)‖ > 0 and infy∈Y ‖Φ−1(eyy)δg(y)‖ > 0,
then f and g are mutual coarse inverses. �

The key new idea in the current paper establishes the inequality in line
(1.1) unconditionally. This is done by combining the equi-approximability
lemma (Lemma 1.8) with a quantitative result on the approximate convexity
of the range of a finite-dimensional, countably additive vector measure (see
Lemma 2.1), which is in turn obtained as an application of the Shapley–
Folkman theorem from economics.

1.3. More rigidity. We conclude this introduction with two other rigidity
results.
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For the first, it has already been noted above that the previous partial
solutions to Problem 1.1 rely on conditions on the ideal of ghost operators
in C∗u(X). By its very definition, the “ghost-ness” of an operator is highly
dependent on the choice of the orthonormal basis for `2(X). As such, it was
unclear until now what happened to ghosts under ∗-isomorphisms. We solve
this problem with the following result.

Theorem 1.10. Every ∗-isomorphism between uniform Roe algebras of uni-
formly locally finite metric spaces sends ghost operators to ghost operators.

For the second result, we look at possibly non-metrizable coarse spaces.
Just as topological spaces abstract the small scale structure of metric spaces,
the notion of coarse spaces abstracts their large scale structure, see Section
5 for precise definitions. The definition of uniform Roe algebras extends
to coarse spaces naturally, and rigidity of uniform Roe algebras of non-
metrizable coarse spaces has been studied in [2, 4]. The proofs of our main
results do not immediately extend to coarse spaces, since Lemma 1.8 de-
pends heavily on Baire categorical methods: these require coarse spaces to
be metrizable (or at least small; see [2, Definition 4.2] and [18, §8.5] for more
information on the role of the Baire Category theorem), which translates to
a countability condition on the associated coarse structure.

In the earlier work on rigidity, property A plays a key role, typically via
the operator norm localization property of Chen, Tessera, Wang, and Yu [11,
Section 2], which was shown to be equivalent to property A by Sako [35].
Our vector measure approach together with a new lemma inspired by Sako’s
work implies that the operator norm localization property holds for certain
operators regardless of the geometry of the spaces (Lemma 5.3). We are thus
able to establish the result below for general coarse spaces (see Section 5 for
the definition of a coarse embedding).

Theorem 1.11. Let (X, E) and (Y,F) be uniformly locally finite coarse
spaces, and suppose (X, E) is metrizable. If C∗u(X) and C∗u(Y ) are ∗-isomorphic,
then X coarsely embeds into Y .

This result provides the first example of countable, coarse spaces without
property A, whose uniform Roe algebras are not ∗-isomorphic to the uniform
Roe algebra of any uniformly locally finite metric space. Indeed, any coarse
space which contains no infinite metric space coarsely must satisfy this. In
particular, this holds for (N, Emax), where Emax is the maximal uniformly
locally finite coarse structure on N, i.e., E ∈ E if and only if the cardinality
of the vertical and horizontal sections of E are uniformly bounded.

Corollary 1.12. Let Emax be the maximal uniformly locally finite coarse
structure on N. Then C∗u(N, Emax) is not ∗-isomorphic to the uniform Roe
algebra of any uniformly locally finite metric space. �
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2. Estimating the distance between the range of a vector
measure and its convex hull

In this section, we prove a quantitative estimate on the distance between
the range of a finite-dimensional vector measure on P(N) — the power set
of N — and its convex hull which will be crucial in what follows. The results
are related to Lyapunov’s convexity theorem and a theorem of Elton-Hill:
see Remark 2.4 for a discussion of these relationships.

A vector measure is a function µ from a σ-algebra Σ of sets into a Banach
space which is countably additive, i.e., if (An)n∈N is a sequence of disjoint
sets in Σ, then µ(

⋃
nAn) =

∑
n µ(An), where the sum converges in norm.

The next lemma is the main result of this section. The norm in the
statement, as well as in Lemma 2.3, is an arbitrary norm on Rn.

Lemma 2.1. Let m ∈ N and µ : P(N) → (Rm, ‖ · ‖) be a vector measure.
Then, for all v ∈ conv(µ[P(N)]) and ε > 0, there exists a finite subset F ⊆ N
such that

‖µ(F )− v‖ 6 sup{‖µ(C)‖ | C ⊆ N, |C| 6 m}+ ε.

In particular, ‖µ(F )− v‖ 6 m supn∈N ‖µ({n})‖+ ε.

Lemma 2.1 will be obtained as an application of the Shapley–Folkman
theorem. Given a subset S of a vector space, its convex hull is denoted by
conv(S). If S1, ..., Sn are subsets of a vector space, their Minkowski sum is

n∑
i=1

Si := {s1 + · · ·+ sn | si ∈ Si}.

It is a well-known elementary fact that the convex hull of a Minkowski sum
is the Minkowski sum of the convex hulls. Precisely, given subsets (Si)

n
i=1

of a vector space, we have

(2.1) conv
( n∑
i=1

Si

)
=

n∑
i=1

conv(Si).

The Shapley–Folkman theorem (see [39, Appendix 2], or [46] for a short
proof) provides additional quantitative information about the nature of the
decomposition in (2.1) when the subsets are drawn from a finite-dimensional
vector space. Precisely:
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Theorem 2.2 (Shapley–Folkman theorem). Let m ∈ N, (Si)
n
i=1 be nonempty

subsets of Rm. Then each v ∈ conv(
∑n

i=1 Si) can be written as v =
∑n

i=1 vi
where vi ∈ conv(Si) for all i ∈ {1, . . . , n}, and so that

|{i ∈ {1, . . . , n} | vi 6∈ Si}| 6 m.

We now use the Shapley–Folkman theorem to prove Lemma 2.1 for finite
sets.

Lemma 2.3. Let m ∈ N, X be a finite set, and µ : P(X) → (Rm, ‖ · ‖) be
a vector measure. Then, for all v ∈ conv(µ[P(X)]), there exists a subset
F ⊆ X such that

‖µ(F )− v‖ 6 max{‖µ(C)‖ | C ⊆ X, |C| 6 m}.
In particular, ‖µ(F )− v‖ 6 mmaxx∈X ‖µ({x})‖.

