
8. Distributive Lattices

Every dog must have his day.

In this chapter and the next we will look at the two most important lattice
varieties: distributive and modular lattices. Let us set the context for our study of
distributive lattices by considering varieties generated by a single finite lattice. A
variety V is said to be locally finite if every finitely generated lattice in V is finite.
Equivalently, V is locally finite if the relatively free lattice FV(n) is finite for every
integer n > 0.

Theorem 8.1. If L is a finite lattice and V = HSP(L), then

|FV(n)| ≤ |L||L|n .

Hence HSP(L) is locally finite.

Proof. If K is any collection of lattices and V = HSP(K), then FV(X) ∼= FL(X)/θ
where θ is the intersection of all homomorphism kernels ker f such that f : FL(X) →
L for some L ∈ K. (This is the technical way of saying that FL(X)/θ satisfies exactly
the equations that hold in every member of K.) When K consists of a single finite
lattice {L} and |X| = n, then there are |L|n distinct mappings of X into L, and
hence |L|n distinct homomorphisms fi : FL(X) → L (1 ≤ i ≤ |L|n).1 The range
of each fi is a sublattice of L. Hence FV(X) ∼= FL(X)/θ with θ =

⋂

ker fi means
that FV(X) is a subdirect product of |L|n sublattices of L, and so a sublattice of
the direct product

∏

1≤i≤|L|n L = L|L|n , making its cardinality at most |L||L|n . �

It is sometimes useful to view this argument constructively: FV(X) is the sub-
lattice of L|L|n generated by the vectors x (x ∈ X) with xi = fi(x) for 1 ≤ i ≤ |L|n.

We should note that not every locally finite lattice variety is generated by a finite
lattice.

Now it is clear that there is a unique minimum nontrivial lattice variety, viz., the
one generated by the two element lattice 2, which is isomorphic to a sublattice of
any nontrivial lattice. We want to show that HSP(2) is the variety of all distributive
lattices.

1The kernels of distinct homomorphisms need not be distinct, of course, but that is okay.

89



Lemma 8.2. The following lattice equations are equivalent.

(1) x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z)
(2) x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z)
(3) (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

Thus each of these equations determines the variety D of all distributive lattices.

Proof. If (1) holds in a lattice L, then for any x, y, z ∈ L we have

(x ∨ y) ∧ (x ∨ z) = [(x ∨ y) ∧ x] ∨ [(x ∨ y) ∧ z]

= x ∨ (x ∧ z) ∨ (y ∧ z)

= x ∨ (y ∧ z)

whence (2) holds. Thus (1) implies (2), and dually (2) implies (1).

Similarly, applying (1) to the left hand side of (3) yields the right hand side,
so (1) implies (3). Conversely, assume that (3) holds in a lattice L. Making the
substitution y 7→ x ∧ y, we see that (3) implies that

x ∧ ((x ∧ y) ∨ z) ≈ (x ∧ y) ∨ (x ∧ z)

which is the modular law, so L must be modular. Now for arbitrary x, y, z in L,
meet x with both sides of (3) and then use modularity to obtain

x ∧ (y ∨ z) = x ∧ [(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)]

= (x ∧ y) ∨ (x ∧ z) ∨ (x ∧ y ∧ z)

= (x ∧ y) ∨ (x ∧ z)

since x ≥ (x ∧ y) ∨ (x ∧ z). Thus (3) implies (1).

(Note that we have shown that (3) is equivalent to (1). Since (3) is self-dual, it
follows that (3) is equivalent to (2). The first argument, that (1) is equivalent to
(2), is redundant!) �

In the first Corollary of the next chapter, we will see that a lattice is distributive
if and only if it contains neither N5 nor M3 as a sublattice. But before that, let us
look at the wonderful representation theory of distributive lattices. A few moments
reflection on the kernel of a homomorphism h : L ։ 2 should yield the following
conclusions. By a proper ideal or filter, we mean one that is neither empty nor the
whole lattice.

