You must be able to:

- Determine whether a function $T : V \rightarrow W$ is a linear transformation.
- Find a basis for the kernel of a linear transformation.
- Calculate additions, differences and composites of linear transformations.
- Determine the matrix $[T]_\alpha^\beta$ of a linear transformation $T : V \rightarrow W$ with respect to a basis α for V and a basis β for W.
- Determine the coordinate vector $[T(v)]_\beta$ given a linear transformation $T : V \rightarrow W$, a vector v in V, a basis α for V and a basis β for W.
- For two basis α and β of a vector space V, find the change of basis matrix from α to β.
- Find the eigenvalues and basis for the associated eigenspaces of an $n \times n$ matrix A.
- Determine if an $n \times n$ matrix A is diagonalizable and, if so, find the diagonal matrix D and the invertible matrix P so that $D = P^{-1}AP$.
- Find the eigenvalues and basis for the associated eigenspaces of a linear transformation $T : V \rightarrow V$.

Important definitions/results/formulas to remember:

- If V and W are vector spaces, a function $T : V \rightarrow W$ is called a linear transformation if, for all vectors u and v in V and all scalars c, the following two properties are satisfied:
 1. $T(u+v)=T(u)+T(v)$.
 2. $T(cv)=cT(u)$.
- If A is an $n \times m$ matrix, the matrix transformation
 $T : \mathbb{R}^m \rightarrow \mathbb{R}^n$
 $X \rightarrow AX$

 is a linear transformation.
- Suppose $T : V \rightarrow W$ is a linear transformation.
 1. $T(-v) = -T(v)$ for any v in V.
 2. $T(u - v) = T(u) - T(v)$ for any u and v in V.
3. \(T(c_1v_1 + c_2v_2 + \cdots + c_kv_k) = c_1T(v_1) + c_2T(v_2) + \cdots + c_kT(v_k) \)
 for any scalars \(c_1, c_2, \ldots, c_k \) and any vectors \(v_1, v_2, \ldots, v_k \) in \(V \).

- If \(T : V \rightarrow W \) is a linear transformation, the kernel of \(T \), denoted \(\text{Ker}(T) \) is the set of all the vectors in \(V \) so that \(T(v) = 0_W \). In set notation
 \[\text{Ker}(T) = \{ v \in V \mid T(v) = 0_W \} \]
- In the case of a matrix transformation
 \[T : \mathbb{R}^m \rightarrow \mathbb{R}^n \]
 \[X \rightarrow AX \]
 then \(\text{Ker}(T) = \text{NS}(A) \).
- If \(T : V \rightarrow W \) is a linear transformation then \(\text{Ker}(T) \) is a subspace of \(V \).
- If \(T : V \rightarrow W \) and \(S : V \rightarrow W \) are linear transformations and \(c \) is a scalar then we can define the linear transformations
 \[S + T : V \rightarrow W \]
 \[v \rightarrow S(v) + T(v) \]
 and
 \[cT : V \rightarrow W \]
 \[v \rightarrow cT(v) \]
- If \(T : U \rightarrow V \) and \(S : V \rightarrow W \) are linear transformation, then the composite
 \[S \circ T : U \rightarrow W \]
 \[u \rightarrow S(T(u)) \]
 is a linear transformation.
- Provided the indicated operations are defined, the following properties hold when \(R, S \) and \(T \) are linear transformations and \(c \) and \(d \) are scalars.
 1. \(S + T = T + S \)
 2. \(R + (S + T) = (R + S) + T \)
 3. \(c(dT) = (cd)T \)
 4. \(c(S + T) = cS + cT \)
 5. \((c + d)T = cT + dT \)
 6. \(R \circ (S \circ T) = (R \circ S) \circ T \)
 7. \(R \circ (S + T) = R \circ S + R \circ T \)
 8. \((R + S) \circ T = R \circ T + S \circ T \)
 9. \(c(S \circ T) = cS \circ T = S \circ (cT) \)
Suppose \(T : V \rightarrow W \) is a linear transformation. Denote \(\alpha = \{v_1, \ldots, v_m\} \) a basis for \(V \) and \(\beta = \{w_1, \ldots, w_n\} \) a basis for \(W \). Assume that

\[
T(v_1) = a^1_1 w_1 + a^1_2 w_2 + \cdots + a^1_n w_n
\]

\[
T(v_2) = a^2_1 w_1 + a^2_2 w_2 + \cdots + a^2_n w_n
\]

\[
\vdots
\]

\[
T(v_m) = a^m_1 w_1 + a^m_2 w_2 + \cdots + a^m_n w_n.
\]