Proof. By shrinking X, we may assume that µ({x}) 6= 0 for all x ∈ X. For
each x ∈ X, let Sx := {0, µ({x})} ⊆ Rm. As 0 ∈ Sx, we have

µ[P(X)] =
∑
x∈X

Sx.

Hence, if v ∈ conv(µ[P(X)]), then it follows from (2.1) that there are vx ∈
conv(Sx), for x ∈ X, such that v =

∑
x∈X vx. By the Shapley–Folkman

theorem, we may assume that the set C := {x ∈ X | vx /∈ Sx} has cardinality
at most m. From (2.1),

∑
x∈C conv(Sx) is equal to the convex hull of the

set
∑

x∈C Sx = {µ(D) | D ⊆ C}. Therefore∥∥∥∥∥∑
x∈C

vx

∥∥∥∥∥ 6 max
D⊆C

‖µ(D)‖ 6 max{‖µ(D)‖ | D ⊆ X, |D| 6 m}.

Let
S := {x ∈ X | vx = µ({x})} and V := {x ∈ X | vx = 0}.

Note that S t C t V = X. Hence,

‖µ(S)− v‖ =

∥∥∥∥∥µ(S)−
∑
x∈X

vx

∥∥∥∥∥
6

∥∥∥∥∥µ(S)−
∑
x∈S

vx

∥∥∥∥∥+

∥∥∥∥∥∑
x∈C

vx

∥∥∥∥∥+

∥∥∥∥∥∑
x∈V

vx

∥∥∥∥∥
6 max{‖µ(D)‖ | D ⊆ X, |D| 6 m}.

To conclude, it remains to note that ‖µ(D)‖ 6 |D|maxx∈D ‖µ({x})‖ for all
D ⊆ X. �

The proof of Lemma 2.1 now follows by a simple approximation argument.

Proof of Lemma 2.1. If supn∈N ‖µ({n})‖ ∈ {0,∞}, the result is trivial, so
assume that supn∈N ‖µ({n})‖ ∈ (0,∞). Let ε > 0 and v ∈ conv(µ[P(N)]).

Then v =
∑k

i=1 λiµ(Ni) for some N1, . . . , Nk ⊆ N and λ1, . . . , λk > 0 such
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that
∑k

i=1 λi = 1. Pick finite subsets A1, . . . , Ak ⊆ N so that ‖µ(Ni) −
µ(Ai)‖ < ε for all 1 6 i 6 k. Let A :=

⋃k
i=1Ai and µA be the restriction of µ

to P(A). So, A is finite and vA :=
∑k

i=1 λiµ(Ai) belongs to conv(µA[P(A)]).
By Lemma 2.3, there exists a (finite) subset F ⊆ A such that

‖µA(F )− vA‖ 6 max{‖µA(C)‖ | C ⊆ A, |C| 6 m}
6 sup{‖µ(C)‖ | C ⊆ N, |C| 6 m}.

Since µ(F ) = µA(F ), we have that

‖µ(F )− v‖ 6 ‖µA(F )− vA‖+ ‖vA − v‖

6 sup{‖µ(C)‖ | C ⊆ N, |C| 6 m}+
k∑
i=1

λi‖µ(Ai)− µ(Ni)‖

6 sup{‖µ(C)‖ | C ⊆ N, |C| 6 m}+ ε,

and the statement is proved. �

Remark 2.4. The celebrated Lyapunov convexity theorem [27] states that
the range of a finite-dimensional atomless vector measure is closed and con-
vex.5 Our measures of interest are atomic, however, and the ranges of such
measures are not necessarily convex. On the other hand, a theorem of Elton–
Hill (see [15, Theorem 1.2]) quantifies the distance between the range of a
finite-dimensional vector measure and its convex hull in terms of the size of
the atoms of the one-dimensional coordinate measures. In a less elementary
and self-contained way, Lemma 2.1 can also be obtained as an application
of the Elton–Hill theorem.

3. Rigidity of uniform Roe algebras

This section contains the proofs of Theorems 1.2 and 1.10. The former
could also be obtained as a corollary of Theorem 4.1. However, for expository
reasons we chose to present the proof of Theorem 1.2 first.

The following lemma, our main technical tool, is of independent interest.
The norm on all direct sums in its proof is the standard Hilbert direct sum
norm.

Lemma 3.1. Let ε, r > 0 and X be a uniformly locally finite metric space,
and let Nr := supx∈X |Br(x)|. Let (pn)n∈N be a sequence of projections in
B(`2(X)) such that:

1. SOT-
∑

n∈A pn is ε-r-approximable for all A ⊆ N, and
2. SOT-

∑
n∈N pn = 1`2(X).

5There are many proofs of the Lyapunov convexity theorem ([21], [13, Corollary IX.1.5],
[23] just to name a few). A particularly elegant and concise one is due to Lindenstrauss
[28].
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For each x ∈ X and δ > 0, let M(x, δ) := {n ∈ N | ‖pnδx‖ > δ}. Then, if
δ 6 ε2/(8Nr), we have

inf
x∈X

∥∥∥∥∥ ∑
n∈M(x,δ)

pnδx

∥∥∥∥∥ > 1− 3ε.

Proof. Fix ε, r > 0 and Nr as in the statement. For A ⊆ N let pA :=
SOT-

∑
n∈A pn. Notice that the condition pN = 1`2(X) forces the projections

(pn)n to be mutually orthogonal, so each pA is a projection. Suppose that
for some δ 6 ε2/(8Nr) there is x ∈ X such that

(3.1) ‖pM(x,δ)δx‖ < 1− 3ε.

Our goal is to exhibit a projection of the form pA that is not ε-r-approximable,
and thus get a contradiction. To simplify notation, let M := M(x, δ) and
M ′ := N \M .

Writing B := Br(x) \ {x}, the partition X = {x} tB t (X \Br(x)) gives
a direct sum decomposition

`2(X) = C⊕HB ⊕HU ,

where HB = `2(B) and HU = `2(X \ Br(x)) (here ‘B’ and ‘U ’ stand for
‘bounded’ and ‘unbounded’, respectively).