Lemma 8.3. Let L be a lattice and h : L ։ 2 = {0, 1} a surjective homomorphism.
Then h−1(0) is a proper ideal of L, and h−1(1) is a proper filter, and L is the disjoint
union of h−1(0) and h−1(1).
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Conversely, if I is a proper ideal of L and F a proper filter such that L = I∪̇F
(disjoint union), then the map h : L → 2 given by

h(x) =

{

0 if x ∈ I,

1 if x ∈ F.

is a surjective homomorphism.

This raises the question: When is the complement L− I of an ideal a filter? The
answer is easy. A proper ideal I of a lattice L is said to be prime if x∧ y ∈ I implies
x ∈ I or y ∈ I. Dually, a proper filter F is prime if x ∨ y ∈ F implies x ∈ F or
y ∈ F . It is straightforward that the complement of an ideal I is a filter iff I is a
prime ideal iff L− I is a prime filter.

This simple observation allows us to work with prime ideals or prime filters (in-
terchangeably), rather than ideal/filter pairs, and we shall do so.

Theorem 8.4. Let D be a distributive lattice, and let a � b in D. Then there exists
a prime filter F with a ∈ F and b /∈ F .

Proof. Now ↑ a is a filter of D containing a and not b, so by Zorn’s Lemma there
is a maximal such filter (with respect to set containment), say M . For any x /∈ M ,
the filter generated by x and M must contain b, whence b ≥ x∧m for some m ∈ M .
Suppose x, y /∈ M , with say b ≥ x ∧m and b ≥ y ∧ n where m, n ∈ M . Then by
distributivity

b ≥ (x ∧m) ∨ (y ∧ n) = (x ∨ y) ∧ (x ∨ n) ∧ (m ∨ y) ∧ (m ∨ n).

The last three terms are in M , so we must have x ∨ y /∈ M . Thus M is a prime
filter. �

Now let D be any distributive lattice, and let TD = {ϕ ∈ Con D : D/ϕ ∼= 2}.
Theorem 8.4 says that if a 6= b in D, then there exists ϕ ∈ TD with (a, b) /∈ ϕ,
whence

⋂

TD = 0 in Con D, i.e., D is a subdirect product of two element lattices.

Corollary. The two element lattice 2 is the only subdirectly irreducible distributive
lattice. Hence D = HSP(2).

Corollary. D is locally finite.

Another consequence of Theorem 8.4 is that every distributive lattice can be
embedded into a lattice of subsets, with set union and intersection as the lattice
operations.

Theorem 8.5. Let D be a distributive lattice, and let S be the set of all prime filters
of D. Then the map φ : D → P(S) by

φ(x) = {F ∈ S : x ∈ F}
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is a lattice embedding.

For finite distributive lattices, this representation takes on a particularly nice
form. Recall that an element p ∈ L is said to be join prime if it is nonzero and
p ≤ x ∨ y implies p ≤ x or p ≤ y. In a finite lattice, prime filters are necessarily of
the form ↑p where p is a join prime element.

Theorem 8.6. Let D be a finite distributive lattice, and let J(D) denote the ordered
set of all nonzero join irreducible elements of D. Then the following are true.

(1) Every element of J(D) is join prime.
(2) D is isomorphic to the lattice of order ideals O(J(D)).
(3) Every element a ∈ D has a unique irredundant join decomposition a =

∨

A
with A ⊆ J(D).

Proof. In a distributive lattice, every join irreducible element is join prime, because
p ≤ x ∨ y is the same as p = p ∧ (x ∨ y) = (p ∧ x) ∨ (p ∧ y).

For any finite lattice, the map φ : L → O(J(L)) given by φ(x) =↓x∩ J(L) is order
preserving (in fact, meet preserving) and one-to-one. To establish the isomorphism
of (2), we need to know that for a distributive lattice it is onto. If D is distributive
and I is an order ideal of J(D), then for p ∈ J(D) we have by (1) that p ≤

∨

I iff
p ∈ I, and hence I = φ(

∨

I).

The join decomposition of (3) is then obtained by taking A to be the set of
maximal elements of ↓a ∩ J(D). �

It is clear that the same proof works if D is an algebraic distributive lattice
whose compact elements satisfy the DCC, so that there are enough join irreducibles
to separate elements. In Lemma 10.6 we will characterize those distributive lattices
isomorphic to O(P) for some ordered set P.

