Math 241 Final Exam, Fall 2013

Name: ________________________ ID #: ________________________

Section number: __________________________

Instructor: __________________________

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

Solutions by D. Yuen

Read all of the following information before starting the exam.

- Electronic devices (calculators, cell phones, computers), books, and notes are not allowed.
- Show all work clearly. You may lose points if we cannot see how you arrived at your solution.
- You do not have to simplify your arithmetic. But be aware that if your answer looks like you need a calculator, you are probably doing it wrong.
- Box or otherwise clearly indicate your final answer.
- This test has 9 pages total including this cover sheet and is worth 150 points. It is your responsibility to make sure that you have all of the pages!

Good luck!
(1) (20 points) Find the limits that exist. If the limit does not exist, write “does not exist”.

(a) \[\lim_{x \to 2} \frac{x^2 - 4}{x^2 + 3x - 10} \]

Limit type \(\frac{0}{0} \) Try factoring.

\[= \lim_{x \to 2} \frac{(x-2)(x+2)}{(x-2)(x+5)} \]

\[= \lim_{x \to 2} \frac{x + 2}{x + 5} = \frac{4}{7} \]

(b) \[\lim_{x \to 5} \frac{\sqrt{x} - \sqrt{5}}{x - 5} \cdot \frac{\sqrt{x} + \sqrt{5}}{\sqrt{x} + \sqrt{5}} \]

Limit type \(\frac{0}{0} \) Do more work.

\[= \lim_{x \to 5} \frac{x - 5}{(x-5)(\sqrt{x} + \sqrt{5})} \]

\[= \lim_{x \to 5} \frac{1}{\sqrt{x} + \sqrt{5}} = \frac{1}{\sqrt{5} + \sqrt{5}} = \frac{1}{2\sqrt{5}} \]

(c) \[\lim_{x \to 0} \frac{\sin x}{x^2 + 2x} \]

Limit type \(\frac{0}{0} \) Do more work.

\[= \lim_{x \to 0} \frac{\sin x}{x(x+2)} \]

Use \[\lim_{x \to 0} \frac{\sin x}{x} = 1 \]

\[= \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{x+2} = 1 \cdot \frac{1}{2} = \frac{1}{2} \]

(d) \[\lim_{x \to \infty} \frac{2x^2 + \sin x}{x^2 - 7} \]

Limit type \(\frac{\infty}{\infty} \) Divide by highest power from denominator.

\[= \lim_{x \to \infty} \frac{2 + \frac{\sin x}{x^2}}{1 - \frac{7}{x^2}} = \frac{2 + 0}{1 - 0} = 2 \]
(2) (25 points) Differentiate.

(a) \(f(x) = 2x^3 - \sqrt{2} + \frac{5}{x^2} \)

\[
f'(x) = 6x^2 + 0 - 10x^{-3}
\]

(b) \(y = 2x^5 \cos x \)

\[
y' = 10x^4 \cos x - 2x^5 \sin x
\]

(c) \(h(x) = \frac{\sin x}{x} \)

\[
h'(x) = \frac{(\cos x) \cdot x - (\sin x) \cdot 1}{x^2}
\]

(d) \(m(t) = \sqrt{t^2 + t + 4} \)

\[
m'(t) = \frac{1}{2} \left(t^2 + t + 4 \right)^{-\frac{1}{2}} (2t + 1)
\]

(e) \(k(s) = \tan^2(2s + 1) \)

\[
k'(s) = 2 \tan(2s+1) \sec^2(2s+1) \cdot 2
\]
(3) (7 points) Find the tangent line to the curve \(y = 3x + \frac{1}{x} \) at \(x_0 = 1 \).

\[
\frac{dy}{dx} = 3 - \frac{1}{x^2}
\]

At \(x_0 = 1 \):
\[
\frac{dy}{dx} = 3 - 1 = 2
\]
\[
y = 3 + 1 = 4
\]

Tangent line is
\[
y - 4 = 2(x - 1)
\]

(4) (8 points) Find the tangent line to the curve \(x^2y - x^4 + y^2 = 1 \) at the point \((1, 1)\).

\[
2xy + x^2y' - 4x^3 + 2yy' = 0
\]

Plug in \(x = 1, y = 1 \)

\[
2 + y' - 4 + 2y' = 0
\]
\[
3y' = 2
\]
\[
y' = \frac{2}{3}
\]

\[
y - 1 = \frac{2}{3}(x - 1)
\]
(5) (15 points) Let \(f(x) = x^3 - x \).
\[
f'(x) = 3x^2 - 1, \quad f''(x) = 6x
\]
(a) List the intervals where the graph of \(f(x) \) is increasing and decreasing.
\[
f'(x) = 0 \text{ when } 3x^2 - 1 = 0
\]
\[
x^2 = \frac{1}{3}
\]
\[
x = \pm \sqrt[3]{\frac{1}{3}}
\]
\(f' \) increasing on \((-\infty, -\sqrt[3]{\frac{1}{3}})\) and on \((\sqrt[3]{\frac{1}{3}}, \infty)\)
\(f' \) decreasing on \((-\sqrt[3]{\frac{1}{3}}, \sqrt[3]{\frac{1}{3}})\)

(b) Find the local maximum and minimum values of \(f(x) \).