Now comes the crucial vector measure argument. Let π : `2(X)→ C⊕HB

be the orthogonal projection, which we identify with χBr(x).
6 We define a

vector measure µ : P(M ′)→ C⊕HB by

(3.2) µ(A) := πpAδx,

for all A ⊆M ′ (µ is clearly countably additive). As ‖µ({n})‖ = ‖πpnδx‖ 6
‖pnδx‖, it follows from the definition of M ′ that supn∈M ′ ‖µ({n})‖ < δ.
Therefore, as µ(M ′)/2 belongs to the convex hull of the range of µ and as
dimR(C⊕HB) 6 2Nr, Lemma 2.1 gives a finite set A ⊆M ′ such that

(3.3)
∥∥∥µ(A)− µ(M ′)

2

∥∥∥ < 2Nrδ 6
ε2

4
.

Fix such A from now, and let s, s̄ ∈ C and b, b̄ ∈ HB be so that µ(A) = (s, b)
and µ(M ′)/2 = (s̄, b̄), i.e.,

s = 〈pAδx|δx〉, s̄ =
1

2
〈pM ′δx|δx〉, b = χBpAδx, and b̄ =

1

2
χBpM ′δx.

Moreover, let u := pAδx − sδx − b, i.e., u = χX\Br(x)pAδx. Our next goal is
to show that ‖u‖ > ε.

It follows from (3.3) that |s− s̄| < ε2/4 and so

(3.4) s > s̄− ε2/4.

6Here we use the following standard notation: for S ⊆ X, we let χS := SOT-
∑
x∈S exx,

i.e., χS is the operator on `2(X) that projects onto the coordinates indexed by S.
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Also, as s̄ ∈ [0, 1/2], we have

(3.5) 1− s > 1

2
− ε2/4.

We may assume ε < 1/3 (otherwise the conclusion is vacuous), whence 1− s
is positive. As s is positive automatically, we may multiply (3.4) and (3.5)
and then use that s̄ 6 1/2 to get

(3.6) s− s2 >
s̄

2
− ε2

8
− s̄ε2

4
+
ε4

16
>
s̄

2
− ε2

4
+
ε4

16
.

Using (3.3) again, we have that

(3.7) ‖b‖ < ε2

4
+ ‖b̄‖.

Therefore, keeping in mind that ‖b̄‖ 6 1/2 and s = 〈pAδx|δx〉 = ‖pAδx‖2,
we have

‖u‖2 = ‖pAδx‖2 − |s|2 − ‖b‖2

= s− s2 − ‖b‖2

(3.6)∧(3.7)
>

s̄

2
− ε2

4
+
ε4

16
−

(
ε4

16
+
ε2

2
‖b̄‖+ ‖b̄‖2

)

>
s̄

2
− ε2

2
− ‖b̄‖2.(3.8)

As ‖µ(M ′)‖ 6 ‖pM ′δx‖ =
√

2s̄, we have that ‖µ(M ′)/2‖2 6 s̄/2. There-
fore, as s̄2 + ‖b̄‖2 = ‖µ(M ′)/2‖2, it follows that

(3.9) s̄/2− ‖b̄‖2 > s̄2.

As N = M tM ′, we have that

s̄ =
1

2
〈pM ′δx|δx〉 =

1

2

(
〈pNδx|δx〉 − 〈pMδx|δx〉

)
.

Using assumption (3.1) and also that pN = 1`2(X), this implies that

(3.10) s̄ >
3ε

2
.

A combination of (3.8), (3.9), and (3.10) gives

‖u‖2 > −ε
2

2
+

9ε2

4
,

and so in particular ‖u‖ > ε.
On the other hand, as u = χX\Br(x)pAδx and d(x,X \ Br(x)) > r, this

contradicts that pA is ε-r-approximable: indeed, if ‖pA − b‖ 6 ε for some
operator b with prop(b) 6 r, then, as χX\Br(x)bχ{x} = 0, we get

‖u‖ = ‖χX\Br(x)(pA − b)χ{x}‖ 6 ε,
which is a contradiction. �
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Lemma 1.8 and Lemma 3.1 imply the following corollary.

Corollary 3.2. Let X be a uniformly locally finite metric space and let
(pn)n∈N be a sequence of projections in B(`2(X)) such that

1. SOT-
∑

n∈A pn ∈ C∗u(X) for all A ⊆ N, and
2. SOT-

∑
n∈N pn = 1`2(X).

Then,
inf
x∈X

sup
n∈N
‖pnδx‖ > 0.

Proof. Let ε = 1/4. Then Lemma 1.8 implies there is r so that SOT-
∑

n∈A pn
is ε-r-approximable for all A ⊆ N. Lemma 3.1 implies in particular that for
δ = 1/(128Nr) and any x ∈ X, M(x, δ) is non-empty. Hence

inf
x∈X

sup
n∈N
‖pnδx‖ > 1/(128Nr). �

Proof of Theorem 1.2. Fix a ∗-isomorphism Φ: C∗u(X)→ C∗u(Y ). By Lemma
1.6, Φ is strongly continuous, so (Φ(exx))x∈X satisfies the conditions on the
family (pn)n∈N from Corollary 3.2. Therefore, there are δ > 0 and g : Y → X
such that

‖Φ−1(eyy)δg(y)‖ = ‖Φ(eg(y)g(y))eyy‖ = ‖Φ(eg(y)g(y))δy‖ > δ

for all y ∈ Y .
Replacing δ by a smaller positive real if necessary, an argument analogous

to the one above applied to Φ−1 : C∗u(Y )→ C∗u(X) gives us a map f : X → Y
such that

‖Φ(exx)δf(x)‖ > δ,

for all x ∈ X. By Proposition 1.9, f is a coarse equivalence. �

Remark 3.3. It might be of interest to experts that we can also establish the
natural analog of Theorem 1.2 for C∗-algebras of ‘quasi-local’ operators. To
explain this, let X be a uniformly locally finite metric space. An operator
a on `2(X) is ε-r-quasi-local if whenever A,B ⊆ X satisfy d(A,B) > r, we
have ‖χAaχB‖ < ε, and is quasi-local if for all ε > 0 there exists r > 0 such
that a is ε-r-quasi-local. The collection of all quasi-local operators forms a
C∗-algebra, denoted C∗ql(X). One has C∗u(X) ⊆ C∗ql(X), and Špakula-Zhang

[41, Theorem 3.3] (building on techniques from Špakula-Tikuisis [40]) have
shown that this inclusion is the identity when X has property A. In general,
it is not clear whether this inclusion can be strict.