We call matrix of \(T \) with respect to the basis \(\alpha \) and \(\beta \), denoted \([T]_{\alpha}^{\beta} \), the matrix

\[
[T]_{\alpha}^{\beta} = \begin{pmatrix}
 a^1_1 & a^2_1 & \cdots & a^m_1 \\
 a^1_2 & a^2_2 & \cdots & a^m_2 \\
 \vdots & \vdots & \ddots & \vdots \\
 a^1_n & a^2_n & \cdots & a^m_n
\end{pmatrix}.
\]

Denote \(\alpha = \{v_1, \ldots, v_n\} \) and \(\beta = \{w_1, \ldots, w_n\} \) two basis for a vector space \(V \). Assume that

\[
w_1 = p^1_1 v_1 + p^1_2 v_2 + \cdots + p^1_n v_n
\]

\[
w_2 = p^2_1 v_1 + p^2_2 v_2 + \cdots + p^2_n v_n
\]

\[\vdots\]

\[
w_n = p^n_1 v_1 + p^n_2 v_2 + \cdots + p^n_n v_n.
\]

We call change of basis matrix from \(\alpha \) to \(\beta \) the matrix

\[
P = \begin{pmatrix}
p^1_1 & p^2_1 & \cdots & p^n_1 \\
p^1_2 & p^2_2 & \cdots & p^n_2 \\
\vdots & \vdots & \ddots & \vdots \\
p^1_n & p^2_n & \cdots & p^n_n
\end{pmatrix}.
\]

Denote \(I : V \rightarrow V \) the identity transformation from \(V \) to \(V \) defined as \(I(v) = v \) for all \(v \) in \(V \). Then the change of basis matrix \(P \) from \(\alpha \) to \(\beta \) is given by

\[
P = [I]_\beta^\alpha.
\]

If \(P \) is the change of basis matrix \(P \) from \(\alpha \) to \(\beta \) then the change of basis from \(\beta \) to \(\alpha \) is \(P^{-1} \). In other words,

\[
[I]_\beta^\alpha = ([I]_\alpha^\beta)^{-1} = P^{-1}.
\]

Suppose \(T : V \rightarrow W \) is a linear transformation. Denote \(\alpha \) and \(\alpha' \) two basis for \(V \) and \(\beta \) and \(\beta' \) two basis for \(W \). If \(P \) is the change of basis matrix from \(\alpha \) to \(\alpha' \) and \(Q \) is the change of basis matrix from \(\beta \) to \(\beta' \) then

\[
[T]_{\alpha'}^{\beta'} = Q^{-1}[T]_{\alpha}^{\beta} P
\]

\[\text{3}\]
– Suppose \(T : V \rightarrow V \) is a linear transformation. Denote \(\alpha \) and \(\beta \) two basis for \(V \) and \(P \) the change of basis matrix from \(\alpha \) to \(\beta \). Then

\[
[T]_\beta^\beta = P^{-1}[T]_\alpha^\alpha P
\]

– Suppose \(T : V \rightarrow V \) is a linear transformation. Let \(\alpha \) be a basis for \(V \) and \(\beta \) be a basis for \(W \). For any \(v \) in \(V \), denote \([v]_\alpha\) the coordinate vector of \(v \) relative to \(\alpha \) and \([T(v)]_\beta\) the coordinate vector of \(T(v) \) relative to \(\beta \). Then we have

\[
[T(v)]_\beta = [T]_\beta^\alpha[v]_\alpha.
\]

– If \(T : \mathbb{R}^m \rightarrow \mathbb{R}^n \) is a linear transformation and \(A \) is the matrix of \(T \) with respect to the canonical basis for \(\mathbb{R}^m \) and \(\mathbb{R}^n \), then, for any \(X \) in \(\mathbb{R}^m \)

\[
T(X) = AX.
\]

– If \(A \) is an \(n \times n \) matrix, an eigenvector of \(A \) is a non-zero vector of \(\mathbb{R}^n \) so that

\[
Av = \lambda v
\]

for some \(\lambda \). The scalar \(\lambda \) is called an eigenvalue of \(A \).