As an application, we can give a neat description of the free distributive lattice
FD(n) for any finite n, which we already know to be a finite distributive lattice. Let
X = {x1, . . . , xn}. Now it is not hard to see that any element in a free distributive
lattice can be written as a join of meets of generators, w =

∨

wi with wi = xi1 ∧
. . .∧xik . Another easy argument shows that the meet of a nonempty proper subset
of the generators is join prime in FD(X); note that

∧

∅ = 1 and
∧

X = 0 do not
count. (See Exercise 3). Thus the set of join irreducible elements of FD(X) is
isomorphic to the ordered set of nonempty, proper subsets of X, ordered by reverse
set inclusion, and the free distributive lattice is isomorphic to the lattice of order
ideals of that. As an example, FD(3) and its ordered set of join irreducibles are
shown in Figure 8.1.

Dedekind [7] showed that |FD(3)| = 18 and |FD(4)| = 166. Several other small
values are known exactly, and the rest can be obtained in principle, but they grow
quickly (see Quackenbush [12]). While there exist more accurate expressions, the
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x y z

x y z

x ∧ y x ∧ z y ∧ z
x ∧ y x ∧ z y ∧ z

J(FD(3)) FD(3)
Figure 8.1

simplest estimate is an asymptotic formula due to D. J. Kleitman:

log
2
|FD(n)| ∼

(

n

⌊n/2⌋

)

.

The representation by sets of Theorem 8.5 does not preserve infinite joins and
meets. The corresponding characterization of complete distributive lattices that
have a complete representation as a lattice of subsets is derived from work of Alfred
Tarski and S. Papert [11], and was surely known to both of them. An element p of
a complete lattice L is said to be completely join prime if p ≤

∨

X implies p ≤ x
for some x ∈ X. It is not necessary to assume that D is distributive in the next
theorem, though of course it will turn out to be so.

Theorem 8.7. Let D be a complete lattice. There exists a complete lattice embed-
ding φ : D → P(X) for some set X if and only if x 6≤ y in D implies there exists a
completely join prime element p with p ≤ x and p 6≤ y.

Thus, for example, the interval [0, 1] in the real numbers is a complete distributive
lattice that cannot be represented as a complete lattice of subsets of some set.

In a lattice with 0 and 1, the pair of elements a and b are said to be complements
if a ∧ b = 0 and a ∨ b = 1. A lattice is complemented if every element has at
least one complement. For example, the lattice of subspaces of a vector space is a
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complemented modular lattice. In general, an element can have many complements,
but it is not hard to see that each element in a distributive lattice can have at most
one complement.

A Boolean algebra is a complemented distributive lattice. Of course, the lattice
P(X) of subsets of a set is a Boolean algebra. On the other hand, it is easy to
see that O(P) is complemented if and only if P is an antichain, in which case
O(P) = P(P). Thus every finite Boolean algebra is isomorphic to the lattice P(A)
of subsets of its atoms.

For a very different example, the finite and cofinite subsets of an infinite set form
a Boolean algebra.

If we regard Boolean algebras as algebras B = 〈B,∧,∨, 0, 1, c〉, then they form
a variety, and hence there is a free Boolean algebra FBA(X) generated by a set X.
If X is finite, say X = {x1, . . . , xn}, then FBA(X) has 2n atoms, viz., all meets
z1 ∧ . . . ∧ zn where each zi is either xi or xc

i . Thus in this case FBA(X) ∼= P(A)
where |A| = 2n. On the other hand, if X is infinite then FBA(X) has no atoms;
if |X| = ℵ0, then FBA(X) is the unique (up to isomorphism) countable atomless
Boolean algebra!

Another natural example is the Boolean algebra of all clopen (closed and open)
subsets of a topological space. In fact, by adding a topology to the representation
of Theorem 8.5, we obtain the celebrated Stone representation theorem for Boolean
algebras [15]. Recall that a topological space is totally disconnected if for every pair
of distinct points x, y there is a clopen set V with x ∈ V and y /∈ V .

Theorem 8.8. Every Boolean algebra is isomorphic to the Boolean algebra of clopen
subsets of a compact totally disconnected (Hausdorff) space.