We sketch a proof that if C∗ql(X) is isomorphic to C∗ql(Y ), then X and
Y are coarsely equivalent. First, one shows a quasi-local version of the
equi-approximability lemma (Lemma 1.8). Precisely: “if (an)n is a sequence
of orthogonal operators on `2(X) so that SOT-

∑
n∈M an converges to an

element of C∗ql(X) for all M ⊆ N, then for all ε > 0 there is r > 0 such

that for all M ⊆ N, SOT-
∑

n∈M an is ε-r-quasi-local.” This quasi-local
equi-approximability lemma follows from a slight adaptation of [37, Lemma
3.2]. Second, one notes that the proof of Lemma 3.1 goes through verbatim
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if condition 1 from the statement is replaced with “SOT-
∑

n∈A pn is ε-r-
quasi-local for all A ⊆ N”. From these two observations, one deduces that
Corollary 3.2 follows with “C∗u(X)” replaced by “C∗ql(X)”. Finally, the proof
of Theorem 1.2 goes through analogously in the quasi-local case: the point
is that the quasi-local equi-approximability lemma is enough to establish the
analogue of Proposition 1.9 for an isomorphism Φ : C∗ql(X) → C∗ql(Y ) (this

is essentially what is done in the original reference [37, Theorem 4.1]).

At this point, we are also in position to prove Theorem 1.10.

Proof of Theorem 1.10. LetX and Y be uniformly locally finite metric spaces
and Φ: C∗u(X) → C∗u(Y ) be a ∗-isomorphism. We need to prove that Φ
sends ghost operators to ghost operators. Proceeding as in the proof of
Theorem 1.2, there are δ > 0 and a coarse equivalence f : X → Y such that
‖Φ(exx)δf(x)‖ > δ for all x ∈ X.

Suppose that A ⊆ X is infinite. Since X and Y are uniformly locally
finite, the set f [A] is also infinite. As ‖Φ(χA)δf(a)‖ > δ for all a ∈ A, Φ(χA)
cannot be a ghost.

Now fix an arbitrary nonghost a ∈ C∗u(X). Pick ε > 0 and sequences
of distinct elements (xn)n and (zn)n in X, such that |〈aδxn , δzn〉| > ε for
all n ∈ N. Passing to subsequences if necessary, letting A = {xn | n ∈ N}
and B = {zn | n ∈ N}, we can assume that χBaχA − SOT-

∑
n eznznaexnxn

is compact. Therefore, as χBaχA belongs to the ideal generated by a, so
does SOT-

∑
n eznznaexnxn . As |〈aδxn , δzn〉| > ε for all n ∈ N, it follows that

b := SOT-
∑

n eznxn belongs to the ideal generated by a, and hence so does
χA = b∗b (alternatively, [12, Lemma 3.4] also implies that χA belongs to
the ideal generated by a, even without going to subsequences). Since Φ is a
∗-isomorphism, Φ(χA) belongs to the ideal generated by Φ(a). Since ghosts
form an ideal, if Φ(a) is a ghost, then so is Φ(χA). Hence, by the previous
paragraph, Φ(a) is not a ghost. A symmetric argument gives that nonghost
operators in C∗u(Y ) are mapped by Φ−1 to nonghost operators in C∗u(X),
and the conclusion follows. �

For the next result, we use the notion of amenability for uniformly locally
finite metric spaces, as introduced by Block and Weinberger [1, Section 3].

Corollary 3.4. Let X and Y be uniformly locally finite metric spaces, and
consider the following statements:

(1) X and Y are coarsely equivalent via a bijective coarse equivalence.
(2) The C∗-algebras C∗u(X) and C∗u(Y ) are isomorphic.

Then (1) implies (2) in general, and (2) implies (1) if X is non-amenable.

Proof. The implication from (1) to (2) is well-known (e.g., [2, Theorem 8.1]):
if f : X → Y is a bijective coarse equivalence, then one defines a unitary
isomorphism u : `2(X) → `2(Y ) by letting uδx := δf(x) for all x ∈ X, and
direct checks show that uC∗u(X)u∗ = C∗u(Y ).
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For the converse, suppose that C∗u(X) and C∗u(Y ) are ∗-isomorphic, whence
by Theorem 1.2, X and Y are coarsely equivalent. If X is not amenable,
then X being coarsely equivalent to a uniformly locally finite space Y im-
plies that X is bijectively coarsely equivalent to it as shown in [42, Theorem
5.1] (the key idea is from [43, Theorem 4.1]). �

If X and Y are countable groups, we can do better. The following result
gives Corollary 1.3.

Corollary 3.5. Let Γ and Λ be countable discrete groups equipped with
uniformly locally finite metrics that are invariant under left translation7.
Then the following are equivalent:

(1) Γ and Λ are coarsely equivalent via a bijective coarse equivalence.
(2) The C∗-algebras `∞(Γ) or Γ and `∞(Λ) or Λ are isomorphic.

Moreover, if Γ and Λ are finitely generated and equipped with word metrics,
then one can replace “bijective coarse equivalence” in (1) with “bi-Lipschitz
bijection”.

Proof. We use the well-known identification C∗u(Γ) ∼= `∞(Γ) or Γ (see [9,
Proposition 5.1.3]) to replace the crossed products in (2) with uniform Roe
algebras.

As already noted in the proof of Corollary (3.4), (1) implies (2) in general,
and (2) implies (1) when Γ is non-amenable. On the other hand, if Γ is
amenable, then as it is a group it has property A by [44, Lemma 6.2]. A ∗-
isomorphism between uniform Roe algebras of uniformly locally finite metric
spaces, one of which has property A, gives a bijective coarse equivalence
between the underlying metric spaces (this was proved in [42, Corollary
6.13] for metric spaces and in [4, Theorem 1.3] for arbitrary coarse spaces).

