Use the Gauss-Jordan Elimination method to solve, when possible, the following systems:

1. \[
\begin{align*}
 x + y - z &= 0 \\
 2x + 3y - 2z &= 6 \\
 x + 2y + 2z &= 10 \\
\end{align*}
\]
 Answer: \(x = -14/3, \ y = 6, \ z = 4/3 \).

2. \[
\begin{align*}
 2x + 3y + z &= 4 \\
 x + 9y - 4z &= 2 \\
 x - y + 2z &= 3 \\
\end{align*}
\]
 Answer: No Solution

3. \[
\begin{align*}
 2x + 3y + z &= 4 \\
 x + 9y - 4z &= 2 \\
 x - 6y + 5z &= 2 \\
\end{align*}
\]
 Answer: Infinitely many solutions, \(\{ (x, y, z) = (2 - \frac{7}{5}z, \frac{3}{5}z, z), \ z \in \mathbb{R} \} \).

4. \[
\begin{align*}
 x + y - z + t &= 1 \\
 x + y - z - t &= -1 \\
 x + 2y + z + 2t &= -1 \\
 2x + 2y + z + t &= 2 \\
\end{align*}
\]
 Answer: \(x = 4, \ y = -11/3, \ z = 1/3, \ t = 1 \)

5. \[
\begin{align*}
 2x + 3y &= 5 \\
 2x + y &= 2 \\
 x - 2y &= 1 \\
\end{align*}
\]
 Answer: No solution

6. \[
\begin{align*}
 x + y &= 1 \\
 z + t &= -1 \\
 x + y + z - t &= 2 \\
 -2x - 2y - z + t &= -3 \\
\end{align*}
\]
 Answer: Infinitely many solutions, \(\{ (x, y, z, t) = (x, -x + 1, 0, -1), \ x \in \mathbb{R} \} \).