SAMPLE ALGEBRA QUALIFYING EXAM

University of Hawai'i at Mānoa

Spring 2016

Part I

1. Group theory

In this section, D_{n} and C_{n} denote, respectively, the symmetry group of the regular n-gon (of order $2 n$) and the cyclic group of order n.

1. Let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism. If N^{\prime} is a normal subgroup of G^{\prime}, show that $\varphi^{-1}\left(N^{\prime}\right)$ is a normal subgroup of G.
2. (a) Let $C_{2}=\{1, \gamma\}$ act on C_{4} with γ sending an element to its inverse. Show that $D_{4} \cong C_{2} \ltimes C_{4}$.
(b) Show that $D_{6} \cong C_{2} \times D_{3}$.
3. (a) Suppose the group G acts on the set X. Show that the stabilizers of elements in the same orbit are conjugate.
(b) Let G be a finite group and let H be a proper subgroup. Show that the union of the conjugates of H is strictly smaller than G, i.e.

$$
\bigcup_{g \in G} g^{-1} H g \subsetneq G
$$

(c) Suppose G is a finite group acting transitively on a set S with at least 2 elements. Conclude from parts (a) and (b) (or otherwise), that there is an element of G with no fixed points.

2. Fields and Galois theory

In this section, \mathbf{Q} denotes the field of rational numbers and \mathbf{F}_{q} denotes the finite field of order q.

1. For each of the following, give an example and provide some justification.
(a) A separable field extension that is not normal.
(b) An inseparable field extension.
2. Consider the field $K=\mathbf{Q}(\sqrt{3}, \sqrt{7})$.
(a) Determine a primitive element for the extension K / \mathbf{Q}, i.e. an element $\alpha \in K$ such that $K=\mathbf{Q}(\alpha)$.
(b) Determine the minimal polynomial of the element you found in part (a).
(c) Is K / \mathbf{Q} Galois? If so, what is its Galois group. If not, what is the degree of its Galois closure? Justify these answers.
3. What is the Galois group of $\mathbf{F}_{2^{6}} / \mathbf{F}_{2}$? What are the intermediate extensions of $\mathbf{F}_{2^{6}} / \mathbf{F}$?
4. Let K / F be a finite Galois extension with Galois group G and suppose the intermediate extensions E_{1} and E_{2} correspond to the subgroups H_{1} and H_{2} of G, respectively.
(a) Show that $E_{1} \cap E_{2}$ corresponds to the subgroup of G generated by H_{1} and H_{2}.
(b) Show that $H_{1} \cap H_{2}$ corresponds to the intermediate extension $E_{1} E_{2}$.

3. Category theory

1. (a) Given two objects X, Y in a category, describe the setup and write out the universal property for the coproduct $X \amalg Y$.
(b) Give an example of a category where the coproduct of two objects exists, say what the coproduct is, and prove that it is the coproduct.
2. Let $\mathcal{F}: \operatorname{Grp} \rightarrow$ Set be the forgetful functor sending a group to its underlying set. Let $\mathcal{G}: \mathbf{G r p} \rightarrow$ Set be the functor

$$
G \mapsto \operatorname{Hom}(\mathbf{Z}, G)
$$

sending a group to the set of group homomorphisms from the additive group of integers to G.
(a) Show that \mathcal{G} is indeed a covariant functor.
(b) Show that \mathcal{F} and \mathcal{G} are naturally isomorphic (i.e. show that \mathcal{F} is represented by Z).

Part II

4. Ring theory

1. For the following, give examples and provide some justification.
(a) A unique factorization domain (UFD) that is not a principal ideal domain (PID).
(b) An irreducible element a in an integral domain such that a is not a prime element.
(c) A commutative ring R with identity such that $R[x]$ has units that are not contained in R.
2. In this question, rings are commutative with identity.
(a) Show that every non-zero prime ideal in a PID is maximal.
(b) Deduce that if R is a ring such that $R[x]$ is a PID, then R is, in fact, a field.
(c) Show that, in a UFD, a non-zero element is prime if and only if it is irreducible.
3. Let R be a ring with identity, let n be a positive integer, and let $M_{n}(R)$ denote the ring of $n \times n$ matrices over R.
(a) Show that a subset $J \subseteq M_{n}(R)$ is an ideal if and only if $J=M_{n}(I)$, where I is an ideal of R.
(b) Now, suppose R is a division ring. Conclude that $M_{n}(R)$ is simple (i.e. it has no non-trivial proper ideals).

5. Modules and multilinear algebra

In this section, \mathbf{Z} denotes the ring of integers and $\mathbf{Z} / n \mathbf{Z}$ the ring of integers modulo n.

1. (a) Let m and n be two positive integers. Show that

$$
\mathbf{Z} / 6 \mathbf{Z} \otimes_{\mathbf{z}} \mathbf{Z} / 8 \mathbf{Z} \cong \mathbf{Z} / 2 \mathbf{Z}
$$

(b) Give an example of a Z-module that is not flat. Justify.
(c) Give an example of a flat Z-module that is not projective. Justify.
2. Let R be a ring and suppose that

is a commutative diagram of R-modules whose rows are short exact sequences. Show that if α and γ are isomorphisms, then β is also an isomorphism.
3. Let V be a finite-dimensional vector space.
(a) Suppose $\left\{e_{1}, \ldots, e_{d}\right\}$ is a basis of V. Show that
$\left\{e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{n}}:\left(i_{1}, \ldots, i_{n}\right)\right.$ varying over all n-tuples such that $\left.1 \leq i_{j}<i_{j+1} \leq d\right\}$, is a basis of $\bigwedge^{n} V$ for $n \leq d$.
(b) Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of vectors in V. Show that they are linearly independent if and only if $v_{1} \wedge \cdots \wedge v_{n} \neq 0$ in $\bigwedge^{n} V$.
(c) Suppose V is three-dimensional. Provide a natural perfect pairing between V and $\Lambda^{2} V$.

6. Commutative algebra

In this section, all rings are commutative (with identity), all ring homomorphisms and all modules are unital.

1. Let \mathbf{C} denote the field of complex numbers. What are the prime ideals in $\mathbf{C}[x]$? Describe the localization of $\mathbf{C}[x]$ at these prime ideals.
2. Let A be a subring of B with B integral over A.
(a) Suppose $a \in A$ is a unit in B, then show it is a unit in A.
(b) Suppose A and B are both integral domains. Show that A is a field if and only if B is a field.