Assume now that Γ and Λ are finitely generated and equipped with word
metrics, and assume that C∗u(Γ) ∼= C∗u(Λ). Using our discussion so far, there
is a bijective coarse equivalence f : Γ→ Λ. As Γ and Λ are finitely generated,
it is straightforward to check that they are quasi-geodesic in the sense of [29,
Definition 1.4.10]. Hence, f is a quasi-isometry (cf. [20, Proposition A.3] or
[29, Corollary 1.4.14]). As infγ 6=γ′∈Γ dΓ(γ, γ′) = 1 and infλ 6=λ′∈Λ dΛ(λ, λ′) =
1, a bijective quasi-isometry is automatically bi-Lipschitz. �

We do not know whether (1) and (2) from Corollary 3.4 are equivalent
for uniformly locally finite metric spaces in general: a counterexample, if it
exists, would have to be a pair of amenable, uniformly locally finite metric
spaces, neither of which has property A. Many such examples exist: for
example, any expander defines an amenable, uniformly locally finite metric
space without property A.

Proof of Theorem 1.5. Let Λ : Q∗u(X) → Q∗u(Y ) be a ∗-isomorphism, and
let πX : C∗u(X) → Q∗u(X) and πY : C∗u(Y ) → Q∗u(Y ) be the canonical

7Any countable group admits such a metric, which is moreover unique up to bijective
coarse equivalence (e.g., [44, Proposition 2.3.3])
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projections. By [3, Theorem 1.5], Λ and Λ−1 are liftable on the diagonals
in the sense of [3, Definition 1.4(2)], i.e., there are strongly continuous ∗-
homomorphisms Φ : `∞(X) → C∗u(Y ) and Ψ : `∞(Y ) → C∗u(X) such that
Λ(πX(a)) = πY (Φ(a)) and Λ−1(πY (b)) = πX(Ψ(b)) for all a ∈ `∞(X) and
all b ∈ `∞(Y ).

Claim 3.6. There are cofinite subsets X ′ ⊆ X and Y ′ ⊆ Y such that

inf
x∈X′

sup
y∈Y
‖Φ(exx)δy‖ > 0 and inf

y∈Y ′
sup
x∈X
‖Ψ(eyy)δx‖ > 0.

Proof. By symmetry, it is enough to show that the result holds for Φ. For
that, let p = 1`2(X) − Ψ(1`2(Y )). Then, as Λ(πX(Ψ(1`2(Y )))) = πY (1`2(Y )),
it follows that Λ(πX(p)) = 0. Hence, πX(p) = 0 which means that p is
compact. As p is a projection, p has finite-rank. As Ψ is strongly continuous,
we have that

1`2(X) = p+ Ψ(1`2(Y )) = p+ SOT-
∑
y∈Y

Ψ(eyy).

Therefore, Corollary 3.2 gives a partition X = X ′tX ′′ and a map f : X ′ →
Y so that infx∈X′ ‖Ψ(ef(x)f(x))δx‖ > 0 and infx∈X′′ ‖pδx‖ > 0. As p has finite
rank, X ′ must be cofinite. By [3, Lemma 6.3], replacing X ′ by a smaller
cofinite subset of X if necessary, we can assume that infx∈X′ ‖Φ(exx)δf(x)‖ >
0; so the claim follows. �

By the previous claim, it follows immediately from [3, Theorem 6.11] that
X and Y are coarsely equivalent. �

4. Rigidity of stable Roe algebras and Morita equivalence

Given a uniformly locally finite metric spaceX and an infinite-dimensional
separable Hilbert space H, the stable Roe algebra of X is given by

C∗s(X) := C∗u(X)⊗K(H),

where the tensor product above is the minimal tensor product of C∗-algebra
theory. We can describe C∗s(X) more concretely as follows. For x ∈ X,
let vx : H → `2({x}, H) ⊆ `2(X,H) denote the canonical inclusion. For a
bounded operator a on `2(X,H) and x, y ∈ X, define the matrix entries
axy := v∗xavy ∈ B(H), and define the propagation of a to be

prop(a) := sup{dX(x, y) | axy 6= 0} ∈ [0,∞].

Given a finite-dimensional vector space H ′ ⊆ H and r > 0, let C∗s[X, r,H
′]

denote the subspace of all operators a = [axy] ∈ B(`2(X,H)) with propaga-
tion at most r and such that each axy is an operator in B(H ′) (where B(H ′)
is identified with a C∗-subalgebra of B(H) in the canonical way). Then,
under the canonical identification `2(X) ⊗ H = `2(X,H), the stable Roe
algebra C∗s(X) is the norm-closure in B(`2(X,H)) of the union of all such
C∗s[X, r,H

′].
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We will now show that stable uniform Roe algebras are also coarsely rigid
(which in turn will give us Theorem 1.4).

Theorem 4.1. Suppose X and Y are uniformly locally finite metric spaces
such that C∗s(X) and C∗s(Y ) are isomorphic. Then X and Y are coarsely
equivalent.

Before presenting the proof of Theorem 4.1, we need two lemmas.

Lemma 4.2. Let X be a uniformly locally finite metric space, and let
(pn)n∈N be a sequence of orthogonal projections in C∗s(X) such that pA :=
SOT-

∑
n∈A pn ∈ C∗s(X), for all A ⊆ N. Then, for all ε > 0, there is a

finite-rank projection p ∈ B(H), such that ‖(1`2(X,H) − 1`2(X) ⊗ p)pA‖ 6 ε,
for all A ⊆ N.

Proof. If not, there are ε > 0, an increasing sequence (qn)n∈N of finite-
rank projections on H converging to 1H strongly, a sequence (wn)n∈N of
finite-rank projections on `2(X,H), and a disjoint sequence (An)n∈N of finite
subsets of N such that

‖wn(1`2(X,H) − 1`2(X) ⊗ qn)pAnwn‖ > ε,

for all n ∈ N. Since 1`2(X,H) = SOT- limm 1`2(X) ⊗ qm and each pAn has
finite-rank, going to a subsequence if necessary, we can assume that

‖(1`2(X,H) − 1`2(X) ⊗ qm)pAn‖ < ε2−n−1,

for all m > n. Also, as each wm is finite-rank and (pAn)n∈N is an orthogonal
sequence, going to a further subsequence, we can assume that ‖pAnwm‖ <
ε2−n−1, for all n > m. Therefore, letting A :=

⊔∞
n=1An, we have

‖(1`2(X,H) − 1`2(X) ⊗ qm)pA‖ > ‖wm(1`2(X,H) − 1`2(X) ⊗ qm)pAwm‖
> ‖wm(1`2(X,H) − 1`2(X) ⊗ qm)pAmwm‖

−
∑
n6=m
‖wm(1`2(X,H) − 1`2(X) ⊗ qm)pAnwm‖

>
ε

2
,

for allm ∈ N. As 1H = SOT- limm qm, this contradicts that pA ∈ C∗s(X). �

Our next lemma is a stable version of Corollary 3.2.

