1. Sketch the graph of the function in the provided grid and from its graph, determine at what \(x \) values is the function discontinuous, and what are the types of discontinuity?

\[
f(x) = \begin{cases}
2, & x < 0 \\
2 - x, & 0 < x < 1 \\
x, & 1 \leq x \leq 2 \\
3, & 2 < x
\end{cases}
\]

Removable discontinuity at \(x = 0 \).
Jump discontinuity at \(x = 2 \).
(Continuous everywhere else.)

2. Where is the function \(f(x) = \frac{\sin(x)}{x-3} + \frac{x-1}{x^2+9} \) continuous?

A combination of elementary functions, so is continuous on its domain. Domain is \(x \neq 3 \).
So \(f \) is continuous for all \(x \neq 3 \).
3. Using the definition of a derivative, for \(f(x) = x^2 \), find \(f'(3) \).

\[
\begin{align*}
f'(3) &= \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} \\
&= \lim_{h \to 0} \frac{(3+h)^2 - 3^2}{h} \\
&= \lim_{h \to 0} \frac{9 + 6h + h^2 - 9}{h} \\
&= \lim_{h \to 0} \frac{6h + h^2}{h} \\
&= \lim_{h \to 0} \frac{h(6 + h)}{h} \\
&= \lim_{h \to 0} (6 + h) = 6 + 0 = 6
\end{align*}
\]

4. Using the definition of a derivative, for \(y = \frac{1}{x+2} \), find \(\frac{dy}{dx} \). \(f(x) = \frac{1}{x+2} \)

\[
\begin{align*}
\frac{dy}{dx} &= f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\
&= \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{(x+h)+2} - \frac{1}{x+2} \right) \\
&= \lim_{h \to 0} \frac{\frac{x+2}{(x+h+2)(x+2)} - \frac{x+h+2}{(x+h+2)(x+2)}}{h} \\
&= \lim_{h \to 0} \frac{-(x+h+2)(x+2) - (x+2)(x+h+2)}{h(x+h+2)(x+2)} \\
&= \lim_{h \to 0} \frac{-1}{(x+h+2)(x+2)} \cdot \frac{1}{h} \\
&= \lim_{h \to 0} \frac{-1}{(x+0+2)(x+2)} = \frac{-1}{(x+2)^2}
\end{align*}
\]