
Math 242 Final, Fall 2023

Name: Section:

Instructor:

TA:

Question Points Score

1 7

2 12

3 12

4 20

5 10

6 12

7 18

8 12

9 12

10 10

11 16

12 9

Total: 150

• You may not use notes or calculators on the test.

• Please ask if anything seems confusing or ambiguous.

• The last two pages are a formula sheet. You are welcome to remove this from the exam.

• You must show all your work and make clear what your final solution is (e.g. by drawing a
box around it).

• Organize your work neatly and legibly in the spaces provided under each problem.

• You do not need to simplify your answers unless explicitly told to do so.

• Clearly cross-out scratch work.

• You have exactly 2:00 hours to complete this Exam.

• Good luck!



1. Let f(x) be the function given by

f(x) =
󰁳

1 + x4, x ≥ 0.

(a) (2 points) Find the value of x such that f(x) =
√
2.

(b) (5 points) Compute (f−1)′(
√
2).
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2. Compute the derivatives of the following functions. No need to simplify your answers.

(a) (6 points) f(x) = 2x arcsin(2x).

(b) (6 points) f(x) = ln

󰀣
3
√
x2 + 1

(x− 1)
√
2x+ 1

󰀤
. (Hint: Use properties of logarithmic functions.)
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3. Compute the following limits. You must justify your solution using algebraic manipulations
and/or l’Hopitals rule for full credit.

(a) (6 points) lim
x→0

cos(2x)− cos(3x)

x2
.

(b) (6 points) lim
n→∞

n
√
n.
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4. Evaluate the definite integral or show that it diverges.

(a) (6 points)

󰁝 π/2

0
sin3(x) cos7(x)dx.
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(b) (6 points)

󰁝 2

1

3

x(x+ 4)
dx.
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(c) (8 points)

󰁝 ∞

1

lnx

x3
dx.
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5. (10 points) Evaluate the integral

󰁝
5

(x2 + 25)3/2
dx .
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6. Calculate the sum of each series below, if it is convergent. If it diverges, explain why.

(a) (6 points)

∞󰁛

n=2

n2

n2 − 1
.

(b) (6 points)

∞󰁛

n=1

3n − 2n

6n
.
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7. Determine whether the series below is absolutely convergent, conditionally convergent or di-
vergent. State which test(s) you use and justify the answer.

(a) (6 points)

∞󰁛

n=1

2n2 + 3

6n3 + 5n2 + 1
.
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(b) (6 points)

∞󰁛

n=1

(−1)n
n2 + 1

(n+ 1)!
.
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(c) (6 points)

∞󰁛

n=1

(−1)n
cosn( 2n)

2n
.
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8. Consider the power series

∞󰁛

n=1

(−5)n(x+ 2)n

n+ 3
.

(a) (6 points) Find the radius of convergence of the series.

(b) (6 points) Find the interval of convergence for the above power series. Make sure to check
the endpoints.
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9. (a) (6 points) Find the Maclaurin series for the function cos(x5).

(b) (6 points) Use part (a) to evaluate the integral
󰁕
cos(x5) dx as a series.
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10. Consider the direction field pictured below.

(a) (5 points) Which of the differential equations below matches this direction field?

(a)
dy

dx
=

x

y
, (b)

dy

dx
= x− y, (c)

dy

dx
= x+ y, (d)

dy

dx
= x2 + y2.

(b) (5 points) Sketch the solution to this differential equation that satisfies y(0) = 5 on the
direction field.

Page 15



11. Solve the following differential equations. Either give the general solution, or solve for a partic-
ular solution satisfying the given initial conditions. Your solution must give an explicit formula
for y for full credit.

(a) (8 points)
dy

dx
=

x sin(x2)

y2
.
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(b) (8 points) y′ + y = x, y(0) = 5.
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12. Determine whether each of the following statements is true or false. No need to justify your
answer.

(a) (3 points) eln(x) = x, for all x > 0.

(b) (3 points) If the series

∞󰁛

n≥0

an and

∞󰁛

n≥0

bn diverges, then the series

∞󰁛

n≥0

(an+bn) also diverges.

(c) (3 points) lim
n→∞

1

n
= 0 , so the series

∞󰁛

n≥1

1

n
= 1+

1

2
+

1

3
+ · · ·+ 1

n
+ . . . converges, by the

Test for Divergence.
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[Blank page]
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Formula sheet

• Derivatives of inverse trigonometric functions.

d

dx
sin−1(x) =

1√
1− x2

(true for −1 < x < 1)

d

dx
tan−1(x) =

1

1 + x2
(true for all x)

d

dx
sec−1(x) =

1

|x|
√
x2 − 1

(true for x < −1 and x > 1)

• Pythagorean identities (true for all x where the functions involved are defined).

sin2(x) + cos2(x) = 1, tan2(x) + 1 = sec2(x), 1 + cot2(x) = csc2(x).

• Reduction of power formulas / double angle formulas for sine and cosine (true for all x).

cos2(x) =
1

2
(1 + cos(2x)), sin2(x) =

1

2
(1− cos(2x))

• Addition formulas for sine and cosine (true for all x and y).

sin(x) sin(y) =
1

2
cos(x− y)− 1

2
cos(x+ y)

cos(x) cos(y) =
1

2
cos(x− y) +

1

2
cos(x+ y)

sin(x) cos(y) =
1

2
sin(x− y) +

1

2
sin(x+ y)

• Integrals of tangent and secant.
󰁝

tan(x)dx = − ln | cos(x)|+ C

󰁝
sec(x)dx = ln | sec(x) + tan(x)|+ C.
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• Trapezoidal Rule and Simpson’s Rule:

Tn =
∆x

2
(y0 + 2y1 + 2y2 + . . .+ 2yn−1 + yn)

Sn =
∆x

3
(y0 + 4y1 + 2y2 + 4y3 + . . .+ 2yn−2 + 4yn−1 + yn)

• Error Bound for Trapezoidal Rule and Simpson’s Rule:

|ET | ≤
K(b− a)3

12n2
, where |f ′′(x)| ≤ K for all x in [a, b]

|ES | ≤
M(b− a)5

180n4
, where |f (4)(x)| ≤ M for all x in [a, b]

• Standard power series expansions (centered at a = 0).

ex =

∞󰁛

n=0

xn

n!
(valid for all x).

sin(x) =

∞󰁛

n=0

(−1)nx2n+1

(2n+ 1)!
(valid for all x).

cos(x) =

∞󰁛

n=0

(−1)nx2n

(2n)!
(valid for all x).

ln(1 + x) =

∞󰁛

n=1

(−1)n−1xn

n
(valid for |x| < 1).

(1 + x)m =

∞󰁛

n=0

m(m− 1) · · · (m− n+ 1)

n!
xn (valid for |x| < 1).

• Error estimate for approximations by Taylor polynomials.
Say f(x) is a function with derivatives of all orders on an interval [b, c], and a is a point in [b, c].
Say TN (x) is the N th Taylor polynomial for f(x) centered at a, and RN (x) = f(x) − TN (x)
is the error when approximating f(x) by TN (x). Then for all x in [b, c]

|RN (x)| ≤ MN+1|x− a|N+1

(N + 1)!
,

where MN+1 is the largest value taken by the (N + 1)st derivative of f(x) on [b, c].
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