Lemma 4.3. Let X be a uniformly locally finite metric space and (pn)n∈N be
a sequence of orthogonal projections in C∗s(X) such that pA := SOT-

∑
n∈A pn

is in C∗s(X), for all A ⊆ N. Then, for all unit vectors ξ ∈ H with

sup
x∈X
‖(1`2(X,H) − pN)(δx ⊗ ξ)‖ 6 1/32,

we have that

inf
x∈X

sup
n∈N
‖pn(δx ⊗ ξ)‖ > 0.
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Proof. Fix a unit vector ξ ∈ H with γ := supx∈X ‖(1`2(X,H)−pN)(δx⊗ ξ)‖ 6
1/32. Fix a positive ε < 1/64. Lemma 1.8 has a natural analog for stable
Roe algebras (see [5, Lemma 3.14]), hence there is r > 0 such that each
pA is ε-r-approximable.8 Let p ∈ B(H) be a finite-rank projection given by
Lemma 4.2 for ε, i.e.,

‖(1`2(X,H) − 1`2(X) ⊗ p)pA‖ 6 ε,

for all A ⊆ N. Expanding the image of p, we can assume that ξ ∈ Im(p).
Let Nr := supx∈X |Br(x)| and fix δ > 0 such that 2Nr rank(p)δ < 1/64.

If the lemma fails for ξ, pick x ∈ X such that

sup
n∈N
‖pn(δx ⊗ ξ)‖ <

δ

2
.

Let π := χBr(x) ⊗ p and π⊥ := χBr(x) ⊗ (1 − p). Let pξ be the projection
onto Cξ and set θ := π − χ{x} ⊗ pξ. Then, as ξ ∈ Im(p), `2(X,H) can be
decomposed as

`2(X,H) = C(δx ⊗ ξ)⊕HB ⊕HB⊥ ⊕HU ,

where HB := θ[`2(X,H)], HB⊥ := π⊥[`2(X,H)], and HU := (χX\Br(x) ⊗
1H)[`2(X,H)]. Define a vector measure µ := µx,ξ : P(N)→ C(δx ⊗ ξ)⊕HB

by letting

µ(A) := πpA(δx ⊗ ξ),
for all A ∈ P(N). By our choice of x, supn∈N ‖µ({n})‖ < δ. Let z := µ(N)/2,
and set s̄ := (χ{x} ⊗ pξ)(z) and b̄ := θ(z), so z decomposes as

z = (s̄, b̄) ∈ C(δx ⊗ ξ)⊕HB.

Therefore, since 1
2δx⊗ξ decomposes as (1/2, 0) in C(δx⊗ξ)⊕HB, our choices

of r, p, and γ give that

‖(s̄, b̄)− (1/2, 0)‖ =
1

2
‖πpN(δx ⊗ ξ)− δx ⊗ ξ‖

6
1

2

(
‖(π − χBr(x) ⊗ 1H)pN(δx ⊗ ξ)‖+ ‖(χX\Br(x) ⊗ 1H)pN(δx ⊗ ξ)‖

+ ‖pN(δx ⊗ ξ)− δx ⊗ ξ)‖
)

6 ε+
γ

2
.

So, |s̄− 1/2| 6 ε+ γ/2 and ‖b̄‖ 6 ε+ γ/2.
As dimR(H ′) 6 2Nr rank(p) and z ∈ conv(µ[P(N)]), Lemma 2.1 gives an

A ⊆ N such that

‖µ(A)− z‖ 6 2Nr rank(p)δ.

For simplicity, let δ1 := 2Nr rank(p)δ.

8Definition 1.7 naturally extends to operators in B(`2(X,H)). We will actually only
need that ‖(χC ⊗ 1H)pA(χD⊗ 1H)‖ 6 ε for all C,D ⊆ X with d(C,D) > r and all A ⊆ N.
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Let s := 〈pA(δx ⊗ ξ)|(δx ⊗ ξ)〉, b := θpA(δx ⊗ ξ), b⊥ = π⊥pA(δx ⊗ ξ), and
u := (χX\Br(x) ⊗ 1H)pA(δx ⊗ ξ). So

pA(δx ⊗ ξ) = s(δx ⊗ ξ) + b+ b⊥ + u ∈ C(δx ⊗ ξ)⊕HB ⊕HB⊥ ⊕HU .

Hence, µ(A) = (s, b) and our estimates for |s̄− 1/2| and ‖b̄‖ above, together
with our choice of A, give us that |s − 1/2| < δ1 + ε + γ/2 and ‖b‖ <
δ1 + ε + γ/2. Also, by our choice of p, we have that ‖b⊥‖ 6 ε. Therefore,
as ‖pA(δx ⊗ ξ)‖2 = s, ε < 1/64, δ1 < 1/64, and γ 6 1/32, a simple, albeit
tedious, computation gives that

‖u‖2 = ‖pA(δx ⊗ ξ)‖2 − ‖s(δx ⊗ ξ)‖2 − ‖b‖2 − ‖b⊥‖2 > 1
8 > ε2.

Just as in Lemma 3.1, this contradicts that pA is ε-r-approximable. �

Before presenting the proof of Theorem 4.1, we isolate a result in the
proof of [37, Theorem 6.1], which is the analog of Proposition 1.9 in the
setting of stable Roe algebras.