– If \(A \) is an \(n \times n \) matrix, a number \(\lambda \) is an eigenvalue of \(A \) if and only if

\[
\det(A - \lambda I_n) = 0.
\]

The degree-\(n \) polynomial \(P(\lambda) = \det(A - \lambda I_n) \) is called the characteristic polynomial of \(A \). A number \(\lambda \) is an eigenvalue of \(A \) if and only if it is a root of the characteristic polynomial of \(A \).

– If \(A \) is an \(n \times n \) matrix and \(\lambda \) is an eigenvalue of \(A \), then the nullspace of \(A - \lambda I_n \), denoted \(NS(A - \lambda I_n) \), is a subspace of \(\mathbb{R}^n \) called the Eigenspace of \(A \) associated with \(\lambda \). It is denoted \(E_\lambda \) and it is formed by all the eigenvectors of \(A \) associated with \(\lambda \). That is to say

\[
E_\lambda = \{ \text{eigenvectors of } A \text{ associated with } \lambda \} = \{ v \in \mathbb{R}^n \mid Av = \lambda v \} = NS(A - \lambda I_n).
\]

– An \(n \times n \) matrix \(A \) is said to be diagonalizable if there exist a diagonal \(n \times n \) matrix \(D \) and an invertible \(n \times n \) matrix \(P \) so that

\[
D = P^{-1}AP.
\]

– An \(n \times n \) matrix \(A \) is diagonalizable if and only if there exist a basis \(\alpha \) for \(\mathbb{R}^n \) consisting of eigenvectors of \(A \). In that case, if \(T \) is the matrix transformation

\[
T : \mathbb{R}^n \rightarrow \mathbb{R}^n
\]

\[
X \rightarrow AX
\]

then the matrix of \(T \) with respect to the basis \(\alpha \), denoted \([T]_\alpha^\alpha\), is a diagonal matrix.
Suppose that A is an $n \times n$ matrix with distinct eigenvalues r_1, r_2, \ldots, r_k. Then A is diagonalizable if and only if
\[\dim(E_1) + \cdots + \dim(E_k) = n. \]

Suppose that A is an $n \times n$ matrix with distinct eigenvalues r_1, r_2, \ldots, r_k. Denote, respectively, $m_{r_1}, m_{r_2}, \ldots, m_{r_k}$ the multiplicities of r_1, r_2, \ldots, r_k in the characteristic polynomial of A. Then A is diagonalizable if and only if
\[\dim(E_1) = m_{r_1}, \ \dim(E_2) = m_{r_2}, \ldots, \ \dim(E_k) = m_{r_k}. \]

Suppose $T : V \rightarrow V$ is a linear transformation. An eigenvector of T is a non-zero vector of V so that
\[T(v) = \lambda v \]
for some λ. The scalar λ is called an eigenvalue of T.

If $T : V \rightarrow V$ is a linear transformation and λ is an eigenvalue of T, then the kernel of $T - \lambda I$, denoted $\text{Ker}(A - \lambda I)$, is a subspace of V called the Eigenspace of T associated with λ. It is denoted E_λ and it is formed by all the eigenvectors of T associated with λ. That is to say
\[E_\lambda = \{ \text{eigenvectors of } T \text{ associated with } \lambda \} = \{ v \in V \mid T(v) = \lambda v \} = \text{Ker}(A - \lambda I). \]

Suppose $T : V \rightarrow V$ is a linear transformation. Let α be a basis for V and A be the matrix of T with respect to α (that-is-to-say, $A = [T]_\alpha^\alpha$). Then v is an eigenvector of T associated with λ if and only if the coordinate vector of v relative to α, denoted $[v]_\alpha$, is an eigenvector of A associated with λ. In other words,
\[T(v) = \lambda v \iff [T]_\alpha^\alpha[v]_\alpha = \lambda [v]_\alpha. \]

Suppose $T : V \rightarrow V$ is a linear transformation. We say that T is diagonalizable if there exists a basis α for V consisting of eigenvectors of T.

Suppose $T : V \rightarrow V$ is a linear transformation. Then T is diagonalizable if and only if there exists a basis α for V so that the matrix $[T]_\alpha^\alpha$ is diagonalizable.