Proof. Let B be a distributive lattice. (We will add the other properties to make B
a Boolean algebra as we go along.) Let Fp be the set of all prime filters of B, and
for x ∈ B let

Vx = {F ∈ Fp : x ∈ F}.

The sets Vx will form a basis for the Stone topology on Fp.
With only trivial changes, the argument for Theorem 8.4 yields the following

stronger version.

Sublemma A. Let B be a distributive lattice, G a filter on B and x /∈ G. Then
there exists a prime filter F ∈ Fp such that G ⊆ F and x /∈ F .

Next we establish the basic properties of the sets Vx, all of which are easy to
prove.

(1) Vx ⊆ Vy iff x ≤ y.
(2) Vx ∩ Vy = Vx∧y.
(3) Vx ∪ Vy = Vx∨y.
(4) If B has a least element 0, then V0 = ∅. Thus Vx ∩ Vy = ∅ iff x ∧ y = 0.
(5) If B has a greatest element 1, then V1 = Fp. Thus Vx∪Vy = Fp iff x∨ y = 1.
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Property (3) is where we use the primality of the filters in the sets Vx. In particular,
the family of sets Vx is closed under finite intersections, and of course

⋃

x∈B Vx = Fp,
so we can legitimately take {Vx : x ∈ B} as a basis for a topology on Fp.

Now we would like to show that if B has a largest element 1, then Fp is a compact
space. It suffices to consider covers by basic open sets, so this follows from the next
Sublemma.

Sublemma B. If B has a greatest element 1 and
⋃

x∈S Vx = Fp, then there exists
a finite subset T ⊆ S such that

∨

T = 1, and hence
⋃

x∈T Vx = Fp.

Proof. Set I0 = {
∨

T : T ⊆ S, T finite}. If 1 /∈ I0, then I0 generates an ideal I of
B with 1 /∈ I. By the dual of Sublemma A, there exists a prime ideal H containing
I and not 1. Its complement B −H is a prime filter K. Then K /∈

⋃

x∈S Vx, else
z ∈ K for some z ∈ S, whilst z ∈ I0 ⊆ B −K. This contradicts our hypothesis, so
we must have 1 ∈ I0, as claimed. �

The argument thus far has only required that B be a distributive lattice with 1.
For the last two steps, we need B to be Boolean. Let xc denote the complement of
x in B.

First, note that by properties (4) and (5) above, Vx ∩Vxc = ∅ and Vx ∪Vxc = Fp.
Thus each set Vx (x ∈ B) is clopen. On the other hand, let W be a clopen set. As
it is open, W =

⋃

x∈S Vx for some set S ⊆ B. But W is also a closed subset of the
compact space Fp, and hence compact. Thus W =

⋃

x∈T Vx = V∨
T for some finite

T ⊆ S. Therefore W is a clopen subset of Fp if and only if W = Vx for some x ∈ B.
It remains to show that Fp is totally disconnected (which makes it Hausdorff).

Let F and G be distinct prime filters on B, with say F 6⊆ G. Let x ∈ F −G. Then
F ∈ Vx and G /∈ Vx, so that Vx is a clopen set containing F and not G. �

There are similar topological representation theorems for arbitrary distributive
lattices, the most useful being that due to Hilary Priestley in terms of ordered
topological spaces. A good introduction is in Davey and Priestley [6].

In 1880, C. S. Peirce proved that every lattice with the property that each element
b has a unique complement b∗, with the additional property that a ∧ b = 0 implies
a ≤ b∗, must be distributive, and hence a Boolean algebra. After a good deal
of confusion over the axioms of Boolean algebra, the proof was given in a 1904
paper of E. V. Huntington [10]. Huntington then asked whether every uniquely
complemented lattice must be distributive. It turns out that if we assume almost
any additional finiteness condition on a uniquely complemented lattice, then it must
indeed be distributive. As an example, there is the following theorem of Garrett
Birkhoff and Morgan Ward [5].

Theorem 8.9. Every complete, atomic, uniquely complemented lattice is isomor-
phic to the Boolean algebra of all subsets of its atoms.