Proposition 4.4. Let X and Y be uniformly locally finite metric spaces
and Φ: C∗s(X) → C∗s(Y ) be a ∗-isomorphism. Suppose there are a finite-
rank projection p on H, a unit vector ξ ∈ H, and maps f : X → Y and
g : Y → X such that

inf
x∈X
‖Φ(χ{x} ⊗ pξ)(χ{f(x)} ⊗ p)‖ > 0

and

inf
y∈Y
‖Φ−1(χ{y} ⊗ pξ)(χ{g(y)} ⊗ p)‖ > 0,

where pξ is the projection on H onto Cξ. Then, f is a coarse equivalence
with coarse inverse g. �

Proof of Theorem 4.1. Let Φ: C∗s(X) → C∗s(Y ) be a ∗-isomorphism and let
Ψ = Φ−1. We need to prove that X and Y are coarsely equivalent. Fix a
unit vector ξ ∈ H and let pξ be the projection of H onto Cξ. By Lemma
4.2, there is a finite-rank projection p ∈ B(H) such that

‖(1`2(Y,H) − 1`2(Y ) ⊗ p)Φ(χ{x} ⊗ pξ)‖ <
1

32

for all x ∈ X. For each y ∈ Y , let py = Ψ(χ{y}⊗ p) and for each A ⊆ Y , set
pA := SOT-

∑
y∈A py. Hence

‖(1`2(X,H) − pY )(δx ⊗ ξ)‖ = ‖χ{x} ⊗ pξ −Ψ(1`2(Y ) ⊗ p)(χ{x} ⊗ pξ)‖
= ‖Φ(χ{x} ⊗ pξ)− (1`2(Y ) ⊗ p)Φ(χ{x} ⊗ pξ)‖

<
1

32

for all x ∈ X. Hence, Lemma 4.3 gives δ > 0 and f : X → Y such that

‖Φ(χ{x} ⊗ pξ)(χ{f(x)} ⊗ p)‖ = ‖Ψ(χ{f(x)} ⊗ p)(δx ⊗ ξ)‖ > δ,

for all x ∈ X.
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By replacing δ by a smaller positive real if necessary and p by a larger
finite-rank projection, a symmetric argument gives g : Y → X such that

‖Ψ(χ{y} ⊗ pξ)(χ{g(y)} ⊗ p)‖ = ‖Φ(χ{g(y)} ⊗ p)(δy ⊗ ξ)‖ > δ,

for all x ∈ X. By Proposition 4.4, f is a coarse equivalence with coarse
inverse g. �

Proof of Theorem 1.4. The implication 1. ⇒ 2. was established in [7, The-
orem 4]. Suppose now that C∗u(X) and C∗u(Y ) are Morita equivalent. Then,
the stable Roe algebras C∗s(X) and C∗s(Y ) must be isomorphic as shown in
[8, Theorem 1.2]9. It then follows from Theorem 4.1 that X and Y must be
coarsely equivalent. �

5. Uniform Roe algebras of coarse spaces

Theorem 1.11 is proven in this section. For that, we recall the basics of
coarse spaces — we refer the reader to the monograph [32] for a detailed
treatment of coarse spaces. Given a set X and a family E of subsets of
X ×X, E is a coarse structure on X if

1. ∆X = {(x, x) | x ∈ X} ∈ E ,
2. E ∈ E and F ⊆ E implies F ∈ E ,
3. E,F ∈ E implies E ∪ F ∈ E ,
4. E ∈ E implies E−1 := {(y, x) | (x, y) ∈ E} ∈ E , and
5. E,F ∈ E implies E ◦ F := {(x, y) | ∃z, (x, z) ∈ E ∧ (z, y) ∈ F} ∈ E .

The pair (X, E) is then called a coarse space, and the elements of E are called
controlled sets (or entourages). The motivating examples of coarse spaces
are metric spaces. Indeed, if (X, d) is a metric space, X is endowed with the
coarse structure

Ed :=

{
E ⊆ X ×X

∣∣∣ sup
(x,y)∈E

d(x, y) <∞

}
.

A coarse space (X, E) is called metrizable if E = Ed for some metric d on
X. It is well-known that (X, E) is metrizable if and only if E is countably
generated and connected10 (see [32, Theorem 2.55]). If (X, E) and (Y,F)
are coarse spaces and f : X → Y is a map, f is called a coarse embedding if
(f × f)[E] ∈ F for all E ∈ E and (f × f)−1[F ] ∈ E for all F ∈ F .11

The definition of uniform Roe algebras naturally extends to uniformly
locally finite coarse spaces: a coarse space (X, E) is uniformly locally finite

9See [24, Chapter 7] for a shorter proof.
10In this context, countably generated means that there is a countable collection S of

subsets of X ×X such that E is the intersection of all coarse structures containing S, and
connected means that {(x, y)} ∈ E for all x, y ∈ X. The connectedness condition in the
metric setting means that metrics are not allowed to take infinite values.

11A map satisfying the former condition is called coarse and one satisfying the latter
is called expanding.
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if for each E ∈ E the cardinality of the vertical and horizontal sections,

Ex := {(x, y) ∈ E | y ∈ X} and Ey := {(x, y) ∈ E | x ∈ X},

are uniformly bounded. We say then that a = [axy] ∈ B(`2(X)) has con-
trolled support if supp(a) := {(x, y) | axy 6= 0} is in E and the uniform Roe
algebra of (X, E), denoted by C∗u(X, E), is the norm-closure of all operators
on `2(X) with controlled support. For brevity, we often simply write C∗u(X)
for C∗u(X, E).

Before proving Theorem 1.11, we need some preliminary results. The
following notation will be used: given a ∗-isomorphism Φ: C∗u(X)→ C∗u(Y ),
x ∈ X, y ∈ Y , and η > 0, let

• Xy,η := {z ∈ X | ‖Φ−1(eyy)δz‖ > η}, and
• Yx,η := {z ∈ Y | ‖Φ(exx)δz‖ > η}.

The next lemma isolates a result in [4] which we will need later.

Lemma 5.1 ([4, Lemma 4.7]). Let (X, E) and (Y,F) be uniformly locally
finite coarse spaces, Φ: C∗u(X) → C∗u(Y ) be a ∗-isomorphism, and f : X →
Y be such that infx∈X ‖Φ(exx)δf(x)‖ > 0. The following holds:

1. If for all ε > 0 there is η > 0 such that

‖Φ(exx)(1`2(Y ) − χYx,η)‖ 6 ε,

for all x ∈ X, then f is expanding.
2. If for all ε > 0 there is η > 0 such that

‖Φ−1(ef(x)f(x))(1`2(X) − χXf(x),η)‖ 6 ε,

for all x ∈ X, then f is coarse. �

A simple application of Lemma 3.1 gives:

Corollary 5.2. Let X and Y be uniformly locally finite coarse spaces and
Φ : C∗u(X) → C∗u(Y ) be a ∗-isomorphism. If X is metrizable, then for all
ε > 0 there is η > 0 such that ‖Φ(exx)(1`2(Y ) − χYx,η)‖ 6 ε for all x ∈ X.

