If necessary, choose a tail to get the best possible behavior (such as all positive terms, all negative terms, alternating terms, all decreasing terms, or so that certain inequalities are true)

Easy series?
- Geometric series?
- p-series?
- Simple telescopic?

- **Yes** → Done
- **No** →

nth term test

\[\lim_{n \to \infty} a_n = 0 ? \]

- **Yes** → Simplify target series via regular comparison or limit comparison?
- **No** → Done, divergent

Positive/Negative/Alternating/Other?

- **Positive** → Simplify target series via regular comparison or limit comparison?
- **Negative** → Multiply by -1
- **Alternating** → Try absolute convergence. Caution: If \(\sum |a_n| \) diverges, there is no conclusion about \(\sum a_n \).
- **Other**

Does Alternating series test apply?

- **Yes** → Done
- **No**
Some useful common limits

An Alternating series test

If

Absolute convergence

If

Inconclusive if

Limit Comparison test for positive series, comparing \(\sum a_n \) with \(\sum b_n \)

If \(a_n \leq b_n \) for a tail, and if \(\sum b_n \) converges then \(\sum a_n \) converges; inconclusive if \(\sum b_n \) diverges.

If \(a_n \geq b_n \) for a tail, and if \(\sum b_n \) diverges then \(\sum a_n \) diverges; inconclusive if \(\sum b_n \) converges.

[For both types of comparison, you might still need to do more work on \(\sum b_n \) using the other tests.]

Ratio test for positive series

If \(\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho \), a number or \(\infty \) then: \(\sum a_n \) converges if \(\rho < 1 \), diverges if \(\rho > 1 \) or \(\rho = \infty \), and inconclusive if \(\rho = 1 \).

[This test is especially good for series with \(n! \) .]

Root test for positive series

If \(\lim_{n \to \infty} \sqrt[n]{a_n} = \rho \), a number or \(\infty \) then: \(\sum a_n \) converges if \(\rho < 1 \), diverges if \(\rho > 1 \) or \(\rho = \infty \), and inconclusive if \(\rho = 1 \).

[This test is especially good for series with \((something)^n \).]

Absolute convergence for any series

If \(\sum |a_n| \) converges, then \(\sum a_n \) converges. In fact, we say \(\sum a_n \) converges absolutely.

If \(\sum |a_n| \) diverges, then it is inconclusive about \(\sum a_n \).

[This test is the only hope for series that do not have a tail that is all positive, all negative, or alternating.]

Alternating series test for alternating series

An alternating series is of the form \(\sum (-1)^n u_n \) or \(\sum (-1)^n u_{n+1} \), where \(\{u_n\} \) are positive. If \(\{u_n\} \) are decreasing and \(\lim u_n = 0 \), then \(\sum (-1)^n u_n \) converges. If \(\lim u_n \neq 0 \), then \(\sum (-1)^n u_n \) diverges by nth term test.

Some useful common limits and orders of magnitude

\[
\lim_{n \to \infty} \sqrt[n]{n} = 1, \quad \lim_{n \to \infty} \sqrt[n]{c} = 1, \quad \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x, \quad \lim_{n \to \infty} \left(\frac{1}{n} \right)^{\frac{1}{n}} = 1, \quad \ln n \ll n^\alpha \ll \beta^n \ll n! \quad (\alpha > 0, \beta > 1)
\]