Other finiteness restrictions which insure that a uniquely complemented lattice
will be distributive include weak atomicity, due to Bandelt and Padmanabhan [4],
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and upper continuity, due independently to Bandelt [3] and Salĭı [13], [14]. A mono-
graph written by Salĭı [16] gives an excellent survey of results of this type.

Nonetheless, Huntington’s conjecture is very far from true. In 1945, R. P. Dil-
worth [8] proved that every lattice can be embedded in a uniquely complemented
lattice. This result has likewise been strengthened in various ways. See the surveys
of Mick Adams [1] and George Grätzer [9].

The standard book for distributive lattices is by R. Balbes and Ph. Dwinger [2].
Though somewhat dated, it contains much of interest.

Exercises for Chapter 8

1. Show that a lattice L is distributive if and only if x ∧ (y ∨ z) ≤ y ∨ (x ∧ z) for
all x, y, z ∈ L. (J. Bowden)

2. (a) Prove that every maximal ideal of a distributive lattice is prime.
(b) Show that a distributive lattice D with 0 and 1 is complemented if and only

if every prime ideal of D is maximal.
3. These are the details of the construction of the free distributive lattice given

in the text. Let X be a finite set.

(a) Let δ denote the kernel of the natural homomorphism from FL(X) ։ FD(X)
with x 7→ x. Thus u δ v iff u(x1, . . . , xn) = v(x1, . . . , xn) in all distributive
lattices. Prove that for every w ∈ FL(X) there exists w′ which is a join of
meets of generators such that w δ w′. (Show that the set of all such elements
w is a sublattice of FL(X) containing the generators.)

(b) Let L be any lattice generated by a set X, and let ∅ ⊂ Y ⊂ X. Show that
for all w ∈ L, either w ≥

∧

Y or w ≤
∨

(X − Y ).
(c) Show that

∧

Y �
∨

(X − Y ) in FD(X) by exhibiting a homomorphism
h : FD(X) → 2 with h(

∧

Y ) � h(
∨

(X − Y )).
(d) Generalize these results to the case when X is a finite ordered set (as in the

next exercise).

4. Find the free distributive lattice generated by

(a) {x0, x1, y0, y1} with x0 < x1 and y0 < y1,
(b) {x0, x1, x2, y} with x0 < x1 < x2.

5. Let P = Q∪̇R be the disjoint union of two ordered sets, so that q and r are
incomparable whenever q ∈ Q, r ∈ R. Show that O(P) ∼= O(Q)×O(R).

6. Let D be a distributive lattice with 0 and 1, and let x and y be complements
in D. Prove that D ∼=↑ x × ↑ y. (Dually, D ∼=↓ x × ↓ y; in fact, ↑ x ∼=↓ y and
↑y ∼=↓x. This explains why Con L1 × L2

∼= Con L1 ×Con L2 (Exercise 5.6).)
7. Show that the following are true in a finite distributive lattice D.

(a) For each join irreducible element x of D, let κ(x) =
∨

{y ∈ D : y � x}. Then
κ(x) is meet irreducible and κ(x) � x.

(b) For each x ∈ J(D), D =↑x ∪̇ ↓κ(x).
(c) The map κ : J(D) → M(D) is an order isomorphism.
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8. A join semilattice with 0 is distributive if x ≤ y ∨ z implies there exist y′ ≤ y
and z′ ≤ z such that x = y′ ∨ z′. Prove that an algebraic lattice is distributive if
and only if its compact elements form a distributive semilattice.

9. Find an infinite distributive law that holds in every algebraic distributive
lattice. Show that this may fail in a complete distributive lattice.

10. Prove Theorem 8.7.
11. Prove Peirce’s theorem: If a lattice L with 0 and 1 has a complementation

operation ∗ such that

(1) b ∧ b∗ = 0 and b ∨ b∗ = 1,
(2) a ∧ b = 0 implies a ≤ b∗,
(3) b∗∗ = b,

then L is a Boolean algebra.
12. Prove Papert’s characterization of lattices of closed sets of a topological space

[11]: Let D be a complete distributive lattice. There is a topological space T and an
isomorphism φ mapping D onto the lattice of closed subsets of T , preserving finite
joins and infinite meets, if and only if x 6≤ y in D implies there exists a (finitely)
join prime element p with p ≤ x and p 6≤ y.
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