Proof. Applying Lemma 3.1 to the projections (Φ−1(eyy))y∈Y , we have that

lim
η→0

inf
x∈X
‖Φ(exx)χYx,η‖ = lim

η→0
inf
x∈X
‖Φ−1(χYx,η)exx‖ = 1.

So, for all ε > 0 there is η > 0 such that ‖Φ(exx)χYx,η‖ > 1 − ε. As each
Φ(exx) is a rank 1 projection (remember that Φ is rank-preserving), we have

1 = ‖Φ(exx)1`2(Y )‖2 = ‖Φ(exx)(1`2(Y ) − χYx,η)‖2 + ‖Φ(exx)χYx,η‖2,

and the result follows. �

We now present a technical lemma whose proof is inspired by [35, Propo-
sition 3.1] (cf. [11, Proposition 2.4]). In a sense, this lemma shows that a
kind of operator norm localization property holds for arbitrary spaces (see
[11, Section 2] for the definition of the operator norm localization property).
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Lemma 5.3. Given ε, δ > 0, there is γ > 0 such that for all s, t > 0 there
is r > 0 for which the following holds: Let X be a uniformly locally finite
metric space, and let p, q, a ∈ B(`2(X)), where p is a projection and q is a
rank 1 projection. If prop(q) 6 t, ‖p− a‖ < γ, prop(a) 6 s, and ‖pq‖ > δ,
then there is C ⊆ X with diam(C) 6 r such that ‖pχC‖ > 1− ε.

Proof. Fix ε, δ > 0. Pick k ∈ N such that (δ/2)1/k > 1 − ε. Pick a positive

γ < (δ/2)1/k−1+ε small enough such that ‖p−a‖ 6 γ implies ‖p−ak‖ 6 δ/2
for any projection p and any operator a in B(`2(X)).

From now on, fix s, t > 0, and p, q, a ∈ B(`2(X)) as in the statement of
the lemma. By our choice of γ, ‖p−ak‖ 6 δ/2. Hence, as ‖pq‖ > δ, we have
that ‖akq‖ > δ/2. Therefore, the classic telescoping argument implies that

k−1∏
i=0

‖ai+1q‖
‖aiq‖

>
δ

2

(notice that aiq 6= 0 for all i’s above). So, there is j ∈ {0, . . . , k − 1} with

‖aajq‖ > (δ/2)
1
k ‖ajq‖.

As q is a rank 1 projection, we can pick a unit vector ζ ∈ `2(X) such
that q = 〈·, ζ〉ζ. As prop(q) 6 t, we have that diam(supp(ζ)) 6 t. Let
ξ = ajζ/‖ajζ‖. As prop(a) 6 s, it follows that

prop(aj) 6 2js+ 2s 6 2ks.

Therefore, we must have that diam(supp(ξ)) 6 4ks+ t.

At last, as ‖aξ‖ > (δ/2)1/k, it follows that ‖pξ‖ > (δ/2)1/k − γ. By our
choice of γ, this shows that ‖pξ‖ > 1− ε. The conclusion follows by letting
r = 4ks+ t and C = supp(ξ). �

Proof of Theorem 1.11. Let Φ: C∗u(X) → C∗u(Y ) be a ∗-isomorphism and,
for simplicity, let Ψ = Φ−1. We need to prove that X coarsely embeds into
Y . As (X, d) is a metric space, Corollary 3.2 gives δ > 0 and f : X → Y
such that ‖Φ(exx)δf(x)‖ > δ for all x ∈ X.

By Lemma 5.1 and Corollary 5.2, f is expanding. So, we are left to show
that f is coarse.

Let Z := f(X) and pick g : Z → X such that f(g(y)) = y for all y ∈ Z.
So, by our choice of f , it follows that

‖Ψ(eyy)δg(y)‖ = ‖Φ(eg(y)g(y))eyy‖ = ‖Φ(eg(y)g(y))δf(g(y))‖ > δ,

for all y ∈ Z.

Claim 5.4. For all ε > 0 there is r > 0 such that for all y ∈ Z, there is
C ⊆ X with diam(C) 6 r, and such that ‖Ψ(eyy)χC‖ > 1− ε.

Proof. Fix ε > 0 and let γ > 0 be given by Lemma 5.3 for ε and δ. As
X is metrizable, Lemma 1.8 gives s > 0 such that each Ψ(eyy) is γ-s-
approximable. Let r > 0 be given by Lemma 5.3 for s and t = 0. For
each y ∈ Z, pick az ∈ C∗u(X) with prop(az) 6 s such that ‖Ψ(eyy)− az‖ 6
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γ. Since ‖Ψ(eyy)eg(y)g(y)‖ > δ for all y ∈ Z, the result now follows from
Lemma 5.3. �

Claim 5.5. For all ε > 0, there is η > 0 such that ‖Ψ(eyy)χXy,η‖ > 1 − ε,
for all y ∈ Z.

Proof. This follows from the proof of [42, Lemma 6.7] or, equivalently, and
with a more similar terminology, from [3, Lemma 7.4]. Indeed, in [3, Lemma
7.4] the metric spaces are assumed to have the operator norm localization
property. However, an inspection of the proof reveals that the argument
holds under the assumption that, for all ε > 0, there is r > 0 such that, for
each z ∈ Z, there is C ⊆ X with diam(C) 6 r satisfying ‖Ψ(eyy)χC‖ > 1−ε.
This statement is nothing else but Claim 5.4. �

As each Ψ(eyy) has rank 1, Claim 5.5 implies that, for all ε > 0, there is
η > 0 such that ‖Ψ(eyy)(1`2(X) − χXy,η)‖ 6 ε, for all y ∈ Z (cf. the proof of
Corollary 5.2). By Lemma 5.1, we conclude that f is coarse. �
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