(a) Local max at \(x = -\sqrt[3]{\frac{1}{3}} \), Local min at \(x = \sqrt[3]{\frac{1}{3}} \)

(c) List the intervals where the graph is concave up and concave down.
\[
f''(x) = 0 \text{ when } 6x = 0
\]
\[
x = 0
\]
\(f'' \) concave up on \(x < 0 \)
\(f'' \) concave down on \(x > 0 \)

(d) Sketch the graph of the function.
(6) (8 points) Let \(Y(N) \) be the yield of an agricultural crop as a function of the nitrogen level \(N \) in the soil. A model that is used for this is

\[
Y(N) = \frac{N}{1 + N^2} \quad \text{for} \quad N \geq 0,
\]

where \(N \) is measured in appropriate units. Find the nitrogen level that maximizes the yield.

\[
Y'(N) = \frac{1(1+N^2) - N(2N)}{1+N^2} = \frac{1 - N^2}{1+N^2}
\]

SET \(1 - N^2 = 0 \)

\[
N = \pm 1 \quad \text{\underline{\text{\textbf{N = 1}}}}
\]

Conclusions about \(Y(N) \)

\[\Rightarrow \text{ABS} \Rightarrow \text{MAX at} \quad N = 1 \]

(7) (7 points) A right triangle is changing shape. If the base is 3 meters and expanding at 0.2 meters per minute, and the height is 4 meters and shrinking at 0.1 meters per minute, at what rate is the length of the hypotenuse changing?

Units: \(m, \text{min} \)

\[
z^2 = x^2 + y^2
\]

\[
2z \frac{dz}{dt} = 2x \frac{dx}{dt} + 2y \frac{dy}{dt}
\]

\[
2(5) \frac{dz}{dt} = 2(3)(0.2) + 2(4)(-0.1)
\]

\[
\frac{dz}{dt} = \frac{1.2 - 0.8}{10} = 0.04 \quad \text{m/min}
\]
(8) (25 points) Integrate.

(a) \[\int (x^5 - \sec x \tan x) \, dx = \frac{8}{15} x^{15/8} - \sec(x) + C \]

(b) \[\int x \sin(x^2) \, dx \]
\[\text{Sub } u = x^2 \]
\[du = 2x \, dx \]
\[= \frac{1}{2} \int \sin(u) \, du = -\frac{1}{2} \cos(u) + C = -\frac{1}{2} \sin(x^2) + C \]

(c) \[\int_{1}^{5} \frac{1}{x^2} \, dx \]
\[= \left. \frac{-1}{x} \right|_{1}^{5} = -\left(\frac{1}{5} - \frac{1}{1} \right) = \frac{4}{5} \]

(d) \[\int_{1}^{5} (x+1) \sqrt{x^2 + 2x + 2} \, dx \]
\[\text{Sub } u = x^2 + 2x + 2 \]
\[du = (2x + 2) \, dx \]
\[= \frac{1}{2} \left(\frac{2}{3} u^{3/2} \right)_{1}^{10} = \frac{1}{3} \left(\frac{3/2}{3/2} - \frac{3/2}{3/2} \right) \]
\[(x+1)^{3/2} \, dx = \frac{1}{2} \, du \]

(e) \[\int \frac{x}{\sqrt{x+1}} \, dx \]
\[\text{Sub } u = x+1 \Rightarrow u-1 = x \]
\[du = dx \]
\[= \int \frac{u-1}{\sqrt{u}} \, du \]
\[= \int (\sqrt{u} - \frac{1}{\sqrt{u}}) \, du = \frac{2}{3} u^{3/2} - 2u^{1/2} + C \]
\[= \frac{2}{3} (x+1)^{3/2} - 2 \sqrt{x+1} + C \]
(9) (8 points) Find the area enclosed by the curves \(y = x^2 - x \) and \(y = x + 3 \).

\[
A = \int_{-1}^{3} (x+3 - (x^2-x)) \, dx \\
= \int_{-1}^{3} (3+2x-x^2) \, dx \\
= 3x + x^2 - \frac{1}{3}x^3 \bigg|_{-1}^{3} \\
= (9+9-9) - (-3+1+\frac{1}{3})
\]

Intersect when \(x^2-x = x+3 \)
\[
x^2-2x-3 = 0 \\
(x-3)(x+1) = 0 \\
x = 3, -1
\]

when \(x = 0 \)
\[
x^2-x = 0 \\
x+3 = 3
\]

So \(x^2-x \leq x+3 \) for \(-1 \leq x \leq 3\)

(10) (7 points) Find the volume obtained by rotating about the \(x \)-axis the region between \(y = 1 \), \(y = x \), \(x = 1 \) and \(x = 2 \).

Choose \(dx \)-method.

Get washer method.

\[
V' = \int_{1}^{2} (x^2 - 1^2) \, dx \\
= \frac{1}{3}x^3 - x \bigg|_{1}^{2} \\
= \left(\frac{8}{3} - 2 \right) - \left(\frac{1}{3} - 1 \right) = \frac{4}{3}
\]
(11) (5 points) (Complete the definition) A function is differentiable on the interval \((0,1)\) if

\[
\text{for every } x \text{ in } (0,1), \\
\text{if } x \text{ exists.}
\]

(12) (5 points) Give an example of a function that is defined on the closed interval \([-1,1]\) but is not continuous.

\[
f(x) = \begin{cases}
1 & \text{if } 0 \leq x \leq 1 \\
0 & \text{if } -1 \leq x < 0
\end{cases}
\]

(13) (10 points) True or false? (You may assume that the functions are defined on the entire real line.)

- T (a) Every differentiable function is continuous.
- F (b) Every continuous function is differentiable.
- F (c) Every integrable function is continuous.
- T (d) Every continuous function is integrable.
- F (e) For any function \(f(x)\), if \(f(0) < 0\) and \(f(2) > 0\), then \(f(c) = 0\) for some \(c \in (0,2)\).